Second Five-Year Review Report Hudson River PCBs Superfund Site

APPENDIX 2 MASS REDUCTION EVALUATION

Prepared by: Louis Berger US, Inc. LimnoTech, Inc.

May 2017

SECOND FIVE-YEAR REVIEW REPORT HUDSON RIVER PCBs SUPERFUND SITE

TABLE OF CONTENTS

1	BACKGROUND1-1
2	PRODUCTIVITY AND RESIDUAL STANDARDS FOR PHASE 2
	DREDGING2-1
3	METHODS
	3.1 Determination of Volume of Sediment Removed and Mass of PCBs in
	Sediment Removed
	3.2 Determination of Mass of PCBs in Sediment Remaining in
	Certification Units After Dredging
	3.3 Determination of Dredged Area Capped Using the Nodal Capping
	Index (NCI)
4	RESULTS AND DISCUSSION
	4.1 Volume of Sediment Removed and Mass of PCBs in Sediment
	Removed
	4.2 Proportion of Phase 2 Dredged Area Covered by Engineering Cap and
	Percentage of Dredged Area Capped with Inventory present
	4.3 Mass of PCBs in Sediment Remaining in Certification Units After
	Dredging
	4.4 Amount of TPCB Mass Removed from the Upper Hudson River 4-5
	4.5 Summary
5	CONCLUSIONS
6	REFERENCES

SECOND FIVE-YEAR REVIEW REPORT HUDSON RIVER PCBs SUPERFUND SITE

LIST OF TABLES

Table A2-1a	Volume of Sediment Removed from Certification Units in Phase 2 by
	Certification Unit
Table A2-1b	Volume of Sediment Removed from Certification Units in Phase 1 and
	Phase 2 by Year
Table A2-2a	Mass of TPCB Removed from Certification Units in Phase 2
Table A2-2b	Mass of Tri+ PCB Removed from Certification Units in Phase 2
Table A2-2c	Mass of TPCB in Sediment Removed from Certification Units in Phase
	1 and 2 by Year
Table A2-2d	Mass of Tri+ PCB in Sediment Removed from Certification Units in
	Phase 1 and 2 by Year
Table A2-3	Combined Phase 1 and Phase 2 PCB Mass and Volume Removal
	Estimated and Actual Values
Table A2-4a	Capped Inventory of TPCB in Sediment Remaining in Certification
	Units after Phase 2 Dredging
Table A2-4b	Capped Inventory of Tri+ PCB in Sediment Remaining in Certification
	Units after Phase 2 Dredging
Table A2-5	Summary of Navigation Channel Volumes and PCB Mass Removed
Table A2-6a	Estimate of mass of TPCB in sediment outside dredged areas in Upper
	Hudson River (Method 1)
Table A2-6b	Estimate of mass of TPCB in sediment outside dredged areas in Upper
	Hudson River (Method 2)

1 BACKGROUND

The remedy selected for the Upper Hudson River PCBs Superfund Site required development of enforceable Performance Standards, with multiple interrelated objectives: to ensure that the clean-up would meet human health and environmental protection objectives, including reduction of Site risk and downstream transport of PCBs, and also to satisfy criteria for dredging productivity. An independent peer review panel reviewed Phase 1 performance relative to the Engineering Performance Standards (EPS) that governed that first year of dredging, and made recommendations that resulted in a revised 2010 Engineering Performance Standards (EPS) for Phase 2 (EPA, 2010a; EPA, 2010b). The 2010 Engineering Performance Standards presented performance standards for dredging residuals, resuspension and productivity that embodied specific requirements for Phase 2 dredging activities. An important component of the 2010 EPS was the accurate determination of the volume of sediment dredged and the mass of PCBs removed, and these two metrics provided a link among all three standards. The 2010 Productivity Standard specified the minimum volumes of sediment that were expected to be dredged during each year of Phase 2. The Resuspension Standard contained specific PCB load thresholds, as measured at the Waterford far-field station, limiting resuspension to a percentage of the mass of PCBs removed. Thus, accurate determination of the volume and mass of PCBs removed during Phase 2 was an important component of determining whether Phase 2 dredging activities were in overall compliance with the 2010 Productivity and Resuspension Standards. The Residuals Standard contained directives that affected the volume of sediment dredged (e.g., limiting the number of dredging passes) and how dredged areas were to be closed out (*i.e.*, requiring cover with clean backfill material or an engineered cap), to limit post-dredge exposure and resuspension of residuals.

The Residuals Standard presented in the 2010 EPS was designed to detect and manage contaminated sediment that might remain after the initial dredging of a 'Certification Unit' (CU) and to confirm that the depth of contamination was accurately identified. The standard incorporated "lessons learned" from dredging that occurred in 2009 as part of Phase 1 dredging (EPA, 2010b). In particular, the peer review of Phase 1 dredging

activities concluded that the full depth of PCB contamination in sediments dredged during Phase 1 was not accurately defined prior to commencement of Phase 1 dredging, resulting in PCB mass left behind. The incomplete characterization of the vertical extent of PCB contamination for the original dredging design became apparent during Phase 1 dredging in 2009, when as many as five dredging passes were required to remove PCB-contaminated sediment within a single CU. The recognition that existing core data were inadequate to properly delineate the vertical extent of PCB contamination was an important factor driving modifications incorporated in the Phase 2 Residuals Standard. As a result of the finding of the peer review panel, GE was instructed to conduct the Supplemental Engineering Data Collection (SEDC) program, which collected additional sediment cores in Phase 2 CUs prior to dredging in order to more accurately define the elevation of the bottom of contamination (General Electric 2011). Similarly, GE was required to dredge six inches below the design depth of contamination (DoC) elevation and collect sediment cores (hereinafter referred to as Residuals Cores) after each dredging pass to verify whether additional PCB-containing sediment remained below the design DoC elevation. Based on the PCB concentration of sediments below the dredged surface, the Residuals Standard provided specific directives on whether additional dredging passes would be required or whether the dredged area could be closed out with clean backfill or an engineered cap. The maximum area allowed to be capped was also outlined in the Residuals Standard using a nodal capping index. Additional details regarding the nodal capping index can be found in the 2010 EPS (EPA, 2010b). GE was also required to carry out bathymetric surveys after each dredging pass to confirm the volume of sediment dredged, confirm that the design DoC was reached in 95 percent of the dredging area, and to verify that the rate of removal of sediment volume was in compliance with the Productivity Standard.

The sediment and bathymetric data collected during implementation of Phase 2 Residuals provided a means to assess whether Phase 2 dredging was in compliance with the Residuals Standard; these data also allow verification of estimates of dredging volume and PCB mass present in the CUs as estimated in the 2002 ROD (EPA, 2002), as well as values reported by GE during Phase 2 dredging activities. Finally, these data can also facilitate estimates

of the PCB mass that remains within the CUs now that Phase 2 dredging has been completed.

Volumes of sediment and mass of PCBs removed were estimated from predesign and postdredged core data, as well as pre- and post-dredge bathymetry. Volume removed in each year of Phase 2 was found to be in compliance with the Productivity Standard. Total sediment volume and masses of Total PCB (TPCB¹) and Tri+ PCB² removed in Phases 1 and 2 were found to be much greater than anticipated at the outset of the remedy, due to prior underestimates of depth of contamination that were corrected by coring that GE performed in 2010-2012 to support Phase 2 remedial design. The estimated masses of PCBs removed were also used to help assess compliance with the Resuspension Standard, which limited downstream transport to a percentage of dredged PCBs. Estimates of capped and backfill-covered areas demonstrate compliance with limits set in the Residuals Standard, and the estimated PCB mass left in place in capped or backfill-covered areas is small relative to the mass removed by dredging.

¹ Total PCBs represents the sum of all measured PCB congeners. PCBs are a group of chemicals consisting of 209 individual compounds known as congeners. The congeners can have from one to ten chlorine atoms per molecule, each with its own set of chemical properties.

² Tri + PCBs represents the sum of all measured PCB congeners with three or more chlorine atoms per molecule. PCBs are a group of chemicals consisting of 209 individual compounds known as congeners. The congeners can have from one to ten chlorine atoms per molecule, each with its own set of chemical properties.

2 PRODUCTIVITY AND RESIDUAL STANDARDS FOR PHASE 2 DREDGING

Full details of the Phase 2 EPS Productivity Standard can be found in the 2010 EPS (EPA, 2010b). Briefly, the Productivity Standard set goals for the volume of sediment to be dredged each year. While subordinate to the Residuals and Resuspension Standards, the Productivity Standard was implemented to monitor dredging progress and encourage a pace of work intended to control sediment resuspension from newly dredged surfaces. The 2010 Productivity Standard recognized that the estimates of anticipated total volume of sediments to be dredged were uncertain, and therefore set the yearly dredging productivity goal at 350,000 cubic yards/year based on actual productivity results from the Phase 1 dredging activities in 2009, as recommended by the peer review panel in 2010 (EPA, 2010a). The updated productivity goal of 350,000 cubic yards/year was above the original productivity goal of 319,000 cubic yards/year, as presented in the 2009 Phase 1 Performance Standards Compliance Plan (General Electric 2009).

As described above, the Residuals Standard provided specific directives and decision logic on whether additional dredging passes would be required to reduce sediment PCB concentration or whether the dredged area could be closed out by either covering the dredged surface with clean backfill or an engineered cap. Each dredging area was referred to as a certification unit (CU), and each CU was divided into nodal areas, based on the location of the Residuals Cores (the "nodes") collected after each dredging pass. Residuals Cores encompassed sediment samples to 48 or 96 inches (depending on depth of contamination) or bedrock, whichever was encountered first. The cores were segmented into 6-inch lengths and a subset of the segments was analyzed for PCB Aroclors using Method 8082. Method 8082 was demonstrated to be equivalent to the sum of PCB congeners based on the results of performance evaluation samples, and Tri+ PCB (sum of detected PCBs in the tri-homologue and higher groups) concentrations were calculated from measurements of PCB Aroclors and a site-specific regression equation relating PCB Aroclor to Tri+ PCB (Appendix 5, Section 2.2.4). Whether a nodal area needed to be redredged depended on the detected TPCB and Tri+ PCB concentrations in the Residuals Core samples from that node. With few exceptions, if a Residuals Core contained ≥ 6 mg/kg Tri+ PCB in any 6-inch segment below the surface core segment, or the surface core segment had a Tri+ PCB concentration ≥ 27 mg/kg, or any segment had a TPCB concentration > 500 mg/kg, the associated nodal area was required to be re-dredged. In addition, nodal areas that yielded Residuals Cores that did not meet the above criteria but caused the average surface concentration within the CU to be greater than 1 mg/kg Tri+ PCB were required to be either re-dredged or covered with an engineered cap, in order to achieve an average surface concentration within the CU of 1 mg/kg Tri+ PCB or less. The remaining nodal areas containing cores that did not meet the above criteria were deemed compliant and were covered with clean backfill material. If a nodal area was re-dredged, the associated node was re-occupied and a new Residuals Core collected, and the above steps were repeated in order to determine whether the nodal area was in compliance.

The total amount of capping was limited by additional provisions in the Residuals Standard, formulated with the intention that the mass of PCBs left in place within the CU be minimized such that 96-98 percent of PCB mass would be removed from the CU areas (EPA, 2002). Compliance with the Phase 2 Residuals Standard required that no more than 11 percent of the total dredged area be capped, and no more than 3 percent of the total area be capped with inventory present, as calculated using the nodal capping index. Inventory is defined as nodes containing sediment below the 6-inch surface core segment that contains Tri+ PCB concentrations equal to or greater than 6 mg/kg. The nodal capping index (NCI) was developed to facilitate timely tracking of the approximate extent of capping and backfilling within dredged areas on an area-weighted basis. The NCI acted as a surrogate for the exact extent of capping and backfilling. Briefly, each node was categorized according to sediment texture, location within the river bottom (*i.e.*, shoreline, bedrock, glacial clay) and whether the node was capped or backfilled. Based on this classification, the NCI calculated the total area capped within each CU, and formed the measurement basis for compliance with the capping criterion of the Residuals Standard.

Full details regarding the classification scheme and equations involved in the NCI are presented in the 2010 EPS (EPA, 2010b).

3 METHODS

3.1 Determination of Volume of Sediment Removed and Mass of PCBs in Sediment Removed

In order to calculate the sediment volume and PCB mass removed as a result of dredging activities during Phase 2, chemistry and bulk density data from the remedial design sediment sampling and analysis program (SSAP) (General Electric 2002), the SEDC program described above, and Phase 2 residuals cores were utilized, along with bathymetry data collected prior to and after each dredging pass. The methods employed are based on the equations and methodologies presented in the 2010 EPS. Briefly, differencing of bathymetric data collected after each dredging pass was used to calculate the total volume of sediment removed. In order to estimate the mass of PCBs removed, both the dry bulk density and PCB concentration within the dredge volume were determined using the following steps:

- Because no dry bulk density data were available for the Residuals Cores collected during Phase 2, dry bulk density values measured on SSAP core segments were utilized. For each dredging pass, the subset of SSAP cores that fell within the dredging pass area were identified. The mean dry bulk density of this subset of SSAP cores was used as the dry bulk density value for the entire dredging pass volume. It is recognized that in certain instances, the depth of the dredge cut exceeded the depth of the SSAP cores that fell within the boundary of the dredging pass. However, the SSAP cores still provide the best available estimate of dry bulk density for the dredge volume and were included in the calculations presented here.
- 2) PCB concentrations (both TPCB and Tri+ PCB) were available for both the SSAP cores and the Residuals Cores. In the case of the first dredging pass, the SSAP core segments that fell within the dredging volume were used. For subsequent dredging passes, Residuals Core segments that fell within the dredging volume were used to calculate a PCB concentration. By differencing the bathymetry after each dredging pass, the depth of dredging at each Residuals Core can be obtained, and only the core segments that fell within the dredging depth interval were included in the mass

calculation, thereby avoiding including PCB mass that was outside the dredged volume and double counting PCB mass.

Once the appropriate core segments were identified, the length of the segments (corrected for recovery), the PCB concentration (both TPCB and Tri+ PCB), and the dry bulk density were used to calculate a length-weighted PCB mass per unit volume (denoted as m) for each dredging pass using the following equation:

$$m_{i} = \frac{B_{i} \sum_{j=1}^{n_{i}} L_{ij} C_{ij}}{\sum_{j=1}^{n_{i}} L_{ij}}$$
(1)

where *i* is an individual core, *j* is a core segment within core *i*, n_i is the number of core segments within core *i*, L_{ij} is the length of the core segment (corrected for recovery), C_{ij} is the concentration (TPCB or Tri+ PCB) for the core segment, and B_i is the bulk density of the core (note in the calculation presented here, all cores within the dredge volume are assumed to have the same dry bulk density).

The length of each core section is corrected for less than 100 percent core recovery by dividing the measured length by the fraction of sediment recovered. The core correction compensates for loss of recovery which results in under-sampling of some sediment strata during the core collection process. Once the PCB mass per unit volume (m) has been calculated for all cores located within the dredge volume, a length-weighted average mass per unit volume (MPUV) can be calculated as:

$$\overline{MPUV} = \frac{\sum_{i=1}^{n} L_i m_i}{\sum_{i=1}^{n} L_i}$$
(2)

where *Li* represents total length of core segments within core *i* (corrected for recovery). The \overline{MPUV} for each dredging pass is multiplied by the associated dredging pass volume (*V*) to determine the mass of PCBs (TPCB or Tri+ PCBs) dredged (*M*) per dredging pass, per CU, during Phase 2:

$$M = V \times \overline{MPUV} \tag{3}$$

It should be noted that the above calculations of mass removed include the surface core segment (0-6") of the residual cores. It may be expected that during dredging, some of the dredged sediment will escape the dredge bucket and resettle on the river bottom. As such, PCB mass in the surface core segment of the residual cores may represent a mixture of *insitu* PCB contamination and PCB mass from overlying, dredged sediment. As it is not possible to determine with certainty the fraction of these two PCB sources in the surface core segment, the surface core segment was included in calculations and, therefore, the TPCB and Tri+ PCB mass removed values likely represent upper bounds on the mass removed.

Dredging activities conducted within CUs include dredging that targeting removal of PCB contaminated sediment, dredging for navigation purposes, and daylight dredging (dredging conducted to prevent collapse of dredge area walls during dredging and backfill activities). Outside of CUs, navigational dredging and access dredging (dredging for the purpose of allowing barge and boat traffic to reach dredge areas) was also performed. While mass and volume of dredging activities outside CUs were not included in the volume and mass estimates presented below, they do constitute additional removal of river sediment and PCB mass. Estimates of mass removed during navigational and access dredging is discussed in Section 4.1 and in Table A2-5.

3.2 Determination of Mass of PCBs in Sediment Remaining in Certification Units After Dredging

In order to estimate the mass of PCBs (both TPCB and Tri+ PCB) remaining within each CU after dredging activities were completed, similar methods and equations to those described above were utilized with slight modification, because the volume (V) in equation (3) is unknown. To estimate volume, we can express V as:

$$V = A \times \overline{L} \tag{4}$$

where \overline{L} represents the average length of core (corrected for recovery) within a particular CU and A represents the area of the CU.

We can also re-express the \overline{MPUV} as:

$$\overline{MPUV} = \frac{\sum_{i=1}^{n} L_i m_i}{\sum_{i=1}^{n} L_i} = \frac{\sum_{i=1}^{n} L_i m_i / n}{\sum_{i=1}^{n} L_i / n} = \frac{\overline{MPA}}{\overline{L}}$$
(5)

where \overline{MPA} is the average PCB (TPCB or Tri+ PCB) mass per area.

Combining equations (3), (4) and (5), the mass remaining after dredging (M) can be expressed as:

$$M = A \times \overline{MPA} \tag{6}$$

Because the mass remaining after dredging is calculated for the entire CU, B_i in equation (1) is calculated as the mean dry bulk density for all SSAP core segments collected within the CU. C_{ij} and L_{ij} were based on the Residuals Cores that were collected following the final dredging pass over the nodal areas of influence within the CU. In this way, C_{ij} and L_{ij} represent direct sampling of sediment that was left in place and subsequently covered with backfill or an engineered cap. The above calculations were carried out for each CU dredged in Phase 2.

3.3 Determination of Dredged Area Capped Using the Nodal Capping Index (NCI)

The post-dredging surfaces were first categorized as to their level of compliance with the Standard and then as to the areas of the river in which they fell. The level of compliance is defined by the categories below:

- A. Inventory capped in place (*i.e.*, the node contained sediment below 6 inches containing Tri+ PCB concentrations equal to or greater than 6 mg/kg).
- B. Elevated residuals capped (*i.e.*, the node caused the average surface concentration in the CU or sub-unit to exceed 1 mg/kg Tri+ PCB or had a surface concentration of 27 mg/kg Tri+ PCB or greater).

C. Compliant areas backfilled (*i.e.*, the node was part of a CU or sub-unit area whose average Tri+ PCB concentration was 1 mg/kg or less).

The following categories of river bottom areas were tracked as part of the standard. Note that the first three categories represent specific geographic settings, whereas the latter three represent river bottom types:

- 1) Structural offsets;
- 2) Cultural resource areas;
- 3) Shoreline areas;
- 4) Exposed bedrock areas;
- 5) Exposed glacial Lake Albany clay areas; and
- 6) River bottom not falling into any of the above categories, typically silt, sand, and gravel areas.

The extent of capping in a single CU for use in calculating the Nodal Capping Index is defined as follows:

$$A_{capped} = A_{CU} \times \left[\frac{\sum (N_{field \ capped})}{\sum (N_{field}) + \frac{1}{2} \sum (N_{shoreline})} \right]$$
(7)

where A_{capped} is the area capped within the CU, as determined by the nodal capping index, A_{CU} is the total area of the CU, $N_{field \ capped}$ is the number of nodes within the CU that were capped and in category 6 above and in compliance categories A or B, N_{field} is the total number of nodes within the CU that are not specifically identified as boundary nodes (river bottom categories 1 and 2) or shoreline nodes, including all nodes from categories 4, 5 and 6, irrespective of their compliance category. Finally, $N_{shoreline}$ is the sum of nodes in the shoreline area of a CU; this includes all shoreline nodes irrespective of their compliance category. Once A_{capped} is determined for all CUs, the total percentage of area capped, based on the NCI, is calculated as:

Nodal Capping Index (NCI) =
$$\frac{\sum A_{capped}}{\sum A_{CU}} \times 100$$
 (8)

The NCI formed the measurement basis for compliance with the capping criteria of the Residuals Standard.

4 **RESULTS AND DISCUSSION**

4.1 Volume of Sediment Removed and Mass of PCBs in Sediment Removed

Results of EPA's calculation of volume of sediment removed and mass of PCBs in sediment removed on a CU-by-CU basis are presented in Tables A2-1a-b, and A2-2a-d. The results indicate that 2,374,000 cubic yards of sediment were removed from within CUs in the Upper Hudson River during Phase 2, which facilitated the removal of 135,700 kg of TPCB and 43,100 kg of Tri+ PCB. Using values of volume and mass of TPCB and Tri+ PCB removed during Phase 1 dredging (267,900 cubic yards, 20,020 kg and 5,460 kg for volume dredged, TPCB mass removed and Tri+ PCB mass removed, respectively) from the 2010 Phase 1 Evaluation Report (EPA, 2010b), the totals removed during both Phases 1 and 2 were 2,641,900 cubic yards of sediment, 155,800 kg of TPCB and 48,600 kg of Tri+ PCB. On a yearly basis (Tables A2-2a and A2-2b), 2012 had the highest total with respect to volume dredged, while 2015 had the lowest dredging total. Note that some CUs were dredged over 2 consecutive years. In these situations, in order to present annual values, CUs dredged over multiple years were included in the year in which the CU was first dredged. As a result of this grouping, annual values presented in Tables A2-2a and A2-2b may differ from the values presented in Annual Reports provided by GE during Phase 2 dredging activities. Total volume removed (summed over all Phase 2 years) calculated for this analysis was within 5 percent of values calculated by GE during Phase 2 activities, and TPCB and Tri+ PCB masses removed calculated for this analysis were within 6 percent of values calculated by GE during Phase 2 dredging activities. Estimates of volume dredged and PCB mass removed relies not only on accurate measurements of volume and area dredged, but also extrapolating the concentration of TPCB and Tri+ PCB measured in cores (*i.e.*, point estimates) to concentrations over relatively large areas and volumes (*i.e.*, areal and volume estimates). Further, bulk density was not directly measured on residual cores collected during dredging activities, and assumptions were required regarding estimation of the bulk density of sediments dredged. Therefore, differences between values calculated by GE and EPA are likely related to small differences in calculation of area and volume dredged on a CU by CU basis, estimates of MPUV and MPA using SSAP and residual core data on a CU by CU basis, and estimation of bulk density values for the residual cores where no bulk density was directly measured. EPA's and GE's values for volume of sediment and PCB mass removed should be considered as best estimates of the actual volume and mass removed given the data available, and the observation that both values agree well provides confidence that these values reflect the true volume and mass removed.

A comparison of the volume and mass of sediment removed during each dredging pass of Phase 2 indicates that 75 percent of the total PCB mass and 80 percent of the total sediment volume were removed during the first dredging pass. Based on the Residuals Cores collected after the first pass, 88 out of the 91 CUs dredged in Phase 2 required a second pass. 24 percent of the total PCB mass and 19 percent of the total sediment volume were removed during the second pass. 20 CUs required a third pass, with 1 percent of the total PCB mass and 1 percent of the total volume of sediment removed during the third pass. On an individual CU basis, the first dredging pass removed between 23 and 100 percent of the total PCB mass within a respective CU, while the second dredging pass removed between 2 and 73 percent of total PCB mass within a CU and the third dredging pass removed between 0 and 10 percent of total PCB mass within a CU. Further, we identified three CUs (CU-16, CU-26, and CU-97) that had more PCB mass removed during the first pass.

Compared to the 2010 Productivity Standard's target volumes, Phase 2 dredging years 2011 through 2014 met or exceeded the volume of sediment to be dredged. For the years 2012 to 2014, dredging volumes were approximately 100, 155, 180, and 175 percent, respectively, of the stated goal of 350,000 cubic yards each year. In 2015, only 237,000 cubic yards of sediment were dredged, which represented the volume in CUs remaining to be dredged in the final year.

To put these results into context, the actual volume of sediment and mass of PCBs dredged in Phases 1 and 2 were compared with the estimated volume of sediment and mass of PCBs to be removed, as presented in the 2002 ROD and the 2007 Phase 2 Dredge Area Delineation (DAD) Report (2002, EPA; General Electric 2007). Table A2-3 presents estimates of the mass of TPCB and Tri+ PCB to be removed from the Upper Hudson River during Phase 1 and 2 dredging activities. Using values calculated in this report, along with values presented in the Phase 1 Evaluation Report (EPA, 2010c), the actual dredged volume was within 1 percent of the estimated 2,650,000 cubic yards presented in the 2002 ROD, and 47 percent more than the 1,800,000 cubic yards estimated in the 2007 DAD Report. With regard to the TPCB mass removed, actual TPCB mass removed was 123 percent more than the 69,800 kg estimated in the 2002 ROD and 38 percent more than the 113,100 kg estimated in the 2007 DAD report. While the 2007 Phase 2 DAD Report did not estimate a specific amount of Tri+ PCBs to be removed, the actual amount of Tri+ PCBs removed was 123 percent more than the 21,700 kg estimated in the 2002 ROD.

It should be noted that dredge volumes and mass presented above include dredging required to maintain a navigable channel within the dredging areas. Data provided by GE (Table A2-5) indicate that approximately 444,000 cubic yards were dredged inside CUs and 7,300 cubic yards were dredged outside CUs specifically for navigation channel access. Dredging resulted in the removal of 18,900 kg of TPCB and 6,400 kg of Tri+ PCB mass from the navigation channel within certification units. Further, additional dredging took place in the Upper Hudson River that was not included in the above volume and mass estimates. In particular, access dredging was conducted to allow access for barges and other dredge-related ship traffic to reach CUs, and daylight dredging was conducted where dredging depths were such that additional dredging was required within and along the border of CUs to prevent the collapse of dredge walls prior to the placement of clean backfill or cap material. While exact values for the volume and mass removed as a result of access and daylight dredging were not tracked during Phase 2 dredging, GE estimates that approximately 4,000 cubic yards of sediment were removed for these purposes, and represents additional volume and PCB mass removed beyond the values calculated above.

It follows from this analysis that the estimates in the 2002 ROD and 2007 Phase 2 DAD Report of the *in-situ* mass of PCB-contaminated sediments in the Upper Hudson River were underestimates. The mass removed values for both TPCB and Tri+ PCB calculated by EPA were within 6 percent of the values calculated by GE during Phase 2 dredging.

While some differences between EPA's and GE's estimates are expected, both values exceeded mass removal objectives laid out in the 2002 ROD. Similarly, the close agreement between EPA's and GE's estimates for volume of sediment and PCB mass removed (less than 6 percent difference) indicate that GE correctly implemented the metrics for determining compliance with the Phase 2 Productivity and Residuals Standards.

4.2 Proportion of Phase 2 Dredged Area Covered by Engineering Cap and Percentage of Dredged Area Capped with Inventory present

The total area within each CU covered by an engineered cap was determined using the NCI and compared with the actual area capped, based on analysis of EPA-approved capping design plans for each CU. The total area closed out with engineered caps using the NCI was 34 acres, and the total area closed out with engineered caps that contained undredged inventory (*i.e.*, the node contained sediment below 6 inches containing Tri+ PCB concentrations equal to or greater than 6 mg/kg) was 2.2 acres.

When compared with the compliance thresholds for percentage of dredge area capped and area capped with undredged inventory, the NCI-calculated area capped (which is the area used for determination of compliance) was 7.7 percent of the total area dredged in Phase 2 (442 acres), and the NCI-calculated area capped with inventory was 0.5 percent of the total area dredged in Phase 2. Both of these areas were below the compliance thresholds set out in the Residuals Standard (*i.e.*, 11 and 3 percent for total area capped and area capped with inventory, respectively). As noted in Section 2, the NCI acted as a surrogate for the exact extent of capping and backfilling. An important factor in the decision to use the NCI as a measure of dredged area capped was the need to expeditiously determine compliance with capping limitations in the Residuals Standard while active dredging was taking place to avoid delaying the closure of dredged areas and potentially increasing the amount of sediment resuspension. Additionally, in requiring the capped areas to extend out to surrounding compliant nodes, the approach was inherently conservative in capping the full extent of non-compliant sediment.

4.3 Mass of PCBs in Sediment Remaining in Certification Units After Dredging

Tables A2-4a and A2-4b present the mass of PCBs (both TPCB and Tri+ PCB) remaining in sediments within CU boundaries subsequently covered by engineered caps. Based on the data from the Residuals Cores, 3,900 kg of TPCB and 1,100 kg of Tri+ PCB remaining after dredging were subsequently covered by clean backfill or an engineered cap during the Phase 2 dredging years. This represents 2.9 and 2.7 percent of the TPCB and Tri+ PCB removed during Phase 2, respectively, which is within the Residuals Standard goal of removal of 96 to 98 percent of PCBs within the dredged areas.

Thus, the calculation of PCB mass remaining within the CUs indicates that the dredging activities were carried out in a manner that not only met the Productivity and Residuals Standards for Phase 2, but also removed 135,700 kg of TPCB mass within the targeted dredge areas, which equated to removal of approximately 97 percent of all PCB mass within the dredged areas.

4.4 Amount of TPCB Mass Removed from the Upper Hudson River

The 2002 ROD presented estimates of the percentage of total PCB mass that would be removed at the conclusion of dredging activities (EPA, 2002, Table 363334). Using sediment data from 1984, 1991 and 1994, the 2002 ROD estimated that 65 percent of TPCB mass would be removed from the Upper Hudson River. At the River Section scale, the 2002 ROD estimated that 80 percent, 86 percent, and 26 percent of TPCB mass will be removed from River Section 1, 2 and 3, respectively. In order to assess whether dredging activities met these estimates, the mass of TPCB outside CUs were estimated for each River Section using SSAP and SEDC cores collected outside dredge areas between 2004 and 2012, and combined with mass dredged inside CUs to estimate the total inventory of TPCBs in each river section. For River Sections 1 and 2, the framework presented in Section 3.2 was used to estimate the mass of TPCB outside CU areas and areas delineated as bedrock. In River Section 3, a strong bias existed in the location of SSAP and SEDC cores. For example, in River Section 3, gravel areas comprised 36 percent of the total undredged area (the largest sediment texture class present in un-dredged areas in River Section 3); however, only 3 percent of cores were collected in gravel areas. Recognizing

this sampling bias, the estimate of TPCB mass outside CUs in River Section 3 was stratified based on side-scan sonar-derived sediment texture class collected by GE in 2002 and 2003 (General Electric 2003a, 2003b), such that the TPCB mass in each sediment texture class was calculated using the approach in Section 3.2, and then summed to get a total TPCB mass for River Section 3. It was noted that approximately 20 percent of the un-dredged area in River Section 3 was not classified with a side-scan sonar-derived sediment texture class. A review of cores from the unclassified areas, as well as a review of the location of the unclassified areas within River Section 3, indicate they were predominately comprised of gravel and bedrock substrate. Thus, two methods were used to estimate the TPCB mass in River Section 3 was applied to the unclassified area, and 2) assuming all unclassified areas were bedrock and the unclassified areas were excluded from the calculation. The first method represents an upper bound on the mass of TPCBs in River Section 3, while the second method represents a lower bound.

Tables A2-6a and A2-6b present the result of this analysis using both methods described above. The results indicate that 98 percent of TPCB mass was removed from River Section 1, 78 percent of TPCB mass was removed from River Section 2, and either 39 percent or 41 percent of TPCB mass was removed from River Section 3 (using methods 1 and 2 described above, respectively). Overall, the total TPCB mass removed in all three River Sections was 72 percent or 73 percent, using either method 1 or 2 described above, respectively. These results compare favorably with the estimates of percent of TPCB mass removed presented in the 2002 ROD. In River Section 1, ROD estimates were exceeded by 18 percent and in River section 3 ROD estimates were exceeded by 11 percent. Only in River Section 2 was the actual percentage removed (77 percent) below the ROD estimate (86 percent). Across all River Section in the Upper Hudson River, the total TPCB mass removed in the Upper Hudson River exceeded ROD estimates by 7 to 8 percent, depending on the method used. Further, more recent estimates of mass removed in River Section 1, as presented in the 2007 Phase 2 DAD (General Electric 2007) (98 percent of TPCB mass removed), agrees well with the our estimate, providing additional confidence in our values

for River Section 1 (the 2007 Phase 2 DAD did not attempt to estimate total TPCB mass inventory in River Sections 2 and 3).

In terms of actual mass removed and mass remaining outside CUs, subsequent to the 2002 ROD, SSAP and SEDC core collection programs along with results from Phase 1 dredging in 2009 indicated that substantially more mass was present in the Upper Hudson River than originally anticipated. A comparison of 2002 ROD estimates of TPCB mass removed and mass outside CUs with the estimates of actual mass removed and mass outside CUs presented in this appendix indicates that the actual mass removed (155,800 kg) was 123 percent more than 69,800 kg estimated in the 2002 ROD (*i.e.*, the actual dredged mass was 2.23 times the 2002 ROD estimate), while the mass outside dredged area (60,500 or 56,400 kg using method 1 and 2 respectively) was only 61 or 50 percent more than the 37,500 kg of TPCB mass outside dredged areas as estimated in the 2002 ROD. The observation of a larger increase in mass inside dredged areas compared to outside dredged areas relative to 2002 ROD estimates is consistent with the observation that the highest concentrations of PCBs were found primarily in fine-grained sediment and areas with high organic content (including wood debris) that were specifically targeted for removal during dredging. The areas outside the dredged areas generally were observed to be more coarse-grained in nature. Therefore, the observation of a larger increase in mass inside dredged areas compared to outside dredged areas is not unexpected and indicates that dredging activities successfully targeted areas with the largest inventory of PCBs.

Overall, this analysis was carried out in order to assess the success of dredging activities relative to estimates set forth in 2002 ROD, and indicates that mass of PCBs removed exceeded estimates from the 2002 ROD and the largest increases in TPCB mass relative to 2002 ROD estimates was largely confined to the dredged areas. While our confidence in estimates of TPCB mass outside dredged areas is higher for River Sections 1 and 2 compared with River Section 3, there is no evidence to support the concept that because of the significant increase in mass within the CUs targeted for removal, there must be a significant mass left outside of the CUs. The fact that dredging removed twice the anticipated mass is unrelated to the observation of higher than anticipated surface

concentrations. The higher than anticipated surface concentrations is related to shallower core results outside of targeted dredge areas. The concept regarding twice the anticipated mass removed is related primarily to PCBs found deeper in debris areas dredged.

4.5 Summary

The primary objective of these analyses was to determine whether Phase 2 dredging activities were in compliance with the Productivity and Residuals Standards presented in the Phase 2 EPS. The results indicate that dredging activities were in compliance with the Productivity Standards throughout Phase 2. Volumes dredged between 2011 and 2014 ranged from 100 to 175 percent of the stated annual Productivity Standard goal (350,000 cubic yards). In 2015, the last year of Phase 2 dredging, the remaining areas to be dredged contained less than the Productivity Standard goal of 350,000 cubic yards, and therefore, the total volume removed (237,000 cubic yards) was necessarily below the Productivity Standard. The total volume dredged calculated by EPA is within 5 percent of the values GE reported during Phase 2 dredging, providing confidence that the removal targets laid out in the Productivity Standards were achieved and Phase 2 dredging remained in compliance with the Productivity Standards throughout Phase 2.

Estimates of total mass removed during both Phase 1 and Phase 2 (154,600 kg of TPCB and 48,200 kg of Tri+ PCB) exceeded estimated amounts as reported in both the 2002 ROD and the 2007 Phase 2 DAD Report (General Electric 2007). This occurred because those earlier estimates were based on cores that did not fully characterize the vertical extent of contamination. Based on "lessons learned" from Phase 1 dredging, additional sediment sampling programs were carried out prior to Phase 2 dredging and revised standards were implemented for Phase 2.

Collection of additional cores in 2010 to better characterize the depth of contamination within the CUs, along with requiring GE to dredge six inches deeper than the identified depth of contamination, minimized the number of dredging passes required within each CU while still removing greater than 96 percent of PCB mass within the dredged areas. Additionally, the observation that approximately 25 percent of the total PCB mass was

removed during the second dredging pass highlights the effectiveness of the Phase 2 Residual Cores in targeting additional inventory for removal. Phase 2 dredging successfully removed approximately 130,000 kg of PCB while conducting a maximum of three dredging passes in a given area, reducing the amount of dredging-related resuspension of sediment. The mass removed values for both TPCB and Tri+ PCB calculated by EPA were within 6 percent of the values calculated by GE during Phase 2 dredging. While some differences between EPA's and GE's estimates are expected, both values exceeded mass removal objectives laid out in the 2002 ROD.

5 CONCLUSIONS

Volumes of sediment and mass of PCBs removed were estimated from predesign and postdredging core data, as well as pre- and post-dredge bathymetry. Volumes removed in each year of Phase 2 were found to be in compliance with the Productivity Standard. Total sediment volume and masses of TPCB and Tri+ PCB removed in Phases 1 and 2 were found to be much greater than anticipated at the outset of the remedy, due to prior underestimates of depth of contamination which were remedied by coring conducted in 2010 to 2012 to support Phase 2 remedial design. The estimated mass of PCBs removed annually was used to help assess compliance with the Resuspension Standard, which limited downstream transport to a percentage of dredged PCBs. Estimates of PCB mass removed and areas capped and backfill demonstrate compliance with limits set in the Residuals Standard, and the estimated PCB mass left in place in capped and sand-covered areas (3,900 kg of TPCB and 1,100 kg of Tri+ PCB) is small relative to the mass removed by dredging (134,600 kg of TPCB and 42,800 kg of Tri+ PCB).

Important objectives of the evaluation discussed here were to confirm that: (1) the expectations of PCB removal during dredging, as presented in the 2002 ROD, were achieved; (2) Phase 2 dredging activities were in compliance with the Productivity and Residuals Standards; and (3) GE correctly implemented the metrics (*e.g.*, calculation of PCB mass removed and the NCI used to determine compliance with the Engineering Performance Standards during Phase 2. Based on EPA's calculations presented in this appendix, the amount of PCBs removed during Phase 1 and Phase 2 exceeded expectations in the 2002 ROD by more than 2-fold. Targeting of surface sediment PCB concentrations, in combination with removal of PCB mass and natural recovery, served to reduce Tri+PCB concentrations in surface sediments to an extent consistent with the changes anticipated by modeling results presented in the 2002 ROD (Appendix 4, Table A4-5). Similarly, the close agreement between EPA's and GE's estimates for volume of sediment and PCB mass removed (less than 6 percent difference) indicate that GE correctly implemented the metrics for determining compliance with the Phase 2 Productivity and Residuals Standards.

6 **REFERENCES**

EPA, 2002. Hudson River PCBs Site New York Record of Decision, February 2002.

EPA, 2004. Engineering Performance Standards, April 2004.

EPA, 2010a. Hudson River PCBs Site Peer Review of Phase 1 Dredging Final Report, September 10, 2010.

EPA, 2010b. Hudson River PCBs Site Revised Engineering Performance Standards for Phase 2, December 2010.

EPA, 2010c. Hudson River PCBs Site Phase 1 Evaluation Report, March 2010.

General Electric. 2002. Design Support Sediment Sampling and Analysis Program, Field Sampling Plan. Prepared for the General Electric Company by QEA, LLC

. 2003a. Data Interpretation Report – Side Scan Sonar Survey Investigation. Hudson River – River Section 2, Spring 2003. OSI Report No. 02ES072 – DIR – S2003. October 1, 2003. Prepared for the General Electric Company by Ocean Surveys, Inc.

______. 2003b. Data Interpretation Report – Side Scan Sonar Survey Investigation. Hudson River – River Sections 1 and 3, Fall 2002. OSI Report No. 02ES072 – DIR – F2002. Prepared for the General Electric Company by Ocean Surveys, Inc.

_____. 2007. Hudson River PCBs Site Phase 2 Dredge Area Delineation Report, Prepared for General Electric Company by QEA, LLC. December 17, 2007. _____. 2009. Hudson River PCBs Site Remedial Action Work Plan Appendix D: Phase 1 Performance Standards Compliance Plan, Prepared for General Electric Company by Arcadis. May 2009.

_____. 2011. 2010 Supplemental Engineering Data Collection Data Summary Report, Prepared for General Electric Company by QEA, LLC February 2011

Second Five-Year Review Report Hudson River PCBs Superfund Site

APPENDIX 2 MASS REDUCTION EVALUATION

Tables

Prepared by: Louis Berger US, Inc. LimnoTech, Inc.

May 2017

Second Five-Year Review Report Hudson River PCBs Superfund Site

APPENDIX 2 MASS REDUCTION EVALUATION

Tables

Prepared by: Louis Berger US, Inc. LimnoTech, Inc.

May 2017

CU	Year Dredged	Pass 1 (cy)	Pass 2 (cy)	Pass 3 (cy)	Total (cy)
CU01a	2015	9,645			9,645
CU09	2011	7,982	6,751		14,734
CU10	2011	12,892	3,998		16,891
CU11	2011	15,121	5,929		21,050
CU12	2011	14,956	5,249		20,205
CU13	2011	14,196	2,463		16,659
CU14	2011	21,932	3,057		24,989
CU15	2011	22,747	9,275	299	32,322
CU16	2011	17,790	6,450	767	25,007
CU19	2011	20,004	4,884		24,888
CU20	2011	18,984	4,569	441	23,994
CU21	2011	18,225	5,752	359	24,336
CU22	2011	19,306	5,881	679	25,866
CU23	2011	19,513	4,487	633	24,633
CU24	2011	30,427	2,003		32,429
CU25	2011	19,955	3,771		23,726
CU26	2012	16,654	7,168	647	24,469
CU27	2012	14,641	4,956	212	19,809
CU28	2012	18,218	6,400		24,618
CU29	2012	15,521	3,534		19,055
CU30	2012	16,425	3,032		19,457
CU31	2012	11,088			11,088
CU32	2012	12,793	1,306		14,098
CU33	2012	16,409	2,251		18,660
CU34	2012	11,772	1,631		13,403
CU35	2012	23,182	10,368		33,551
CU36	2012	21,201	2,890		24,092
CU37	2012	26,194	6,784		32,978
CU38	2012	21,411	4,591		26,002
CU39	2012	19,280	797		20,077
CU40	2012	21,933	6,078	343	28,353
CU41	2012	27,013	5,013		32,026
CU42	2012	22,892	4,542		27,434
CU43	2012	21,113	4,495	1,045	26,653
CU44	2012	18,615	6,747	598	25,960
CU45	2012	13,958	3,373	192	17,523
CU46	2012	15,199	2,259		17,457
CU47	2012	14,657	3,287		17,944
CU48	2012	16,125	4,233		20,357
CU49	2013	13,279	4,051		17,330
CU50	2012	22,205	4,907		27,112
CU51	2012/2013	27,413	1,982		29,395
CU52	2012/2014	32,086	1,083		33,169
CU53	2012/2015	26,440	2,093		28,533
CU54	2013	36,005	2,156		38,161
CU55	2013	10,579	2,482		13,061

Table A2-1a. Volume of Sediment Removed from Certification Unitsin Phase 2 by Certification Unit

CU	Year Dredged	Pass 1 (cy)	Pass 2 (cy)	Pass 3 (cy)	Total (cy)
CU56	2013	16,208	4,988		21,197
CU57	2013	16,685	6,395		23,080
CU58	2013	18,728	1,321		20,049
CU59	2013	9,788			9,788
CU60	2015	18,214	1,125		19,339
CU61	2014	20,812	2,935	763	24,509
CU62	2014	14,398	1,467		15,865
CU63	2014	24,130	1,753		25,883
CU64	2014/2015	17,727	4,812		22,539
CU65	2015	19,897	3,437		23,334
CU66	2015	21,625	1,730		23,355
CU67	2013	32,387	6,267	459	39,113
CU68	2013	27,726	9,800	2,669	40,195
CU69	2013	28,245	6,810		35,055
CU70	2013	34,894	14,165	440	49,499
CU71	2013	20,037	4,317		24,354
CU72	2013	17,140	6,244		23,384
CU73	2013	24,260	4,748	492	29,500
CU74	2013	14,859	5,352		20,211
CU75	2013	10,727	2,508		13,236
CU76	2013	34,795	19,652	1,633	56,080
CU77	2013	39,955	9,851	2,377	52,183
CU78	2013	15,453	2,552	178	18,182
CU79	2013	6,055	1,611		7,666
CU80	2014	13,375	1,947		15,322
CU81	2014	4,752	1,006		5,758
CU82	2014	38,995	7,161		46,155
CU83	2013/2014	43,995	9,398		53,393
CU84	2013	34,981	14,076		49,057
CU85	2014	15,169	5,701		20,870
CU86	2014	5,492	537		6,028
CU87	2014	39,716	10,200		49,916
CU88	2014	31,545	15,908		47,453
CU89	2014	41,851	18,982		60,834
CU90	2014	23,327	5,803		29,130
CU91	2014	25,245	4,364		29,609
CU92	2014	37,813	10,214		48,027
CU93	2014	28,526	6,263		34,789
CU94	2015	9,793	2,044		11,836
CU95	2015	37,976	5,194		43,170
CU96	2015	47,838	7,360		55,198
CU97	2014	4,998	1,240		6,238
CU98	2014	8,919	2,652		11,570
CU99	2014	28,424	18,021		46,445
CU100	2013	1,436	999		2,434
Totals		1,896,884	461,917	15,226	2,374,026

Year Dredged	Pass 1 (cy)	Pass 2 (cy)	Pass 3 (cy)	Pass 4 (cy)	Pass 5 (cy)	Total (cy)	GE calculated Dredge Volume (cy)	2010 EPS Productivity Standard (cy)
2009	130,200	78,800	35,900	17,000	5,700	267,900	286,354	N/A
Phase 1 total	130,200	78,800	35,900	17,000	5,700	267,900	286,354	
2011	274,029	74,520	3,178			351,728	363,332	350,000
2012	438,498	100,641	3,037			542,176	663,265	350,000
2013	491,636	132,326	8,248			632,210	628,057	350,000
2014	483,566	126,635	763			610,963	582,917	350,000
2015	209,155	27,794	0			236,949	230,399	350,000
Phase 2 total	1,896,884	461,917	15,226			2,374,026	2,467,970	1,750,000
Phase 1 + 2 Total	2,027,084	540,717	51,126	17,000	5,700	2,641,926	2,754,324	

Table A2-1b. Volume of Sediment Removed from Certification Units in Phase 1 and Phase 2 by Year

NOTE: Some CUs were dredged in multiple years, however for EPA calculation of dredge volumes by year, CUs were grouped by the initial year a CU was dredged, so values may not match up with GE values.

CU	Year Dredged	Pass 1 (kg)	Pass 2 (kg)	Pass 3 (kg)	Total (kg)
CU01a	2015	23		× 0/	23
CU09	2011	276	244		520
CU10	2011	350	124		474
CU11	2011	680	410		1,090
CU12	2011	586	476		1,062
CU13	2011	597	118		716
CU14	2011	1,266	346		1,612
CU15	2011	2,583	1,294	2	3,878
CU16	2011	1,404	4,088	210	5,703
CU19	2011	1,263	153		1,416
CU20	2011	843	146	23	1,012
CU21	2011	553	200	18	771
CU22	2011	982	204	18	1,204
CU23	2011	935	369	43	1,347
CU24	2011	2,328	133		2,461
CU25	2011	1,587	310		1,897
CU26	2012	1,222	1,564	56	2,842
CU27	2012	1,253	560	1	1,814
CU28	2012	1,427	333		1,760
CU29	2012	806	301		1,107
CU30	2012	1,144	146		1,289
CU31	2012	241			241
CU32	2012	231	209		440
CU33	2012	395	72		467
CU34	2012	435	94		529
CU35	2012	2,886	1,115		4,001
CU36	2012	1,680	119		1,800
CU37	2012	1,450	175		1,626
CU38	2012	1,097	479		1,575
CU39	2012	1,346	71		1,417
CU40	2012	1,283	946	259	2,488
CU41	2012	1,288	611		1,898
CU42	2012	1,111	641		1,752
CU43	2012	1,714	360	102	2,177
CU44	2012	1,380	610	13	2,003
CU45	2012	780	217	1	998
CU46	2012	1,400	391		1,791
CU47	2012	583	81		664
CU48	2012	755	544		1,298
CU49	2013	644	141		785
CU50	2012	630	147		778
CU51	2012/2013	364	19		383
CU52	2012/2014	322	23		345
CU53	2012/2015	243	14		257
CU54	2013	1,260	31		1,291

Table A2-2a. Mass of TPCB Removed from Certification Units in
Phase 2

CU	Year Dredged	Pass 1 (kg)	Pass 2 (kg)	Pass 3 (kg)	Total (kg)
CU55	2013	423	68		491
CU56	2013	1,345	742		2,087
CU57	2013	474	146		620
CU58	2013	663	30		693
CU59	2013	398			398
CU60	2015	747	18		765
CU61	2014	2,384	389	140	2,913
CU62	2014	982	118		1,099
CU63	2014	1,024	68		1,092
CU64	2014/2015	1,266	935		2,201
CU65	2015	1,646	902		2,548
CU66	2015	1,148	34		1,182
CU67	2013	3,243	190	34	3,467
CU68	2013	3,378	367	28	3,772
CU69	2013	2,609	273		2,882
CU70	2013	2,574	478	92	3,145
CU71	2013	1,333	215		1,549
CU72	2013	858	400		1,258
CU73	2013	1,394	246	21	1,660
CU74	2013	965	216		1,181
CU75	2013	728	117		845
CU76	2013	1,610	817	14	2,441
CU77	2013	1,364	618	95	2,077
CU78	2013	431	42	1.0	475
CU79	2013	315	64		378
CU80	2014	663	33		697
CU81	2014	146	11		157
CU82	2014	1,548	538		2,087
CU83	2013/2014	2,209	313		2,522
CU84	2013	1,772	865		2,636
CU85	2014	613	216		829
CU86	2014	227	11		238
CU87	2014	1,702	411		2,114
CU88	2014	1,732	674		2,406
CU89	2014	2,553	1,185		3,738
CU90	2014	927	235		1,162
CU91	2014	1,023	169		1,192
CU92	2014	1,553	392		1,945
CU93	2014	2,403	421		2,824
CU94	2015	251	46		298
CU95	2015	1,076	124		1,201
CU96	2015	1,315	351		1,666
CU97	2014	194	79		273
CU98	2014	179	79		258
CU99	2014	888	370		1,258
CU100	2013	14	6		20
Totals		101,919	32,653	1,171	135,743

CU	Voor Drodgod	D ₂ == 1 (l ₂ =)	Decc 2 (lec)	Deca 2 (lyg)	Total (Ira)
	Year Dredged	Pass 1 (kg)	Pass 2 (kg)	Pass 3 (kg)	Total (kg)
CU01a	2015	18			18
CU09	2011	119	82		200
CU10	2011	172	45		217
CU11	2011	292	142		435
CU12	2011	285	124		409
CU13	2011	230	35		265
CU14	2011	418	101		519
CU15	2011	722	351	1	1,074
CU16	2011	519	1,185	56	1,760
CU19	2011	358	47		406
CU20	2011	300	65	10	376
CU21	2011	248	82	10	340
CU22	2011	326	94	8	428
CU23	2011	312	148	17	476
CU24	2011	831	53		884
CU25	2011	541	133		674
CU26	2012	470	443	22	935
CU27	2012	415	160	0.4	576
CU28	2012	675	124		799
CU29	2012	284	81		365
CU30	2012	309	38		347
CU31	2012	97			97
CU32	2012	111	55		166
CU33	2012	173	30		203
CU34	2012	170	26		196
CU35	2012	627	248		875
CU36	2012	427	30		457
CU37	2012	419	46		465
CU38	2012	262	106		367
CU39	2012	326	15		341
CU40	2012	404	228	54	686
CU41	2012	471	255		726
CU42	2012	457	220		676
CU43	2012	552	104	36	692
CU44	2012	376	151	6	532
CU45	2012	216	58	0	274
CU46	2012	336	82		418
CU47	2012	173	22		195
CU48	2012	220	115		335
CU49	2013	279	35		314
CU50	2012	151	38		189
CU51	2012/2013	127	5		131
CU52	2012/2014	129	7		135
CU53	2012/2015	102	6		107
CU54	2013	349	7		356
		/	•		

Table A2-2b. Mass of Tri+PCB Removed from Certification Units in Phase 2

CU	Year Dredged	Pass 1 (kg)	Pass 2 (kg)	Pass 3 (kg)	Total (kg)
CU55	2013	129	17		146
CU56	2013	354	204		558
CU57	2013	135	41		176
CU58	2013	188	8		196
CU59	2013	85			85
CU60	2015	198	5		203
CU61	2014	596	82	31	709
CU62	2014	212	24		236
CU63	2014	381	19		400
CU64	2014/2015	261	173		434
CU65	2015	459	222		681
CU66	2015	750	14		764
CU67	2013	930	51	8	989
CU68	2013	905	114	7	1,026
CU69	2013	639	70	•	708
CU70	2013	698	142	23	862
CU71	2013	368	59	25	426
CU72	2013	214	94		308
CU73	2013	371	67	5	443
CU74	2013	244	52	5	297
CU75	2013	209	30		240
CU76	2013	453	212	4	669
CU77	2013	534	175	28	737
CU78	2013	177	15	0.5	192
CU79	2013	89	18	0.0	107
CU80	2014	224	10		234
CU81	2014	60	4		65
CU82	2014	532	178		710
CU83	2013/2014	773	123		896
CU84	2013	551	278		829
CU85	2014	220	75		295
CU86	2014	73	5		77
CU87	2014	611	149		761
CU88	2014	731	302		1,033
CU89	2014	823	357		1,180
CU90	2014	349	74		423
CU91	2014	354	71		425
CU92	2014	539	124		663
CU93	2014	801	121		927
CU94	2015	131	21		152
CU95	2015	502	52		554
CU96	2015	714	156		870
CU97	2013	112	42		154
CU98	2014	160	63		224
CU99	2014	442	147		589
CU100	2014	16	4		20
Totals	2015	33,093	9,691	326	43,110

Year Dredged	Pass 1 (kg)	Pass 2 (kg)	Pass 3 (kg)	Pass 4 (kg)	Pass 5 (kg)	Total (kg)	GE calculated mass removed (kg)
2009	11,523	6,597	1,366	381	150	20,017	16,320
Phase 1 total	11,523	6,597	1,366	381	150	20,017	16,320
2011	16,233	8,616	314			25,163	27,200
2012	26,539	9,786	432			36,757	33,370
2013	28,159	6,090	285			34,534	32,460
2014	23,272	5,736	140			29,147	26,570
2015	7,715	2,425	0			10,140	8,185
Phase 2 total	101,919	32,653	1,171			135,743	127,785
Phase 1 + 2 Total	113,442	39,250	2,537	381	150	155,760	144,105

Table A2-2c. Mass of TPCB in Sediment Removed from Certification Units in Phase 1 and 2 by Year

NOTE: Some CUs were dredged in multiple years; however, for EPA calculation of dredge volumes by year, CUs were grouped by the initial year a CU was dredged, so values may not match up with GE values.

Table A2-2d. Mass of Tri+PCB in Sediment Removed from Certification Units in Phase 1 and 2 by Year

Year Dredged	Pass 1 (kg)	Pass 2 (kg)	Pass 3 (kg)	Pass 4 (kg)	Pass 5 (kg)	Total (kg)	GE calculated mass removed (kg)
2009	3,036	1,798	413	150	64	5,461	N/A
Phase 1 total	3,036	1,798	413	150	64	5,461	N/A
2011	5,673	2,689	102			8,463	9,070
2012	8,120	2,673	119			10,912	10,080
2013	8,044	1,699	75			9,818	9,275
2014	8,123	1,982	31			10,135	8,915
2015	3,134	648	0			3,782	2,991
Phase 2 total	33,093	9,691	326			43,110	40,331
Phase 1 + 2 Total	36,129	11,489	739	150	64	48,571	40,331

NOTE: Some CUs were dredged in multiple years; however, for EPA calculation of dredge volumes by year, CUs were grouped by the initial year a CU was dredged, so values may not match up with GE values.

Table A2-3. Combined Phase 1 and Phase 2 PCB Mass and Volume Removal Estimated and Actual Values

Category	Source	Tri+ PCB Mass (kg)	Total PCB Mass (kg)	Total Area (acres)	Volume (cy)
Dredge Removal Estimates	2002 ROD Resp. Summ. (Table 363334-1 and 424851-1)	21,700	69,800	493	2,650,000
	2007 DAD report (Table 6-1)	N/A^1	113,100	491	1,800,000
Actual Dredge Removal	2010 Phase 1 EPA Evaluation Report <i>and</i> Phase 2 Data	48,571	155,760	490	2,641,926

¹: The 2007 DAD report did not report a Tri+PCB mass.

CU		Inventory (kg)
	Year Dredged	Inventory (kg)
CU01a	2015	42
CU09	2011	42
CU10	2011	5
CU11	2011	82
CU12	2011	25
CU13	2011	26
CU14	2011	47
CU15	2011	29
CU16	2011	9
CU19	2011	67
CU20	2011	0
CU21	2011	45
CU22	2011	19
CU23	2011	0
CU24	2011	15
CU25	2011	22
CU26	2012	249
CU27	2012	24
CU28	2012	58
CU29	2012	50
CU30	2012	17
CU31	2012	0
CU32	2012	42
CU33	2012	0
CU34	2012	0
CU35	2012	110
CU36	2012	106
CU37	2012	73
CU38	2012	0
CU39	2012	22
CU40	2012	709
CU41	2012	95
CU42	2012	189
CU43	2012	163
CU44	2012	56
CU45	2012	43
CU46	2012	42
CU47	2012	16
CU48	2012	0
CU49	2012	11
CU50	2013	14
CU51	2012/2013	29
CU52	2012/2013	0
CU52 CU53	2012/2014	17
CU53 CU54	2012/2013	0
CUJ4	2013	U

Table A2-4a. Capped Inventory of TPCB in sediment remaining in Certification Units after Phase 2 dredging

CU	Year Dredged	Inventory (kg)
CU55	2013	4
CU56	2013	17
CU57	2013	10
CU58	2013	0
CU59	2013	0
CU60	2015	12
CU61	2014	147
CU62	2014	4
CU63	2014	31
CU64	2014/2015	10
CU65	2015	13
CU66	2015	5
CU67	2013	30
CU68	2013	20
CU69	2013	20
CU39 CU70	2013	89
CU70 CU71	2013	13
CU72	2013	101
CU72 CU73		46
CU73 CU74	2013	59
	2013	
CU75	2013	12
CU76	2013	49
CU77	2013	45
CU78	2013	6
CU79	2013	2
CU80	2014	0
CU81	2014	0
CU82	2014	48
CU83	2013/2014	56
CU84	2013	37
CU85	2014	18
CU86	2014	0
CU87	2014	51
CU88	2014	113
CU89	2014	94
CU90	2014	26
CU91	2014	18
CU92	2014	42
CU93	2014	19
CU94	2015	4
CU95	2015	22
CU96	2015	35
CU97	2014	17
CU98	2014	0
CU99	2014	12
CU100	2013	0
Totals		3,935

Vear Dredged	Inventory (kg)
	15
	3
	27
	11
	9
	15
	<u> </u>
	16
	0
	21
	4
	26
	3
	5
	70
	5
	18
	18
	7
2012	0
2012	12
2012	0
2012	0
2012	28
2012	24
2012	16
2012	0
2012	5
2012	151
2012	21
2012	60
2012	38
2012	13
2012	10
2012	9
2012	4
2012	0
	2
2012	4
	10
	0
	6
	0
	2012 2013

Table A2-4b. Capped Inventory of Tri+PCB in sedimentremaining in Certification Units after Phase 2 dredging

CU	Year Dredged	Inventory (kg)
CU55	2013	1
CU56	2013	7
CU57	2013	3
CU58	2013	0
CU59	2013	0
CU60	2015	4
CU61	2014	37
CU62	2014	1
CU63	2014	9
CU64	2014/2015	2
CU65	2015	5
CU66	2015	2
CU67	2013	11
CU68	2013	5
CU69	2013	8
CU70	2013	27
CU71	2013	4
CU72	2013	23
CU73	2013	16
CU74	2013	13
CU75	2013	4
CU76	2013	16
CU77	2013	14
CU78	2013	4
CU79	2013	1
CU80	2014	0
CU81	2014	0
CU82	2014	16
CU83	2013/2014	18
CU84	2013	12
CU85	2014	8
CU86	2014	0
CU87	2014	17
CU88	2014	52
CU89	2014	29
CU90	2014	9
CU91	2014	6
CU92	2014	15
CU93	2014	5
CU94	2015	2
CU95	2015	9
CU96	2015	18
CU97	2014	9
CU98	2014	0
CU99	2014	5
CU100	2013	0
Totals		1,143

Reach	Certification Unit	Area of CU w/in Channel	%Area of CU w/in	Volume Removed from Channel ¹	% CU	Average Depth of Cut in Channel	Tri+ PCB Mass Removed from Channel ⁴	Total PCB Mass Removed from Channel
		(Acres)	Channel	(cy)	Channel	(feet)	(kg)	(kg)
	1^{2}	2.72	80.1	47,142	87%	9.55	N/A	380
	$1A^3$			7,392		2.12	10	20
	2	1.12	22.1	8,631	28%	4.78	N/A	660
	3	0.88	18.0	10,171	23%	7.18	N/A	1,330
	4	1.15	25.5	8,846	26%	4.77	N/A	640
	11	0.00	0.04	2	0%	0.73	0	0
	12	2.01	40.6	8,447	40%	2.61	120	280
	13	3.62	74.5	11,569	64%	1.98	180	540
	14	2.03	40.7	5,855	23%	1.78	90	240
	15	2.34	47.9	8,826	27%	2.34	270	750
	16	2.64	47.9	7,187	28%	1.69	160	440
	17	0.52	10.5	919	6%	1.09	N/A	10
	19	1.71	34.4	8,496	33%	3.07	160	310
	20	1.73	34.2	12,211	50%	4.37	240	510
	21	2.16	43.4	13,585	54%	3.89	210	390
	22	1.75	34.9	12,622	48%	4.46	250	490
	23	1.48	29.5	10,351	41%	4.34	220	460
	24	1.45	28.9	13,856	42%	5.90	460	920
	25	1.08	21.4	6,714	28%	3.86	170	360
	26	1.63	38.4	15,748	63%	6.00	500	1,330
	27	2.00	47.8	14,935	74%	4.63	430	1,220
	28	1.49	31.5	8,873	35%	3.70	230	570
8	29	1.29	26.1	4,168	21%	2.00	40	90
	30	1.49	30.1	4,931	25%	2.05	50	130
	31	1.26	26.1	3,372	30%	1.66	30	70
	32	1.10	22.3	3,482	24%	1.96	40	90
	33	1.67	30.4	7,538	40%	2.80	100	230
	34	2.14	53.9	7,675	55%	2.22	90	180
	37	2.50	37.4	6,339	19%	1.57	80	190
	38	0.86	15.4	1,889	7%	1.36	30	110
	39	0.93	16.6	2,685	13%	1.80	50	120
	40	1.86	33.5	9,915	34%	3.31	160	390
	41	2.38	42.4	14,321	43%	3.73	220	490
	42	2.07	39.0	14,873	53%	4.44	220	580
	43	2.33	43.0	12,271	45%	3.26	200	530
	44	1.80	36.1	10,369	39%	3.57	170	370
	45	1.56	31.4	4,168	23%	1.65	50	110
	46	0.75	14.5	1,548	9%	1.28	20	80
	47	0.88	22.3	2,434	13%	1.71	30	50
	48	2.20	39.9	5,969	28%	1.68	70	170
	49	2.65	40.9	6,573	37%	1.54	70	150
	55	2.44	47.4	6,057	44%	1.53	60	110
	56	1.99	34.2	4,066	18%	1.27	30	80
	57	1.70	31.2	4,024	16%	1.47	30	90
	58	1.97	32.8	6,810	33%	2.14	70	280

Table A2-5. Summary of Navigation Channel Volumes and PCB Mass Removed

Reach	Certification Unit	Area of CU w/in Channel (Acres)	%Area of CU w/in Channel	Volume Removed from Channel ¹ (cy)	% CU Volume Removed in Channel	Average Depth of Cut in Channel (feet)	Tri+ PCB Mass Removed from Channel ⁴ (kg)	Total PCB Mass Removed from Channel (kg)
	67	0.89	16.0	8,345	20%	5.82	200	700
	68	1.18	22.5	9,971	24%	5.22	180	560
6	69	0.14	2.6	562	1%	2.51	10	40
	70	0.04	0.8	393	1%	5.92	0	10
	71	0.00	0.1	12	0%	2.78	0	0
	73	0.02	0.4	74	0%	1.98	0	0
	74	0.21	4.5	579	3%	1.67	10	20
	75	0.07	2.1	324	2%	3.04	10	20
	77	1.36	32.7	19,260	36%	8.75	200	460
	78	0.88	33.0	6,954	37%	4.91	60	160
	80	0.16	6.2	492	3%	1.93	10	20
	82	0.00	0.02	4	0%	2.29	0	0
5	83	0.55	8.4	4,151	7%	4.64	90	210
	88	0.84	13.8	4,347	9%	3.19	60	130
	91	0.30	5.6	486	1%	1.00	0	10
4	92	0.01	0.2	74	0%	3.76	1	5
3	96	0.08	1.1	303	1%	2.21	3	5
Tota	l Inside CU	82.1	16.7	444,186	16%	3.2	6,444 (excludes Phase 1 CUs)	18,890
Ou	itside CU ⁶			7,286				

Notes

Table compiled by and GE and provided to EPA.

1. Navigation channel removal volumes based on CU-wide volumes obtained from Parsons. For internal use only.

2. Combines 2009 and 2015 dredging within CU-1. Volume removed from within CU-1 (within the channel) by year: 2009 = 42,525 cy; 2015 = 4,617 cy

3. Data represent 2015 dredging outside the CU-1 boundary.

4. Tri+ PCB mass was not calculated for Phase 1 areas.

5. Water depths based on the design shoreline elevation (reach specific) and the final post-dredge/post-cap/backfill surveys. Phase 1 areas based on 2009 surveys.

6. Areas outside the CUs (excluding 1A) based on bathymetry survey extents to account for dredge-to-daylight areas; not representative of the navigation channel as a whole. Survey extents vary between the post-dredge and post-cap/backfill surveys.

CU - certification unit

CY - cubic yards; kg - kilograms; ft - feet

Table A2-6a. Estimate of mass of TPCB in sediment outside dredged areas in Upper Hudson River (Method 1)

River Section	Sediment type ¹	Total area (acres)	Dredged area (acres)	Total non- dredge area (acres) ²	Non-dredged area with sediment texture class (acres)	Number of SSAP/SEDC cores used to calculate mass outside CUs	Average mass per unit Area (MPA) (g/m2) ³	Mass dredged (kg) ⁴	Mass outside CUs (kg)	Total PCB mass in River Section (kg)	Percent PCB mass removed (%)
1	All	553	307	220	N/A	1020	2.27	90055	2016	92071	97.8
2	All	474	85	307	N/A	872	8.27	35313	10269	45582	77.5
3	Silt				343	2040	11.27		15653		
3	Transitional				266	300	8.87		9564		
3	Silt and Sand	3082	99	2512	700	334	4.42	30371	12523	78578	38.7
3	Gravel				729	69	2.15		6344		
3	Unclassified				474	N/A	2.15		4122		
							Total:	155739	60491	216230	72.0

¹: River Section 1 and 2 were not stratified by sediment texture class; River Section 3 was stratified by sediment texture class.

²: CU areas and bedrock substrate removed from all River Sections.

³: Unclassified areas in River Section 3 were assumed to be gravel and assigned the MPA for gravel areas (Method 1). See text for additional details on methodology.

⁴: The mass dredged in River Section 1 includes both Phase 1 and Phase 2 Dredging.

Table A2-6b. Estimate of mass of TPCB in sediment outside dredged areas in Upper Hudson River (Method 2)

River Section	Sediment type ¹	Total area (acres)		Total non- dredge area (acres) ²		Number of SSAP/SEDC cores used to calculate mass outside CUs	Average mass per unit Area (MPA) (g/m2) ³	Mass dredged (kg) ⁴	Mass outside CUs (kg)	Total PCB mass in River Section (kg)	Percent PCB mass removed (%)
1	All	553	307	220	N/A	1020	2.27	90055	2016	92071	97.8
2	All	474	85	307	N/A	872	8.27	35313	10269	45582	77.5
3	Silt				343	2040	11.27		15653		
3	Transitional				266	300	8.87		9564		
3	Silt and Sand	3082	99	2512	700	334	4.42	30371	12523	74455	40.8
3	Gravel				729	69	2.15		6344		
3	Unclassified				474	N/A	0.00		0		
							Total:	155739	56369	212108	73.4

¹: River Section 1 and 2 were not stratified by sediment texture class; River Section 3 was stratified by sediment texture class.

²: CU areas and bedrock substrate removed from all River Sections.

³: Unclassified areas in RS3 were assumed to be bedrock and excluded from calculations (Method 2). See text for additional details on methodology.

⁴: The mass dredged in River Section 1 includes both Phase 1 and Phase 2 Dredging.