Overview of DI&M, Quantification and Economic Repair for Compressors

Turkmenistan Meeting

November 9, 2011 Farmington, New Mexico

Milton W. Heath III Heath Consultants Inc. Director – Environmental Services

Agenda

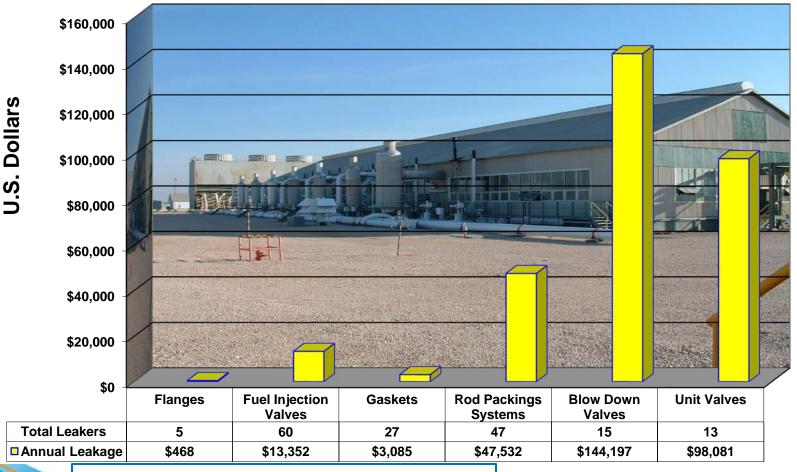
- Program to Find and Fix Large Leaks, also referred to as Directed Inspection and Maintenance Programs (DI&M), <u>the process</u>
- Establishing your "Priority of Work" plan.
- Leak Screening & Tagging
- Leak Measurement and quantification
- Safety Considerations with heights and blow down occurrences. Ladders, man-lifts and use of fall protection
- Prioritize Leak Repair
- Opgal Gas Imaging Camera Demonstration

Partial List of Potential Leak Sources

- Compressor Unit Valves
- Relief Valves
- Unit Blowdowns
- Compressor
 Packing
- Meter Tubes
- Valve Stems

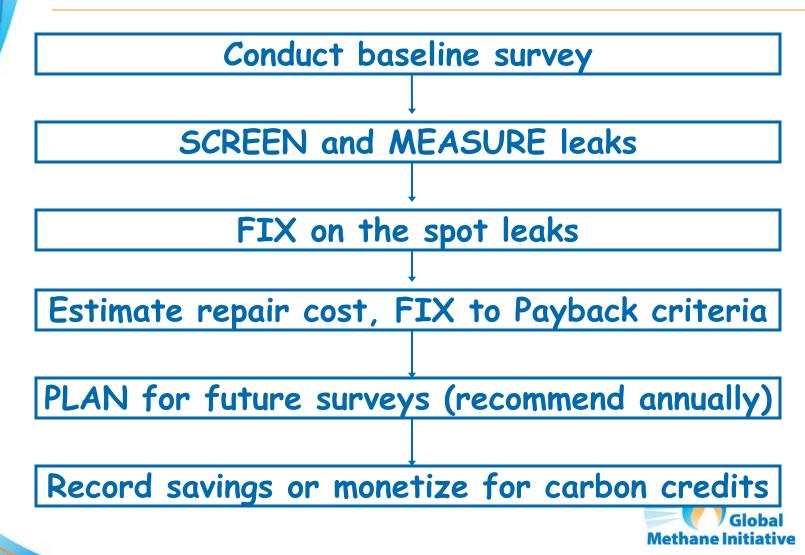
- Fuel Valves
- Various Piping & Vessel Flanges
- Online Gas
 Analyzers
- Centrif. Comp. Seals
- Pipeline Damage

Top 4 Typical Fugitive Sources


- Reciprocating Compressor Packing
- Blow Down Valves
- Unit Valves
- Scrubber Dump Valves
 <u>"Find The Needle</u>
 In The Haystack"

Component Category Profile

Annual Leakage by Component Natural Gas Compressor Station


Source: Heath Consultants Incorporated, Environmental Services.

Approach to Reducing Leakage

- Institute a measurement program that accurately measures all leaks
- Station personnel then have the information necessary to weigh the cost of the leak repair versus the value of the lost gas for each leak.

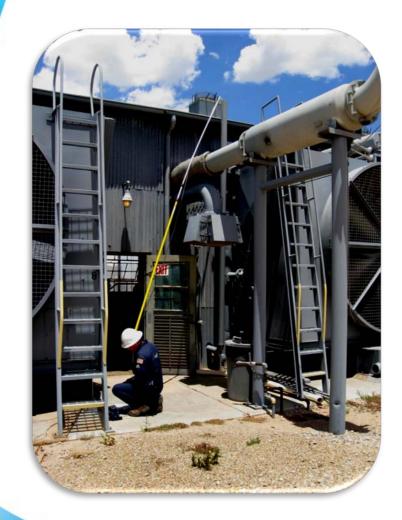
Implementing a Leak Reduction Program at Compressor Stations

Step 1: Familiarize & Strategize

- Walk through facility and determine plan of attack
- Focus your attention on all Vented Components (i.e., Packing Vents, Distance Piece "dog-house" Vents, Blowdown Vents, Pressure Relief Vents, Starter Gas Vents, ESD Vents & even Crankcase vents).
- Determine safe approach to access vents with the use of ladders, man-lifts and Certified Fall Protection.

Step 2: Screening & Tagging

- Recommend the use of a reliable pumpdriven combustible gas indicator that can see down to 50 PPM. (Infrared Imaging Cameras, Lasers and non-corrosive bubble solution are the best combinations.)
- For Vented Components, recommend measuring as you go. (if you can't pre-screen for leakage)
- For Components on the ground you should screen, tag and then quantify.



Leak Survey Methods

- Leak Detection Tools
 - Remote Methane Leak Detector (RMLD)
 - Gas Imaging Cameras
 - Liquid bubble solution
 - Infrared Methane Detectors
 - Catalytic oxidation/thermal conductivity
 - Ultrasonic
 - Visual

Screening Difficult to Reach Vent Stacks – With Electronic Screeners (\$,\$\$)

What Does Passive Plume Imaging Look Like

Source: Heath Consultants Incorporated

Eye-C-Gas Video Recordings for You to See Firsthand

Video recording of fugitive leaks detected by Heath Consultants using the Opgal Eye-C-Gas thermal infrared Gas imaging camera.

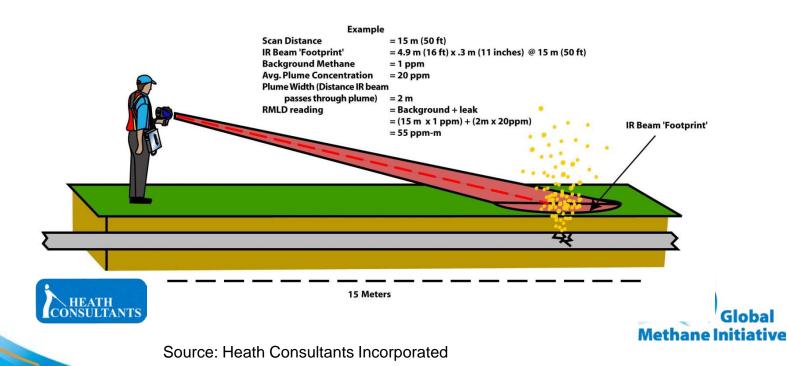
..\..\Gas Imaging\New Folder\Eye-C-Gas Videos\Opgal Video Demo.wmv

What does Active Plume Detection Look Like?

- Real-time detection of methane leaks
 - Quicker identification & repair of leaks
 - Screen hundreds of components an hour
 - Screen inaccessible areas simply by pointing

at them

Source: Heath Consultants



Mobile Leak Detection

Remote Methane Leak Detection: How Does it Work?

- Works using Tunable Diode Laser Absorption Spectroscopy (TDLAS)
- Specific to methane gas only
- Displays gas reading in parts per million metered

Turkmenistan Project – WYG and Heath Turkmenbasy, 2008

Turkmenistan Project – WYG and Heath Turkmenbasy Region, 2008

Step 3: Measuring Fugitive Methane Emissions

- Leak Measurement
 - Hi Flow Samplers
 - Vent-Bag
 - Hot Wire Anemometer
 - Rotameter

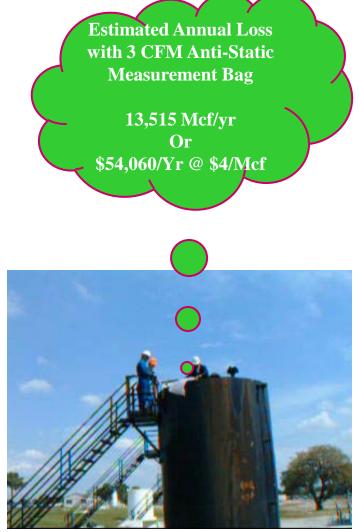
Step 4: Fix Leaks On The Spot

- **Example 1:** Blowdown valve leaked almost 14,500 Mcf/yr
 - Rather than replace the expensive valve, Partner spent just \$720 on labor and materials to reduce the emissions to approximately 100 Mcf/yr
 - Value of gas saved was \$58,000 at \$4/Mcf
- Example 2: Tube fitting leaked 4,121 Mcf/yr
 - Very quick repair requiring only five minutes reduced leak rate to 10 Mcf/yr
 - Value of the gas saved was \$16,484 at \$4/Mcf

Liquid Condensate Dump Tanks

10

Natural Gas Scrubber Tanks



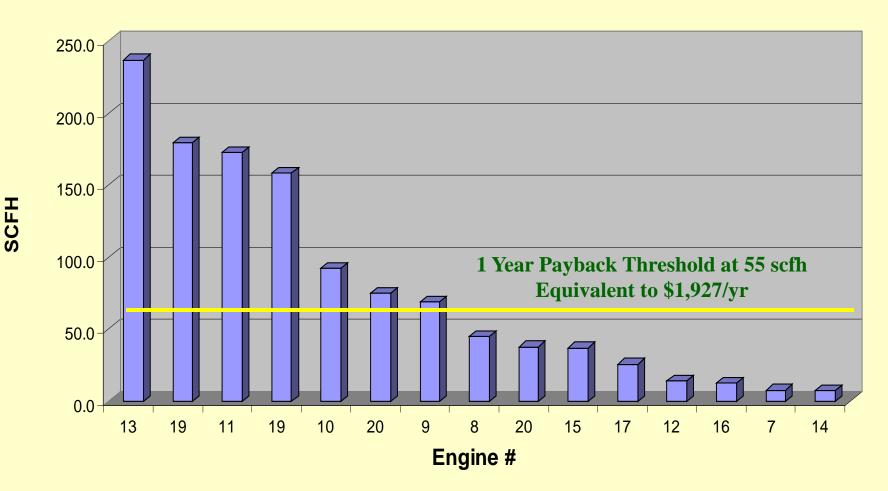
Methane Initiative

Condensate Tank Leakage from Faulty Dump Valve

Leaking Scrubber Dump Valve at Compressor Station

Leaking Scrubber Dump Valve Closed Manually Reducing Leakage by an estimated >300 scfm.

Estimated Savings = \$473,040/year



About Rod Packing Leakage

- Under best conditions leak rate can be expected at a minimum of 11.5 scfh
- Leakage can be reduced through proper monitoring and a cost effective schedule for replacing packing rings & piston rods.
- Step one is to monitor and record baseline packing leakage and piston rod wear.
- Establish a replacement threshold

Rod Packing Leak Rates at Oklahoma Compressor Station

Rod Packing Leakage

Global Methane Initiative

Step 5: Perform Maintenance and/or Repair and Conduct Post Measurement to Verify Leak Repair/Reduction

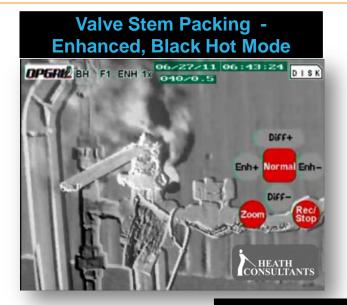
- Determine true savings achieved for economic analysis.
- Confirm and verify leak reductions to report your value added to the company or carbon value for future credit

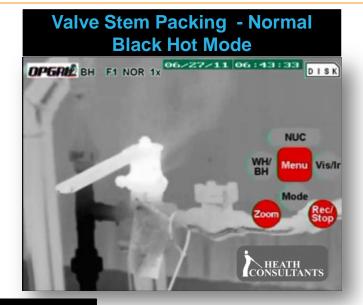
Step 6: Routine Monitoring of Known Culprits and Plan for Future DI&M

OPGAL: EYE-C-GAS Demonstration Fugitive Emissions Detection Camera

- A design formed by the demands of the industry.
- Specially designed for the applicative market of natural gas, oil and petrochemical industries.
- Design for intrinsically safe, allowing the inspection at hazardous places in the plant.
- Current Approvals: Class 1, Division 2 & ATEX.

How The Eye-C-Gas Camera Works




- The leaking gas absorbs reflected infrared light
- The EYE-C-GAS[™] camera spectral band coincides with the absorbance spectra of the leaking gas
- The sensitivity of the EYE-C-GAS[™] camera enables the measurement of the difference in signal value, caused by the leaking gas
- EYE-C-GAS[™] produces images of infrared energy and display it on a screen, similar to how a camcorder displays video.

Adjusting Polarization with Eye-C-Gas Camera

Valve Stem Packing -Normal White Hot Mode

Source: Heath Consultants Incorporated

Eye-C-Gas Video Recordings

Video recording of fugitive leaks detected by Heath Consultants using the Opgal Eye-C-Gas thermal infrared Gas imaging camera.

..\..\Gas Imaging\New Folder\Eye-C-Gas Videos\Compressor Station Opgal Videos\Elkview,CS6.wmv

..\..\Gas Imaging\New Folder\Eye-C-Gas Videos\Compressor Station Opgal Videos\Lanham,CS3.wmv

Contacts and Further Information

- More detail is available on these practices and over 80 others online at: epa.gov/gasstar/tools/recommended.html
- For further assistance, direct questions to: Roger Fernandez Milton W. Heath III EPA Natural Gas STAR Program Heath Consultants Inc. fernandez.roger@epa.gov Milt.heath3@heathus.com

+1 (202) 343-9386

+1 (713) 844-1304

