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Welfare Analysis in a Two-Stage Inverse Demand Model: An Application to 

Harvest Changes in the Chesapeake Bay 

Abstract 

Like many agricultural commodities, fish and shellfish are highly perishable and producers 

cannot easily adjust supply in the short run to respond to changes in demand.  In these cases, it is 

more appropriate to conduct welfare analysis using inverse demand models that take quantities 

as given and allow prices to adjust to clear the market.  One challenge faced by economists 

conducting demand analysis is how to limit the number of commodities in the analysis while 

accounting for the relevant substitutability and complementarity among goods.  A common 

approach in direct demand modeling is to assume weak separability of the utility function and 

apply a multi-stage budgeting approach.  This approach has not, however, been applied to an 

inverse demand system or the associated welfare analysis.  This paper develops a two-stage 

inverse demand model and derives the total quantity flexibilities which describe how market 

clearing prices respond to supply changes in other commodity groups.  The model provides the 

means to estimate consumer welfare impacts of an increase in finfish and shellfish harvest from 

the Chesapeake Bay while recognizing that harvests from other regions are potential substitutes.  

Comparing the two-stage results with single-stage analysis of the same data shows that ignoring 

differentiation of harvests from different regions, or the availability of substitutes not affected by 

a supply shock, can bias welfare estimates. 

 

Keywords: Two-stage budgeting, Inverse demands, Compensating surplus 

JEL Classification: D12, D61, Q11, Q22 

 



3 

 

Introduction 

Casual observation that seafood menus list both the prices and the origin of their fare is evidence 

that patrons care about the source of their seafood.  Empirical studies support the notion that 

location matters to consumers and that some will seek out and pay a premium for seafood from a 

specific region (Stiles et al. 2013).  We also know that a consumer looking to purchase grouper 

could be convinced to buy seabass instead if the price is right.  When analyzing the demand for 

seafood, inverse demand systems are often used to capture consumer preferences and 

substitution possibilities such as these.  Barten and Bettendorf (1989) make the case that 

demands for perishable goods like produce, meat, and seafood should be examined using inverse 

demand equations in which supply is treated as exogenous and price adjusts to clear the market.  

In addition to perishability, seafood harvest is often limited by gear and effort restrictions and 

depends in a large part on capital investments that are made long before the boat leaves the dock.  

For these reasons, inverse demand systems have been the preferred approach to analyze the 

demand for seafood, regulation of commercial fisheries, and welfare impacts of changes in 

seafood harvests (e.g. Holt and Bishop 2002; Park et al. 2004).   

 

The capability of these models to capture preferences between source regions and 

substitution possibilities is limited, however, by the size of the demand system which would 

require an equation for every species and every region from which those species are harvested.  

As such, analyses of this sort tend to focus on a single harvest region, ignoring substitution 

possibilities from other sources (e.g. Beach and Holt 2001; Holt and Bishop 2002) or summing 

regional harvests into an aggregate supply thereby assuming away preferences between regions 

(e.g. Eales et al. 1997; Wong and McLaren 2005).   When faced with a large number of 
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commodities analysts estimating direct demands have instead invoked weak separability and 

used multi-stage budgeting to model consumer choice in a series of steps (Strotz 1959; Gorman 

1959; Brown and Heien 1972; Fan et al. 1995; Edgerton 1997).  In the first step consumers 

allocate expenditures among commodity groups and then further divide those expenditures 

between the elementary commodities in subsequent steps.    

 

This paper is the first to develop a two-stage inverse demand system and derive the total 

quantity flexibilities that describe how the market clearing price for one good is affected by a 

supply shock of another good in a different commodity group.2  We show how the utility 

parameters estimated in the two stages can be used to estimate consumer welfare impacts of a 

change in supply by expanding upon a distance function approach developed in a single-stage 

framework by Kim (1997).  To demonstrate the contribution of a two-stage model we compare 

the welfare estimates with those estimated by single-stage alternatives.   

 

To examine how regional preferences and the availability of substitutes affect consumer 

welfare estimates we consider recent regulations intended to reduce excess nutrient and sediment 

loads to the Chesapeake Bay.  Excess nitrogen and phosphorous loadings to the Bay are fueling 

the growth of algae blooms which lead to areas of low dissolved oxygen and in extreme cases 

create dead zones in which oxygen levels are so low that fish and shellfish that are unable to 

escape them die.  Algae blooms also harm the aquatic grasses that juvenile fish and crabs rely on 

                                                           
2 In this specific application, the first stage inverse demand system does not estimate expenditure shares of total 
consumption for broad commodity groups but rather focuses on one such commodity group and finds the market 
clearing prices of the elementary commodities in the second stage.  The estimation approach and expression derived 
for flexibilities, however, would apply to a multi-stage budgeting approach in which the first stage estimates a 
demand system for total expenditures.   
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for habitat.  Sediment pollution blocks sunlight when suspended in the water and can smother 

grasses and oyster beds when it comes to rest on the bottom.  In January 2013, a panel of experts 

was convened by the US Environmental Protection Agency (EPA) and asked how the 

populations of 14 different species in the Chesapeake Bay would respond to the nutrient and 

sediment reductions required by the new regulations (the details of which are reported by 

Newbold, Massey, and Moore, 2017).  We use the expert predictions for commercially harvested 

species, including the iconic striped bass, blue crab, and eastern oyster, to estimate the resulting 

consumer welfare impacts.  Our results show that limiting the scope to one harvest region or 

aggregating harvests across regions will produce biased estimates of welfare impacts from 

harvest changes. 

 

Consumer Welfare Estimation in Quantity Space 

The distance function is dual to the expenditure function and can be considered a normalized 

money metric utility function (Kim 1997) that measures how the quantity vector must be scaled 

in order to reach a reference utility level.  Given the quantity vector X and a direct utility 

function ( )U U= X , the distance function ( ),D U X is defined as  

 ( ) ( ){ }, max 0: / 0
t

D U t U t= > >X X , (1) 

which gives the maximum amount, t, by which the quantity vector must be divided in order to 

just reach the indifference surface.   

 

Exact measures of consumer welfare can be calculated from the distance function by 

finding the difference between D(U,X) evaluated at different quantity vectors, say X0 and X1, 
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given a reference utility level U0 and U1.  Specifically, the normalized compensating and 

equivalent surplus from exogenous quantity changes are 

 ( ) ( )0 1 0 0, ,cs D U D U= −X X  (2) 

 ( ) ( )1 1 1 0, ,es D U D U= −X X  (3) 

Since (2) and (3) are normalized by total expenditures, the non-normalized, or absolute, 

consumer welfare measures are found by multiplying by total expenditures Y.   Utility is not 

observable so the distance function cannot be estimated directly.  To estimate the parameters of 

the distance function it is necessary to choose a functional form and derive the resulting system 

of inverse demands.  These demands can be estimated empirically and are then used to recover 

the parameters needed for welfare analysis. 

 

A number of functional forms for the distance function and associated inverse demand 

system have been used in the literature (see Brown et al. 1995 for a review).  A popular choice is 

the Inverse Almost Ideal (IAI) specification (Eales and Unnevher 1994; Moschini and Vissa 

1992). We adopt the version used by Moschini and Vissa 1992.3 

  

 ( ) ( ) ( )ln ,D U a Ub  = − X X X  (4)  

where, ( ) ( ) ( ) ( )i i j0
( )    ½i i ij i ja ln X ln X ln Xα α γ= + ∑ + ∑ ∑X  , ( )

i0
i

i
b X X

β
β= ∏ , i=(1,…,N) 

and j=(1,…,N) index goods in the demand system, and Xi are elements of the quantity vector X.  

                                                           

3
 This is different from the specification of Eales and Unnevehr (1994), ln[D(U,X)] = (1-U)·ln[a(X)] + U·ln[b(X)]. 

Footnote 1 in the appendix explains how the distance function could be written to resolve the difference between the 
two specifications. 
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Because D(U,X) is homogeneous of degree one in X, the following restrictions apply: 
i

1iα =∑

, 
i j

0
ij ij
γ γ= =∑ ∑ , and 

i
0iβ =∑ .  The symmetry property further requires ij ji

γ γ= .  

 

According to Shephard’s theorem, the first derivatives of the distance function with 

respect to the quantities yield normalized compensated (Hicksian) inverse demands. For a 

specific market, i, the compensated inverse demand, Hi(U,X), is 

 
( , )( , )

( , ) i
i

i

P UD U
H U

X Y

∂
= =

∂

XX
X , (4) 

where ( , ) /iP U YX   is the price normalized by income.  Applying Shephard’s theorem to the IAI 

form of the distance function, recognizing that 
ln[ ( , )] ( , )

ln[ ] ( , )

X X

X

j

j j

XD U D U

X X D U

∂ ∂
= ⋅

∂ ∂
, and that 

utility maximization requires that 1D= , yields the compensated (or Hicksian, denoted by the 

superscript h) inverse demand system in expenditure share form 

 ( ) ( ) ij

h

i i j jln XW U bα γ β= −+ ∑
j

X . (5) 

Using D = 1, inverting the distance function in (4), yielding U(X) = a(X)/b(X), and plugging it 

into the inverse demands, yields  

 ( ) ln i i
i i j iij

X P
W Qn X

Y
lα γ β+ ∑= = −

j
 (7) 

Where lnQ is a “quantity index,” ln Q ≡ a(X).  Expression (7) represents a non-linear system 

with cross-equation restrictions on the parameters to satisfy homogeneity and symmetry.  

 

A single-stage model such as (7) could be used to capture the substitution patterns 

between multiple species harvested from multiple regions by estimating an inverse demand 
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equation for each species from each region.  Such a model quickly becomes intractable, 

however, as the number of species and regions increases.  Many of the species in this analysis 

are harvested in four or five different regions which would create a demand system with 80 

equations or more and thousands of parameters in order to account for cross-quantity effects.   

  

A more tractable alternative is to use a two-stage budgeting approach such as the one 

applied by Edgerton (1997) to a direct demand model.  In a two-stage direct demand model, 

consumers allocate total expenditure among broad categories of goods and then further divide 

those expenditures among the elementary goods in the groups.  Consumers take prices as given 

and quantity demanded adjusts to exogenous price shocks.  In an inverse demand model, 

quantities of the elementary goods are determined exogenously and prices adjust to clear the 

market.  In the first stage allocation of the inverse demand model, the exogenous supplies of the 

elementary goods determine the aggregate quantities, Xi, and the aggregate quantity index, 

lnQ.  This change in lnQ affects all normalized prices and budget shares among the commodity 

groups.  Market clearing prices for elementary goods are determined in the second stage 

conditional on the aggregate quantity allocations of the first stage. 

 

The two-stage budgeting approach requires that we assume weak separability between 

harvests of different species.  That is to say, a change in harvest of a given species, i, from a 

particular region, r, can affect the market clearing price for a different species, j, but only 

through the effect that the supply shock has on the aggregate quantity and the normalized prices 
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and, thus, the expenditure shares determined in the first stage. 4  The welfare impact of a change 

in the quantity of species i in region r, x (i)r will depend on the new normalized market clearing 

price for that species and changes in the supply of other species to the extent that there are cross-

quantity effects.  The two-stage demand system allows us to account for the availability of 

substitutes - different types of fish and/or harvests from other regions - while recognizing that 

they may not be perfect substitutes.  In the model description that follows time subscripts have 

been omitted but estimation relies on monthly harvest and dockside value data. 

 

Figure 1: Two-stage inverse demand system for seafood expenditures 

 

                                                           
4 In this model, a change in quantity affects the group expenditure through its impact on the normalized prices. This 
is because the quantity index, lnQ, in this model is only a function of quantities and not expenditures. As was 
pointed by our reviewer, a differential version of an inverse demand system (e.g., Brown et al. 1995) could represent 
real expenditures through d lnQ. In this case, consumers would directly allocate expenditures across commodity 
groups. 
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Substitution between different types of fish is captured by the first stage system which 

includes an inverse demand equation for each species.  If a supply shift for one species has an 

effect on the market clearing price, and thus the expenditure share for another species, this 

information is required to project welfare changes based on the results of the second stage.   A 

first stage IAI demand system with an equation for each species i = (1,…,N) will provide 

estimates of expenditure shares given harvest levels 

 ( ) ln iji i j ilnW X Qα γ β= −+ ∑
j .  (8) 

Evaluating expression (8) at the new quantity vector will provide the expected market clearing 

prices on all species of interest via the new expenditure shares Wi.   

 

The second stage will estimate an inverse demand system for each species with an 

equation for each region that the species is harvested.  This stage will capture the substitutability 

between harvests of the same species from different regions, r = (1,…, R).  For example, if blue 

crabs harvested from any region other than the Chesapeake Bay are poor substitutes for 

Chesapeake Bay blue crab then welfare impacts from a change in Chesapeake Bay harvest will 

be larger than if very close substitutes were available.   In fact, if consumers were completely 

indifferent regarding the source of the commodity, only the first stage inverse demand system 

would be necessary to estimate welfare impacts of a change in Chesapeake harvest because all 

that would matter to consumers is the change in total supply of that species.  For species i, 

expenditure shares for region r will be estimated with the same IAI demand system described for 

the first stage 

 ( )( ) ( ) ( ) ( )( ) ( )  lni ri r i r i ss i r iw x Qlnα γ β= −+ ∑
s  (9) 
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The two-stage inverse demand system captures substitution patterns between fish species 

and harvest regions while keeping estimation tractable.  The results of both stages enter the 

calculation of consumer welfare impacts from the expected supply changes.  Equations (2) and 

(3) provide normalized welfare impacts, however, monetized impacts require forecasts of 

expenditures on each species.  In this case, parameters estimated in the first stage allow us to 

estimate changes in the expenditures among species as a result of the changes in aggregate 

supply of each fish type.  The baseline and post-policy expenditure shares for species i are 

 ( )00 0 ln ij ji i iW ln X Qα γ β= −+ ∑
j

, (10) 

 ( )11 1 ln ij ji i iW ln X Qα γ β= −+ ∑
j

, (11) 

Wi
0 and Wi

1 are multiplied by total expenditures Y to provide estimates of baseline and post-

policy expenditure allocations Yi
0 and Yi

1. 

 

The coefficients estimated in the second stage provide the utility parameters to calculate 

welfare impacts from changes in regional harvests of a given species. Non-normalized, or 

absolute, compensating and equivalent surplus are calculated using 

( ) ( ){ } ( )0 0 1 0 0 1 0, ,
i i i i i i ii

CS Y D U D U Y Y = − − −  ∑ X X ,  (12) 

( ) ( ){ } ( )1 1 1 1 0 1 0, ,
i i i i i i ii

ES Y D U D U Y Y = − − −  ∑ X X ,  (13) 

where 

0

1

0

1

baseline supply vector of species i

post-policy supply vector of species i

baseline utility for species i

post-policy utility for species i.

i

i

i

i

U

U

=

=

=

=

X

X
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So by appealing to weak separability we are able to forecast changes in market clearing prices of 

each fish type, estimate the welfare effects of regional supply changes, and sum the welfare 

impacts across fish types for total welfare changes.    

 

Partial and Total Flexibilities 

In an inverse demand system, quantity flexibilities are analogous to the price elasticities of a 

direct demand system and can be interpreted in similar ways. A quantity flexibility represents the 

change in the market clearing price of a particular good given a change in the supply of that good 

(in the case of own-quantity flexibilities) or another good (in the case of cross-quantity 

flexibilities). Similar to their direct demand counterparts, own-quantity flexibilities will be 

negative for normal goods.  

 

For the IAI demand model, the first stage uncompensated partial own- and cross-quantity 

flexibility for species, i and j, ∂ln[Pi]/∂ln[Xj], is given by 

 ( ){ }ln[ ] 1
l n

ln[ ]
i

ij ij ij i j j

j j

P
E W Q

X W
γ β βδ

 ∂
= = − + −  


+

∂ 
 (14) 

where δij is a Kronecker delta such that δij=1 if i = j and δij=0 otherwise. The second stage partial 

own- and cross-quantity flexibilities for two regions, r and s, supplying the same species, i, 

would be 

 ( ){ }( )

( ) ( ) ( ) ( ) ( )

( )

( )

( )

ln[ ] 1
ln

ln[
 

]

i r

i rs i r i s i s ii r

i s i r

s

p
w Q

x w
γ βε β

 ∂
= = − ∂ 

+ 


 (15) 

 

The total quantity flexibility would be the percent change in the second stage price of a 

species, i, in some region, r, given a percent change in the quantity of any species, j, harvested in 
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any region, r. This is analogous to Edgerton’s (1993) uncompensated total price elasticity for the 

direct almost ideal demand model. For the IAI model, the total quantity flexibility, 

∂ln[p(i)r]/∂ln[x(j)s], is given by 

 

( ){ }

( ){ }

(( ) ,( ) ( ) ( ) ( ) (

(

) )

)

( )

1
ln

l

 

1
 n

i r j s ij rs i r i s i s i

i r

j s

ij i j j

i

i

j

rs w Q
w

x
W Q

W X

ε δ δ γ β β

γ β β

  
= − + −      

   
+ −       

+


+

  

 (16) 

 

 

The derivation of these flexibilities is given in the appendix. While the estimated flexibilities will 

not be used in the welfare analysis directly, prior expectations on their signs and magnitudes 

provide a theoretical check on the estimated inverse demand parameters. 

Data  

To better represent consumers’ substitution patterns and simplify estimation, the Chesapeake 

species are divided into three groups: high value fish, low value fish, and shellfish.  Other 

popular species that are not harvested from the Chesapeake but could substitute for Chesapeake 

species are included in each group (table 1).  High value fish are finfish with an average dockside 

price greater than $1 per pound while low value fish have a dockside price of less than $1 per 

pound and are generally harvested for uses other than human consumption.  A two-stage inverse 

demand system is estimated for each group.  The presumption here is that changes in the supply 

of Chesapeake species will affect demand for other species within that group but not across 

groups.  Total expenditures on each group are held constant.     
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NOAA National Marine Fisheries Service (NMFS) compiles landings and ex-vessel 

value data for all commercial fisheries.  Both stages of the demand model are estimated with 

monthly harvest and dockside price data from the years 1990 to 2012.  None of the species 

harvested commercially in the Chesapeake Bay is harvested from the Pacific so only Atlantic 

regions and Gulf of Mexico are included in the analysis.  Not all species are harvested to a 

significant degree in all regions.   

 

To project changes in supply, seven experts on fisheries and water quality in the 

Chesapeake Bay participated in a workshop in January, 2013.  The panelists were asked to 

provide their best professional judgments of potential changes in Chesapeake Bay species’ stock 

sizes under the required reductions in nutrient and sediment pollution relative to current water 

quality conditions, holding all other influences constant.  The qualitative conclusions of each 

panelist were converted to percentages by EPA analysts and averaged to generate a single 

projection for each species.  For this analysis we assume harvest changes will be proportional to 

the projected changes in stock sizes and report the results in table 1.  It is worth noting that one 

Chesapeake stock, Menhaden, is expected to decrease as a result of the water quality 

improvements.  Menhaden feed on the microalgae that benefit from excess nutrient pollution so 

reducing nitrogen and phosphorus loads to the Bay will likely decrease menhaden harvest. Also 

worth noting are the relatively large expected increases in blue crab and oyster harvests.  In 

addition to management practices that will reduce nutrient and sediment pollution plans for 

cleaning up the Chesapeake Bay, plans include actively expanding oyster beds and restoring eel 
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grass beds that protect juvenile crabs from predation.  Members of the expert panel providing 

these projections were asked to consider those features of the implementation plans as well.  

 
Table 1 Baseline Harvest and Projected Change after Water Quality Improvements  
(tons per year) 

 Baseline Harvest (1990-2012 Averagea) Projected Change in 
Chesapeake Harvestc  Chesapeake Bay Combined Rest of Regionsb 

High Valued    
Flounder 1,504 4,580 65 
Striped Bass 2,358 2,248 101 
Black Sea Bass 171 955 0 
Eel 315 163 7 
Cod  15,782 - 
Grouper  3,043 - 

Low Valuee    
Spot 1,588 485 90 
Perch 824 186 24 
Croaker 4,771 466 138 
Menhaden 199,200 538,470 -14,140 
Herring  15,782 - 
Mackerel  19,170 - 

Shellfish    
Blue Crab 44,382 51,287 7,280 
Oyster 710 10,569 117 
Clam  26,640 - 
Scallop  20,240 - 
Shrimp  9,863 - 
Lobster  39,250 - 

a Based on NOAA National Marine Fisheries Service (NMFS) landings and ex-vessel value data for all commercial fisheries. 
b The other regions are New England, the Mid-Atlantic, the South Atlantic, and the Gulf of Mexico. 
c Projected harvest changes are based on the best professional judgments of seven experts panelists in January 2013 on the 
potential changes in Chesapeake Bay species’ stock sizes under the required reductions in nutrient and sediment pollution 
relative to current water quality conditions and assuming that harvest changes will be proportional to the projected changes in 
stock sizes. 
d Finfish with an average dockside price greater than $1 per pound. 
e Finfish with a dockside price of less than $1 per pound and generally harvested for uses other than human consumption. 

 

Results 

The first and second stage systems of the inverse demand model are estimated via non-linear 

seemingly unrelated regression.  Estimation is performed using Stata’s nonlinear seemingly 

unrelated regression (nlsur) routine which relies on iterative feasible nonlinear generalized least 

squares.  The singularity of the cross-equation covariance matrix requires dropping one of the 

equations from the system and relying on the adding up condition to identify the parameters.  
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The stability of the parameters using this approach was confirmed by reestimating each of the 

inverse demand systems, omitting a different equation, and reproducing the same results.  

Homogeneity and symmetry restrictions are imposed by estimating a subset of the model 

parameters and solving for the remaining restricted parameters.     

 

With eighteen equations in the first stage and ten systems of three to five equations each 

in the second stage, hundreds of individual parameters are estimated in the three two-stage 

models.  To present those results in a more manageable and meaningful way we report the partial 

first and second stage own-quantity flexibilities alongside total own-quantity flexibilities for 

comparison in tables 2 through 4.  Numerical simulations of the complex non-linear flexibilities 

provide the standard deviations reported on the right-hand side of the tables5.  For all 56 

equations (18 in the first stages and 38 in the second) the estimated partial own-quantity 

flexibilities lie below zero, which is what one would expect for normal goods.  Only species 

harvested from the Chesapeake require second stage inverse demand systems for welfare 

estimation so second stage flexibilities for other species are not estimated.  Tables 2 through 4 

also contain the expected change in market clearing prices given the expert panel’s projection of 

harvest changes.  Price changes are calculated by using the first and second stage model results 

to find the baseline and policy expenditure shares and then dividing by the exogenously 

determined supply vectors to find market clearing prices under each scenario.  Something to note 

in table 2 is that since black sea bass harvests were not projected to change the only impact to 

                                                           
5 To simulate distributions for each flexibility we take 1,000 draws from a multivariate normal distribution using the 
vector of point estimates of the inverse demand parameters γ and β and full covariance matrix for each inverse 
demand system.  The draws are then plugged into expressions (14), (15), and (16) to simulate a distribution for each 
flexibility.  The means and standard errors from these distributions provide the results shown in tables 2, 3, and 4.  
See Krinsky and Robb (1986) for more details on using numerical simulations to estimate statistical properties of 
elasticities and flexibilities. 
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market clearing price for that species is through the cross-quantity effects of the first stage.  An 

implication of weak separability is that the prices for all black sea bass harvests are affected 

proportionally, hence identical percentage changes in price for all regions.  Likewise, market 

clearing prices for each of the non-Chesapeake species would be expected to change by the same 

proportion regardless of harvest region and so reporting only one percentage change for each 

species is sufficient.    

 
Table 2 Own-quantity flexibilities and changes to market clearing prices for high valuea finfish 

 Own-Quantity Flexibilities Standard Deviations Percentage 
Change in 

Priceb 
  First 

Stage 
Second 

Stage Total 
 First 
Stage 

Second 
Stage Total 

Flounder -0.612   0.011    
Chesapeake   -0.4720 -0.3775  0.0209 0.0212 -2.25% 
New England  -0.6452 -0.5472  0.0134 0.0135 -0.84% 
Mid-Atlantic  -0.6143 -0.5167  0.0144 0.0147 -0.67% 
South Atlantic  -0.4949 -0.3970  0.0129 0.0133 0.12% 
        
Striped Bass -0.3842   0.0184    
Chesapeake  -0.8186 -0.3683  0.0371 0.0386 -1.62% 
New England  -0.4479 -0.2735  0.1726 0.1727 1.01% 
Mid-Atlantic  -0.7519 -0.6620  0.0468 0.0469 0.15% 
South Atlantic  -0.6291 -0.5372  0.0759 0.0759 0.98% 
        
Black Sea Bass -0.3351   0.0205    
Chesapeake   -0.6840 -0.5262  0.0155 0.0164 -0.49% 
New England  -0.2334 -0.1243  0.0184 0.0188 -0.49% 
Mid-Atlantic  -0.5675 -0.3873  0.0191 0.0199 -0.49% 
South Atlantic  -0.5976 -0.4269  0.0150 0.0161 -0.49% 
Gulf  -0.4068 -0.3546  0.0597 0.0597 -0.49% 
        
Eel -0.7295   0.0552    
Chesapeake  -0.7141 -0.5306  0.0200 0.0425 -1.02% 
Mid-Atlantic  -0.6381 -0.5698  0.0284 0.0321 -0.08% 
South Atlantic  -0.5968 -0.5639  0.0309 0.0318 -0.34% 
        
Cod -0.5880   0.0162   -0.37% 
        
Grouper -0.6224   0.0143   -0.56% 
        

a Finfish with an average dockside price greater than $1 per pound. 
b Predicted change in market clearing prices given the expert panel’s projection of Chesapeake Bay species’ stock sizes and 
assuming proportional harvest changes. Price changes are calculated by using the first and second stage model results to find 
the baseline and policy budget allocations and then dividing by the exogenously determined harvest vectors to find market 
clearing prices under each scenario. 
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Table 3 Own-quantity flexibilities and changes to market clearing prices for low valuea finfish 
 Own-Quantity Flexibilities Standard Errors Percentage 

Change in 
Priceb 

  First 
Stage 

Second 
Stage Total 

 First 
Stage 

Second 
Stage Total 

Spot -0.4124   0.0482    
Chesapeake   -0.7335 -0.3434  0.0083 0.0332 -1.16% 
Mid-Atlantic  -0.6017 -0.5881  0.0468 0.0468 3.09% 
South Atlantic  -0.6135 -0.3719  0.0191 0.0283 0.95% 
Gulf  -0.0626 -0.0501  0.1188 0.1167 0.93% 
        
Perch -0.7806   0.0759    
Chesapeake  -0.7980 -0.6199  0.0092 0.0175 1.33% 
Mid-Atlantic  -0.2601 -0.2473  0.0229 0.0229 1.86% 
South Atlantic  -0.2063 -0.1784  0.0437 0.0437 2.01% 
        
Croaker -0.5963   0.0283    
Chesapeake   -0.9024 -0.6936  0.0092 0.0175 2.16% 
Mid-Atlantic  -0.7064 -0.7064  0.0229 0.0229 4.27% 
Gulf  -0.4376 -0.4017  0.0437 0.0437 3.99% 
        
Menhaden -0.7524   0.0081    
Chesapeake   -0.7520 -0.6821  0.0117 0.0119 3.92% 
Mid-Atlantic  -0.1915 -0.1859  0.0930 0.0930 2.01% 
South Atlantic  -0.7055 -0.6991  0.0245 0.0245 1.74% 
Gulf  -0.7941 -0.6278  0.0073 0.0094 -0.13% 
        
Herring -0.7755   0.225   0.66% 
        
Mackerel -0.7187   0.202   0.06% 
        

a Finfish with a dockside price of less than $1 per pound and generally harvested for uses other than human consumption. 
b Predicted change in market clearing prices given the expert panel’s projection of Chesapeake Bay species’ stock sizes and 
assuming proportional harvest changes. Price changes are calculated by using the first and second stage model results to find 
the baseline and policy budget allocations and then dividing by the exogenously determined harvest vectors to find market 
clearing prices under each scenario. 
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Table 4 Own-quantity flexibilities and changes to market clearing prices for shellfish 
 Own-Quantity Flexibilities Standard Errors Percentage 

Change in 
Pricea 

  First 
Stage 

Second 
Stage Total 

 First 
Stage 

Second 
Stage Total 

Blue crab -0.4022   0.0402    
Chesapeake   -0.5186 -0.2962  0.0123 0.0191 -5.48% 
Mid-Atlantic  -0.2611 -0.2345  0.0364 0.0366 -0.34% 
South Atlantic  -0.4831 -0.3171  0.0177 0.0211 0.05% 
Gulf  -0.5945 -0.4072  0.0162 0.0211 -2.11% 
        
Oyster -0.6780   0.0447    
Chesapeake   -0.2802 -0.2570  0.0236 0.0239 -8.07% 
Mid-Atlantic  -0.5734 -0.5645  0.0261 0.0262 -1.98% 
South Atlantic   -0.5515 -0.5409  0.0256 0.0256 -2.78% 
Gulf  -0.9772 -0.6967  0.0040 0.0392 -3.77% 
        
Clam -0.1051   0.0833   -3.43% 
        
Scallop -0.3461   0.0281   -0.22% 
        
Shrimp -0.5741   0.0217   -0.28% 
        
Lobster -0.3863   0.0219   -0.11% 
        

a Predicted change in market clearing prices given the expert panel’s projection of Chesapeake Bay species’ stock sizes and 
assuming proportional harvest changes. Price changes are calculated by using the first and second stage model results to find 
the baseline and policy budget allocations and then dividing by the exogenously determined harvest vectors to find market 
clearing prices under each scenario. 
 

 

In order to evaluate consumer welfare, we first have to forecast the new expenditures on 

each species, 
1

iY , using the results of the first stage expenditure share equations and the post-

policy quantity vectors based on the expert panel’s projections.  Table 5 shows the baseline 

expenditure share and the predicted change based on the new quantity vectors for each of the 

species groups.     
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Table 5 Impact of Harvest Changesa on Average Expenditures  

Group Species 

Average Annual 
Expenditure 

Share  
1990-2012b 

Average Annual 
Expenditure  
1990-2012b 

(thousands 
2012$) 

Change in 
Expenditure 

Sharec 

Change in 
Annual Species 

Expenditure 
(thousands 

2012$)  

High Valued Flounder 0.2634  22,952  0.0003 31 

 Striped Bass 0.1985  9,998  0.0021 211 

 Black Sea Bass 0.0630  5,638  -0.0003 -28 

 Eel 0.0562  4,496  0.0001 15 

 Grouper 0.1544  12,356  -0.0005 -49 

 Cod 0.2646  32,077  -0.0018 -180 

Low Valuee Spot 0.0197  2,846  0.0001 88 

 Perch 0.0295  1,161  -0.0004 127 

 Croaker 0.0185  7,518  -0.0008 295 

 Menhaden 0.6267  95,883  0.0017 -601 

 Herring 0.1355  19,084  -0.0007 91 

 Mackerel 0.1702  5,823  0.0001 1 

Shellfish Crab 0.1109  136,800  0.0049 7,359 

 Oyster 0.0542  64,998  -0.0017 -2,523 

 Clam 0.0105  29,588  -0.001 -1,558 

 Scallop 0.2286  248,400  -0.0006 -833 

 Shrimp 0.302  418,800  -0.0013 -1,849 

 Lobster 0.2938  273,600  -0.0004 -597 
a Projected harvest changes are based on the best professional judgments of seven experts panelists in January 2013 on the 
potential changes in Chesapeake Bay species’ stock sizes under the required reductions in nutrient and sediment pollution 
relative to current water quality conditions, holding all other influences constant, and assuming that harvest changes will be 
proportional to the projected changes in stock sizes. 
b Based on NOAA National Marine Fisheries Service (NMFS) data. 
c Changes in expenditure shares are found by evaluating the estimated expenditure equations at the post-policy harvest vectors 
and differencing the result with the baseline expenditure shares. 
d Finfish with an average dockside price greater than $1 per pound. 
e Finfish with a dockside price of less than $1 per pound and generally harvested for uses other than human consumption. 

 

These expenditure shares are sufficient to calculate the new market clearing prices since 

we hold total expenditures on the high value, low value, and shellfish categories constant.  The 

change in expenditure shares shows the value of including substitute species that are not directly 

affected by the policy so far as cross-quantity effects cause market clearing prices on fish like 

cod, mackerel, and lobster to change despite no changes in their harvest.  This implies welfare 

impacts in those markets that should also be accounted for.  
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Table 6 shows the compensating variation resulting from the expected changes in harvest 

for each of the species groups.  Consumer welfare gains in the market for high value fish are 

relatively modest, about $800,000 per year.  This is an expected result since the projected harvest 

increases for Chesapeake species are also modest – none greater than 5% of current levels.  The 

impacts in the market for low value fish are in the opposite direction and somewhat larger, a loss 

of almost $2 million per year.  The negative impacts are driven by the expected decline in 

menhaden harvest.  The Chesapeake Bay catch of menhaden amounts to about 37% of the U.S. 

supply so one would expect the direct impact and the increase in the prices of substitutes to be 

substantial.  The vast majority of consumer welfare impacts, however, are in the shellfish market.  

The expected increase in the supply of the iconic Chesapeake blue crab provides the largest 

increase in welfare, about $4.6 million per year, followed closely by that of Chesapeake Bay 

oysters, about $4.1 million per year.  Consumers substituting toward these two species, which are 

relatively cheaper now because of the supply increases, decreases demand for substitutes 

harvested elsewhere and consequently lowers the market clearing price for other shellfish 

yielding additional consumer welfare gains. The total welfare gains in the shellfish market are 

$13.5 million per year. The estimated net welfare impact in all markets from the reduced 

sediment and nutrients is about $12.4 million per year. 
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Table 6 Annual Compensating Surplus from Harvest Increasesa 

Group Species 

Annual Compensating 
Surplus 

(thousands 2012$) Standard Deviation 

High Valueb Flounder 209 9.09 

 Striped Bass 296 32.34 

 Seabass 28 4.03 

 Eel 44 8.89 

 Grouper 49 6.24 

 Cod 180 9.46 

 High Value Total  806 33.52 

Low Valuec Spot 32 1.84 

 Perch -36 22.10 

 Croaker -246 37.16 

 Menhaden -1,644 85.27 

 Herring -91 15.40 

 Mackerel -1 15.00 

 Low Value Total  -1,985 90.64 

Shellfish Crab 4,646 610.72 

 Oyster 4,078 268.63 
 Clam 1,558 243.49 
 Scallop 833 366.47 
 Shrimp 1,849 480.83 
 Lobster 597 274.72 
 Shellfish Total  13,561 324.85 

All Species Groups 12,383 342.04 
a Projected harvest changes are based on the best professional judgments of seven expert panelists in January 2013 on the 
potential changes in Chesapeake Bay species’ stock sizes under the required reductions in nutrient and sediment pollution 
relative to current water quality conditions, holding all other influences constant, and assuming that harvest changes will be 
proportional to the projected changes in stock sizes. 
b Finfish with an average dockside price greater than $1 per pound. 
c Finfish with a dockside price of less than $1 per pound and generally harvested for uses other than human consumption. 

 

 To demonstrate the value of the two-stage approach in this particular case the same data 

and harvest forecasts are used in two separate single-stage approaches to compare welfare 

estimates.  Estimating a single-stage model forces the analysts to make one of two implicit 

assumptions that are not required in a multi-stage model.  One option is to capture a large part of 

the market by aggregating the supply of each species into a single national supply (e.g. Nielsen et 

al. 2012; Cheng and Capps 1988).  In this case the implicit assumption is that harvests from all 

regions are perfect substitutes and when faced with a change in supply consumers are indifferent 
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about where the change in harvest occurred.  If, on the other hand, the analyst wants to capture 

the value of a regional fishery and estimates an inverse demand system focusing on that single 

region or, alternatively, multiple regions but for one type of fish (e.g. Lee and Thunberg 2013; 

Hilmer et al. 2011; Park et al. 2004) then the availability of substitutes and associated cross-price 

effects are not being captured.  The direction of the bias introduced by each of these approaches 

is ambiguous and will depend on a number of factors including the substitutability of aggregated 

or omitted harvests.  Table 7 presents the results of the single-stage welfare models and shows 

the differences with the two-stage results in percentage terms. 

 

Table 7 Annual Compensating Surplus Estimates from Harvest Increasesa using Single-Stage 
Models 

Aggregated Supplies Modelb Chesapeake Only Modelc 

Group 

Compensating 
Surplus 

(thousands 2012$)  

% Difference from 
two-stage model 

results 

Compensating 
Surplus 

(thousands 2012$)  % Difference 

High Valued 817  1.28% 633  -21.52% 

Low Valuee -1,505 -24.18%             -1,416 -28.64% 

Shellfish 13,464  -0.72% 9,965  -26.52% 

Total 12,775  3.17% 9,182  -25.85% 
a Projected harvest changes based on the best professional judgments of seven experts panelists in January 2013 on the potential 
changes in Chesapeake Bay species’ stock sizes under the required reductions in nutrient and sediment pollution relative to 
current water quality conditions, holding all other influences constant, and assuming that harvest changes will be proportional to 
the projected changes in stock sizes. 
b The Aggregated Supplies Model is a single-stage IAI demand system using an aggregate national supply of each species to 
estimate the compensating surplus. 
c The Chesapeake Only Model is a single-stage IAI demand system using only Chesapeake harvests to estimate the Compensating 
Surplus. 
d Finfish with an average dockside price greater than $1 per pound. 
e Finfish with a dockside price of less than $1 per pound and generally harvested for uses other than human consumption. 

 

 In some cases the single-stage estimates are very similar to the two-stage estimates.  Such 

is the case with high value fish and shellfish when all regional supplies are aggregated into a 

homogeneous national supply.  The single-stage model deviates from the two-stage model by 

about 1% for both species groups. There is a large difference, however, in the market for low 

value fish.  The single-stage model produces a 24% lower estimate of the welfare impact from 
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the projected harvest changes.  This is an unexpected result since one might expect the source of 

the harvest to matter least for these types of fish.  It’s hard to draw general conclusions from 

these results however because the expected harvest changes examined here vary in direction and 

magnitude across species so the cross-quantity effects are complex.  When only Chesapeake 

harvests are included in the analysis, excluding substitutes harvested outside the Chesapeake 

(right-hand side of table 7), the differences from the two-stage model are similar across groups 

and rather large.  Again, we should resist drawing broad conclusions from these results but when 

only the region in which the harvest increases occur is considered, the welfare effects are 

between 21% and 29% smaller in magnitude than the two-stage model that includes harvests 

from other regions.  The smaller welfare impacts could be explained in part by the omission of 

price effects for non-Chesapeake species.  In the two-stage model and in the aggregated single-

stage model changes in Chesapeake harvest affect prices for species harvested elsewhere leading 

to larger welfare gains in the high value and shellfish market and larger losses in the low value 

market.  These impacts are not captured when the analysis is restricted to Chesapeake harvests.   

 

Conclusion 

There are several features of the two-stage model that allow us to capture consumers’ 

preferences and substitution patterns among a large number of species harvested from four 

regions on the Atlantic coast and the Gulf of Mexico.  First, species that are commercially 

harvested from the Chesapeake Bay were divided into three groups between which cross-

quantity effects are expected to be negligible.  Then species that are not harvested from the 

Chesapeake Bay but serve as substitutes for those that are were added to each of the groups.  A 

first stage inverse demand model was estimated for each of the groups that captured substitution 
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patterns between species but aggregated regional harvests into a single supply.  Then a second 

stage was estimated for each of the Chesapeake species with an inverse demand equation for 

each harvest region.  The results of the first stage were used to forecast market clearing prices 

and expenditure shares among species after the increase in Chesapeake harvests.  The second 

stage expenditure shares, regional supply vectors, and the utility parameters estimated in the 

second stage were used to estimate compensating variation for the harvest increase using a 

distance function approach.   

 

In addition to developing the welfare model we have derived expressions for the total 

flexibilities of the two-stage IAI demand model that describe how market clearing prices respond 

to supply changes in other commodity groups.  These total flexibilities account for within-group 

substitution and changes in relative prices between commodity groups.  We have calculated the 

partial flexibilities from the first and second stages to show how they differ from the total 

flexibilities when both stages of budgeting are accounted for.  Visual inspection of tables 2 

through 4 show that the total own-quantity flexibilities tend to be smaller in magnitude than the 

second stage flexibilities.  This suggests that after a regional supply shift cross-species 

substitution  helps to redistribute demand and dampen the impact on prices.   

 

We apply the two-stage welfare model to estimate compensating variation from increased 

commercial harvests in the Chesapeake Bay resulting from pollution reduction programs recently 

put in place there.  The anticipated harvest increases for high value finfish are modest and the 

estimated welfare impacts are accordingly small in magnitude.  The large menhaden fishery in 

the Chesapeake Bay and the judgement of experts that populations of menhaden would fall as a 



26 

 

result of reducing nutrient pollution lead to consumer welfare losses in the low value finfish 

market.  The high value of the blue crab and oyster fisheries in the Bay combined with optimistic 

projections for their population and harvest lead to welfare gains that are an order of magnitude 

larger than the other two markets.  When two alternative single-stage approaches are used to 

estimate the welfare impacts - one equivalent to the first stage, the other focusing on Chesapeake 

harvests only - we find some significant differences when compared with the two-stage model.   
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Appendix: Two-Stage Inverse Almost Ideal (IAI) Demand System Derivation 

 

The logarithmic distance function analogous to Deaton and Muellbauer’s (1980) Almost Ideal 

Demand System model as specified by Moschini and Vissa (1992)6 is  

 ln[D(U,X)] = a(X) – U·b(X)  (A.1) 

where a(X) = α0 + ∑i αi ln(Xi) + (½) ∑i ∑j γij ln(Xi) ln(Xj) (A.2) 

 b(X) = β0 ΠiXi
βi  (A.3) 

X is the quantity vector, X={X1,…,Xi,…,XN}, and U is utility. The distance function measures 

how this quantity vector must be scaled in order to achieve the utility level, U. The following 

restrictions ensure that D(U,X) is homogenous of degree one 

∑i αi = 1   ∑i γij = ∑j γij = 0  ∑i βi = 0   γij = γji 

 

If we evaluate our quantity vector, X at its optimum, X* for utility level U, then D(U,X*)=1 and 

ln[D(U,X*)]=0. This implies that direct utility at the optimum is  

 U(X*) = a(X)/b(X) (A.4) 

One property of the distance function is that the differentiation with respect to the quantity for a 

given sector, i, gives the compensated (Hicksian) inverse demand function of prices in that 

                                                           
6 This is different from the specification of Eales and Unnevehr (1994), ln[D(U,X)] = (1-U)·ln[a(X)] + U·ln[b(X)], 

where ln[a(X)] = α0 + ∑i αi ln(Xi) + (½) ∑i ∑j γij ln(Xi) ln(Xj), and ln[b(X)] = β0 ΠiXi
-βi + ln[a(X)]. This 

specification would require that β0<0 in order to meet the requirement that a distance function is increasing in X and 

decreasing in U (Deaton 1979). The Moshini and Vissa (1992) specification, with a “– U,” emphasizes the fact that 

this function is decreasing in U. One way to make the Moshini and Vissa function comport with the Eales and 

Unnevehr specification is to write the distance function as ln[D(U,X)] = (1-U)·a(X) – U·b′(X), where b′(X) = β0 

ΠiXi
βi - a(X), which then reduces to our specification. In this case, if utility is scaled to 0 ≤ U ≤ 1, then a(X) is the 

value by which a quantity vector, X, must be divided to reach subsistence, U=0 and b′(X) is the value by which a 

quantity vector must be divided to reach bliss, U=1. 
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sector, Pi, normalized by expenditure, Y, as a function of utility and quantity supplied (Deaton 

1979),  

 ( , )( , )
( , )

XX
X i

i

i

P UD U
H U

X Y

∂
= =

∂
  (A.5) 

 

Substituting in direct utility, equation (A.4), gives the uncompensated (Marshallian) inverse 

demand of prices for that sector normalized by expenditure as a function of quantity, 

 
( )

( ) i
i

P
M

Y
=

X
X   (A.6) 

The compensated (Hicksian, denoted by the superscript h) inverse budget share in terms of utility 

and quantities, Wh
i, for sector i evaluated at X* so that D(U,X*)=1 is 

 ( , )ln[ ( , )] ( , )

ln[ ] ( , )

XX X

X

hi i
i i

i i

X P UD U D U
X W

X X D U Y

∂ ∂
= ⋅ = ⋅ =

∂ ∂
  (A.7) 

 

Two-stage budgeting 

First stage 

In our two-stage IAI model, the first stage (group level) is the fish species, indexed over 

i=(1,…,N) and j=(1,…,N).7 The distance function is ln[D(U,X)] = a(X) – U·b(X), where  

X={X1,…,Xi,…,XN}. Capital letters are used for first stage variables. Using the functional forms 

given in equations (A.2) and (A.3) and taking the derivative of equation (A.1), the compensated 

budget share for species i is 8 

                                                           
7 In an effort to avoid excessive notation, i and j can serve as both indices over all species and to indicate an 
individual species. 
8 This utilizes the fact that ∂f(x)/∂ln(x) = [∂f(x)/∂x]·x and that γij = γji. 
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Substituting in direct utility, equation (A.4), gives the uncompensated budget share 
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  (A.9) 

where lnQ is a “quantity index” 

 ( ) ( ) ( ) ( )0ln ( )    ½X i i ij i jQ a ln X ln X ln Xα α γ≡ = + ∑ + ∑ ∑
i i j

  (A.10) 

 

For any species, i, the group level, uncompensated inverse demand is  

 ( ){ }  ( , ) lnXi i i i j i

i

ij

i

Y Y
M Y P W

X
X

X
ln Qα γ β

   
= = = −   
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+ ∑

j
  (A.11) 

The group level expenditure on species i is  

 ( ) ( ){ }ln  i i i i i j iijY X P Y W Y Qln Xα γ β+= ∑⋅ = ⋅ = −
j  , (A.12) 

and  ln(Yi) = ln(Xi) + ln(Pi) (A.13) 

 

Second stage 

An analogous set of calculations can be done for the second stage (within-group) IAI, which are 

regions in our model, indexed over r=(1,…, R) and s=(1,…,R).9 The second stage distance 

function for species, i, is ln[Di(Ui,xi)] = a(xi) – Ui·b(xi), where xi is the quantity vector for 

                                                           
9 Similar to what was done for the first stage, r and s can serve as both indices over all regions and to indicate a 
specific region. 
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species i,  xi={x(i)1,…,x(i)r,…,x(i)R}. Small letters are used for second stage variables and the first 

stage subscript is written in parentheses when it appears with a second stage subscript. The 

within-group budget share, quantity index, and uncompensated inverse demand for any specific 

species, i, in region, r, are 

 ( )( ) ( )

( ) ( ) ( )( ) ( ) ( )ln  i r

i r i r

i r i r i r i

i

s i sl
x p

w x Q
Y

nα γ β+ ∑= = −
s  , (A.14) 

 ( ) ( ) ( ) ( )( )0 (( ) ( ) ( )( ( )) )   ½ln i i ri i r i ri r i ssQ x x xln ln lnα α γ+ ∑ + ∑≡ ∑
r r s

  (A.15) 
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  (A.16) 

 

In the two-stage budgeting context, equations (A.14)-( A.16) are conditional on the first stage 

budgeting allocation, given by Yi. For this to be appropriate, the conditional, within-group 

inverse demand function for species i in region r must yield the same result as an unconditional 

demand function for that species and region. (Deaton and Muellbauer 1980; Edgerton 1997) 

 ( ) ( ) ( ) ( )( , ) ( , ( , )) ( , )x x X Xi r i r i i i r i i i rp m Y m Y Y M Y= = =  , (A.17) 

 

To maintain consistency with the first stage quantity totals, the group level quantity, measured in 

pounds harvested for any given species, i, is the sum of all regional level harvests of that species, 

also measured in pounds,  

 Xi = ∑rx(i)r  (A.18) 

 

Flexibilities 

Quantity flexibilities 
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To evaluate the effect of a quantity shock of species i in region r, we define the quantity 

flexibility as the percentage change in price associated with a one percent change in quantity.10 

This is analogous to a price elasticity in a direct demand model. The within-group own-quantity 

flexibility is the percentage change in the price of species i in region r given a one percent 

change in the quantity of that species, i, in that region, r.11  
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  (A.19) 

 

The within-group cross-quantity flexibility – the effect on the price of species i in region r given 

a change in the quantity of species i in some other region s – is similar but lacks the first term.  
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 (A.20) 

The generic within-group quantity flexibility would then be 

                                                           
10 The agricultural economics literature refers to this relationship as a “price flexibility” (for example, see Houck 
1965). We use the term “quantity flexibility” here to emphasize the fact that this is an inverse model and that we are 
measuring the response due to a change in our independent variable, quantity  
11 This uses the results that Yi/(x(i)r·p(i)r) = 1/ w(i)r and w(i)r + β(i)r lnQ(i) = α(i)r + ∑sγ(i)rs ln(x(i)s). 



34 

 

 ( ){ }( )

( ) ( ) ( ) ( ) ( )

( ) )

( )

(

ln[ ] 1
l

ln ]
 n

[
i rs

i r

i rs rs i r i s i s i

i s i r

p
w Q

x w
γ βδ βε

 ∂
= = − + − 


+  ∂ 

 (A.21) 

Where δrs is a Kronecker delta equal to 1 if r=s and equal to zero otherwise. 

 

A similar set of quantity flexibilities can be derived for the first stage inverse demands. The 

generic, group level quantity flexibility is the percentage change in the first stage price of species 

i given a one percent change in the first stage, total quantity of species j.  
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∂ 
 (A.22) 

 

It is important to recognize that the partial (within-group) quantity flexibility derived above, ε(i)rs, 

is conditional on the first stage budgeting allocation in the same way as was discussed for 

equations (A.14)-( A.16). The total quantity flexibility, ε(i)r,(j)s, would be the percentage change in 

the price of species i in region r given a one percent change in the price of any species, j, in any 

region, s. In other words, it is the change in the second stage price of a species in some region 

given a change in the quantity of any species harvested in any region. This is analogous to 

Edgerton’s (1997) uncompensated total price elasticity for the direct Almost Ideal specification 

model. Deriving this total flexibility requires an estimation of the effect of a second stage 

quantity change on the first stage expenditures and is derived in detail below. 

 

Expenditure flexibilities 

In the direct Almost Ideal specification models, the expenditure elasticity – the effect on quantity 

given a change in expenditure – is (∂ln[Xi]/∂ln[Y]) = 1 + (βi/Wi) (see Eales and Unnevher 1994). 

The first term on the right-hand side is the direct effect of expenditure on quantity while the 
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second term is the effect of income as it affects the expenditure share. The second term appears 

because expenditure is an explicit argument in the share equation in the direct Almost Ideal 

specification model. In the IAI model, expenditure, Y, is not an argument in the share equation, 

Wi. Therefore, the second term is not present in the analogous expenditure flexibility for the IAI 

model. 

 

The group level expenditure flexibility is 
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  (A.23) 

Similarly, the within-group expenditure flexibility (conditional on Yi) is 
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  (A.24) 

 

Scale flexibilities 

The expenditure flexibility derived above is the analog to the expenditure elasticity. However, in 

the inverse demand literature, the scale flexibility is sometimes conflated with this analog.12 In 

fact, the scale flexibility is something different. In an inverse demand system, the scale flexibility 

measures the change in the price of a good given a change in all quantities. This is related to the 

distance function which measures how much the full quantity vector, X, must be scaled in order 

                                                           
12 See Park and Thurman (1999) for a discussion of the link between scale flexibilities and income elasticities. 
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to achieve a given utility level, U. If λ is this scaling factor, then the scale flexibility is the 

percent change in the price of a good given a one percent change in this scaling factor. 

 

The scale flexibility can be derived by first multiplying all of our quantities by λ. Our first stage 

share equation and Marshallian demand would be  

 ( )*  ln iji i j iln XW Qα γ λ λβ−+= ∑
j   (A.25)  

 ( ) ( ) ( ) ( )0ln    ½i i ij i jQ ln X ln X ln Xλ λ λα γ λα= + ∑ + ∑ ∑
i i j   (A.26) 
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  (A.27) 

λ=1 is the special case, assumed in our derivations above, in which the quantity vector is just 

sufficient to produce the utility level implied by equation (A.4). 

 

The first stage scale elasticity is then13,14  
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  (A.28) 

 

                                                           
13 This uses the fact that ∑iαi = 1, ∑jγij=0, and Y/(Mi

*λXi) = 1/Wi. 
14 Eales and Unnever (1994) derive a scale flexibility equal to -1+βi/Wi

*, but recall that their specification requires 
that βi<0 (see appendix footnote 1), so our specification is equivalent to Eales and Unnever if βi>0. 
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The second stage scale flexibility gives the percentage change in the price of species i in region r 

given a one percent change in the scale parameter in region r.  
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  (A.29) 

A scale flexibility might be appropriate to measure the effect of a shock in a region that affects 

all species in that region by the same percentage. 

 

Aggregate quantity flexibilities 

The final elasticity that we will need to derive the total quantity flexibility is the percent change 

in first stage aggregate quantity of some species, i, given a one percent change in quantity of that 

species in a single region, r.15  
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It should be obvious that a change in the quantity of one species, j, in some region, r, does not 

affect the aggregate quantity of a different species, i. That is ξ(i),(j)r = ∂ln(Xi)/∂ln(x(j)r) = 0. 

 

Total, flexibility 

The total flexibility, ε(i)r,(j)s, is then the percent change in the price of species i in region r given a 

one percent change in the quantity of any species j in any region s. We refer to this as the total 

flexibility because it includes the effect of the change in expenditures for each species. As we 

mentioned before for equation (A.17), for two-stage budgeting to be appropriate, the conditional, 

                                                           
15 This is the inverse demand analog to ∂Ps/∂psj in Edgerton’s (1997) direct demand model. 
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within-group inverse demand function for species i in region r must yield the same result as an 

unconditional demand function for that species and region. 
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  (A.31) 

 

Substituting in the IAI functional forms for these flexibilities, the resulting total, unconditional, 

within-group flexibility is 
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  (A.32) 

 

  

                                                           
16 Note that ∂ln(Xi)/∂ln(x(j)s) ≠ 0 if i=j (i.e., if we are evaluating the effect of a regional quantity change on the 
aggregate quantity of the same species) so it is set equal to δijξ(j),(j)r. 
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