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FOREWORD 
 

The Safe Drinking Water Act (SDWA), as amended in 1996, requires the Administrator of 
the U.S. Environmental Protection Agency (EPA) to establish a list of unregulated 
microbiological and chemical contaminants that are known or anticipated to occur in public water 
systems and that may need to be controlled with a national primary drinking water regulation. The 
SDWA also requires that the Agency make regulatory determinations on at least five 
contaminants on the list every five years. For each contaminant on the Contaminant Candidate 
List (CCL), the Agency will need to obtain sufficient data to conduct analyses on the extent of 
occurrence and the risk posed to populations via drinking water. Ultimately, this information will 
assist the Agency in determining the appropriate course of action (e.g., develop a regulation, 
develop guidance or make a decision not to regulate the contaminant in drinking water).  

 
This document presents information, including occurrence, toxicology and epidemiology 

data, for the cyanobacterial toxin anatoxin-a to be considered in the development of a Drinking 
Water Health Advisory (DWHA). DWHAs serve as the informal technical guidance for 
unregulated drinking water contaminants to assist federal, state and local officials, and managers 
of public or community water systems in protecting public health as needed. They are not to be 
construed as legally enforceable federal standards.  

 
To develop the Health Effects Support Document (HESD) for anatoxin-a, a 

comprehensive literature search was conducted from January 2013 to May 2014 using Toxicology 
Literature Online (TOXLINE), PubMed component, and Google Scholar to ensure the most 
recent published information on anatoxin-a was included in this document. The literature search 
included the following terms: anatoxin-a, human toxicity, animal toxicity, in vitro toxicity, in vivo 
toxicity, occurrence, environmental fate, mobility, and persistence. EPA assembled available 
information on occurrence; environmental fate; mechanisms of toxicity; acute, short term, 
subchronic and chronic toxicity and cancer in humans and animals; toxicokinetics; and exposure.  

Additionally, EPA relied on information from the following risk assessments in the development 
of the anatoxin-a’s HESD: 

 
• Health Canada (2012) Toxicity Profile for Cyanobacterial Toxins  
• Enzo Funari and Emanuela Testai (2008) Human Health Risk Assessment Related to 

Cyanotoxins Exposure 
• Tai Nguyen Duy, Paul Lam, Glen Shaw and Des Connell (2000) Toxicology and Risk 

Assessment of Freshwater Cyanobacterial (Blue-Green Algal) Toxins in Water 
  
 Development of the HESD for anatoxin-a follows the general guidelines for risk 
assessment as set forth by the National Research Council (1983) and EPA’s (2014) Framework 
for Human Health Risk Assessment to Inform Decision Making. EPA guidelines that were used in 
the development of this assessment include the following:  

 
• Guidelines for the Health Risk Assessment of Chemical Mixtures (U.S. EPA, 1986a) 
• Guidelines for Mutagenicity Risk Assessment (U.S. EPA, 1986b) 
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• Recommendations for and Documentation of Biological Values for Use in Risk Assessment 
(U.S. EPA, 1988) 

• Guidelines for Developmental Toxicity Risk Assessment (U.S. EPA, 1991) 
• Interim Policy for Particle Size and Limit Concentration Issues in Inhalation Toxicity 

Studies (U.S. EPA, 1994a) 
• Methods for Derivation of Inhalation Reference Concentrations and Application of 

Inhalation Dosimetry (U.S. EPA, 1994b) 
• Use of the Benchmark Dose Approach in Health Risk Assessment (U.S. EPA, 1995) 
• Guidelines for Reproductive Toxicity Risk Assessment (U.S. EPA, 1996) 
• Guidelines for Neurotoxicity Risk Assessment (U.S. EPA, 1998) 
• Science Policy Council Handbook: Peer Review (2nd edition) (U.S. EPA, 2000a) 
• Supplemental Guidance for Conducting Health Risk Assessment of Chemical Mixtures 

(U.S. EPA, 2000b) 
• A Review of the Reference Dose and Reference Concentration Processes (U.S. EPA, 

2002) 
• Guidelines for Carcinogen Risk Assessment (U.S. EPA, 2005a) 
• Supplemental Guidance for Assessing Susceptibility from Early-Life Exposure to 

Carcinogens (U.S. EPA, 2005b) 
• Science Policy Council Handbook: Peer Review (U.S. EPA, 2006a) 
• A Framework for Assessing Health Risks of Environmental Exposures to Children (U.S. 

EPA, 2006b)  
• Exposure Factors Handbook 2011 Edition (U.S. EPA, 2011) 
• Benchmark Dose Technical Guidance Document (U.S. EPA, 2012) 
• Child-Specific Exposure Scenarios Examples (U.S. EPA, 2014a) 
• Framework for Human Health Risk Assessment to Inform Decision Making (U.S. EPA, 

2014b) 
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EXECUTIVE SUMMARY 
 

The U.S. Environmental Protection Agency (EPA) has prepared this Health Effects 
Support Document (HESD) for anatoxin-a to be considered in developing a Health Advisory 
(HA). The available data on toxicity are not adequate to derive a health-based value for anatoxin-
a at the present time. EPA will reevaluate the ability to derive an HA for anatoxin-a as new 
information becomes available.  

 
Anatoxin-a is produced by a variety of cyanobacteria species including: Chrysosporum 

(Aphanizomenon) ovalisporum, Cuspidothrix, Cylindrospermopsis, Cylindrospermum, 
Dolichospermum, Microcystis, Oscillatoria, Planktothrix, Phormidium, Anabaena flos-aquae, A. 
lemmermannii Raphidiopsis mediterranea (strain of Cylindrospermopsis raciborskii), 
Tychonema and Woronichinia (Funari and Testai, 2008; Moustaka-Gouni et al., 2009). 
Anatoxin-a is weakly sorbed to sandy sediments and sorbs most strongly to clay-rich and 
organic-rich sediment (Klitzke et al., 2011). Anatoxin-a undergoes rapid photochemical 
degradation in sunlight, with higher pH favoring degradation reactions (Stevens and Krieger, 
1991a). A half-life of 1 to 2 hours at pH ranges from 8 to 9 have been reported. In the absence of 
sunlight, half-lives of anatoxin-a can range from several days to several months (Stevens and 
Krieger, 1991a). 
 

Anatoxin-a is highly soluble in water and has been found in surface waters around the 
world including the U.S. Limited information is available on anatoxin-a in finished drinking 
water, and reported concentrations are rare and vary widely depending on the water body 
sampled and the analytical method used.  
 

Deaths in domestic animals, livestock and waterfowl that consumed water containing 
cyanotoxins including anatoxin-a from cyanobacteria blooms have been reported. The signs of 
toxicity were mostly neurologic, with deaths due to respiratory paralysis. Very limited 
information was available on anatoxin-a accumulation in plants and fish.  
 

No quantitative data were located regarding the rate or extent of absorption, tissue 
distribution, metabolism or excretion of anatoxin-a in humans or animals. In oral toxicity studies, 
animals demonstrated acute clinical signs of neurotoxicity such as loss of coordination, muscular 
twitching and death from respiratory paralysis within several minutes of exposure (Stevens and 
Krieger, 1991a; Fitzgeorge et al., 1994). Based on these studies, anatoxin-a is rapidly absorbed 
from the gastrointestinal tract and distributed in the blood.  
 

Literature on the toxicity from oral exposure to anatoxin-a is limited and the majority of 
studies are in vitro experimental studies on its mode of neurotoxic action. These studies have 
established that anatoxin-a binds to acetylcholine receptors and mimics the action of 
acetylcholine at neuromuscular nicotinic receptors which causes neurological effects (Wonnacott 
and Gallagher, 2006). With sufficient exposure, acetylcholine accumulation occurs at skeletal 
myoneural junctions, at cholinergic neuroeffector junctions (muscarinic effects) and in 
autonomic ganglia (nicotinic effects).  
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Information on the short-term oral toxicity of anatoxin-a is available from 5-day and 28-
day systemic toxicity studies in mice, and a developmental toxicity study in mice (Fawell and 
James, 1994; Fawell et al., 1999). A NOAEL (No Observed Adverse Effect Level) of 0.1 mg/kg-
day was derived from the 28-day study that tested groups of 10 mice per sex at dose levels of 0, 
0.1, 0.5 and 2.5 mg/kg-day. The study demonstrated mortality at doses ≥0.5 mg/kg-day since one 
of 10 animals died in each of the two highest dose groups at days 10 and 14 of dosing, 
respectively. The authors could not identify the cause of death for the animals that died. Other 
effects reported in treated animals, such as minor changes in hematology and blood chemistry, 
were not considered toxicologically significant by the authors. Therefore, these findings are not 
considered sufficient to support derivation of a short-term oral reference dose (RfD) for 
anatoxin-a. 

 
One seven-week drinking water study in rats provides information on the subchronic oral 

toxicity of anatoxin-a (Astrachan and Archer, 1981; Astrachan et al., 1980). The authors 
identified a NOAEL of 0.05 mg/kg-day with a LOAEL (Lowest Observed Adverse Effect Level) 
of 0.5 mg/kg-day for increased white blood cell counts that persisted for 5 weeks. There were no 
effects on red cell counts. This study was limited because it only included two dose levels, 
evaluated only a few endpoints, provided limited quantitative data, and used partially purified 
extract. The toxicological significance of the increased white cell count is also unclear. Fawell et 
al. (1999) reported minor, statistically significant changes in red blood cell hemoglobin and 
mean cell hemoglobin concentrations at a LOAEL of 0.5 mg/kg-day, but considered them to lack 
toxicological significance.  

 
Because neither the mortality in the Fawell et al. (1999) study nor the white blood cell 

end point in Astrachan and Archer (1981) were replicated in other studies, the data do not 
support derivation of an RfD.  

 
There are no data available to evaluate the carcinogenicity of anatoxin-a in humans. 

Additionally, there is no dose-response or mode of action information available regarding the 
carcinogenicity of anatoxin-a from studies in animals. Thus, available data do not support 
assessment of the carcinogenic potential of anatoxin-a at this time.  
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1.0 IDENTITY: CHEMICAL AND PHYSICAL PROPERTIES 
 
 Cyanobacteria, formerly known as blue-green algae (Cyanophyceae), are a group of 
bacteria containing chlorophyll-a that can carry out the light and dark phases of photosynthesis 
(Castenholz and Waterbury, 1989). In addition to chlorophyll-a, other pigments such as carotene, 
xanthophyll, blue c phycocyanin and red c phycoerythrin are also present in cyanobacteria (Duy 
et al., 2000). Most cyanobacteria are aerobic photoautotrophs, requiring only water, carbon 
dioxide, inorganic nutrients and light for survival, but others have heterotrophic properties and 
can survive long periods in complete darkness (Fay, 1965). Some species also are capable of 
nitrogen fixation (i.e., diazotrophy) (Duy et al., 2000) producing inorganic nitrogen compounds 
to synthesize nitrogen-containing biomolecules, such as nucleic acids and proteins. 
Cyanobacteria can form symbiotic associations with animals and plants, such as fungi, 
bryophytes, pteriodophytes, gymnosperms and angiosperms, supporting their growth and 
reproduction (Sarma, 2013; Hudnell, 2008; Hudnell, 2010; Rai, 1990). 
 
 Cyanobacteria can be found in unicellular, colony and multicellular filamentous forms. 
The unicellular form occurs when the daughter cells separate after binary fission reproduction. 
These cells can aggregate into irregular colonies held together by a slimy matrix secreted during 
colony growth (WHO, 1999). The filamentous form occurs when repeated cell divisions happen 
in a single plane at right angles to the main axis (WHO, 1999). Reproduction is asexual.  
 

Cyanobacteria are considered gram-negative, even though the peptidoglycan layer is 
thicker than most gram-negative bacteria. However, studies using electron microscopy show that 
cyanobacteria possess properties of both gram-negative and gram-positive bacteria (Stewart et 
al., 2006). Compared to heterotrophic bacteria, the cyanobacterial lipopolysaccharides (LPS) 
have little or no 2-keto-3-deoxy-D-manno-octonic acid, and they lack phosphate groups, 
glucosamine and L-glycero-D-mannoheptose. Cyanobacteria also have long-chain saturated and 
unsaturated fatty acids. 

   
Under the optimal pH, nutrient availability, light and temperature conditions, 

cyanobacteria can reproduce quickly forming a bloom. Studies of the impact of environmental 
factors on cyanotoxin production are ongoing, including such factors as nutrient (nitrogen, 
phosphorus and trace metals) concentrations, light, temperature, oxidative stressors and 
interactions with other biota (viruses, bacteria and animal grazers), as well as the combined 
effects of these factors (Paerl and Otten 2013a; 2013b). Fulvic and humic acids also have been 
reported to encourage cyanobacteria growth (Kosakowska et al., 2007).  

 
Cyanobacteria can produce a wide range of bioactive compounds, some of which have 

beneficial or therapeutic effects. These bioactive compounds have been used in pharmacology, as 
dietary supplements and as mood enhancers (Jensen et al., 2001). Other cyanobacteria can 
produce bioactive compounds that may be harmful, called cyanotoxins. The most commonly 
recognized bioactive compounds produced by cyanobacteria fall into four broad groupings: 
cyclic peptides, alkaloids, amino acids and LPS. Anatoxin-a is in the alkaloid group (WHO, 
1999).   
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Anatoxin-a is produced by a variety of cyanobacteria species including: Chrysosporum 
(Aphanizomenon) ovalisporum, Cuspidothrix, Cylindrospermopsis, Cylindrospermum, 
Dolichospermum, Microcystis, Oscillatoria, Planktothrix, Phormidium, Anabaena flos-aquae, A. 
lemmermannii Raphidiopsis mediterranea (strain of Cylindrospermopsis raciborskii), 
Tychonema and Woronichinia (Funari and Testai, 2008; Moustaka-Gouni et al., 2009). 
Anatoxin-a, or 2-acetyl-9-azbicyclo[4:2:1]non-2-ene, is a tropane-related bicyclic alkaloid (Duy 
et al., 2000). Figure 1-1 shows the presence of an additional methyl group (CH) on carbon atom 
11 (C11) differentiates anatoxin-a from its analog homoanatoxin-a. Both molecules share almost 
identical toxicological properties (Funari and Testai, 2008). Other derivatives of anatoxin-a have 
been identified in cyanobacteria cultures or in field samples, including 2,3-epoxy-anatoxin-a, 4-
hydroxy- and 4-oxo-derivatives, dihydroanatoxin-a and dihydrohomoanatoxin-a (Namikoshi et 
al., 2003; Mann et al., 2012). Although frequently non-toxic, some of these variants may become 
toxic when bound to the nicotinic acetylcholine receptor (Mann et al., 2012).  
 
 

Figure 1-1. Structures of Anatoxin-a and Homoanatoxin-a (Mann et al., 2011) 
 

 
 

   
 Table 1-1 below provides the chemical and physical properties of anatoxin-a. It has a 
molecular formula of C10H15NO and a molecular weight of 165.23 g/mole (Lewis, 2000).  
Anatoxin-a is highly soluble in water and has a high boiling point of 291°C. It has a density of 
1.04 g/cm3 and a low vapor pressure of 0.002 mmHg. Other physico-chemical properties such as 
the soil (Koc) and living organism’s adsorption (Kow) coefficients, and how it volatizes from 
water and is distributed in the atmosphere (Henry’s Law constant) are unknown. Limited 
information on the chemical breakdown, biodegradation and distribution in the environment is 
available and is discussed in the Environmental Fate Section (2.3). 
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Table 1-1. Chemical and Physical Properties of Anatoxin-a 
 

Property Anatoxin-a 

Chemical Abstracts Service (CAS) 
Registry # 64285-06-9 

Chemical Formula C10H15NO 

Molecular Weight 165.23 g/mole 

Color/Physical State lyophilized solid 

Boiling Point 291°C at 760 mmHg 

Melting Point N/A 

Density 1.037 g/cm3 

Vapor Pressure at 25°C 0.002 mmHg 

Henry’s Law Constant N/A 

Kow N/A 

Koc N/A 

Solubility in Water Highly 

   
Sources: Chemical Book, 2012; TOXLINE, 2012  
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2.0 TOXIN SYNTHESIS AND ENVIRONMENTAL FATE 
 
2.1 Cyanotoxin Synthesis  

 
Toxin production varies between blooms and within an individual bloom over time (Duy 

et al., 2000). Cyanotoxins can be produced by more than one species of cyanobacteria and some 
species may produce more than one toxin at a time, resulting in blooms with different 
cyanotoxins (Funari and Testai, 2008). The toxicity of a particular bloom is complex, determined 
by the mixture of species and the variation of strains with toxic and nontoxic genotypes involved 
(WHO, 1999). Generally, toxins in cyanobacteria are retained within the cell unless conditions 
favor cell wall lysis (ILS, 2000).  
 

Mann et al. (2012) identified the ana genes as the gene cluster responsible for the 
biosynthesis of anatoxin-a and homoanatoxin-a. These analogs are formed by methylation 
(corresponding to the C12 methyl group) of an intermediate tethered to the polyketide synthase 
AnaG. However, the mechanism responsible for the difference in ratio of the concentration of 
anatoxin-a over homoanatoxin-a has not yet been described. 
 
2.2 Environmental Factors that Affect the Fate of Cyanotoxins 
  

Cyanotoxin concentrations depend on the dominance and diversity of strains within the 
bloom along with environmental and ecosystem influences on bloom dynamics as shown in 
Figure 2-1 below (Hitzfeld et al., 2000; WHO, 1999). Cyanotoxin production is strongly 
influenced by the environmental conditions that promote growth of particular cyanobacterial 
species and strains. Nutrient concentrations, light intensity, temperature, and other environmental 
factors affect growth and the population dynamics of cyanobacteria production, as described 
below. Although environmental conditions affect the formation of blooms, the number of 
cyanobacteria and the concentration of toxins produced are not always closely related.  

 
2.2.1 Nutrients 

 
Nutrient concentrations are key environmental drivers that influence the proportion of 

cyanobacteria in the phytoplankton community, the cyanobacterial biovolume, toxin production, 
and the impact that cyanobacteria may have on ecosystem function and water quality. 
Cyanobacteria production and toxin concentrations are dependent on nutrient levels (Wang et al., 
2002); however, different cyanobacteria species use organic and inorganic nutrient forms 
differently. Loading of nitrogen (N) and/or phosphorus (P) to water bodies from agricultural, 
industrial and urban sources influence the development of cyanobacterial blooms and may be 
related to cyanotoxin production (Paerl et al., 2011).  

 
Smith (1983) first described a strong relationship between the relative amounts of N and 

P in surface waters and cyanobacterial blooms. Smith proposed that cyanobacteria should be 
superior competitors under conditions of N-limitation because of their unique capacity for N-
fixation. While the dominance of N-fixing cyanobacteria at low N:P ratios has been 
demonstrated in mesocosm- and ecosystem-scale experiments in prairie and boreal lakes 
(Schindler et al., 2008, and references therein), the hypothesis has been debated and challenged 
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for its inability to reliably predict cyanobacterial dominance (Downing et al., 2001). Eutrophic 
systems already subject to bloom events are prone to further expansion of these blooms due to 
additional N inputs, especially if these nutrients are available from internal sources. Recent 
surveys of cyanobacterial and algal productivity in response to nutrient pollution across 
geographically diverse eutrophic lakes, reservoirs, estuarine and coastal waters, and in different 
experimental enclosures of varying sizes demonstrate that greater stimulation is routinely 
observed in response to both N and P additions. Further, this evidence suggests that nutrient 
colimitation is widespread (Elser et al., 2007; Lewis et al., 2011; Paerl et al., 2011). These results 
strongly suggest that reductions in both N and P inputs are needed to stem eutrophication and 
cyanobacterial bloom expansion.  

 
2.2.2 Light Intensity 

 
Sunlight availability and turbidity have a strong influence on the cyanobacteria species 

that predominate, as well as the depth at which they occur (Falconer et al., 2005; Carey et al., 
2012). For example, Cylindrospermopsis forms dense layers of filaments at the lower bound of 
the euphotic zone in deeper rivers, lakes and reservoirs. The relationship of light intensity to 
toxin production in blooms is somewhat unclear and continues to be investigated (Duy et al., 
2000). Some scientists have found evidence that toxin production increases with high light 
intensity (Watanabe and Oishi, 1985), while others have found little variation in toxicity at 
different levels of light intensity (Codd and Poon, 1988; Codd, 1995). Deep water mixing and 
low light also have been associated with an increase in dominance of C. raciborskii, a toxin-
producing species (O’Brien et al., 2009).  

 
Recently, Kosten et al. (2011) reported results from a survey of 143 lakes along a 

latitudinal transect (between 5-55°S and 38-68°N) ranging from subarctic Europe to southern 
South America. They found that the percentage, or biovolume, of the total phytoplankton 
attributable to cyanobacteria was greater in lakes with high rates of light absorption. Kosten et al. 
(2011) could not establish cause and effect from these field data; however, other controlled 
experiments and field data support the importance of light availability on the competitive balance 
among a large group of shade-tolerant cyanobacteria species, mainly Oscillatoriales and other 
phytoplankton species (Smith, 1986; Scheffer et al., 1997). Results from Kosten et al. (2011) 
also suggest that higher temperatures can interact with nutrient loading and underwater light 
conditions to determine the proportion of cyanobacteria in the phytoplankton community in 
shallow lakes.  

 
2.2.3 Temperature  

 
The increasing body of laboratory and field data (Weyhenmeyer, 2001; Huisman et al., 

2005; Reynolds, 2006; De Senerpont Domis et al., 2007; Jeppesen et al., 2009; Wagner and 
Adrian, 2009; Kosten et al., 2011; Carey et al., 2012) suggest that an increase in temperature 
may influence cyanobacterial dominance in the phytoplankton community. Kosten et al. (2011) 
demonstrated that during the summer, the percentage of the total phytoplankton biovolume 
attributable to cyanobacteria increased steeply with temperature in shallow lakes sampled along a 
latitudinal transect ranging from subarctic Europe to southern South America. 
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The relationship between temperature and cyanobacterial dominance may be explained in 
part by the competitive advantage of cyanobacteria under higher temperatures. Warmer 
temperatures favor surface bloom-forming cyanobacteria genera because they are heat-adapted 
and their maximal growth rates occur at relatively high temperatures, often in excess of 25°C 
(Robarts and Zohary 1987; Reynolds, 2006). At these elevated temperatures, cyanobacteria 
routinely out-compete eukaryotic algae (Elliott, 2010; Paerl et al., 2011). Specifically, as the 
growth rates of the eukaryotic taxa decline in response to warming, cyanobacterial growth rates 
reach their optima.  
 

Another possible factor favoring cyanobacteria with higher temperatures is based on a set 
of temperature-induced mechanisms that alter underwater light levels favorably for 
cyanobacteria (Kosten et al., 2011; Carey et al., 2012). 
  

Indirectly, warming within the water column may increase nutrient concentrations by 
enhancing the rate of mineralization (Gudasz et al., 2010; Kosten et al., 2009, 2010) and by 
temperature or anoxia-mediated sediment phosphorus release (Jensen and Andersen, 1992; 
Søndergaard et al., 2003). Thus, temperature may increase cyanobacteria biomass indirectly 
through its effect on nutrient concentrations. Others have suggested that warmer conditions may 
raise total phytoplankton biomass through an alteration of top-down regulation by grazers 
(Jeppesen et al., 2009, 2010; Teixeira-de Mello et al., 2009).  

 
Rising global temperatures and changing precipitation patterns both stimulate 

cyanobacteria blooms. Warmer surface waters, especially in areas of reduced precipitation, are 
prone to intense vertical stratification. The degree of vertical stratification depends on the density 
difference between the warm surface layer and the underlying cold water. The density difference 
also is influenced by the relative amount of precipitation. As temperatures rise due to climate 
change, waters are expected to stratify earlier in the spring and the stratification will persist 
longer into the fall (Paerl and Otten, 2013b). The increase in water column stability associated 
with higher temperatures also may favor cyanobacteria (Wagner and Adrian, 2009; Carey et al., 
2012). 

 
2.2.4 Other Environmental Factors  

 
Cyanobacterial blooms have been shown to intensify and persist at pH levels between six 

and nine (WHO, 2003).  When blooms are massive or persist for a prolonged period they can 
become harmful. Kosten et al. (2011) noted the impact of pH on cyanobacteria abundance in 
lakes along a latitudinal transect from Europe to southern South America. The percentage of 
cyanobacteria in the 143 shallow lakes sampled was well correlated with pH, with an increased 
proportion of cyanobacteria at higher pH.  

 
 Cyanobacteria have a competitive advantage over other phytoplankton species because 

they are efficient users of carbon dioxide (Shapiro, 1984; Caraco and Miller, 1998). This 
characteristic is especially advantageous for cyanobacteria under conditions of higher pH when 
the concentration of carbon dioxide in the water column is diminished due to photosynthetic 
activity. Although this could explain the positive correlation observed between pH and the 
proportion of cyanobacteria, the high proportion of cyanobacteria at high pH could be the result 
of an indirect nutrient effect as described previously (see discussion in Temperature Section 
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2.2.3). As photosynthesis intensifies, pH increases due to carbon dioxide uptake from the water. 
Thus, higher water column pH may be correlated with a higher proportion of cyanobacteria 
because of higher photosynthetic rates, which can be linked with high nutrient concentrations 
(Duy et al., 2000) that stimulate phytoplankton growth and bloom formation.  

 
Most phytoplankton-cyanobacteria blooms occur in late summer and early fall when 

deeper lakes or reservoirs are vertically stratified and phytoplankton species may be stratified as 
well. Vertical phytoplankton biomass structure and cyanotoxin production can be influenced by 
seasonal changes as well as severe weather conditions (e.g., strong wind or rainfall), and also by 
runoff. At times, the hypolimnion (bottom layer of the water column) can have a higher 
phytoplankton-cyanobacteria biomass and display different population dynamics than the 
epilimnion (upper layer of the water column). Conversely, seasonal effects of increasing 
temperatures and changes in wind patterns may favorably influence the upper water column 
cyanobacterial community. This vertical variability is common and attributed to four causes, 
each of which may occur at different times, including: (a) sinking of dead/dying cells; (b) density 
stratification of the water column, especially nutrient concentrations and light, which affects all 
aspects of cyanobacteria growth; (c) increased nutrient supply from organic-rich bottom 
sediment (even when the water body is not density-stratified), encouraging cyanobacteria growth 
at or near the bottom sediment; and (d) species-specific factors (Drake et al., 2010). In addition, 
there are microbial interactions that may occur within blooms, such as competition and 
adaptation between toxic and nontoxic cyanobacterial strains, as well as impacts from viruses. 
Each of these factors can cause fluctuations in bloom development and composition. When the 
composition of the cyanobacteria bloom changes, so do the toxins present and their 
concentrations (Honjo et al., 2006; Paerl and Otten, 2013b). The concentration of cyanotoxins 
observed in a water body when a bloom collapses, such as from cell aging or algaecide 
treatment, depends on dilution of the toxin due to water column mixing, the degree of adsorption 
to sediment or particulates and the rate of toxin biodegradation (Funari and Testai, 2008).  

 
In summary, there is a complex interplay of environmental factors that dictates the spatial 

and temporal changes in the concentration of cyanobacteria cells and their toxins with respect to 
the dominant species as illustrated in Figure 2-1 (Paerl and Otten, 2013b). Factors such as the 
N:P ratio, organic matter availability, temperature, and light attenuation, as well as other 
physico-chemical processes, can play a role in determining harmful algal bloom (HAB) 
composition and toxin production (Paerl and Huisman, 2008; Paerl and Otten, 2013b). Dynamics 
of microflora competition as blooms develop and collapse can also impact cyanotoxin 
concentrations in surface waters. In addition, impacts of climate change, including potential 
warming of surface waters and changes in precipitation, could result in changes in ecosystem 
dynamics that lead to more frequent formation of cyanobacteria blooms and their associated 
toxins (Paerl and Huisman, 2008; Paerl et al., 2011; Paerl and Otten, 2013b). 
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Figure 2-1. Environmental factors influencing cyanobacterial blooms 
(Reproduced from Paerl and Otten, 2013b) 

 

 
 
 
 
2.3 Environmental Fate of Anatoxin-a 
 
2.3.1 Hydrolysis   
 

Studies have shown that in the absence of sunlight, the half-life of anatoxin-a can range 
from several days to several months (Stevens and Krieger, 1991a; Smith and Sutton, 1993; Yang, 
2007). Alkaline conditions accelerate anatoxin-a breakdown (see below) (Stevens and Krieger, 
1991a). Matsunaga et al. (1989) have reported that anatoxin-a can be relatively stable under 
neutral and acidic conditions. 

   
2.3.2 Photolysis   

Anatoxin-a differs from other cyanotoxins (like microcystins) in that it undergoes rapid 
photochemical degradation in sunlight even in the absence of cell pigments (WHO, 1999). 
Stevens and Krieger (1991a) found that the degradation of anatoxin-a is dependent on the light 
intensity and/or pH, with higher pH favoring degradation reactions. Under simulated natural 
conditions, photolysis is an important degradation pathway for anatoxin-a, with a half-life of 1 to 
2 hours at pH ranges from 8 to 9. Yang (2007) reported a first-order half-life for anatoxin-a of 4-
10 hours in natural light. However, laboratory experiments using reservoir water with sediment 
microbial populations found an anatoxin-a half-life of five days (Smith and Sutton, 1993). In the 
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same study, the authors found anatoxin-a for at least 21 days at pH 4, and detectable levels after 
14 days at pH 8 and 10.  

2.3.3 Metabolism   
 
Anatoxin-a can be readily degraded by bacteria associated with cyanobacterial filaments; 

however, there is less information available for anatoxin-a than for other cyanotoxins (i.e. 
microcystins).  
 
2.3.4 Transport   

 
Anatoxin-a is weakly sorbed to sandy sediments. The strongest sorption is to clay-rich 

and organic-rich sediment. Researchers found that sorption follows a non-linear Langmuir 
model, such that it is linear at lower concentrations with sorption decreasing at higher 
concentrations. Organic matter promotes sorption of the anatoxin-a molecule due to the 
availability of negatively charged sites (Klitzke et al., 2011).  

 
 

2.4 Summary 
 

Anatoxin-a is produced by a variety of cyanobacteria. Factors such as nutrient levels, pH, 
light intensity and temperature influence the growth of these cyanobacteria and could encourage 
toxin production. The half-life of anatoxin-a in the absence of sunlight ranges from several days 
to several months. However, in sunlight anatoxin-a undergoes rapid photochemical degradation 
even in the absence of cell pigments. Degradation is dependent on pH, with higher pH favoring 
more rapid degradation reactions. The half-life of anatoxin-a in sunlight is 1 to 2 hours at a pH of 
8 to 9. Anatoxin-a can be degraded by bacteria associated with cyanobacterial filaments. It is 
weakly sorbed to sandy sediment, but has strong sorption to clay- and organic-rich sediment. 
Organic matter promotes sorption of the anatoxin-a molecule due to the availability of negatively 
charged sites.  
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3.0 CYANOTOXIN OCCURRENCE AND EXPOSURE IN WATER  
 

The presence of detectable concentrations of cyanotoxins in the environment is closely 
associated with blooms of cyanobacteria. Cyanobacteria flourish in various natural environments 
including salty, brackish or fresh water, cold and hot springs, and in environments where no 
other microalgae can exist, including desert sand, volcanic ash and rocks (Jaag, 1945; Dor and 
Danin, 1996). Cyanobacteria also form symbiotic associations with aquatic animals and plants, 
and cyanotoxins are known to bioaccumulate in common aquatic vertebrates and invertebrates 
(Ettoumi et al. 2011). 
 

Currently, there is no national database recording freshwater harmful algal bloom (HAB) 
events. Instead, state and local governments document HAB occurrences in various ways 
depending on the monitoring methods used and the availability of laboratories capable of 
conducting algal toxin analyses. 

 
Human exposure to cyanotoxins, including anatoxin-a, may occur by direct ingestion of 

toxin-contaminated water or food, and by inhalation and dermal contact during bathing, 
showering or during recreational activities in water bodies contaminated with the toxins. 
Anatoxin-a can be dissolved in drinking water either by the breakdown of a cyanobacterial 
bloom or by cell lysis. Exposure through drinking water can occur if there are toxins in the water 
source and the existing water treatment technologies were not designed for removal of 
cyanotoxins. Because children consume more water per unit body weight than do adults, children 
potentially may receive a higher dose than adults. Exposures are usually not chronic; however, 
they can be repeated in regions where cyanobacterial blooms are more extensive or persistent. As 
described above, anatoxin-a is not highly persistent; thus exposure to anatoxin-a from ambient 
surface waters is more likely to be acute or subacute. People, particularly children, recreating 
close to lakes and beach shores also can be at potential risk from exposure to nearshore blooms.  

 
Livestock and pets potentially can be exposed to higher concentrations of cyanobacterial 

toxins than humans because they are more likely to consume scum and mats while drinking 
cyanobacteria-contaminated water (Backer et al., 2013). Dogs are particularly at risk as they may 
lick cyanobacteria from their fur after swimming in a water body with an ongoing bloom.  

 
 

3.1 General Occurrence of Cyanobacteria in Water 
 
Species of cyanobacteria are predominantly found in eutrophic (nutrient-rich) water 

bodies in freshwater and marine environments (ILS, 2000), including salt marshes. Most marine 
cyanobacteria of known public health concern grow along the shore as benthic vegetation 
between the low- and high-tide water marks. The marine planktonic forms have a global 
distribution. They also can be found in hot springs (Castenholz, 1973; Mohamed, 2008), 
mountain streams (Kann, 1988), Arctic and Antarctic lakes (Skulberg, 1996) and in snow and ice 
(Laamanen, 1996).  
 
3.2 Anatoxin-a Occurrence in Surface Water 
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Gas vacuoles of A. ovalisporum and C. raciborskii act to regulate the position of the 
cyanobacteria in the water column. These species of cyanobacteria do not form a floating scum, 
but concentrate (with densities up to 100,000 cells/mL) several meters below the surface. 
Because the cells remain suspended in the water column, potentially toxin-producing blooms of 
these cyanobacteria may not be readily observable. 

 
Reported concentrations of anatoxin-a are limited and vary widely depending on the 

water body sampled and the analytical method used. Anatoxin-a has been found in surface 
waters around the world including in the U.S. (Carmichael et al., 1975; Carmichael et al., 2001). 
Concentrations of anatoxin-a in surface freshwater cyanobacterial blooms or surface freshwater 
samples reported worldwide from 1985 to 1996 ranged from 0.4 to 4,400 µg/g dry-weight. 
Reported water-volume concentrations of extracellular and intracellular anatoxin-a ranged from 
0.02 to 0.36 µg/L (WHO, 1999).  

 
Monitoring and analysis of U.S. surface water described below has shown concentrations 

of anatoxin-a ranging from below the detection limit (0.05 µg/L) to 1,929 µg/L. 
 
In 2006, the U.S. Geological Survey (USGS) conducted a targeted study of cyanotoxins 

in Midwestern waters (Loftin et. al., 2008; Graham et al., 2010). Twenty-three samples were 
collected from lakes in the Midwest (MN, IA, MO, KS) over a 1-week period in August 2006 
and were analyzed by liquid chromatography-tandem mass spectrometry (LC-MS/MS). 
Anatoxin-a was detected in about a third of the samples at concentrations of 0.05 to 10 µg/L. 

 
Yang (2007) analyzed anatoxin-a using high performance liquid chromatography with 

fluorescence detection (HPLC/FD) and reported periodic detections of anatoxin-a at 
concentrations above 0.1 μg/L in samples collected from western Lake Erie, along the southern 
shoreline of Lake Ontario and in Lake Champlain. Higher concentrations exceeding 1 μg/L of 
anatoxin-a were reported in samples collected from Onondaga Lake and Lake Agawam, smaller 
inland lakes in New York State (Yang, 2007).  

 
Hedman et al. (2008) sampled surface waters in Wisconsin using LC-MS/MS and 

detected anatoxin-a in 4 of 74 samples with concentrations ranging from 0.68 to 1,750 µg/L. 
 
Ohio EPA (2010) reported anatoxin-a concentrations ranging from below the detection 

limit to 15 µg/L in Grand Lake St. Mary’s, Ohio using enzyme-linked immunosorbent assay 
(ELISA).  

 
The Washington State Department of Ecology used LC-MS/MS to test for anatoxin-a and 

other toxins in Washington’s lakes, ponds and streams from 2009 to 2011 (WSDE, 2012). In 
2009, of the 32 lakes tested for anatoxin-a, 44% of lakes had detectable concentrations ranging 
from 0.05 to 144 µg/L. In 16% of the lakes tested, the concentration of anatoxin-a was above the 
recreational guidance level established by the state of 1 μg/L. In 2010, 41 lakes were tested for 
anatoxin-a; 24% of lakes had anatoxin-a concentrations ranging from 0.05 to 538 µg/L. In 12% 
of the lakes sampled, the concentration of anatoxin-a was above the recreational guidance level 
of 1 µg/L. In samples taken in 2011 from 46 lakes, anatoxin-a concentrations varied from 0.05 to 
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1,929 μg/L in 57% of the lakes tested. In 13% of the lakes sampled in 2011, levels were above 
the state recreational guideline of 1 μg/L. 

 
Al-Sammak et al. (2014) detected anatoxin-a in samples collected from 12 reservoirs in 

Nebraska between 2009 and 2010. Samples were analyzed using HPLC/FD for the preliminary 
analysis of all extracts, and LC-MS/MS was used for confirmation. Anatoxin-a was detected in 
31 of the 67 samples at concentrations ranging from 0.05 μg/L (detection limit) to 35 μg/L. 
 
3.3 Anatoxin-a Occurrence in Drinking Water 
 

Data on the presence of cyanotoxins, including anatoxin-a, in drinking water and finished 
drinking water are scarce and generally not published. In drinking water, the occurrence of 
cyanotoxins depends on their level in the raw source water and the effectiveness of the drinking 
water treatment. Currently, there is no national regulatory program in place to monitor for the 
occurrence of cyanotoxins in drinking water in the U.S. In 2008, anatoxin-a was detected in three 
samples of finished water in Florida ranging from below the detection limit to 8.46 µg/L (Burns, 
2008). Methods employed to characterized algal toxins included ELISA, protein phosphatase 
inhibition assay (PPIA), HPLC, and LC/MS/MS (no detection limits were reported).  

 
 

3.4 Summary 
 
Anatoxin-a -producing cyanobacteria occur in freshwater systems around the world and 

in the U.S. No national database recording freshwater anatoxin-a is available. The available data 
for the occurrence of anatoxin-a in surface waters and drinking water is by published literature 
and reports such as the USGS. A survey done by USGS in 2006 of 23 lakes in the Midwestern 
U.S., found that anatoxin-a was detected in about a third of the samples at concentrations from 
0.05 to 10 µg/L. Data on the presence of anatoxin-a, in drinking water and finished drinking 
water are scarce and generally not published. In Washington State, samples taken in 2011 from 
46 lakes had anatoxin-a concentrations from 0.05 to 1,929 μg/L. A survey conducted in 1999 in 
Florida, found that anatoxin-a occurred in three finished water samples ranging from below the 
detection limit to 8.46 µg/L  
 

Exposure to anatoxin-a from contaminated drinking water sources may occur mostly via 
oral exposure (e.g. ingestion of contaminated drinking), dermal exposure (contact of exposed 
parts of the body with water containing toxins); and inhalation exposure. Exposure to anatoxin-a 
during recreational activities may be due through direct contact, inhalation and/or ingestion. 
Exposures are usually not chronic with the exception of regions with extensive and persistent 
cyanobacterial blooms. Since anatoxin-a is not highly persistent, exposure from ambient surface 
waters is more likely to be acute or subacute. Since children consume more water per unit body 
weight than do adults, children may potentially receive a higher dose. Pets, livestock and wildlife 
are also potentially exposed to cylindrospermopsin when consuming scum and mats, and 
drinking cyanobacteria-contaminated water.  
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4.0 OCCURRENCE IN MEDIA OTHER THAN WATER 
    

4.1 Occurrence in Soil and Edible Plants 
 

Cyanobacteria are highly adaptable and have been found to colonize infertile substrates, 
such as volcanic ash and desert sand (Jaag, 1945; Dor and Danin, 1996; Metcalf et al., 2012). 
They also have been found in soil, at the surface or several centimeters below the surface, where 
they play a functional role in nutrient cycling. Cyanobacteria are known to survive on rocks or 
tree trunks, and in snow and ice (Adhikary, 1996). They have been reported in deeper soil layers 
likely transported by percolating water or burrowing animals. Some freshwater species are 
halotolerant (salt tolerant) and have been found in saline environments such as salt works or salt 
marshes (WHO, 1999). Cyanobacterial cells can bioaccumulate in zooplankton (Watanabe et al., 
1992). As a result of higher trophic level grazing, the damaged or residual cyanobacterial cells 
may settle out of the water column and accumulate in sediment where breakdown by sediment 
bacteria and protozoa can release their toxins (Watanabe et al., 1992). 
 

Al-Sammak et al. (2014) detected anatoxin-a in aquatic plant samples collected from 12 
reservoirs sampled in Nebraska from 2009 to 2010. Both bound and free anatoxin-a were 
measured in 18 of 48 plant samples analyzed. The bound anatoxin-a concentrations ranged from 
1.47 to 8.01 µg/g. Concentrations of free anatoxin-a ranged from 0.26 to 0.61 µg/g. Plant 
detections generally co-occurred with detections in water and, in the water samples, bound 
anatoxin-a concentrations were generally higher than free concentrations. 
 
4.2 Occurrence in Fish and Shellfish  
 

Cyanotoxins can bioaccumulate in common aquatic vertebrates and invertebrates, 
including fish, snails (Carbis et al., 1997; Beattie et al., 1998; Berry et al., 2012) and mussels 
(Eriksson et al., 1989; Falconer and Yeung, 1992; Prepas et al., 1997; Watanabe et al., 1997; 
Funari and Testai, 2008). Bioconcentration in fish has been reported (Osswald et al., 2011) with 
bioconcentration factors ranging from 30 to 47 based on fresh weight. Human exposure to 
cyanotoxins may occur if fish are consumed from reservoirs with existing blooms of toxin-
producing cyanobacteria (Magalhães et al., 2001).  

 
The health risk from consumption depends on the bioaccumulation of toxins in edible 

fish tissue. Because fish are generally more tolerant of cyanobacterial toxins than mammals, they 
tend to accumulate them over time (ILS, 2000). Very limited information was available 
regarding anatoxin-a accumulation in fish. Osswald et al. (2007) exposed juvenile common carp, 
Cyprinus carpio, to freeze-dried cells of Anabaena sp. at a cell density of 105 or 107 cells/mL for 
four days. Toxin content measured in extracts from whole fish was 0.005 and 0.073 µg/g fresh 
weight, respectively. In a study by Al-Sammak et al. (2014), anatoxin-a was not detected in any 
fish samples collected from 248 fish, including bottom feeding fish such as carp and catfish, 
from 12 Nebraska lakes.  
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4.3 Occurrence in Dietary Supplements 
 

Extracts from Arthrospira (Spirulina spp.) and Aphanizomenon flos-aquae (AFA) have 
been used as dietary bluegreen algae supplements (BGAS) (Funari and Testai, 2008). These 
supplements are reported to have beneficial health effects including supporting weight loss, and 
increasing alertness, energy and mood elevation for people suffering from depression (Jensen et 
al., 2001). In children, they have been used as an alternative, natural therapy to treat attention 
deficit hyperactivity disorder (ADHD). Heussner et al. (2012) did not detect anatoxin-a in 18 
commercially available BGAS analyzed for the presence of toxins. However, Rellán et al. (2009) 
reported that three of 39 samples (7.7%) of BGAS contained anatoxin-a at concentrations 
ranging from 2.50 to 33 µg/g. 
 
 
4.4  Summary 

 
Anatoxin-a could be detected in aquatic animals and edible plants. Very limited 

information was available on anatoxin-a accumulation in fish. No cases of toxicity in humans 
following ingestion of fish or shellfish exposed to cyanotoxins have been documented.  

 
Anatoxin-a have been found in algal supplements ranging from 2.5 to 33 µg/g. Exposure 

for the general population is mostly through the ingestion of drinking water and incidental 
ingestion when recreating in a contaminated water source.   
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5.0 TOXICOKINETICS 
 
 Data on the toxicokinetics of anatoxin-a are negligible. Absorption and distribution are 
demonstrated only by the rapid appearance of neurotoxicity and the systemic effects observed 
after exposures in repeat dose studies. 
 
5.1 Absorption 
 

No information regarding the absorption of anatoxin-a in humans or animals was 
identified. However, acute oral toxicity studies in animals demonstrate that it can be absorbed 
rapidly by the gastrointestinal tract. Symptoms of clinical neurotoxicity such as muscular 
twitching, loss of coordination and death from respiratory paralysis occur within minutes of 
exposures (Stevens and Krieger, 1991a; Fitzgeorge et al., 1994). 
 
5.2 Distribution 
 

The rapid appearance of symptoms following exposure is consistent with rapid uptake 
from the gastrointestinal tract and serum distribution to the liver, brain and central nervous 
system. In a study by Fitzgeorge et al. (1994), deaths in mice occurred by respiratory paralysis 
within 2 minutes of gavage administration of doses greater than 5 mg/kg. In bioassay studies, 
Stevens and Krieger (1991a) found that lethal doses (concentrations not reported) manifested the 
same signs of respiratory paralysis as control solutions of anatoxin-a, and that the breakdown 
products of anatoxin-a are less toxic than the parent compound.  
 
5.3 Metabolism 
 

No information on the metabolism of anatoxin-a was identified.  
 
5.4 Excretion 
 

No information regarding the excretion of anatoxin-a was identified.  
 
5.5 Pharmacokinetic Considerations 
 
 No data on half-life or other quantitative pharmacokinetic parameters for anatoxin-a were 
identified. The interactions with the nicotinergic acetylcholine receptor are known to be 
enanteromerically specific [(+) isomer only]. The (-) isomer also has toxic properties based on 
lethality studies. However, the (-) isomer lacks the direct neurotoxicity of the (+) isomer. 
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6.0 HAZARD IDENTIFICATION 
 
6.1 Case Reports and Epidemiology Studies  
 

Information on epidemiology studies or confirmed case reports of human poisoning from 
exposure to anatoxin-a are not available.  

 
Non-lethal human poisonings, usually manifested as acute gastrointestinal disorders such 

as nausea, vomiting and diarrhea, have been related to ingesting water with unspecified species 
of Microcystis and Anabaena (producers of anatoxin-a) as later detected in the victims’ feces 
(Schwimmer and Schwimmer, 1968). Allergic reactions (e.g., skin papulo-vesicular eruptions) 
have been related to swimming in water with a bloom of Anabaena (Schwimmer and 
Schwimmer, 1968). However, anatoxin-a detections were not reported.  

 
Anatoxin-a has been associated with poisonings and deaths of livestock, dogs and ducks 

after exposure to water contaminated with cyanotoxins (Carmichael and Gorham, 1978; Edwards 
et al., 1992; Gunn et al., 1992; Puschner et al., 2008; Stewart et al., 2008). Quantitative exposure 
data were not reported but clinical signs were mostly neurologic and deaths due to respiratory 
paralysis, characteristic adverse effects of anatoxin-a. In the U.S., 368 cases of cyanotoxin 
poisonings associated with dogs were identified in a review done by the Centers for Disease 
Control (CDC) from the 1920s to 2012 (Backer et al., 2013). A retrospective review of 
veterinary biopsy and necropsy case files between 1984 and 2012 found that of the 71 cases of 
dogs deaths, 45 (4%) were either suspected or confirmed cyanotoxins poisoning. Two dogs (3%) 
were confirmed with anatoxin-a poisoning. Both dogs died within 20 to 30 minutes of onset of 
illness after exposure to cyanobacteria in a backyard pond. Anatoxin-a was identified in the 
kidney by biochemical testing (Backer et al., 2013).  
 
6.2 Animal Studies 

 
6.2.1 Acute Toxicity 
 
6.2.1.1 Oral Exposure 

 
Stevens and Krieger (1991b) used a single dose gavage in adult male Swiss Webster ND-

4 mice to determine an LD50 of 16.2 mg/kg (Confidence Interval [CI] of 95%: 15.4-17.0) for 
synthetic (+)-anatoxin-a hydrochloride ( >98% pure commercial product), which is equivalent to 
13.3 mg anatoxin-a/kg (95% CI: 12.8-14.1). When using a lysate solution of lyophilized A. flos-
aquae (NRC-44-1) cells, an LD50 value of 6.7 mg/anatoxin-a kg (95% CI: 6.3-7.1) was 
determined. The LD50 values were determined using the method of moving averages for four 
doses with six animals per dose (Stevens and Krieger, 1991b).  
 
 A single dose gavage study in newly weaned CBA/BalbC mice of unspecified sex 
determined an LD50 of >5 mg/kg for anatoxin-a; the study authors used a “suitably purified” but 
an unspecified form of commercial product (Fitzgeorge et al., 1994). Deaths due to 
neurotoxicity, expressed as muscular twitching, loss of coordination and death by respiratory 
paralysis, occurred within 2 minutes of administration (Fitzgeorge et al., 1994).  
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A 5-day gavage, range-finding study was conducted to determine the maximum tolerated 

dose for use in a 28-day study (Section 6.2.2) (Fawell and James, 1994; Fawell et al., 1999). 
Doses of 1.5, 3, 7.5 or 15 mg/kg-day (equivalent to 1.2, 2.5, 6.2 or 12.3 mg anatoxin-a/kg-day) 
using aqueous (+)-anatoxin-a hydrochloride (commercial product, purity not reported) were 
administered to 2 male and 2 female Crl:CD-1(ICR)BR mice groups (no control group included). 
After 24 hours of administering the lower dose (1.2 mg/kg-day), the 6.2 and 12.3 mg/kg-day 
dosing started. After 5 days, the 2.5 mg/kg-day (intermediate level) dosing was administered. 
Evaluation of clinical signs, food consumption and body weight were done and the surviving 
animals were necropsied. During the first 4 days, all mice in the high-dose group died (within 5 
minutes of dosing), and one female mouse from the 6.2 mg/kg-day group died. These deaths 
happened within 5 minutes of dosing. The male mice in the 6.2 mg/kg-day dose group were 
hyperactive following the third dose. The rest of the surviving animals in this group (6.2 mg/kg-
day) did not express any abnormal clinical signs and no other signs of neurotoxicity were 
reported. The 6.2 mg/kg-day dose was identified as the Frank Effect Level (FEL) based on the 
death of one of the two female mice. The maximum tolerated dose was established as 3 
mg/kg/day anatoxin-a hydrochloride (2.5 mg/kg/day anatoxin-a). 
 
6.2.1.2 Other Exposure Routes 

 
A single dose intraperitoneal (i.p.) study in mice identified an LD50 of 0.25 mg/kg (95% 

CI: 0.24-0.28) for (+)-anatoxin-a hydrochloride (commercial product, >98% pure) equivalent to 
0.21 mg anatoxin-a/kg (Stevens and Krieger, 1991b). In another i.p. study, Fitzgeorge et al., 
(1994) determined an LD50 of 0.375 mg/kg for commercial anatoxin-a (form and purity not 
reported). 

  
Single i.p. injections of (+)-, racemic or (-)-anatoxin-a hydrochloride (all >95% pure) 

were administered in male BalbC mice (Valentine et al., 1991). After observing for 30 minutes, 
LD50 values were determined as 386 μg/kg (95% CI: 365-408) for (+)-anatoxin-a hydrochloride 
equivalent to 0.32 mg anatoxin-a/kg and 913 μg/kg (95% CI: 846-985) for racemic anatoxin-a 
hydrochloride equivalent to 0.76 mg anatoxin-a/kg. According to the authors, this two-fold 
potency difference is consistent with mechanistic data indicating that (+)-anatoxin-a is the 
biologically active enantiomer.  

 
An i.p. 2-day study in 18 female CD-1 mice was performed to determine a maximum 

dose to evaluate neurodevelopmental toxicity (Section 6.2.3) (Rogers et al., 2005). Dosages of 
anatoxin-a (commercial product, >90% purity) in distilled water were 10, 100, 200, 250, 300 and 
400 μg/kg (0.008, 0.08, 0.17, 0.21, 0.25 and 0.33 mg anatoxin-a/kg-day). Group sizes ranged 
from 1 in the 400 μg/kg dose group to 6 in the 100 μg/kg group (Personal communication). After 
5 to 6 minutes of administering the higher dose, mice expressed decreased motor activity, altered 
gait, difficulty breathing and convulsions. Anatoxin-a was 100% lethal at the 400 μg/kg after 10 
minutes. Mice receiving 100 or 200 µg/kg survived and received a second dose of racemic 
anatoxin-a the following day. All mice survived after the second dose. Clinical signs of toxicity 
after 10 minutes of administering the lower doses included decreased activity level, altered gait 
and breathing irregularities. At the lower doses, mice did not have convulsions and recovery was 
observed by 15 to 20 minutes after treatment (Rogers et al., 2005).  
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6.2.2 Short Term Studies 
 

In the 28-day study, four groups of 10 male and 10 female mice were dosed by gavage 
once a day for 28 days with 0 (vehicle control), 0.12, 0.6 or 3 mg/kg-day (corresponding to 
0.098, 0.49 and 2.46 mg anatoxin-a/kg-day) (Fawell and James, 1994; Fawell et al., 1999). 
Histological and blood analysis examinations were performed in the control and dose groups, 
and microscopic examinations were done to all tissues. During the study, three deaths were 
reported within 2.5 hours of dosing: one from each of the high dose groups (a male from the 0.49 
mg anatoxin-a/kg-day group and a female from the 2.46 mg anatoxin-a/kg-day group), but no 
cause for these deaths was determined. The authors did not demonstrate any clear clinical signs 
of general toxicity, such as changes in body weight, altered food consumption or unusual 
necropsy findings. The third death was not related to treatment. The animal was sacrificed after 
showing signs of having been attacked by its cage mates. 

 
The only adverse clinical signs observed among the survivors, although not considered 

toxicologically significant, were a significant increase in mean cell hemoglobin concentration in 
males at >0.1 mg/kg-day and in females at >0.5 mg/kg-day, and an increase in serum sodium in 
females at >0.5 mg/kg-day. No significant changes were observed in serum levels for liver 
enzymes, albumin, BUN or sodium. The study authors determined a NOAEL (No Observed 
Adverse Effect Level) of 0.1 mg/kg-day (0.098 mg anatoxin-a hydrochloride/kg-day) based on 
the deaths in the higher dose groups (Fawell and James, 1994; Fawell et al., 1999). 

 
6.2.3 Subchronic Studies  
 
6.2.3.1 Oral Exposure 
 
 Anatoxin-a extracted from the culture media of A. flos-aquae (NRC-44-1) cells and 
partially purified by high pressure liquid chromatography (HPLC) in a 30% perchloric acid/70% 
methanol solvent (purity not quantified) was administered in drinking water to groups of 20 
female Sprague-Dawley rats (Astrachan and Archer, 1981; Astrachan et al., 1980). Doses of 0, 
0.51, or 5.1 mg/kg were administered for 7 weeks with an estimated daily intake of anatoxin-a in 
the low dose group of 0.05 mg/kg-day and 0.5 mg/kg-day in the high dose group. Daily intake 
was estimated assuming that the test rats consumed 0.1 mL/g body weight per day (based on a 
preliminary water consumption study). The authors evaluated food consumption, body weight, 
red and total white blood cell counts, and serum enzyme activities throughout the study. At the 
end of the study, the authors evaluated hepatic mixed function oxidase activity (aldrin 
epoxidation in vitro), organ weights (liver, kidneys and spleen), and gross pathology and 
histology (liver, kidneys, spleen, adrenals, heart, lungs and brain).  
 
 No clinical signs attributed to treatment were observed and a NOAEL of 0.5 mg/kg-day 
was identified by the authors. Graphic data were reported for the hematological effects and liver 
enzymes (Astrachan and Archer, 1981). There were no apparent differences in the red blood cell 
(RBC) counts (mm3x 10-6), alkaline phosphatase (ALP), and aspartate aminotransferase (AST). 
There was a dose- and duration-related increase in white cell counts (mm3 x 10-3). White cell 
counts for the low dose group reached normal levels by week 3, but not until week 7 for the high 
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dose group. Organ weights were similar and no gross or histological tissue abnormalities were 
observed. The graphic presentation of the hematology data does not support determination of 
statistical significance for the effects on the white cell counts. They remained about 30 to 50% 
higher (estimate from the figure in the report) than the controls over the first 5 weeks of the 
study. The high dose can be considered as a LOAEL (Lowest Observed Adverse Effect Level) 
for the white blood cell effects. At one week the elevation of the white cell count was 
approximately equivalent to that for the high dose, but at 3 weeks was comparable to controls. 
There are insufficient data from other studies to determine whether the white cell effects should 
be regarded as toxicologically adverse. 
 
6.2.3.2 Other Exposure Routes  
 
Neurotoxicity 

 
In a neurodevelopmental study, racemic (+/-)-anatoxin-a hydrochloride (commercial 

product, ≥90% purity) was administered to groups of 8 to 11 time-pregnant CD-1 mice (Rogers 
et al., 2005). Doses of 0 (control), 125 or 200 μg/kg-day equivalent to 0, 0.09 or 0.15 mg 
anatoxin-a/kg-day on gestation days (GD) 8-12 or 13-17 were administered via i.p. injection in 
distilled water. After all mice gave birth, body weight and viability of the pups were determined 
on postnatal days (PND) 1 and 6. Immediately after treatment, toxicity in the pregnant mice was 
observed at 0.15 mg/kg-day expressed as decreased motor activity. PND evaluation did not find 
effects on pup viability (number of live pups) on PND  1 or 6 in mice treated on GD 8-12 or 13-
17. No effects were observed on pup body weight on PND 1 or 6 in mice treated on GD 8-12 
either. However, a statistically significant dose-related trend for reduced body weight was 
observed in pups treated on GD 13-17 on PND 1 (p<0.05) only. On PND 1, body weights in the 
pups exposed on GD 13-17 showed a trend (7.1 and 8.7% less than controls) at the two higher 
doses (0.09 and 0.15 mg/kg-day, respectively) but the authors’ reported differences from controls 
were not significant. The authors attributed the trend in reduced pup body weight to random 
variability in litter size (GD 13-17 controls were noticeably smaller than the treated groups; 
p=0.09). A difference in litter size would have an impact in both birth weight and growth on 
PND 1 and 6 since pups in smaller litters are larger at birth (McCarthy, 1967) and will grow 
more rapidly postnatally (Rogers et al., 2003). A NOAEL for the racemic mixture was identified 
as 0.09 mg/kg-day for the dams based on decreased post treatment motor activity and a LOAEL 
of 0.15 mg/kg-day (Rodgers et al., 2005). 

 
Righting reflex, negative geotaxis and hanging grip time were evaluated only on PND 6, 

12 and/or 20 in pups from dams exposed on GD 13-17 (Rogers et al., 2005). Righting reflex 
(measurement of the time a pup takes to turn from his back to an upright position) was tested on 
PND 6 and 12; negative geotaxis (time to rotate on an inclined screen facing downhill to facing 
up the incline) was tested on PND 6, 12 and 20; and hanging grip time (time when a pup let go 
after the pup grasped a bar with their front feet to hang) was tested on PND 12 and 20. The 
reason for testing only the pups exposed on the GD 13-17 was because this gestational interval 
follows the onset of neurogenesis in the mouse brain (Rice and Barone, 2000). The litters from 
the exposed dams were normalized to eight pups (including four male and four female pups) on 
PND 6, and on each test day a randomly selected male and female pup from each litter was 
evaluated.  
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Based on the results from the testing (righting reflex, negative geotaxis and hanging grip 

time), postnatal neurotoxicity was not observed (Rogers et al., 2005). Results showed no 
statistically significant differences between exposed and control groups and no dose-related 
differences. However, a non-statistically significant (p<0.086) dose-related trend was observed 
for slower righting reflex in males in the righting reflex test on PND 6. A significant (p value not 
reported) sex-difference was observed in terms of a slower reflex in females than in males in all 
treatment groups on PND 6. No sex-difference or treatment differences in righting reflex were 
observed on PND 12.  

 
Turning times did not decrease as expected from PND 6 to 20 in the negative geotaxis 

test (Rogers et al., 2005). In addition, control and treated pups fell off the screen before turning. 
Data from those mice that stayed on the inclined screen showed no significant differences across 
treatment groups in both the number of fallen mice and the average turning times. Also, no 
treatment-related differences in hanging grip time on either test day were observed. In the 
hanging grip time test, the authors found that the hang time in females increased significantly 
from PND 12 to 20, but males did not show an expected increase in hanging grip time. The 
investigators indicated that random variability in the tested population may be the reason for the 
sex-difference (Rogers et al., 2005).  

 
To evaluate the effect of prenatal exposure to anatoxin-a on the motor activity of adult 

mice and their responses to nicotine challenge, mouse pups already exposed to 0, 0.09 or 0.15 
mg anatoxin-a/kg-day on GD 8-12 or 13-17 in the Rogers et al. (2005) study were tested as 
adults by MacPhail et al. (2005). Motor activity was measured on approximately 8-month-old 
offspring during 30-minute sessions using a photocell device. Doses of 0, 0.1, 0.3, 1.0 or 3.0 
mg/kg nicotine in saline were administered subcutaneously to groups of 12 male and 12 female 
mice approximately 5 minutes before testing motor activity. These mice were assigned to the 
nicotine dose groups regardless of the gestational period during which they received anatoxin-a. 
A dose-related decrease was observed in both horizontal and vertical activity. In both sexes, 0.65 
mg/kg nicotine was identified as the effective dose in 50% (ED50) of the animals. 

  
Adult offspring from mice exposed to the racemic anatoxin-a on GD 13-17 were given 

nicotine at the ED50 or saline vehicle about 5 minutes before testing the motor activity (MacPhail 
et al., 2005). Both treatments (nicotine ED50 and saline vehicle) were separated by 1 week. The 
group sizes were composed of 10 mice per gender for each dose with the exception of the high-
dose anatoxin-a female group, which consisted of 9 mice. Although no quantitative data were 
provided, graphical displays show no differences in horizontal or vertical motor activity between 
the anatoxin-a-exposed mice and the controls. No dose-response for either male or female mice 
to the nicotine challenge was observed (MacPhail et al., 2005). 

 
The Irwin Screen was used to evaluate neurobehavioral effects of anatoxin-a in mice 

(Fawell and James, 1994; Fawell et al., 1999). The Irwin Screen is a systematic observational 
procedure used to assess Central Nervous System (CNS) effects such as motor activity, 
sensory/motor reflex responses, coordination and behavioral changes. Intravenous injections of 
(+)-anatoxin-a hydrochloride (commercial product, purity not reported) were administered in 
doses of 10, 30 or 100 μg/kg (equivalent to 8, 25 or 82 μg anatoxin-a/kg) to 6 mice with a 
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positive control to evaluate cholinergic effects of 300 µg/kg of nicotine. After dosing, the mice 
were observed at 15 and 30 minutes, and 1, 2 and 4 hours (Fawell and James, 1994; Fawell et al., 
1999). Within 1 minute of dosing, all the mice (6 in total) in the high dose group (82 μg 
anatoxin-a/kg) died exhibiting symptoms of cholinergic stimulation and CNS effects such as 
increased respiration, salivation, micturition (urination), hyperactivity and Straub tail. Two 
animals in the 25 μg anatoxin-a/kg dose group died and those that survived showed increased 
salivation, respiration and hyperactivity. No effects were observed in the low dose group (8 
μg/kg anatoxin-a/kg).  

 
A rota-rod test to evaluate sensorimotor coordination based on the ability of the animal to 

remain on a rotating rod also was performed on CD-1 strain mice (Fawell and James, 1994; 
Fawell et al., 1999). Seven groups of male mice were dosed with 0, 30, 50 or 60 mg/kg anatoxin-
a as the hydrochloride salt (equivalent to 25, 41 or 49 mg/kg anatoxin-a), and 300, 500 or 5,000 
mg/kg of nicotine (standard) and with phosphate buffered saline (vehicle control). Fifteen 
minutes after dosing, mice were placed onto the rota-rod for a 3-minute period and the authors 
recorded the time taken to fall off. Within 1 minute of dosing, only the highest doses caused 
clinical signs of neurotoxicity and death. Death was observed in 3 of 3, 2 of 6 and 1 of 6 of the 
mice dosed with 49, 41 and 25 mg/kg anatoxin-a, respectively, and in 4 of 5 animals dosed with 
the highest nicotine dose (5,000 mg/kg). Prior to death, mice showed symptoms of CNS effects 
and cholinergic stimulation. No exposure-related effects were observed in the rest of the dosed 
animals with the exception of 2 of 6 animals dosed with 500 mg/kg of nicotine that showed 
elevated respiration rates for 1 minute (Fawell and James, 1994; Fawell et al., 1999).  

 
The effects of anatoxin-a on operant performance was evaluated in adult male Long 

Evans rats (MacPhail et al., 2007). Groups of 8 rats trained to respond under a multiple variable-
ratio variable-interval schedule of food reinforcement were given (+)-anatoxin-a fumarate in 
subcutaneous injections at 0 (control), 0.05, 0.075, 0.1, 0.15 or 0.2 mg/kg doses equivalent to 0, 
0.03, 0.045, 0.06, 0.09 and 0.12 mg anatoxin-a/kg, respectively) weekly for four weeks. Dose-
related decreases in performance were observed at 0.06, 0.09 and 0.12 mg/kg doses. At the two 
highest doses, mild tremors were observed. Over subsequent weeks, diminished effects were 
observed indicative of tolerance development. In an operant conditioning procedure, those rats 
that were administered a single dose of 0.1 mg/kg (+)-anatoxin-a fumarate (0.06 mg anatoxin-
a/kg) showed decreased locomotor activity and a partial nicotine-like discriminative stimulus 
effect in animals trained to discriminate nicotine from saline (MacPhail et al., 2007). Anatoxin-a 
also decreased the response and reinforcement rates in rats in multiple-schedule operant 
performance tests (Jarema and MacPhail, 2003). However, upon repeated administration, 
substantial tolerance was developed.  

  
Reproductive/Developmental Toxicity  

 
Fawell et al. (1999) reported the results of a developmental toxicity screening study of 

anatoxin-a in timed-pregnant female CD-1 mice. Gavage dosing occurred with either vehicle or 
2.5 mg/kg/day anatoxin-a as the hydrochloride salt on GD 6-15. Maternal body weights and 
clinical signs were recorded. On GD 18, the mice were sacrificed. Live and dead fetuses were 
counted, weighed, sexed and observed for external abnormalities. The raw data were not 
provided. The authors reported a lack of maternal toxicity. There was no effect of treatment on 
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mean fetal weight, sex ratio or post implantation losses. There were also no treatment-related 
major fetal abnormalities. 

    
In a reproductive study, male mice were administered doses of 0 (control), 0.05, 0.1 and 

0.15 mg/kg-day anatoxin-a for seven consecutive days (Yavasoglu et al., 2008). Commercially 
available (+/-)-anatoxin-a fumarate diluted in physiological saline (0.9%; controls) was 
administered by the i.p. route to 10 males in each treatment group. Although there were no 
significant changes in body weight gain or with absolute and relative testes weights, a 
statistically significant (p<0.01) reduction in absolute and relative weights of cauda epididymis 
was observed in the 0.1 and 0.15 mg/kg treatment groups. A statistically significant (p<0.01) 
dose-dependent reduction in sperm count in the cauda epididymis was observed in all treatment 
groups compared to control. Histopathological examination of the testes revealed dose-
dependent degeneration in seminiferous tubules, sloughing of germ cells into tubular lumen, 
vacuolization in Sertoli cells, intercellular disassociation of spermatogenetic cell lines and loss of 
germ cells. Epithelial thickness of seminiferous tubules decreased significantly in all treatment 
groups in a dose-dependent manner. The LOAEL was identified as 50 µg/kg based on reduced 
sperm count in cauda epididymis (Yavasoglu et al., 2008). 

 
In a developmental toxicity screening study, groups of 10 and 12 pregnant Crl:CD-

1(ICR) BR mice were administered by gavage doses 0 (vehicle control) or 3 mg/kg-day of 
aqueous (+)-anatoxin-a hydrochloride (commercial product, purity not reported) equivalent to 0 
or 2.5 mg anatoxin-a/kg, respectively, on GD 6-15 (Fawell and James, 1994; Fawell et al., 1999). 
Until GD 18, clinical signs and body weights were recorded, and at that time maternal animals 
were sacrificed and necropsied to assess the numbers of implantations and live fetuses, post 
implantation loss and fetal body weight, sex ratio and external abnormalities. No treatment-
related maternal effects or effects in the fetuses were observed. However, mean fetal weight in 
the treated group was marginally lower than in controls (data not reported). Based on the absence 
of adverse effects in dams and fetuses, the NOAEL for maternal and developmental toxicity was 
2.5 mg/kg-day of anatoxin-a. 

 
A mammalian embryo toxicity test was conducted by Rodgers et al. (2005) using CD-1 

mouse embryos collected on GD 8. Cultured embryos (9-13) were exposed to 0.00002, 0.0002, 
0.002 and 0.0051 mg/ml anatoxin-a (racemic and 90% pure) and evaluated for 
dysmorphogenesis (abnormal tissue formation). At the end of the culture period, none of the 
embryos showed a significant dose-related increase in dysmorphogenesis. Embryos exposed to 
0.002 and 0.0051 mg/ml of anatoxin-a showed a perturbation in yolk sac vasculature, such as a 
decrease in large caliber vessels and a reduction in arborization (the branching structure at the 
end of a nerve fiber) (Rodgers et al., 2005). 

 
Rodgers et al. (2005) conducted an amphibian embryo-larval toxicity test (AMPHITOX) 

using toad embryos from Bufo arenarum beginning at Stage 18 or Stage 25. Groups of 10 
embryos (in duplicate) were placed in 5 cm glass petri dishes with 10 mL of the AMPHITOX 
solution at 20°C for 13 days to monitor for viability and functional impairments. Stage 18 
embryos were exposed to 0.03, 0.3, 3.0 or 30 mg/L anatoxin-a and Stage 25 embryos were 
exposed to 30 mg/L anatoxin-a, both for 10 days. Results of anatoxin-a exposure in more than 
70% of the embryos affected at the high dose in both exposure periods indicate induction of a 

24 
Health Effects Support Document for Anatoxin-a  - June 2015 



dose-dependent transient narcosis. Edema and loss of equilibrium also were observed and 
mortality occurred in both embryonic stages. In Stage 18, mortality was observed with 20% of 
the exposed embryos in the highest dose group on day 8 and reached 100% between days 10 to 
13. Mortality also occurred in the 0.3 and 3.0 mg/L dose groups over the same time period (10 
and 13 days). In Stage 25, mortality was observed starting at day 6 of exposure and reached 
100% by day 9. 
 
6.2.4 Chronic Toxicity 
 

No chronic toxicity studies of oral exposure to anatoxin-a were identified. 
 

6.3 Carcinogenicity 
 

Information on carcinogenicity in humans or animals or potential mode(s) of action for 
anatoxin-a is not available. 
 
6.4 Other Key Data 
 
6.4.1 Mutagenicity and Genotoxicity 
 

There is limited information regarding mutagenicity or genotoxicity of anatoxin-a. 
Preliminary findings by Sieroslawska and Rymuszka (2010) indicate that without metabolic 
activation, anatoxin-a was genotoxic in an umuC assay with Salmonella typhimurium TA 
1535/pSK1002. UmuC assays are used to detect DNA damage resulting from cell cycle arrest. 
Commercial (+/-)-anatoxin-a fumarate (purity not reported) was administered at 0.00025, 0.0005, 
0.001 and 0.002 mg/mL doses with a 2-hour exposure time to assess induction and expression of 
the umuC - lacZ reporter gene. The lowest dose (0.00025 mg/mL) was the highest concentration 
without an effect in the absence of metabolic transformation. When an S9 fraction (the 
supernatant fraction with cytosol and microsomes from an organ, usually liver, homogenate by 
centrifuging at 9000 g for 20 minutes in a suitable medium) was added to the samples, no effects 
were detected (Sieroslawska and Rymuszka, 2010).  
 
6.4.2 Immunotoxicity 
 
 No information was located regarding effects of anatoxin-a on immune function in 
humans; however, in an in vitro study to assess the effects of anatoxin-a on the viability of 
leukocytes, Bownik et al. (2012) found that anatoxin-a induced apoptosis and necrosis in carp 
(Cyprinus carpio L.) immune cells. The viability of leukocytes was tested using a CellTiter-
Glo® luminescent Viability Assay to quantify intracellular adenosine triphosphate (ATP) as a 
measure of cell metabolic activity. Different concentrations (0.0001, 0.001, 0.005 and 0.010 
mg/mL) of anatoxin-a were added to 100 µL of cell suspension and incubated for 24 hours. The 
study found that intracellular ATP levels in leukocytes were slightly reduced at the highest dose 
(0.010 mg/L), and no damage was observed at the lower doses. The highest dose also induced 
necrosis in leukocytes. Although anatoxin-a had little effect on leukocyte viability, apoptotic 
leukocytes were observed at all dose concentrations of anatoxin-a. A concentration-dependent 
decrease in the proliferative ability of T and B lymphocytes also was observed at all doses. 
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Rymuszka and Sieroslawska (2010) also found apoptosis in fish immune cells after exposure to 
0.001 mg/L of pure anatoxin-a. Fluorescent analysis showed more cells at the apoptotic stage 
than at the necrotic stage (Rymuszka and Sierslawska, 2010).  
 
6.5 Physiological or Mechanistic Studies 
 
6.5.1 Noncancer Effects 
 

Data from in vitro studies have shown that (+)-anatoxin-a mimics the action of 
acetylcholine at neuromuscular nicotinic receptors (Carmichael et al., 1975, 1979; Biggs and 
Dryden, 1977; Aronstam and Witkop, 1981; Swanson et al., 1986). Anatoxin-a is significantly 
more potent than acetylcholine and nicotine as an agonist (initiates a physiological response at 
peripheral and central sites in the CNS). Anatoxin-a has become an important agent in the 
investigation of nicotinic acetylcholine receptors due to its resistance to enzymatic hydrolysis (by 
acetylcholinesterase), and because it is 100 times more selective for nicotinic acetylcholine 
receptors than for muscarinic acetylcholine receptors (Aronstam and Witkop, 1981). Because 
anatoxin-a is not degraded by cholinesterase or other known cellular enzymes, muscle cells 
continue to be stimulated, causing fatigue, muscular twitching and paralysis. As observed in 
acute lethality animal studies, severe overstimulation of respiratory muscles may result in 
respiratory arrest and rapid death (Carmichael et al., 1975, 1977; Devlin et al., 1977; Stevens and 
Krieger, 1991b). 

  
Anatoxin-a can affect the cardiovascular system of rats by acting as a nicotinic 

cholinergic agonist causing an increase in blood pressure and heart rate (Sirén and Feuerstein, 
1990; Adeyemo and Sirén, 1992; Dube et al., 1996). Anatoxin-a also can affect human and rat 
brain neurons (Durany et al., 1999; Thomas et al., 1993; Zhang et al., 1987). Molloy et al. (1995) 
have demonstrated that anatoxin-a stimulates the secretory response in bovine adrenal 
chromaffin cells (neuroendocrine cells found in the medulla of the adrenal glands), probably 
through the activation of neuronal-type nicotinic receptors.  

 
Numerous studies have indicated that anatoxin-a can elicit the release of 

neurotransmitters from presynaptic neuromuscular and brain cell terminals (Rowell and 
Wonnacott, 1990; Gordon et al., 1992; Soliakov et al., 1995; Clarke and Reuben, 1996; 
Wonnacott et al., 2000). Incubation of anatoxin-a with preparations of guinea pig ileum 
longitudinal muscle myenteric plexus resulted in a dose-dependent release of acetylcholine 
(Gordon et al., 1992). In other studies, anatoxin-a stimulated the release of dopamine from rat 
striatal synaptosomes in a dose-dependent manner (Rowell and Wonnacott, 1990; Soliakov et al., 
1995; Clarke and Reuben, 1996; Wonnacott et al., 2000), which suggests that anatoxin-a can 
bind to presynaptic nicotinic receptors and trigger neurotransmitter release with increased 
stimulation of postsynaptic receptors.  

 
6.5.2 Cancer Effects 
 

No long term bioassay studies on the tumorigenicity of anatoxin-a were identified.  
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6.5.3 Interactions with Other Chemicals 
 

Studies of interactions of anatoxin-a in mixtures with other cyanotoxins and/or 
contaminants were not identified.  
 
6.5.4 Structure Activity Relationship 
 

Anatoxin-a is produced as the natural stereoisomer, (+)-anatoxin-a, a nicotinic 
acetylcholine receptor agonist that affects both peripheral and central sites in the nervous system 
(Huber, 1972; Devlin et al., 1977; Fawell et al., 1999; Viaggiu et al., 2004). Studies have 
established that anatoxin-a binds to acetylcholine receptors and mimics the action of 
acetylcholine at neuromuscular nicotinic receptors causing neurological effects (Wonnacott and 
Gallagher, 2006). In general, nicotinic agonists, such as anatoxin-a, form hydrogen bonds in the 
planar region of the receptor and have a bulky cationic group around 5.9 Å from the hydrogen 
bond (Beers and Reich, 1970; Chothia and Pauling, 1970; Spivak and Albuquerque, 1982).  

 
Numerous in vitro studies (Fawell and James, 1994; Fawell et al., 1999; MacPhail et al., 

2007) of acetylcholine receptor response in rat phrenic nerve, chick biventer cervicis muscle, 
guinea pig ileum and in mice intravenously demonstrated that anatoxin-a was 7 to 136 times 
more potent than nicotine. In frog (Xenopus) oocytes, mouse M10 cells, rat hippocampal 
synaptosomes and fetal rat hippocampal neurons, (+)-anatoxin-a agonist potency was 3 to 50 
times greater than nicotine and around 20 times greater than acetylcholine at neuronal nicotinic 
acetylcholine receptors (Thomas et al., 1993). 

 
Assays of contracture potency in preparations of frog rectus abdominis muscle have 

shown that natural (+)-anatoxin-a can exhibit at least a 2.5- and 150-fold greater potency than 
racemic and (-)-anatoxin-a, respectively (Spivak and Albuquerque, 1982; Spivak et al., 1983; 
Swanson et al., 1986). However, in vivo lethality assays in mice have shown comparable potency 
differences (LD50 values of 386 and 913 μg/kg for (+)-anatoxin-a hydrochloride and racemic 
anatoxin-a hydrochloride, respectively) (Valentine et al., 1991). No clinical signs or deaths were 
observed in mice treated similarly with doses of (-)-anatoxin-a hydrochloride as high as 73,000 
µg/kg, further demonstrating the potency of (+)-anatoxin-a (2.4 times as potent as racemic and 
189 times as potent as (-)-anatoxin-a).  

 
Racemic anatoxin-a is considerably more potent than acetylcholine and nicotine as an 

agonist at neuromuscular nicotinic acetylcholine receptors. Compared to acetylcholine, anatoxin-
a binds tightly to the nicotinic acetylcholine receptor with a 3.6 times greater affinity (Swanson 
et al., 1986). After complete inhibition of acetylcholinesterase activity in frog rectus abdominis 
muscle preparations, anatoxin-a showed an 8-fold greater potency in measures of contracture 
than acetylcholine (Swanson et al., 1986).  

 
Anatoxin-a derivatives, such as 2,3-epoxy-anatoxin-a, 4-hydroxy- and 4-oxo-derivatives 

and the reduced derivatives, dihydroanatoxin-a and dihydrohomoanatoxin-a, although non-toxic, 
may retain anatoxin-a’s toxicity. Dihydroanatoxin-a has about 10% of the toxicity of anatoxin-a 
(Mann et al., 2012). The n-methylation of anatoxin-a greatly reduces the acetylcholine-
mimicking effect at nicotinic cholinergic receptors as shown in neuromuscular and neuronal 
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assays of structure activity relationships (Aracava et al., 1987; Costa et al., 1990; Stevens and 
Krieger, 1990; Swanson et al., 1989, 1991; Wonnacott et al., 1991).  

 
6.6 Hazard Characterization 
 
6.6.1 Synthesis and Evaluation of Major Noncancer Effects 
 

 Anatoxin-a is known to cause acute neurotoxicity manifested as loss of coordination, 
muscular fasciculations, convulsions and death by respiratory paralysis. Anatoxin-a mimics 
acetylcholine at neuromuscular nicotinic receptors (Aronstam and Witkop, 1981; Biggs and 
Dryden, 1977; Carmichael et al., 1975, 1979; Swanson et al., 1986). The (+) anatoxin-a form is 
more potent than acetylcholine and is not degraded by acetylcholinesterase. Therefore, an 
interaction with the nicotinic acetylcholine receptors causes persistent stimulation of the muscle 
cells (Swanson et al., 1986; Thomas et al., 1993). 

 
Health effects data of anatoxin-a in humans were not found. Several cases have been 

reported of nonlethal poisonings in humans caused by ingestion of contaminated water with 
Anabaena sp., however, detection of anatoxin-a was not reported. Acute gastrointestinal 
disorders were the most commonly-reported effects (Schwimmer and Schwimmer, 1968).  

 
A few acute and short-term studies and one subchronic study have provided information 

on in vivo effects of anatoxin-a in orally-exposed laboratory animals. However, these studies 
have yielded only limited dose-response data on systemic effects. The test substance varied 
among the studies with the use of extracts, racemic hydrochloride salts and (+) anatoxin-a as the 
hydrochloride salt. An LD50 of 13.3 mg anatoxin-a/kg based on neurotoxicity was identified 
from lethality assays in mice (Fitzgeorge et al., 1994; Stevens and Krieger, 1991b).  

 
Short-term oral toxicity studies provide some information on systemic toxicity and 

developmental toxicity in mice (Fawell and James, 1994; Fawell et al., 1999). In a 5-day mouse 
study, four dose levels were used (1.2, 2.5, 6.2 and 12.3 mg/kg-day by gavage). However, the 
study was limited by the small number of animals tested (2 mice per sex per dose), the lack of 
concurrent controls and by the extent and type of endpoints evaluated (clinical signs, body 
weight, food consumption and necropsy). Because dose-related mortality was observed at the 
highest doses (1 of 4 mice at 6.2 mg/kg-day and in all mice at 12.3 mg/kg-day), the authors 
identified a NOAEL as 2.5 mg/kg-day.  

 
In the 28-day toxicity study (Fawell and James, 1994; Fawell et al., 1999), the NOAEL is 

0.1 mg/kg-day and LOAEL is 0.5 mg/kg-day based on mortality (one death in 10 treated males). 
However, because no cause of death was determined in the postmortem examination, the authors 
indicated that the true NOAEL could have been 2.5 mg/kg-day had the researchers been able to 
determine the cause of the death in the mid dose group. Given that no cause of death could be 
determined, a “relationship to treatment could not be ruled out.” There were significant changes 
in mean red cell hemoglobin at the mid and high dose that the authors did not consider to be 
toxicologically significant. There were no deaths in the Fawell et al. (1999) developmental study 
of an unidentified number of female mice that received a 2.5 mg/kg/day dose of anatoxin-a. 
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A 7-week subchronic drinking water toxicity study found no treatment-related effects of 
anatoxin-a (Astrachan and Archer, 1981; Astrachan et al., 1980). This study was limited by the 
use of only two dose levels (0.05 and 0.5 mg/kg-day), a lack of comprehensive examinations, 
especially hematology (two indices), blood chemistry (four serum enzymes) and histology (seven 
tissues), and inadequate reporting (composition of the extract). The high dose (0.5 mg/kg) caused 
an approximately 30 to 50% increase in white blood cell count throughout week 5 of the 
observation period. There was also an initial (1 week) increase in white cell count compared to 
controls at the low dose, but it was not observed in the three-, five- or seven- week blood 
samples. 
 

No data are available on the chronic oral toxicity of anatoxin-a. 
 

6.6.2 Synthesis and Evaluation of Major Carcinogenic Effects 
 
No information on carcinogenicity of anatoxin-a in humans or animals or on potential 

carcinogenic precursor effects was identified. 
 
6.6.2.1 Mode of Action and Implications in Cancer Assessment 
 

No information regarding the mode(s) of action of carcinogenicity in humans or animals 
was identified. 
 
6.6.2.2 Weight of Evidence Evaluation for Carcinogenicity 
 

In accordance with the Guidelines for Carcinogen Risk Assessment (U.S. EPA, 2005a), at 
the present time there are inadequate data to assess carcinogenic potential of anatoxin-a.  
 
 
6.6.2.3 Potentially Sensitive Populations 
 

No information was identified on the degree to which sensitive populations might differ 
from the general population in the disposition of, or response to, anatoxin-a. Likewise, there is 
no information on possible gender differences in the disposition of, or response to, anatoxin-a. 

 
Anatoxin-a may interact with anticholinergic agents recommended for the treatment of 

various medical conditions, including glaucoma, atony of the smooth muscle of the intestinal 
tract and urinary bladder, myasthenia gravis and termination of the effects of competitive 
neuromuscular blocking agents (Taylor, 1996). For example, anatoxin-a along with atropine 
sulphate, a common anesthetic that blocks the action of acetylcholine at muscarinic receptors, 
could attenuate the effects of the anesthetic (Cook et al, 1990). Those exposed to anatoxin-a 
using anticholinergic agents for therapeutic purposes may experience adverse side effects.  
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7.0 DOSE-RESPONSE ASSESSMENT 
 

7.1 Dose-Response for Noncancer Effects  
 

The majority of experimental studies of anatoxin-a are in vitro and pertain to its mode of 
neurotoxic action. These studies have established that anatoxin-a binds to acetylcholine receptors 
and mimics the action of acetylcholine at neuromuscular nicotinic receptors (Aronstam and 
Witkop, 1981; Biggs and Dryden, 1977; Carmichael et al., 1975, 1978, 1979; Swanson et al., 
1986). With sufficient exposure, acetylcholine accumulation occurs at cholinergic neuroeffector 
junctions (muscarinic effects), at skeletal myoneural junctions and in autonomic ganglia 
(nicotinic effects). Acute in vivo neurotoxicity studies of anatoxin-a in animals have identified 
tremors, altered gait, convulsions and death by respiratory paralysis as the most common 
symptoms. Limited information has been identified on in vivo neurotoxicity at sublethal doses, 
including the lack of effects of acute intravenous exposure on motor activity, coordination, 
sensory/motor reflexes and other central nervous system responses in mice as well as no 
observed effects of gestational intraperitoneal exposure on postnatal neuro-developmental 
maturation in mice.  

 
Oral toxicity studies in laboratory animals include a single-dose lethality assay in mice 

(Stevens and Krieger, 1991b), 28-day studies in mice, and developmental GD 6 to 15 day 
toxicity studies in mice (Fawell et al., 1999), plus a 7-week study in rats (Astrachan and Archer, 
1981). However, the data from these oral toxicity studies are insufficient for deriving an RfD due 
to inconsistencies in the effects reported, inadequate experimental design and reporting, and the 
use of too few dose levels and study endpoints.  
 
7.1.1 RfD Determination  
 

 Available acute oral toxicity data for anatoxin-a are inadequate to support derivation of 
an acute RfD. Experimental data on the acute oral toxicity in animals are limited to two lethality 
assays in mice that determined an LD50 value of 13.3 mg anatoxin-a/kg and identified 
neurotoxicity as the cause of death (Fitzgeorge et al., 1994; Stevens and Krieger, 1991b).  

 
Information on toxicity of anatoxin-a is available from a short-term oral 28-day systemic 

toxicity study and a developmental toxicity study in mice (Fawell and James, 1994; Fawell et al., 
1999). In the 28-day study, groups of 10 mice/sex at dose levels of 0, 0.1, 0.5 and 2.5 mg/kg-day 
identified a NOAEL of 0.1 mg/kg-day. The NOAEL was based on lethality in 1 of 10 animals 
exposed. The authors did not identify the cause of two of the three deaths and other effects 
reported in treated animals, such as minor but statistically significant hematology changes, were 
not considered toxicologically significant by the authors.  

 
A single subacute oral toxicity study (7-week drinking water study in rats) provides 

information on the oral toxicity of anatoxin-a (Astrachan and Archer, 1981; Astrachan et al., 
1980). A NOAEL of 0.05 mg/kg-day was identified and a LOAEL of 0.5 mg/kg based on an 
increase in white blood cell counts over the first 5 weeks of the study. However, the 
toxicological significance of this effect is not clear given that it was not apparently evaluated in 
any of the other studies and the authors did not consider it to be adverse. 
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7.1.2 RfC Determination  
 

No information is available on the toxicity of inhaled anatoxin-a. 
 
7.2 Dose-Response for Cancer Effects  
 

There is no information or dose-response data available regarding the carcinogenicity of 
anatoxin-a in reported incidental human exposures (e.g., bathing, swimming, dish washing) or 
cancer studies in animals.   
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8.0 RESEARCH GAPS 
 

Other than the effects of anatoxin-a on the niconinergic acetyl choline receptors of the central 
and peripheral nervous system, there are few studies of systemic effects from oral exposures of 
laboratory animals to anatoxin-a. This chapter provides a summary of knowledge gaps and 
research needs that limit a complete assessment of human health consequences from exposure to 
anatoxin-a in drinking water. The key research gaps listed below were identified during the 
development of this document and are not intended to be an exhaustive list. Additional research 
is needed, including: 
 

• Purification and toxin synthesis.  
 

• Quantification for the absorption, distribution and elimination of anatoxin-a in humans or 
animals following oral, inhalation or dermal exposure.  
 

• Health risks posed by repeated, low-level exposures of laboratory animals to anatoxin-a.  
 

• The chronic toxicity of anatoxin-a. 
 

• The systemic, immunotoxic and developmental/reproductive toxicity of anatoxin-a 
following oral exposure.  
 

• The carcinogenic potential of anatoxin-a.  
 

• Potential health risks from exposure to mixtures of anatoxin-a and other cyanotoxins or 
other chemical stressors present in ambient and drinking water supplies. 
 

• Relative potency of anatoxin-a relative to other agonists for nicotinic acetylcholine 
receptors.  
 

• Populations that might be sensitive to anatoxin-a exposure via the oral, dermal and/or 
inhalation routes.  
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