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The goal of monitoring Is to
evaluate the performance of Gl
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What do we monitor?

Rainfall
Topography
Inflows
Outflows
Storage
Infiltration rates
Water table

Soil properties
Plant health




What are the monltorlng costs’?

Rain gauges $

Water level loggers $
Communication $ to $$
Soil moisture loggers $$
Flow meters $$S
Calibration S to $$
Construction $S to $SS
Drilling$$$
LiDAR (airborne or surface) $$$  hCalibration
Geophysics $$ to $$5$

Infiltration surveys $ Technical support $$$

e ST AR $100's $$ 1000’s $$$10000’s
Maintenance $$
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Monitoring presents challenges

Equipment failure
Power
Communication
Cost

Reliability

Seasonal variation
Heterogeneity

Data gaps All-weather monitoring

And more...



Some challenges are unique to
urban settings

Permits

Infrastructure
Community acceptance
Equipment disturbance

By pass

Clogging
Heterogeneity
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If It Doesn’t Get In, We Can’t Measure It

Surface flow bypassing Effects of post- Inflow backing
trench drain construction up due to debris
V0USP enhancements and clogging
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What are we learning from monitoring?

Comparison of design strategies @

Modeling input
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Comparison of upflow and downflow
design
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Downflow design treats more water
than expected
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Upflow design creates stormwater

bypass

Depth from Bottom of SGF (feet)

Depth of Water in Subsurface Gravel Trench (UNH E-Lot)
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W akefield raingarden | &
instrumentation |

Tensiometers(red dots)
Wells and water level
loggers (yellow dots)




Tensiometer data used to calibrate model

Wakefield Park TS1 tensiometer data
Urban grass/soil outside of basin
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Oversized trench keeps stormwater
from pits
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Old versus new stormwater control
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Monitoring helps assess what

happens when Gl isn't working

Groundwater mounding 5 |
Bypassing » |
No storage
Season variations i ‘
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Infiltration basin received water
from roof of new science building
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Stormwater mounding should not
be within 0.6 m of trench
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Seasonality affects results
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Bypassing means storm isn’t fully

captured

Impervious surfaces
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Ground-based LiDAR may
determine capture areas better




Trim the trees & delineate capture
areas




Football field basin designed to
capture street overflow




Football field basin designed to
capture street overflow, but doesn't

Water level on the street side




Blue roof was not storing water
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Retrofit with $5 supplies from
hardware store

Reduce size of overflow
holes on one roof

Leave the other roof as
original size

iy TEMPLE - VUSSP



Success! Now need to watch out for
clogging
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Can geophysics help?
Finding infrastructure: yes, but it adds to the cost

Monitoring infiltration: mixed results




GPR did not predict infiltration rate
in urban soil
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Electrical resistivity was tried next

If it doesn’t rain, use a EM profiler survey in rows

sprinkler .TEMPLE

UNIVERSITY



Results are promising using an
inversion model to calculate infiltration
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Long term monitoring should

include

Community driven
Inspection & maintenance
Vegetation surveys

CHECKLIST FOR INSPECTION OF BIORETENTION SYSTEM / TREE FILTERS

Location:

Inspector:

Date:

Time:

Site Conditions:

Days Since Last Rain Event:

Inspection Items Sati: y (S) or C /Corrective Action
L y (V)
1. Initial Inspection After Planting
Plants are stable, roots not exposed S u
Surface is at design level, no evidence of S u
preferential flow/shoving
Inlet and outlet/bypass are functional S] u
2. Debris Cleanup (1 time/year minimum, Spring/Fall)
Litter, leaves, and dead vegetation removed from g u
the system
Prune/mow vegetation 5 U
3. Standing Water (1 time/year and/or after large storm events)
No evidence of standing water after 24-48 hours S u
since rainfall
4. Vegetation Condition and Coverage
Vegetation condition good with good coverage S u
(typically > 75%)
5. Other Issues
Note any additional issues not previously covered. | S U
Corrective Action Needed Due Date
i,
7
38
Inspector Signature Date




Some maintenance requwes
technical support E -
(PW D program)




Long term monitoring should
include

Performance effectiveness
Sensor installation
Solar panels
Routine data collection &
synthesis
Updates on land use

Low cost solar panel data loggers



Gl Evaluation in Urban Areas

We've come a long way,
but questions remain

Blue roof
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FUTURE MONITORING ISSUES

What is the scalability and transferability of our
approaches?

Effectiveness is not constant. How do we account for
changing variables such as plants, ET, seasons, land

use?

How can our results be used to improve designs from a
maintenance perspective? Leads to greater

acceptability in Gl installation.

How are monitoring for operation, maintenance and

design linked?



QUESTIONS continued

How can we use monitoring information to inform

future design?

How can we use monitoring to better calibrate models?
What are key characterization strategies to

recommend?

Do we have a “minimum effective” monitoring strategy?
How would that vary from site to site?

What is a good way to convey the lessons learned to
practitioners?
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