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2 Outline 
• Challenges for indoor (S)VOC assessment
 

• Introduction 
– Gas chromatography (GC) 
– Micro-GC (GC) 
– Comprehensive 2-D GC/GC (GC x GC or GC x GC) 

• Smart multi-channel multi-dimensional GC 
– Concept 
– Comparison 
– On-column vapor detectors 
– 2-D smart GC 
– 3-D smart GC 

• Proposed project 
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Challenges for indoor (S)VOC assessment 

1.	 Large number of (S)VOCs to be quantified 
Cleaning products, pesticides, etc. 
Interference background 

2.	 Temporal variations 

3.	 Spatial variations 

Center for Wireless Integrated MicroSensing & SystemsCenter for Wireless Integrated MicroSensing & Systems 

An instrument should be 
1. Able to analyze many (S)VOCs 

• qualitatively (type of molecule) 
• quantitatively (how much) 

2. Portable (in-situ measurement) 

3. Rapid (temporal measurement) 
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Introduction
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Gas chromatography (GC) + Mass Spectrometer 5 

• Best analytical tool to analyze hundreds of volatile organic compounds (VOCs) 

Stationary phase 
(polymer layer) 

Glass 
capillary Vapor 

sample
Gas molecules 

Sample 
injector 

• High peak capacity 
• Long analysis time 
• Heavy and bulky 
• Needs dedicated personnel 
• High power consumption 

Center forCenter for WirelessWireless Integrated MicroSensingIntegrated MicroSensing & Systems& Systems 



6 
GC on a chip
 

Micro-GC (GC) or portable GC
 
• First demonstrated in 1979 (first lab-on-a-chip device) 

Terry et al., IEEE Trans Electron Devices, ED-26, 1880 (1979) 

• Portable 
• Rapid analysis 
• Less power consumption 
• Can be automated 
• Low chromatographic resolution and peak capacity  co-elution 

Defiant 
Technologiesz-Nose 
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General concept of multi-dimensional separation
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• 2-D gel electrophoresis as an example 
• Two independent separations based on two distinct properties (e.g., charge and mass) 
• Enhanced separation capability or resolution 

2nd-dimensional separation by mass 
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Total peak capacity = N1 x N2
 
N1: peak capacity for 1st separation
 
N2: peak capacity for 2nd separation
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8 
Multi-dimensional GC
 

How to translate the 2-D (or higher-dimensional) gel electrophoresis concept to 2-D GC? 

Difficulties: 
• Vapors are difficult to be held in place 

2 nd -dim
ensional separation 

1st-dimensional separation 

A more practical 
implementation: Series connection 

Interface 

1st-dimensional separation 

A naïve idea: 
Parallel connection 
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Comprehensive 2-D GC or GC
 
(GC x GC, GC x GC)
 

Comprehensive 
2-D GC 

Injector 
Vapor 

detector 

1st-dim column 

Modulator 

2nd-dim column 
(very short) 

2nd-dim column1st-dim column 
Comprehensive 

2-D GC 

Injector Vapor 
detector

Modulator 

(very short) 

• 1st-dim column: long (5-30 m), coated non-polar stationary phase 
• 2nd-dim column: very short (0.5-1 m), coated with polar stationary phase 
• Vapor molecules undergo two separations by vapor pressure and polarity 
• Total peak capacity = N1 x N2 (ideally) 

M. M. Bushey et al., Anal. Chem. 62, 161 (1990). 
Z. Liu et al., J. Chromatogr. Sci. 29, 227 (1991). 
Phillips et al., J. Chromatogr.  A 703, 327 (1995). 
J. Dallüge et al., J. Chromatogr.  A 1000, 69 (2003). 
J. V. Seeley et al., Anal. Chem. 85, 557 (2012). 
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10 Working principle of
 
GC x GC or GC x GC
 

1st-dim Modulator 2nd-dim 
Vapor 

detector 

• Pneumatic modulator 
• Thermal modulator (more popular) 

Modulator period: 1-10 seconds 

J. Dallüge et al., J. Chromatogr. A 1000, 69 (2003). 

Unobservable 
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Comments on GC x GC (or GC x GC)
 
Advantages: 
• Improved peak capacity (NGCxGC > NGC) J. V. Seeley et al., J. Chromatogr. A 962, 21 (2002). 

L. M. Blumberg et al., J. Chromatogr. A 1188, 2 (2008). 

Center for Wireless Integrated MicroSensing & SystemsCenter for Wireless Integrated MicroSensing & Systems 

Drawbacks: 
1. Reduction of n1 by a factor of due to modulation (sampling theory) 

PM: modulation period; 1,0: unmodulated peak width from the 1st-dim column 

2. Insufficient 2nd-dimensional separation (low n2) 
 Limited by the modulation period 
 Only a few seconds in order to avoid wrap-around issue 

3. Peak capacity below theoretical prediction of N1 x N2. 
 NGCxGC is only 5-10X better than NGC (under optimal condition) 

4. Complicated 2-D chromatogram re-construction 
 Has only one end-column detector 

5. Difficult to scale up for higher dimensional separation 

2 
0,1 )/(5.01 MP 
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Scale up to GC x GC x GC
 

1st-dim Modulator 
1 2nd-dim 

Vapor 
detector 

Modulator 
2 3rd-dim 

• 1st-dim column: long (25 m), coated intermediate polar stationary phase 
• Modulation #1 period: ~5 seconds 
• 2nd-dim column: shorter (5 m), coated with non-polar stationary phase 
• Modulation #2 period: ~0.2 seconds 
• 3rd-dim column: shortest (0.55 m), coated with polar stationary phase 
• Peak capacity: N1=175, N2=5, N3=4  Total peak capacity = 3500 or 58/min 

Comments: 
1. Doable, but benefit is diminishing? 
2. Very complicated hardware and 3-D chromatogram re-construction 
3. More stringent requirements on higher-dimensional separation (e.g., very short separation time) 
4. Rarely explored 

E. B. Ledford, Jr. et al., J. High Resol. Chromatogr. 23, 205 (2000). 
N. E. Watson et al., Anal. Chem. 79, 8270 (2007). 
W. C. Siegler et al., J. Chromatogr. A 1217, 3144 (2010). 

Center forCenter for WirelessWireless Integrated MicroSensingIntegrated MicroSensing & Systems& Systems 
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Some general thoughts on current GC2 and GC3
 

Problem: Information about the 1st-dim (or low dimension) separation is missing 
Current solution: We rely on a modulator and a detector at the end and to figure it out 

Re-construction of 1-dim requires sufficient 2-dim separation 

Problem: 1st-dim and 2nd-dim separation are not completely independent. They are 
connected through a modulator 
 Conflicting requirements 

• Short modulation period for better 1st-dim separation re-construction 
• Long modulation period for better 2nd-dim separation 

Current solution: We try to optimize or balance the 1st- and 2nd-dim separation 

Why do we need a modulator? 
• To sample the elution from the 1st-dim separation and provide the 1st-dim retention time 

Is it necessary? 

Center forCenter for WirelessWireless Integrated MicroSensingIntegrated MicroSensing & Systems& Systems 
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Revisit 2-D gel electrophoresis 
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• 1st- and 2nd-dim separation are independent 
• 1st-dim separation can be measured directly 
• No modulator, no re-construction 
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Revisit the interface between two separations 
15
 

1st-dim separation 

Detect & Route 

2nd-dim separation 
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Works as a phone operator 
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New concept of smart multi-channel
 
multi-dimensional micro-GC
 

Decision-making and 
flow-routing module 

2 1 Detector #2 A 

2nd-dim. column A 
3 Detector #2 B 

8,7,6,5,4,3,2,1 2nd-dim. column B 
5 4 Detector #2 C 

1st-dim. column 
2nd-dim. column C 

8 7 6 Detector #2 D 

Detector #1 
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2nd-dim. column D 

Non-destructive flow-through on-column vapor detector 
• Rapid, sensitive, no interference with the flow 
• Watch, but not touch 
• No additional dead volume 

Center forCenter for WirelessWireless Integrated MicroSensingIntegrated MicroSensing & Systems& Systems 
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Examples of smart 2-D and 3-D GC 

architectures
 

On-column 

Center for Wireless Integrated MicroSensing & SystemsCenter for Wireless Integrated MicroSensing & Systems 

1x3-channel 2-D micro-GC 

1x2x4-channel 3-D micro-GC 

detector 
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Working principle 

Thermal 
3-port valve injector 

Analyte 1-8 

Flow-through 
on-column detector 

3,
2,

1

8,
7,

6,
5,

4 3,2,1 

8,7,6,5,4 

123 

column 

5678 4 
1st-dim 

Flow routing system 2nd-dim 
column 

Using 1x2-channel 2-D micro-GC for illustration 
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19 Advantages 
1.	 No modulation on the low-dimension effluent 

 No broadening 
 Entire analyte (not just a slice of it) will be sent to the next separation (improved 


detection limit)
 

2. Long high-dimension separation (adjustable dynamically) 
 Ntotal = N1 x N2 x N3 …. 
 N2, N3 can be large, not limited by the modulation period 
 Can do temperature ramping 

3.	 No thermal modulator is needed. Only simple thermal injectors are 
needed. 
 Simple and robust, easy to fabricate, less power consumption 

4. Easy construction of multi-dimensional chromatogram 
 Directly read from the vapor detectors 

5.	 Cascadable 
 Can scale up to 3-D, 4-D, etc. by simply adding more columns to the preceding columns 
 Independent control of each dimension of separation 

6.	 Versatile 
 General purpose instrument 
 Tailored for specific analytes 
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20 
Comparison (1) 
Heart-cutting technology
 

1st-dim 
Vapor 

detectorModulator 2nd-dim 

1st-dim separation (n1) 
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Total peak capacity = N1 + N2 x M (M: # of cuts)
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21 
Comparison (2) 

Multi-dimensional GC 

Heart-cutting Smart GC GCxGC 

Number of cuts 
Time window 

selection 
Window width 

Heart-cutting 
A few times 

Each cut contain multiple peaks 
Pre-determined 

50-100 seconds 
Depending on applications 

Smart GC 
N1 times 

Each cut has one peak 
Informed decision 

Made by the system 
Depending the peak width 
Dynamically adjustable 

GC x GC 
3 x N1 times 

Each cut has 1/3 peak 

Periodic window 
Blindly, even without 

analyte 
~1-10 second 

Center forCenter for WirelessWireless Integrated MicroSensingIntegrated MicroSensing & Systems& Systems 
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Comparison (3) - Comparison 
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Development of flow-through on-column vapor detectors
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On-column flow-through vapor sensors 24
(Overview) 
Requirements: 
• Non-destructive 
• No interference with gas flow 
• No or minimal dead volume 

Possible candidates: 
• TCD (thermal conductivity detector) Vapor sensing 

polymer• SAW (Surface acoustic wave detector) 
• Chemi-resistor 
• Chemi-capacitor 
• Nanoelectronics (graphene, nanotubes) 
• Optical vapor sensors 
 Optical ring resonator (fabricated on chip) 
 Optofluidic ring resonator (capillary based or fabricated on chip) 
 Optical interferometric sensor (Fabry-Perot sensor) 

Shopova et al., Anal. Chem. 80, 2232 (2007)
 
Sun et al., Opt. Express 16, 10254 (2008)
 
Sun et al., Analyst 135, 165 (2010)
 
Reddy et al., Lab Chip 12, 901 (2012)
 
Scholten et al., Appl. Phys. Lett. 99, 141108 (2011)
 
Scholten et al., Lab Chip 14, 3873 (2014)
 
Kulkarni et al., Nature Commun. 5 3779 (2014)
 

Capillary 

Laser 

Optical mode 
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Silicon wafer
(A) 

Vapor sensing element 

On-column flow-through vapor sensors (Optical) 
25
 

Laser
 

Fluidic channel (B)
 

Swollen 

polymer
 

Original 

4
 

polymer 

Photo of vapor sensor array Response time: < 1 s 
Detection limit: 1-10 pg 
Array detection 

With vaporWithout vapor 
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Liu et al., Opt. Express 17, 2731 (2009); Liu et al., Anal. Chem. 82, 4370 (2010)
 
Reddy et al., Sens. Actuators B 159, 60 (2011); Reddy et al., Lab Chip 12, 901 (2012)
 
Reddy et al., Opt. Express 20, 966 (2012); Reddy et al., IEEE JMEMS 22, 1174 (2014)
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On-column flow-through vapor sensors (Graphene)
26
 

Response time: < 0.1 s 
Detection limit: 1-10 pg (ppb) 
Array detection 

Kulkarni et al., Nature Commun. 5 3779 (2014)
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Smart 2-D GC
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28 Simple example 

Pump 
Detector #2 

Detector #1 

2nd Column1st Column 

Thermal 
injector 

3-port valve 

Sample & 
carrier gas Carrier gas 

Guard column 

1x1 channel 2-D GC 
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Scale up to more channels
 

Pump 

Detector #2 A 
Detector #1 

1st column 

Thermal 
injector 

Sample & 
carrier gas 

Carrier gas 

Pump 

Detector #2 B 

2nd column B 

Thermal 
injector 

Carrier gas 

2nd column A 
Guard column 

Guard column 

1x2 channel 2-D GC 

1D column: 2 m long, i.d. = 0.25 mm, RTX-1 coating 
2D column: 0.8 m long, i.d. = 0.25 mm, Carbowax coating 

Center forCenter for WirelessWireless Integrated MicroSensingIntegrated MicroSensing & Systems& Systems 
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Results
 

Thermal injector turned on/off only 13 times 
Very long second-dimensional separation 

Liu et al., Anal. Chem. 84, 4214 (2012) 

Center forCenter for WirelessWireless Integrated MicroSensingIntegrated MicroSensing & Systems& Systems 




31 
Analysis 

Nonane (#12) Limonene (#15) 
t 119 s 179 s 
1 4.36 s 4.95 s 
n1 20 31 
t 12.9 s 26.5 s 
2 0.465 s 1.1 s 
n2 11 14 

Total peak capacity (n1 x n2) 240 434 
Total analysis time for analyte 200 s 276 s 

Peak capacity production 72/min 94/min 

N tln( )  1
4Rs t0 

Peak capacity n  

N: plate number
 
Rs: desired resolution (Rs=1 in the above table)
 
t: retention time
 
t0: hold-up time
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32 
Temperature ramping 

1D column: 2.7 m long, i.d. = 0.25 mm, HP-5 coating. 
Temperature ramping: 
Room temperature for 3 min and then heated up to 150 °C at a rate of 20 °C/min 

2D column: 0.7 m long, i.d. = 0.25 mm, Carbowax coating. Room temperature 

Assay time is much shorter 

Center forCenter for WirelessWireless Integrated MicroSensingIntegrated MicroSensing & Systems& Systems 


Liu et al., Anal. Chem. 84, 4214 (2012) 
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Analysis
 

Methyl 
salicylate (#14) 

Jasmone (#17) Caryophyllene 
(#19) 

t 180 s 640 s 1,079 s 
1 9.1 s 46.9 s 34 s 
n1 37 36 92 
t 175 s 72.7 s 50.1 s 
2 8.8 s 2.3 s 3.9 s 
n2 53 67 25 

Total peak capacity (n1 x n2) 1,961 2,412 2,300 
Total analysis time for analyte 410 s 894 s 1,260 s 

Peak capacity production 287/min 162/min 110/min 

Higher peak capacity 
Higher efficiency 
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34 Move to GC system 
Sample 

Preconcentrator 

Six-port valve 

1st Column 

2nd Column A 

2nd Column B 

Pump C 
Pump A 

Pump B 

1st Detector 

2nd Detector A 

2nd Detector B 

Thermal 
injector A 

Thermal 
injector B 

Three-port 
valve A 

Three-port 
valve B Different length 

1x2 channel 2-D GC 

Heaters 

Thermal 
couple-column 

Capillary 
column 

1D column: 1 m long, 0.24 mm x 0.15 mm cross section, OV-1 coating 
2D column A: 0.5 m long, 0.24 mm x 0.15 mm cross section, OV-215 coating 
2D column B: 0.25 m long, 0.24 mm x 0.15 mm cross section, OV-215 coating 
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Results 

(Isothermal)
 

Separation of 31 workplace hazardous volatile organic compounds reported by 
California Standard Section 01350 Specification 

Center forCenter for WirelessWireless Integrated MicroSensingIntegrated MicroSensing & Systems& Systems 


Liu et al., Lab Chip. 13, 818 (2013) 
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Results 

(Temperature ramping)
 

Analysis time is shortened
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Liu et al., Lab Chip. 13, 818 (2013) 



 

 

 

37 Selective detection
 
(Heart-cutting detection)
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Smart 3-D GC
 

Flow
 routing Flow

routing 
Flow

routing 
Flow

routing 

1D separation 2D separation 3D separation 

Analyte 1-9 

Flow-through 
on-column detector 

4,3,2,1 

7,6,5 

9,8 

7 
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4,
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2,
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6,

5

9,
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6,5
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Chen et al., Anal. Chem. DOI: 10.1021/ac401152v (2013) 
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Setup
 

Thermal
3D column1D detector 2D detector 3D detector 

injector 1 injector 2 

3-port 3-port 

Pump 

valve 1 valve 2 

GC injector

1D column Thermal
2D column 

1D column: 0.8 m long, i.d. = 0.25 mm, Rtx-5 ms coating
 
2D column: 1 m long, i.d. = 0.25 mm, Rtx-1 coating 

3D column: 3 m long, i.d. = 0.25 mm, SUPELCOWAX-10 coating
 
Isothermal at room temperature
 
Flow rate = 6.5 mL/min 
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Chen et al., Anal. Chem. DOI: 10.1021/ac401152v (2013) 
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Simple example 
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Isothermal separation of 22 analytes 
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Chen et al., Anal. Chem. DOI: 10.1021/ac401152v (2013) 
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43 
Analysis 
Chlorobenzene (#18) m-xylene (#22) 

t 65.5 s 91.5 s 
1 4.5 s 6.4 s 
n1 19 20 
t 23 s 95 s 
2 1.46 s 5 s 
n2 15 25 
t 116 s 64 s 
3 1.35 s 1.35 s 
n3 76 24 

Total peak capacity (n1 x n2 x n3) 21,660 12,000 
Total analysis time for analyte 937 s 1,476 

Peak capacity production 1,336/min 488/min 

• 3-D starts to show the strength of high-dimension of separation 
• With increased number of dimensions, total peak capacity increases 

Center forCenter for WirelessWireless Integrated MicroSensingIntegrated MicroSensing & Systems& Systems 




44 

Proposed project
 

To develop an automated field-deployable multi-channel 3-dimensional 
micro-gas chromatography device capable of rapid (~20 minutes), 
sensitive (~ppb to sub-ppb), and in-situ analysis of >100 indoor (S)VOCs 
for human exposure assessment. 

Center forCenter for WirelessWireless Integrated MicroSensingIntegrated MicroSensing & Systems& Systems 




45 Proposed task #1 (Year 1) 
1. Microfabrication to reduce the cost and system complexity 
2. Modular design for ease of scale-up and re-configuration 

Center for Wireless Integrated MicroSensing & SystemsCenter for Wireless Integrated MicroSensing & Systems 

Thermal 
injector 

Vapor 
detector 

Column 

Silicon wafer 

Separation module 
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Proposed task #1 (Year 1) 

1. Simulation to better understand the smart GC design 

2. Algorithm for better peak detection 

3. Algorithm to more efficiently use analysis time and peak capacity 
How to maximize the total peak capacity while minimizing the assay time 

Center forCenter for WirelessWireless Integrated MicroSensingIntegrated MicroSensing & Systems& Systems 




47 
Simulation for smart 1x2x4 channel GC3
 

(Most recent result)
 

1 2 3 4 

5 6 7 8 

• Isothermal operation for all 3 dimensions 
• 150 VOCs 
• Able to separate 94% of 150 VOCs in 6 minutes 

Center forCenter for WirelessWireless Integrated MicroSensingIntegrated MicroSensing & Systems& Systems 
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Proposed task #2 (Year 2)
 

System assembly and testing
 

GC Weight Size Sensitivity Automation Total analysis time 
3-D 2-3 kg Desktop 1-10 pg Yes <20 min. for 150 VOCs 

Center forCenter for WirelessWireless Integrated MicroSensingIntegrated MicroSensing & Systems& Systems 




49 Proposed task #3 and #4 (Year 3) 

3-D GC measurement of 150 (S)VOCs related to indoor environment
 

20 min analysis time 
Quantification of >90% of 150 (S)VOCs 
Building a 3-D chromatogram reference library 
Benchmarking against standard GC-MS 

Center forCenter for WirelessWireless Integrated MicroSensingIntegrated MicroSensing & Systems& Systems 
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