

Disclaimer

The information in this presentation has been reviewed and approved for public dissemination in accordance with U.S. Environmental Protection Agency (EPA). The views expressed in this presentation are those of the author(s) and do not necessarily represent the views or policies of the Agency. Any mention of trade names or commercial products does not constitute EPA endorsement or recommendation for use.

Top-down constraints on NH₃ emissions

Daven K. Henze University of Colorado, Boulder

Liye (Juliet) Zhu, CU Boulder; Rob Pinder, Jesse Bash, US EPA; Karen Cady-Pereira, AER; Mark Shepard, EC; Ming Luo, JPL EPA STAR RD834559. This work does not reflect official agency views, policies.

Impacts of NH₃

Deposition

Estimated N deposition from NHx (Dentener et al., 2006)

Air Quality Source attribution of Jan. PM2.5 event (Zhang et al., ERL, 2015)

Health

Impacts of 10% Δemissions (Lee et al., ES&T, 2015)

- Agricultural emissions lead to 20% of global premature deaths from ambient air pollution (Lelieveld et al., Nature, 2015) – largely the impact of NH_3 emissions on $PM_{2.5}$.

NH₃ is a growing concern

Denman et al. (2007), *IPCC*: NH_3 emissions have increased by x2-x5 since preindustrial times and are estimated to double by 2050.

 NH_3 projected to soon overtake NO_x as the driver of Nr deposition:

Transition may have occurred already in the US (Li et a., PNAS 2016; Sun et al., PNAS, 2016; Liu et al., PNAS, 2016)

Uncertainties in NH₃ emissions

Why so uncertain?

- lack of direct source measurements (hard, expensive)
- difficulty in relating associated species to NH₃ sources
 - constraints from observations of [NH₄+] or [NH_x] complicated by model/measurement error, precipitation
 - observations of [NH₃] less prevalent

Uncertainties in NH₃ emissions: Implications for air quality and environment

contribute to errors in assessing PM_{2.5}

Ex: GEOS-Chem overestimates nitrate at IMPROVE / CASTNET (July)

(also Liao et al., 2007; Henze et al., 2009; Zhang et al., 2012)

• undermine regulatory capabilities for secondary standards on SO_x , NO_x to control N_r dep (e.g., Koo et al., 2012)

Top-down constraints

- Other models

Constraints on NH_x deposition from inverse modeling

Many US air quality models get NHx deposition correct via assimilation.

Observations: wet NH_x = aerosol NH_4^+ + gas NH_3

Method: adjust (w/Kalman Filter) monthly nationwide scale factors

Results: Gilliland et al., 2003; Gilliland et al., 2006

Assumptions:

 uniform seasonality throughout broad regions of US

Top-down constraints based on NH_x

Mendoza-Dominguez and Russell, 2001: constraints on $\rm NH_3$ sources in the SE

Zhang et al., 2012: Seasonality of NH₃ sources adjusted so that Modeled matched RPO and SEARCH NHx measurements

- Resulting annual NHx and NO3 deposition unbiased.

- Enforces a spatially uniform seasonality / correction factor across the US.

Potential for making new inroads on this problem: ambient measurements of NH₃

Remote sensing with TES (Beer et al., 2008):

- 5 km x 8 km footprint
- sensitive to boundary layer NH₃
- detection limit of ~ 1 ppb
- bias of +0.5 ppb

July, 2005

Passive surface measurements:

EPA's AMoN sites (>2007) (Puchalski et al., 2011) +LADCO, SEARCH, CSU, ANARChE

2009 AMoN Sites

Potential for making new inroads on this problem: ambient measurements of NH₃

Remote sensing with TES (Beer et al., 2008):

- 5 km x 8 km footprint
- sensitive to boundary layer NH₃
- detection limit of ~ 1 ppb
- bias of +0.5 ppb

Now: AMoN

Now: aircraft (e.g. DISCOVER-AQ) and mobile surface (e.g., M. Zondlo, R. Volkamer)

July, 2005

(Puchalski et al., 2011)

ANARChE

Passive surface measurements:

EPA's AMoN sites (>2007)

+LADCO, SEARCH, CSU,

Constraints from NH_x deposition, and an alternate bottom up inventory

Paulot et al., 2014

- GEOS-Chem 4D-Var (Henze et al., 2007)
- Global 2x2.5
- Assimilate NTN, EMEP, ...

Constraints from NH_x deposition, and an alternate bottom up inventory

No support for homogeneous seasonality in the US. Alternate bottom-up inventory has some success reproducing patterns of optimized emissions.

Constraints from NH_x deposition, and an alternate bottom up inventory

Comparison to surface NH3 measurements (Puchaski et al., 2011) before and after assimilation:

TES NH₃ visualization

Detection of NH₃ gradients with TES

Overlap surface obs with TES Transects for 2009:

number of livestock facilities within 10 km

TES reflects real-world spatial gradients and seasonal trends

Pinder et al., GRL, 2011

Constraining emissions of NH₃ in GEOS-Chem using 4D-Var technique (Zhu et al., 2013)

NH₃ emissions in GEOS-Chem

AMoN surface obs (ppb)

Revised diurnal variability of NH₃ emissions

Zhu et al., 2014

NH₃ bidirectional exchange

 $\frac{\partial J(NH_3)}{\partial \sigma_{_{ENH_3}}}$

Implemented for the 1st time in a global model (Zhu et al., 2014)

Based on scheme developed for CMAQ (Bash et al., 2013)

Bidi-exchange increases the "lifetime" of NH₃:

BIDI

BASE

-600 -200 200 600 [kg/box]

Constraining speciated aerosol sources using MODIS AOD

Constraints on NH₃ from AOD-based inversion consistent with satellit NH₃ and NHx deposition inversion.

Evaluation of NH₃/CO ratios

Luo et al., 2014

Remote sensing of NH₃: IASI

NH3 total columns, 2007-2012average

Van Damme et al., ACP, 2014

Remote sensing of NH₃: AIRS

NH3 VMRs at 918 hPa, 2002-2015 average

Remote sensing of NH₃: CrIS

Shephard and Cady-Pereira, AMT, 2015:

- New retrievals from CrIS (aboard Suomi-NPP)
- Will be produced operationally by end of 2017
- Much greater spatial density (x100) and sensitivity (x4) than TES
- evaluated with in situ and aircraft data

Final summary

NH₃ emissions pose a range of concerns on regional to global scales.

In situ measurements providing increased constraints for top-down NH₃ emissions estimates

Inverse modeling shows regionally variable seasonality throughout the US. Also guided other AQ model improvements (diurnal variability, bidi-exchange).

More data is available now (networks, mobile measurements, satellites) to revisit these questions and further evaluate both bottom-up and top down inventories.

Questions?

NH₃ emissions pose a range of concerns on regional to global scales.

In situ measurements providing increased constraints for top-down NH3 emissions estimates

Inverse modeling shows regionally variable seasonality throughout the US. Also guided other AQ model improvements (diurnal variability, bidi-exchange).

More data is available now (networks, mobile measurements, satellites) to revisit these questions and further evaluate both bottom-up and top down inventories.

Atmospheric aerosols

Lifetime of 3 – 10 days

Significant impacts on

- air pollution
- visibility
- climate and meteorology

From emissions of

- dust, sea-salt, BC, OC (solid)
- SO₂, NH₃, NO_x, VOCs (gas-phase)

Peter Buseck, Arizona State

By a mix of anthropogenic and natural sources: transportation, energy generation, fires, industry, agriculture, residential heating and cooking, ...

- 4.2 (3.7-4.8) million annual premature deaths in 2015, #5 death risk factor (Cohen et al., Lancet, 2017).

Current remote sensing of tropospheric composition

A-TRAIN (NASA) Additional measurements from NOAA (VIIRS, CrIS), ESA (IASI), Korea (GOCI)

Constraining speciated aerosol sources using MODIS AOD

- constrain multiple aerosol precursor emissions with AOD
- evaluate constraints with gas-phase remote sensing

Xu et al., 2013

