Reducing Methane Emissions During Completion Operations **2006 Natural Gas STAR Annual Implementation Workshop** Houston, TX October 24, 2006 # Reducing Methane Emissions during Completion Operations Williams Production RMT – Piceance Basin Operations #### **Agenda** - Objectives - Piceance Basin Well Completion Process Description - Equipment Needed - Economics - Conclusion ## **Objectives:** - Virtually eliminate venting of natural gas produced during new well completions. - Capture produced gas and deliver to sales. - Meter produced gas for revenue distributions. - Ensure safety of personnel during entire process. ## Piceance Basin Well Completions - Williams Fork Formation low permeability, tight, lenticular sandstone - 10-acre Spacing - Wells drilled to depths of 6,500 ft to 9,000 ft. - Reservoir pressures as high as 4000 psi. - Fracture stimulation required to make wells economical. - Typically fracture stimulate 5 to 6 separate stages per well. ## **Piceance Basin Well Completions** - Perforate casing prior to Stage 1 makes fracture stimulation possible - Fracture Stimulate Stage 1. Flowback until next step. - Shut in well. Set casing plug to isolate next stage to be fracture stimulated. - ♠ REPEAT for each stage (avg. 5 to 6 stages/well) - Once fracture stimulations are done, all of the plugs are drilled out using a Workover Rig. - Stimulation fluids and gas are produced while plugs are drilled out. - Orillout phase is when most of the gas is vented. #### **Sand Flowback Problems** ## **Green Completions** - Technology used to recover gas that is otherwise vented or flared during the completion phase of natural gas well. - Williams designed equipment to handle high pressure, high rate flowback fluids so as to safely handle and to sell the natural gas produced during flowback period. - Flowback equipment is used to separate sand, water and gas during initial flowback. ### **Flowback Unit** ## Flowback Unit - Operation - Sand Vessel separates sand from flowback liquids. - Sand is dumped to reserve pit. Gas and Liquids dump to the Gas Vessel. ## Flowback Unit - Operation - Gas Vessel separates gas from water used for fracture stimulation. - Gas routed to sales line. - Water dumps to holding tanks automatically - Water is filtered and reused for future fracture stimulation jobs. - Vessels operate at 275 to 300 psi. #### **Risks** #### Safety – Primary Concern - High pressure gas, liquids and sand can erode steel pipe. - To mitigate safety concerns: - Pipe, Fittings and Vessels use high strength metal - Flowback Units are monitored 24/7. ## **Simultaneous Operations** **Drilling** Completion **Drillout** **Production** #### **Risks** #### **Operations & Reservoir Risks** - Fluids pumped downhole must be recovered as quickly as possible - Wellbore damage by fluids can diminish production - Flowing fluids to flowback skid results in decreased flowback rates because of high backpressure (versus no backpressure when venting) #### **Economics – Volume Recovered** | Year | Total
Number of
Well Spuds | No. of Spuds
Not Completed
or Completed
Without
Flowback | Actual Number
of Flowback
Completions | Actual
Completion Gas
Generated
(MMCF) | Actual
Completion
Gas
Vented/Flared
(MMCF) | Flowback
Gas
Recovered
(MMCF) | Flowback Gas
Recovered (%) | |-------|----------------------------------|--|---|---|--|--|-------------------------------| | 2002 | 75 | 14 | 61 | 599 | 112 | 487 | 81.3% | | 2003 | 80 | 9 | 71 | 1348 | 152 | 1196 | 88.8% | | 2004 | 253 | 34 | 219 | 5635 | 757 | 4878 | 86.6% | | 2005 | 302 | 0 | 302 | 6718 | 0 | 6718 | 100.0% | | 2006* | 445 | 0 | 445 | 9740 | 0 | 9740 | 100.0% | ^{* -} Forecasted Prior to "Green Completions" only 88% of the Completion gas was recovered. ## **Economics – Savings Realized** ## **Economics – Savings Realized** | Flowback Revenue/Cost Analysis | | | | | | | | | |--------------------------------|------------------|---------------|-------------|--|--|--|--|--| | Year | Total
Revenue | Recovery Cost | Net Savings | | | | | | | | (MM\$) | (MM\$) | (MM\$) | | | | | | | 2002 | 1.28 | 0.22 | 1.06 | | | | | | | 2003 | 6.32 | 0.89 | 5.43 | | | | | | | 2004 | 27.87 | 2.85 | 25.02 | | | | | | | 2005 | 42.68 | 6.72 | 35.96 | | | | | | | 2006* | 50.06 | 11.38 | 38.68 | | | | | | ^{* -} Forecasted #### Conclusion - Reduces methane emissions, a potent Green House Gas (GHG) - Well completion type determines viability of Green Completion Technologies - Produced water and stimulation fluids from green completions are recycled - Eliminates emissions, noise and citizen complaints associated with flaring - Increases Economic Value Added #### **Contacts** - Gerard G. Alberts,Williams(303) 572-3900jerry.alberts@williams.com - Robert Vincent, Williams(970) 263-2702 robert.vincent@williams.com