## Acid Gas Removal Options for Minimizing Methane Emissions



Lessons Learned from Natural Gas STAR

Annual Implementation Workshop San Antonio, Texas November, 2008

epa.gov/gasstar





# Acid Gas Removal: Agenda

- Methane Losses
- Methane Recovery
- Is Recovery Profitable?
- Industry Experience
- Discussion



# Methane Losses from Acid Gas Removal

- There are 289 acid gas removal (AGR) units in the natural gas industry<sup>1</sup>
  - 6 Emit 642 million cubic feet (MMcf) of methane annually<sup>1</sup>
  - 6 thousand cubic feet per day (Mcf/day) emitted by the average AGR unit<sup>1</sup>
  - Most AGR units use an amine process or Selexol<sup>™</sup> process
  - Several new processes remove acid gas with lower methane emissions and other associated benefits



## What is the Problem?

- 1/3 of U.S. gas reserves contain carbon dioxide (CO<sub>2</sub>) and/or nitrogen (N<sub>2</sub>)<sup>1</sup>
- Wellhead natural gas may contain acid gases
  - Hydrogen sulfide (H<sub>2</sub>S), CO<sub>2</sub> are corrosive to gathering/boosting and transmission lines, compressors, pneumatic instruments, and distribution equipment
- Acid gas removal processes have traditionally used an aqueous amine solution to absorb acid gas
- Amine regeneration strips acid gas (and absorbed methane)
  - CO<sub>2</sub> (with methane) is typically vented to the atmosphere, flared, or recovered for enhanced oil recovery (EOR)
  - ♦ H<sub>2</sub>S is typically flared in low concentrations or sent to sulfur recovery





#### Methane Recovery - New Acid Gas Removal Technologies

- **GTI & Uhde Morphysorb® Process**
- Kvaerner Membrane Process
- Guild / Engelhard Molecular Gate<sup>®</sup> Process
- In Primary driver is process economics, not methane emissions savings
- Reduce methane venting by 50 to 100%



### **Morphysorb<sup>®</sup> Process**





## **Morphysorb<sup>®</sup> Process**

- Morphysorb<sup>®</sup> absorbs acid gas but also absorbs some methane
  - Methane absorbed is 66% to 75% lower than competing solvents<sup>1</sup>
- Flash vessels 1 & 2 recycled to absorber inlet to minimize methane losses
- Flash vessels 3 & 4 at lower pressure to remove acid gas and regenerate Morphysorb<sup>®</sup>



## **Is Recovery Profitable?**

- Morphysorb<sup>®</sup> can process streams with high (>10%) acid gas composition
- Morphysorb<sup>®</sup> has a 30% to 40% operating cost advantage over DEA or Selexol<sup>TM 2</sup>
  - 66% to 75% less methane absorbed than DEA or Selexol<sup>™</sup>
  - About 33% less total hydrocarbons (THC) absorbed<sup>2</sup>
  - Lower solvent circulation volumes
- At least 25% capital cost advantage from smaller contactor and recycles<sup>2</sup>
- Flash recycles 1 & 2 recover about 80% of methane that is absorbed<sup>1</sup>

```
1 – Oil and Gas Journal, July 12, 2004, p 57, Fig. 7
2 – GTI
```



## **Industry Experience - Spectra Energy**

- Kwoen plant does not produce pipeline-spec gas
  - Separates acid gas and reinjects it in reservoir
  - Frees gathering and processing capacity further downstream
- Morphysorb<sup>®</sup> retrofitted to a process unit designed for other solvent
- Morphysorb<sup>®</sup> chosen for acid gas selectivity over methane
  - Less recycle volumes; reduced gas compressor horsepower



10

### **Kvaerner Membrane Process**

- Membrane separation of CO<sub>2</sub> from feed gas
  - Cellulose acetate spiral wound membrane
- High CO<sub>2</sub> permeate (effluent or waste stream) exiting the membrane is vented or blended into fuel gas
- Low CO<sub>2</sub> product exiting the membrane exceeds pipeline spec and is blended with feed gas
   Fuel Gas Spec





#### **Kvaerner Membrane Technology**





- CO<sub>2</sub> (and some methane) diffuse axially through the membrane
- High-CO<sub>2</sub> permeate exits from center of tube; enriched product exits from outer annular section
- One application for fuel gas permeate
  - Methane/CO<sub>2</sub> waste stream is added with fuel gas in a ratio to keep compressor emissions in compliance
- **b** Design requirements
  - Upstream separators remove contaminants which may foul membrane
  - Line heater may be necessary

#### **DCP** Midstream



## Industry Experience – DCP Midstream

- Kvaerner process installed at Mewborn processing plant in Colorado, 2003
- Problem: sales gas CO<sub>2</sub> content increasing above the 3% pipeline spec



#### Valuated options

- Is Blend with better-than-spec gas
  - Not enough available
- Use cryogenic natural gas liquids (NGL) recovery to reject CO<sub>2</sub>
  - Infrastructure/capital costs too high
- Final choice: membrane or amine unit

**DCP** Midstream



## **Industry Experience - Continued**

#### Membrane chosen for other advantages; zero emissions is added benefit

- 65% less capital cost than amine unit
- About 10% operating cost (compared to amine)
- About 10% operator man hours (compared to amine)
- 1/3 footprint of amine unit
- Typical process conditions

- Less process upsets
- Less noise
- Less additional infrastructure construction

| Flow Into Membrane           | Membrane<br>Residue (Product) | Membrane<br>Permeate |
|------------------------------|-------------------------------|----------------------|
| 22.3 MMcf/day                | 21                            | 1.3                  |
| 70 to 110 degrees Fahrenheit | 70 to 110                     | 70 to 110            |
| 800 to 865 psia              | 835                           | 55                   |
| 3% CO <sub>2</sub>           | 2%                            | 16%                  |
| 84% C <sub>1</sub>           | 89%                           | 77%                  |
| 13% C <sub>2</sub> +         | 9%                            | 7%                   |
| ~0% H <sub>2</sub> O         | ~ 0%                          | ~0%                  |
| ~0% H <sub>2</sub> S         | ~0%                           | ~0%                  |



## **Is Recovery Profitable?**

#### Costs

- Conventional DEA AGR would cost \$4.5 to \$5 million capital, \$0.5 million operation and maintenance (O&M) per year
- Kvaerner Membrane process cost \$1.5 to \$1.7 million capital, \$0.02 to \$0.05 million O&M per year

#### Optimization of permeate stream

- A Permeate mixed with fuel gas, \$5/Mcf fuel credit
- Only installed enough membranes to take feed from >3% to >2% CO<sub>2</sub>, and have an economic supplemental fuel supply for compressors
- In operation since 2005
- Offshore Middle East using NATCO membrane process on gas with 90% CO<sub>2</sub>, achieving pipeline spec quality



#### Methane Recovery - Molecular Gate<sup>®</sup> CO<sub>2</sub> Removal

- Adsorbs acid gas (CO<sub>2</sub> and H<sub>2</sub>S) in fixed bed
- Molecular sieve application selectively adsorbs acid gas molecules of smaller diameter than methane
- Sed regenerated by depressuring
  - ~10% of feed methane lost in "tail gas" depressuring
  - A Route tail gas to fuel





# **Molecular Gate® Applicability**

#### Lean gas

- Gas wells, coal bed methane
- Associated gas
  - Tidelands Oil Production Company
    - 1.4 MMcf/day
    - 18% to 40% CO<sub>2</sub>
    - Water saturated, rich gas
  - Design options for C<sub>4</sub>+ in tail gas stream
    - Heavy hydrocarbon recovery before Molecular Gate<sup>®</sup>
    - Recover heavies from tail gas in adsorber bed
    - Use as fuel for process equipment



Coal bed methane System in Illinois www.moleculargate.com



## **Molecular Gate<sup>®</sup> CO<sub>2</sub> Removal**





## Industry Experience - Tidelands Molecular Gate<sup>®</sup> Unit

- First commercial unit started in May 2002
- Process up to 1.4 MMcf/day
- No glycol system is required
- Heavy hydrocarbons and water removed with CO<sub>2</sub>
- Tail gas used for fuel is a key optimization: no process venting
- 18% to 40% CO<sub>2</sub> removed to pipeline specifications (2%)
- Iliminated flaring





#### **Molecular Gate Performance at Tidelands**

|                    | Design Feed | Actual Feed | Design Product | Actual Product |
|--------------------|-------------|-------------|----------------|----------------|
| Flow, MMcf/day     | 1.0         | 1.4         | 0.52           | 0.54           |
| Pressure, psig     | 65          | 70          | 63             | 68             |
| Temperature, F     | 60-80       | 60-80       | 60-80          | 60-80          |
| Composition, Mol % |             |             |                |                |
| C1                 | 71.25       | 48.35       | 95.09          | 94.17          |
| 02                 | 400 ppm     | 800 ppm     | 700 ppm        | 1500 ppm       |
| N2                 | 2.18        | 1.34        | 3.74           | 2.40           |
| CO2                | 18.82       | 37.58       | 0.19           | 1.90           |
| C2                 | 2.35        | 2.96        | 0.90           | 0.68           |
| C3                 | 2.12        | 3.77        | 0.20           | 0.03           |
| C4                 | 1.75        | 3.11        | -              | -              |
| C5                 | 0.76        | 1.40        | -              | -              |
| C6+                | 0.72        | 1.41        | -              | -              |
| H2O                | saturated   | saturated   | -              | -              |

F = Fahrenheit

psig = pounds per square inch, gauge ppm = parts per million



#### **Tidelands Gas Revenue & Associated Volume**





## **Is Recovery Profitable?**

- Molecular Gate<sup>®</sup> costs are 20% less than amine process
  - ♦ 9 to 35 ¢ / Mcf product depending on scale
- Fixed-bed tail gas vent can be used as supplemental fuel
  - Iliminates venting from acid gas removal
- Other Benefits
  - Allows wells with high acid gas content to produce (alternative is shut-in)
  - Can dehydrate and remove acid gas to pipeline specs in one step
  - Less operator attention



## **Other Molecular Gate Applications**

- Nitrogen removal from natural gas
- Dew point control by heavy hydrocarbon and water removal
- Removal of C<sub>2</sub> (<6%), C<sub>3</sub>+ (<3%) and C<sub>6</sub>+ (<0.2%) for California Air Resources Board compressed natural gas</p>
- Removal of heavy hydrocarbons from CO<sub>2</sub> in amine plant vents to eliminate flaring



### **Comparison of AGR Alternatives**

|                                                    | Amine (or<br>Selexol™)<br>Process           | Molecular<br>Gate <sup>®</sup> CO <sub>2</sub> | Morphysorb <sup>®</sup><br>Process      | Kvaerner<br>Membrane                                |
|----------------------------------------------------|---------------------------------------------|------------------------------------------------|-----------------------------------------|-----------------------------------------------------|
| Absorbent or<br>Adsorbent                          | Water & Amine<br>(Selexol <sup>™</sup> )    | Titanium<br>Silicate                           | Morpholine<br>Derivatives               | Cellulose<br>Acetate                                |
| Methane<br>Savings<br>Compared to<br>Amine Process |                                             | Methane in tail<br>gas combusted<br>for fuel   | 66 to 75% less<br>methane<br>absorption | Methane in<br>permeate gas<br>combusted<br>for fuel |
| Regeneration                                       | Reduce<br>Pressure &<br>Heat                | Reduce<br>Pressure to<br>Vacuum                | Reduce Pressure                         | Replace<br>Membrane<br>about 5 years                |
| Primary<br>Operating Costs                         | Amine<br>(Selexol <sup>™</sup> ) &<br>Steam | Electricity                                    | Electricity                             | Nil                                                 |
| Capital Cost                                       | 100%                                        | <100%                                          | 75%                                     | 35%                                                 |
| Operating Cost                                     | 100%                                        | 80%                                            | 60% to 70%                              | <10%                                                |



## Discussion

- Industry experience applying these technologies and practices
- Limitations on application of these technologies an practices
- Actual costs and benefits