

Pipeline Maintenance Best Practices

Lessons Learned from the Natural Gas STAR Program

SGA Environmental Round Table Charlotte, North Carolina June 25 - 27, 2008

epa.gov/gasstar

Pipeline Maintenance Agenda

- Methane Losses
 - What are the sources of emissions?
 - Mow much methane is emitted?
- Methane Recovery
 - Mot Taps
 - Pipeline Pumpdown
 - Composite Wraps
 - Additional Partner Reported Opportunities
- Discussion

2006 Transmission Sector Methane Emissions

Pipeline leaks can occur through internal and external corrosion, material defects, joint and fitting defects, and third party damage

EPA. *Inventory of U.S. Greenhouse Gas Emissions and Sinks 1990 – 2006.* April, 2008. Available on the web at: http://www.epa.gov/climatechange/emissions/usinventoryreport.html
Natural Gas STAR reductions data shown as published in the inventory.

2006 Distributions Sector Methane Emissions

Older cast iron and unprotected steel pipelines contribute the majority of emission of pipeline related emissions

EPA. *Inventory of U.S. Greenhouse Gas Emissions and Sinks 1990 – 2006.* April, 2008. Available on the web at: http://www.epa.gov/climatechange/emissions/usinventoryreport.html
Natural Gas STAR reductions data shown as published in the inventory.

What is the problem with current practices?

- Methane gas leaks are invisible, unregulated, and go unnoticed
- Methane vented in preparation for pipeline maintenance/new connections
- Smallest possible linear section of pipeline is blocked in and depressurized to the atmosphere
- "Hot work" may require purging pipeline with inert gas
- These practices results in methane emissions
 - Loss of Sales
 - Service disruption and customer inconvenience
 - Costs of evacuating the existing piping system

Hot Taps

Connecting Pipelines without Disruption

Certified Williamson Industries Technician performing a hot tap with a 760 Tapping Machine as part of a 12" Stopple application.

Source: Williamson Industries Inc.

What are Hot Taps?

- New branch connection while the pipeline remains in service
 - Attach a branch connection and valve to the main pipeline
 - Cut-out a section of the main pipeline wall through the valve to connect the branch to the main pipeline
- Current technology has improved reliability and reduced complications
- Mot tapping can be used to add connections to a wide range of pipelines
 - Transmission pipelines
 - Distribution mains

Schematic of Hot Tapping Machine

Hot Tapping Procedure

- Connect fitting and permanent valve on the existing pipeline
- Install hot tapping machine on the valve
- Perform hot tap and extract coupon through the valve
- Close valve and remove hot tapping machine
- Connect branch line

Hot Tap Benefits

- Continuous system operation shutdown and service interruptions are avoided
- No gas released to the atmosphere
- Avoided cutting, realignment and re-welding of pipeline sections
- Reduced planning and coordination costs
- Increased worker safety
- No gas outages for customers

Hot Tap Economics

- Determine physical conditions of existing line
- Calculate the cost of a shutdown interconnect
- Mot tap expenses
- Estimated annual hot tap costs
 - For hypothetical scenario
- Estimated annual hot tap savings
 - For hypothetical scenario
- Economic analysis of hot tap vs. shutdown

Determine physical conditions of existing line

- Maximum operating pressure (during hot tap)
- Type of pipe material
- Condition of parent pipeline (internal/external corrosion and wall thickness)
- Emergency valve location for isolation in case of accidents
- Working space evaluation (desired tap diameter, location of other welds, obstructions, etc.)
- 6 Check if the line is looped

Calculate Cost of Shutdown Interconnect

6 Given: A pipeline company requires numerous shutdown or hot tap connections as follows --

Pipeline diameter (D) = 4 inches	4	8	10	18
Pipeline pressure (P) = 350 psig	350	100	1,000	200
Isolated pipeline length (L), miles	2	1	3	2
Annual taps	250	30	25	15

Volume of natural gas lost

$$V_g = \frac{D^2 * P * [L/1,000] * 0.372}{1,000} =$$

$$\frac{4^2 *350 * \left[2 *5,280 / 1,000\right] *0.372}{1,000}$$

Calculate Cost of Shutdown Interconnect (cont'd)

Volume of purge gas (assumed to be nitrogen)

$$V_{pgas} = \frac{\left(\frac{D^2 * L}{183}\right)}{1,000} * 2.2 = \frac{\left(\frac{4^2 * 2 * 5,280}{183}\right)}{1,000} * 2.2 = 2 Mscf$$

- 6 Given:
 - Cost of natural gas $(C_g) = $7/Mscf$
 - Cost of nitrogen (C_{pgas}) = \$8/Mscf
- Value of gas lost by shutdown interconnects (Including purge gas)

Cost =
$$C_g + C_{pgas} = V_g * P_g + V_{pgas} * P_{pgas}$$

= $(22 * 7) + (2 * 8)$
= \$170 for each 4 inch pipeline shutdown interconnect

Hot Tap Expenses

- Calculate the cost of a hot tap procedure
 - Cost of the hot tap equipment purchase and O&M cost of hot tapping contract
 - Value of the property of th
 - Most companies find it economical to contract out large jobs

Connection	Capital Costs (\$)		Contracting	Equipment O&M	
Size	Machine ¹	Material	Service Cost (\$)	Cost (\$/yr)	
Small Taps (<12")	17,287 – 30,122			724 – 7,235	
Large Taps (>12")	130,963 – 261,927 ²	2,619 – 11,944 ²	1,447 – 5,788		

¹ Hot tap machines can last from 5 to 40 years. A company can perform as many as 400 small taps per year.

Note: Cost information provided by Hot Tap manufacturers and contractors. Prices only provided for most economic options. Updated 2006

² Most companies will find it more economical to contract out large jobs, and would not therefore incur these costs.

Estimated Annual Hot Tap Costs

- Given (annual program):
 - 6 Equipment cost per small tap machine = \$23,704
 - Operations and Maintenance (O&M) cost per machine = \$3,979
 - Number of small hot tap machines = 2
 - Contract Services cost per large tap = \$3,618
 - Number of contracted taps = 15 (all taps 12 inches and larger)
- Total equipment cost = \$23,704 * 2 = \$47,409
- \bullet Total O&M cost = \$3,979 * 2 = \$7,959
- ♦ Contract Service cost = \$3,618 * 15 = \$54,263

Estimated Annual Hot Tap Savings

Evaluate the gas savings benefits of hot tapping

Estimated Annual Gas Savings for the Hypothetical Scenario						
Tap Scenario	Annual	Natural Gas Savings		Nitrogen Purge Gas Savings		Total Gas Savings
Pipeline	Tap Number	Per tap Mscf	Annual Mscf	Per tap Mscf	Annual Mscf	\$
4" pipeline, 350 psig, 2 mile line	250	22	5,500	2	500	42,500
8" pipeline, 100 psig, 1 mile line	30	13	390	4	120	3,690
10" pipeline, 1,000 psig, 3 mile line	25	589	14,725	19	475	106,875
18" pipeline, 200 psig, 2 mile line	15	255	3,825	41	615	31,695
Total Annual	320		24,440		1,710	184,760

Economic Analysis of Hot Tap vs. Shutdown

Compare the options and determine the economics of five year hot tapping program (320 taps/yr)

Economic Analysis of Hot Tap Versus Shutdown						
	Year 0	Year 1	Year 2	Year 3	Year 4	Year 5
Capital Cost, \$	(47,409)	0	0	0	0	0
Contract Service Cost, \$	0	(54,263)	(54,263)	(54,263)	(54,263)	(54,263)
O&M Cost, \$	0	(7,959)	(7,959)	(7,959)	(7,959)	(7,959)
Total Cost, \$	(47,409)	(62,222)	(62,222)	(62,222)	(62,222)	(62,222)
Natural Gas Savings, \$		171,080	171,080	171,080	171,080	171,080
Inert Gas Savings, \$		13,680	13,680	13,680	13,680	13,680
Net Benefit, \$	(47,409)	122,538	122,538	122,538	122,538	122,538
Payback (months)		•				5
IRR						258 %
NPV ¹						\$417,107
¹ Net Present Value (NPV) based on 10% discount rate for 5 years						

Methane Recovery by Pipeline Pumpdown

- Most applicable to large pipelines operating at high pressures
- Use In-Line compressors to "pull down" the pressure to minimum suction pressure
- Use portable compressor to "pull down" pressure even further
- Cost is justified by immediate payback in gas savings
- About 90% of gas usually vented is recoverable

Pipeline Pumpdown Technique

- In-line Compressor
 - Typically 2:1 compression ratio
 - by blocking upstream valve, the pressure in the pipeline is reduced to safe limits for maintenance
- Output Portable Compressor
 - Typically 5:1 compression ratio
 - Can be used in conjunction with in-line compressors to reduce pressure in pipeline section
 - Cost-justifiable only when multiple sections of pipeline are being serviced
 - Distribution mains generally do not contain a large enough volume of gas to justify the use of portable compressors

Sequence of Depressurization Events

Economics of Pipeline Pumpdowns

- Calculate gas vented by depressurizing pipeline
- Calculate gas saved with in-line compressors
- Calculate gas saved with portable compressor
 - Consider cost of a portable compressor
- Calculate annual savings

Natural Gas EPA POLLUTION PREVENTER

Calculate Gas Vented by Depressurizing Pipeline

- Estimate the quantity and value of gas that in-line compressors can recover
 - 6 Given:
 - Pipeline isolated length (L) = 10 miles
 - Pipeline interior diameter (I) = 2.375 feet
 - Pipeline operating pressure (P) = 600 psig
 - In-line compressor compression ratio (Ri) = 2
 - 6 Gas vented in depressurizing pipeline

```
M = L^*(5,280 \text{ ft/mile}) * (\pi * I2/4) * (P/14.65 \text{ psig}) * (1 \\ Mscf/1,000cf)
M = (10*5,280) * (\pi *2.3752)/4 * (600+14.65)/14.65 * \\ 1/1,000)
M = 9,814 \text{ Mscf}
```


Calculate Gas Saved using In-line Compressors

- Amount of gas recoverable per action using an in-line compressor Ni = M (M/Ri) = 9,814 (9,814/2) = 4,907 scf
- Value of gas recovered per action using an in-line compressor
 Vi = Ni * \$7/Mscf = 4,907 * \$7 = \$34,349
- Annual value of gas recovered assuming 4 actions per month= \$34,349 * 4 * 12 = \$1,648,752

Calculate Gas Saved using Portable Compressors

- 6 Given:
 - Portable compression ratio (Rp) = 8
 - Rate of compressor = 416 Mscf / hour
- Gas available for recovery

$$= M - Ni = 9.814 - 4.907 = 4.907 Mscf$$

Gas saved using a portable compressor

$$Np = Ni - (Ni / Rp) = 4,907 - (4,907 / 8) = 4,294 Mscf$$

Value of gas recovered using portable compressor¹

$$Vg = Np * $7/Mscf = 4,294 * 7 = $30,056 * 4 * 12 = $1,442,688$$

¹ Because cost of operating portable compressor is high, assume portable compressor is used for 4 pipeline pumpdowns per month.

Consider Costs of a Portable Compressor

- Estimate the costs associated with using a portable compressor
 - Fuel costs (mostly natural gas) (Vcf) ~ 7,000 8,400 Btu per brake horse power per hour
 - Maintenance costs (Vcm) ~ \$5 \$12 per horsepower per month
 - Labor costs (Vcl)
 - Taxes and administrative costs (Vct)
 - Installation costs (Vci)
 - Freight costs (Vcs)

Portable Compressor Costs – Capital Costs

Portable Compressor Purchase and Lease Cost Range*						
1,000 PSIG	– High Flow		– Medium ow	edium 300 PSIG – Low Flor		
Purchase	Lease	Purchase	Lease	Purchase	Lease	
\$3 - \$6 million	\$77,000 - \$194,000 per month	\$1.0 - \$1.6 million	\$31,000 - \$46,000 per month	\$518,131 - \$777,197	\$15,000 - \$23,000 per month	

^{*}Based on assumptions that purchase cost does not include cost of freight or installation and that lease cost is 3 percent of purchase cost

Cost of a Portable Compressor – Operating and Maintenance Costs

Fuel used by compressor per 10 mile isolated length, per month

= 69 Mscf

Fuel costs assuming one 10-mile isolated lengths, per month = \$7/Mscf * 69 Mscf = \$483 per month

Total cost of using the portable compressor during a 12 month period

= fuel costs + lease and maintenance costs + freight costs = 12 * (\$483 + \$31,000) + \$19,000

= \$ 396,796

Calculate Annual Savings

Gross value of gas recoverable during a 12month period, In-line Compressor

$$= V_g * 1 * 12 = 34,349 * 4 * 12 = $ 1,648,752$$

Gross value of gas recoverable during a 12month period, Portable Compressor

```
= V_g = N_p * $7/ Mscf = 4,294 * 7
= $ 30,056 * 4 * 12
= $ 1,442,688
```

Net Savings associated with using both Inline and Portable Compressor

```
= $ 1,648,752 + ($ 1,442,688 - $ 396,796)= $ 2,677,256
```


Composite Wrap

Source: Armor Plate

Permanent On-Line Pipeline Repair Technology

What is Composite Wrap?

- Non-leaking pipeline defects can only be fixed in one of three ways, per Department of Transportation (DOT) regulations:
 - 6 Cut out damaged segment and replace with new pipes
 - Install a full-encirclement steel split sleeve over the damaged area
 - Install a composite sleeve over the damaged area
- Composite Wrap Advantages:
 - Can be performed without taking pipeline out of service
 - Repair is quick and less costly than replacement or sleeve options
 - Eliminates venting associated with replacement

Composite Wrap. What is it?

- 1) A high-strength glass fiber composite or laminate
- 2) An adhesive or resin bonding system
- 3) A high-compressivestrength load transfer filler compound
- 4) Replaces lost hoop strength

Composite Wrap Installation

- After excavation and pipe preparation
 - External defects filled with filler
 - Composite wrap wound around pipe with adhesive or laminating agents
 - Typically 2" of wrap must extend beyond damage
 - Excavation site refilled after mandated curing time
- Reducing pressure improves quality of repair

Economics of Composite Wrap

- Calculate associated costs
 - State assumptions
 - Calculate labor cost
 - Calculate equipment cost
 - Calculate indirect costs
- Calculate Natural Gas Savings
- Compare options

Calculate Associated Costs: Assumptions

- **6** Given:
 - Need to repair a 6" non-leaking defect on a 24" pipeline, operating at 350 psig; assume 16 hours to complete the project¹. Assume cost of engineering management is 25% cost of field labor.

Hourly rate of field labor category

Operator = \$46/hr

Pipeliner = \$42/hr

Apprentice = \$28/hr

 $^{\bullet}$ $C_{\text{equip}} = \text{cost of equipment}$

Cost of individual equipment

Composite Wrap Kit = \$ 1,087/kit

Backhoe = \$45/hr

Sandblasting equipment = \$ 12/hr

Pipeline coatings (5% composite kit) = \$ 54

Labor Costs

- 6 Given:
 - ♦ C_{indirect} = indirect costs such as field inspection crew, permits, etc.
 (assume 50% of total equipment and labor cost)
- Calculate cost of labor
 - C_{labor} = Engineering management cost + Field labor cost
 Field labor cost = hourly rate * time-length of project
 = (\$ 46 + \$ 42 + \$ 28) * 16
 = \$ 1,856

Engineering Management cost = 0.25 * \$ 1,856 = \$ 464

$$C_{labor} = $464 + $1,856 = $2,320$$

Equipment and Indirect Costs

- Calculate cost of equipment
 - C_{equip} = Cost of consumable materials (composite wrap kit and coatings) + Cost of renting/using equipment on site
 = \$ 1,087 + \$ 54 + (\$ 45 * 16) + (\$ 12 * 16)
 - = \$ 2,053
- Calculate indirect costs
 - $C_{indirect}$ = Cost of permits, inspection services, right-of-way, etc. = 0.5 * (C_{labor} + C_{equip}) = 0.5 * (\$ 2,320 + \$ 2,053) = \$ 2,186
- Calculate total cost of repair
 - Total Cost of Repair = $C_{labor} + C_{equip} + C_{indirect}$ = \$ 2,320 + \$ 2,053 + \$ 2,186 = \$ 6,559

Calculate Natural Gas Savings

6 Given:

- b D = inside diameter of pipeline (inches)
- L = length of pipeline between shut-off valves (feet)
- P = Pipeline pressure
- P_{natural gas} = Current natural gas market price (\$7/Mcf)
- V_{natural gas} = Volume of natural gas emissions

$$V_{\text{natural gas}} = \frac{D^2 * P * (L/1000) * 0.372}{1,000}$$

$$= \frac{24^2 * 350 * (52,800/1,000) * 0.372}{1,000}$$

$$= 3,960 \text{ Mcf}$$

Value of natural gas =
$$V_{\text{natural gas}} * P_{\text{natural gas}}$$

= 3,960 * \$7/Mcf
= \$27,720

Given: 24" diameter operated at 350 psig, with 10 miles between shut-off valves							
	6" De	efect	234" Defect				
	Composite Wrap Repair	Pipeline Replacement	Composite Wrap Repair	Pipeline Replacement			
Natural Gas Lost	0	3,960	0	3,960			
Purge Gas (Mcf)	0	199	0	199			
Number of Composite Wrap Kits	1	0	20	0			
Cost of Natural Gas Lost	\$0	\$27,720	\$0	\$27,720			
Cost of Purge Gas	\$0	\$1,592	\$0	\$1,592			
Labor	\$1,720	\$4,350	\$3,440	\$6,525			
Equipment and Materials	\$1,142	\$3,520	\$22,833	\$6,950			
Indirect Costs	\$1,886	\$3,148	\$13,136	\$5,390			
Total Cost of Repair	\$4,748	\$40,330	\$39,409	\$48,177			
Most Economical Option	X		Х				

Composite Wrap Lesson Learned

- Proven permanent repair for external defects
- Temporary repair for internal faults
- In-service pipeline repair methodology
- Ideal for urgent and quick repair
- Avoid service disruptions
- Cost-effective

- Trained but not skilled crafts persons required
- Specialized welding and lifting equipment not required
- Minimizes access concerns
- No delays awaiting metal sleeve
- Cathodic protection remains functional

Additional Partner Reported

Opportunities

Install excess flow valves

- Insert gas main flexible liners
- Cast iron joint sealing robot (CISBOT)

Source: ConEd

Install Excess Flow Valves

Mhat is the Problem?

Gas line breaks from ground movement or third party damage can release gas to the atmosphere

A Partner Solution

 Installing excess flow valves that shut off gas flow in response to the high-pressure differential

Methane Savings

Based on 1 valve activation a year on a 50 psig, ½ inch service line

Applicability

All gas service lines

Methane Savings

15 Mcf/yr

Project Economics

Project Cost > \$10,000

Annual O&M < \$100

Costs

Payback > 10 yr

Insert Gas Main Flexible Liners

What is the Problem?

 Cast iron and unprotected steel piping have the highest leakage factors

Partner Solution

 Using flexible plastic inserts where replacement is unfeasible reduces losses

Methane Savings

Based on retrofitting 1 mile of cast iron main and 1 mile of unprotected steel service lines

Applicability

Cast iron and unprotected steel pipelines

Methane Savings

225 Mcf/yr

Project Economics

Project Cost

\$1,000 -\$10,000

Annual O&M

< \$100

Costs

Payback

< 1 yr

Cast Iron Joint Sealing Robot (CISBOT)

- Nobotic system inserted into live 15- to 31-cm diameter cast iron distribution lines to seal leaking joints with an anaerobic sealant
- No service disruption and minimal excavation

Source: ConEdison

Discussion

- Industry experience applying these technologies and practices
- Limitations on application of these technologies and practices
- Actual costs and benefits