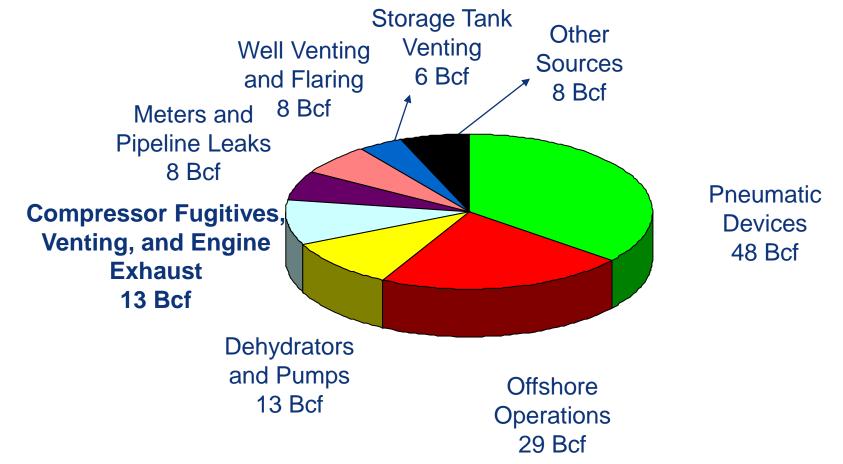
Reciprocating Compressor Rod Packing

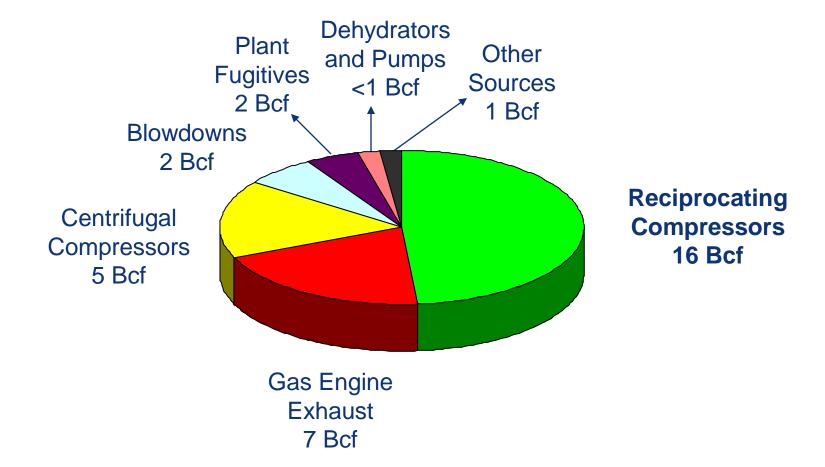
Lessons Learned from the Natural Gas STAR Program

Chevron Corporation, New Mexico Oil and Gas Association, Texas Oil and Gas Association

> Technology Transfer Workshop Midland, Texas July 23, 2008


> > epa.gov/gasstar

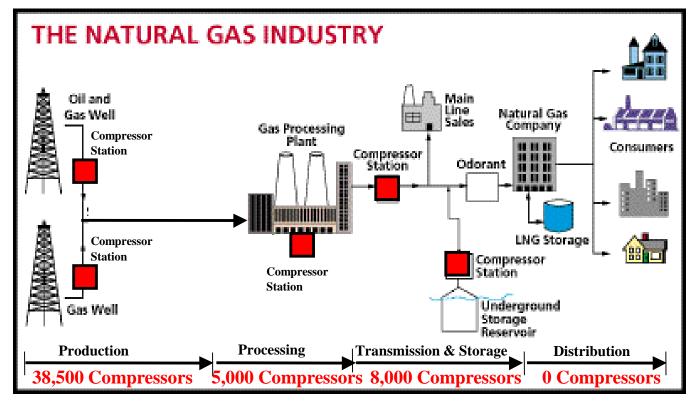
Industry Emissions: Production, Gathering, and Boosting


Source: EPA. Inventory of U.S. Greenhouse Gas Emissions and Sinks 1990 – 2006. April, 2008. Available on the web at: epa.gov/climatechange/emissions/usinventoryreport.html

Note: Natural Gas STAR reductions from gathering and boosting operations are reflected in the production sector.

2

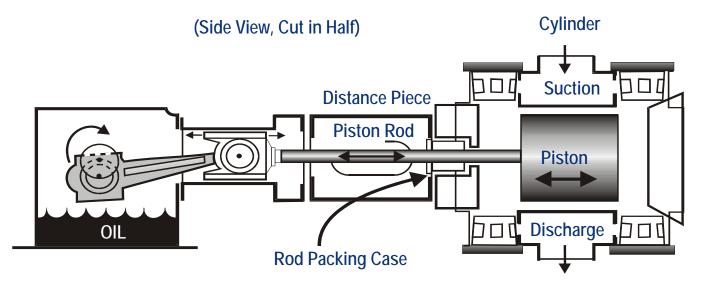
2006 Processing Sector Methane Emissions



EPA. *Inventory of U.S. Greenhouse Gas Emissions and Sinks 1990 – 2006.* April, 2008. Available on the web at: epa.gov/climatechange/emissions/usinventoryreport.html Note: Natural Gas STAR reductions from gathering and boosting operations are reflected in the production sector.

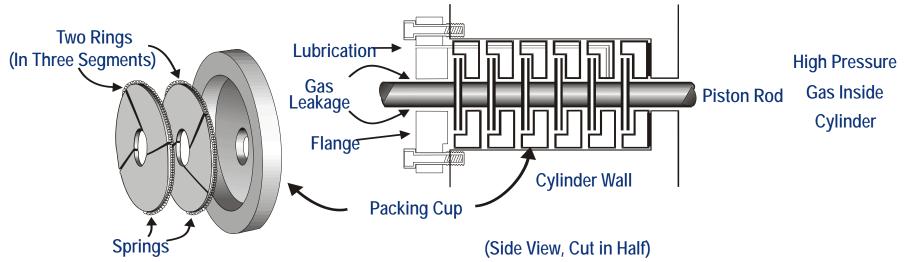
Compressor Methane Emissions What is the problem?

Methane emissions from the ~51,500 compressors in the natural gas industry account for 89 Bcf/year or about 24% of all methane emissions from the natural gas industry


Methane Savings from Compressors: Agenda

- A Reciprocating Compressors
 - Methane Losses
 - Methane Savings
 - Industry Experience
- Discussion

Methane Losses from Reciprocating Compressors


- Reciprocating compressor rod packing leaks some gas by design
 - Newly installed packing may leak 60 cubic feet per hour (cf/hour)
 - Worn packing has been reported to leak up to 900 cf/hour

Reciprocating Compressor Rod Packing

- A series of flexible rings fit around the shaft to prevent leakage
- Leakage may still occur through nose gasket, between packing cups, around the rings, and between rings and shaft

Impediments to Proper Sealing

Ways packing case can leak

- Nose gasket (no crush)
- A Packing to rod (surface finish)
- Packing to cup (lapped surface)
- A Packing to packing (dirt/lube)
- Cup to cup (out of tolerance)

What makes packing leak?

- Dirt or foreign matter (trash)
- Worn rod (.0015"/per inch dia.)
- Insufficient/too much lubrication
- ♦ Packing cup out of tolerance (≤ 0.002")
- Improper break-in on startup
- Liquids (dilutes oil)
- Incorrect packing installed (backward or wrong type/style)

Methane Losses from Rod Packing

Emission from Running Compressor	99	cf/hour-packing
Emission from Idle/Pressurized Compressor	145	cf/hour-packing
Leakage from Idle Compressor Packing Cup	79	cf/hour-packing
Leakage from Idle Compressor Distance Piece	34	cf/hour-packing

Leakage from Rod Packing on Running Compressors				
Packing Type	Bronze	Bronze/Steel	Bronze/Teflon	Teflon
Leak Rate (cf/hour)	70	63	150	24

Leakage from Rod Packing on Idle/Pressurized Compressors					
Packing Type	Bronze	Bronze/Steel	Bronze/Teflon	Teflon	
Leak Rate (cf/hour)	70	N/A	147	22	

PRCI/ GRI/ EPA. Cost Effective Leak Mitigation at Natural Gas Transmission Compressor Stations

Steps to Determine Economic Replacement

- Measure rod packing leakage
 - When new packing installed after worn-in
 - A Periodically afterwards
- Determine cost of packing replacement
- Calculate economic leak reduction
- Replace packing when leak reduction expected will pay back cost

Cost of Rod Packing Replacement

- Assess costs of replacements
 - A set of rings: (with cups and case)
 - A Rods:
 - Special coatings such as ceramic, tungsten carbide, or chromium can increase rod costs

\$ 135	to	\$ 1,080
\$ 1,350	to	\$ 2,500
\$ 2,430	to	\$13,500

Source: CECO

Calculate Economic Leak Reduction

- Determine economic replacement threshold
 - A Partners can determine economic threshold for all replacements
 - This is a capital recovery economic calculation

Economic Replacement Threshold (cf/hour) = Where:

- CR = Cost of replacement (\$)
- DF = Discount factor at interest *i* =
- H = Hours of compressor operation per year
- **GP** = **Gas price (\$/thousand cubic feet)**

$$DF = \frac{i(1+i)^n}{(1+i)^n - 1}$$

Economic Replacement Threshold

Example: Payback calculations for new rings and rod replacement

CR = \$1,620 for rings + \$9,450 for rod = \$11,070 H = 8,000 hours per year GP = \$7/Mcf

DF @ i = 10% and n = 1 year DF = $\frac{0.1(1+0.1)^1}{(1+0.1)^1 - 1} = \frac{0.1(1.1)}{1.1 - 1} = \frac{0.11}{0.1} = 1.1$

DF @ i = 10% and n = 2 years

$$\mathsf{DF} = \frac{0.1(1+0.1)^2}{(1+0.1)^2 - 1} = \frac{0.1(1.21)}{1.21 - 1} = \frac{0.121}{0.21} = 0.576$$

One year payback $ER = \frac{\$11,070 \times 1.1 \times 1,000}{\$3,000 \times \$7}$ = 217 scf per hour

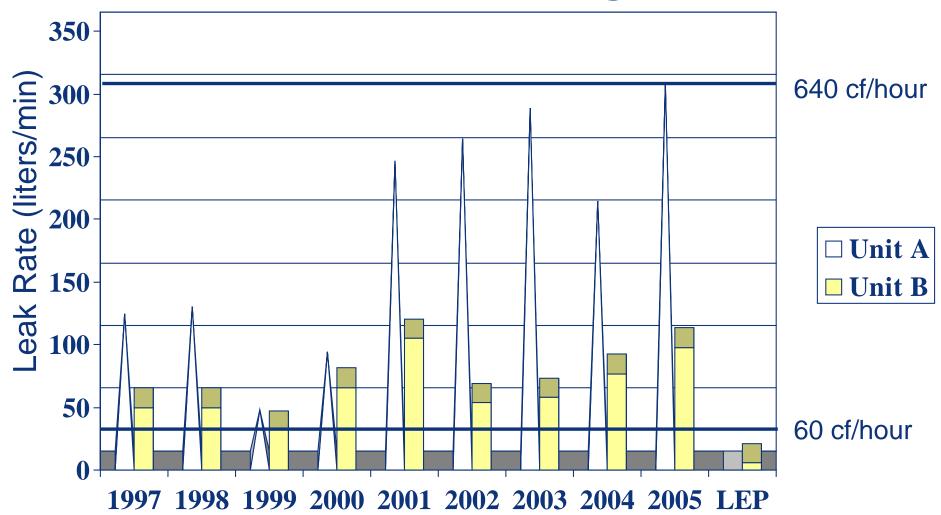
Is Rod Packing Replacement Profitable?

- Replace packing when leak reduction expected will pay back cost
 - Ieak reduction expected" is the difference between current leak rate and leak rate with new rings

Rings Only			Rod and Rings			
Rings: \$1	,620		Rings:	\$1 ,	,620	
Rod: \$()		Rod:	\$9	,450	
Gas: \$7	7/Mcf		Gas:	\$7	/Mcf	
Operating: 8,	000 hours/y	/ear	Operating:	8,0	000 hours/y	ear
Leak Reduction			Leak Reduction	on		
Expected	Payback		Expected		Payback	
(cf/hour)	(months)		(cf/hour)		(months)	
55	7		376		7	
29	12		197		13	
20	18		137		18	
16	22		108		22	

Industry Experience – Northern Natural Gas

- Monitored emission at two locations
 - Init A leakage as high as 301 liters/min (640 cf/hour)
 - Init B leakage as high as 105 liters/min (220 cf/hour)
- Installed Low Emission Packing (LEP)
 - Testing is still in progress
 - After 3 months, leak rate shows zero leakage increase


Industry Experience – Occidental

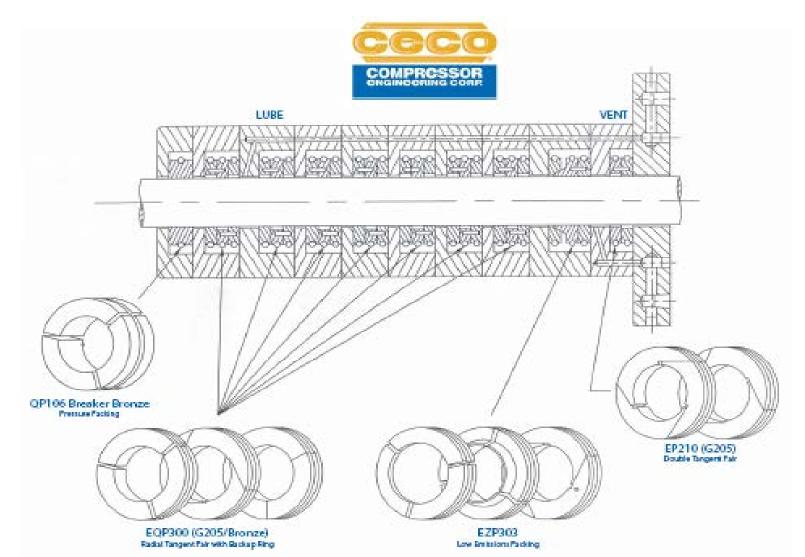
- Occidental upgraded compressor rod packing at its Elk Hills facility in southern California
- Achieved reductions of 400 Mcf/day/compressor
- Savings 145 MMcf/yr
- A Payback in under 3 years

Northern Natural Gas - Leakage Rates

Northern Natural Gas Packing Leakage Economic Replacement Point

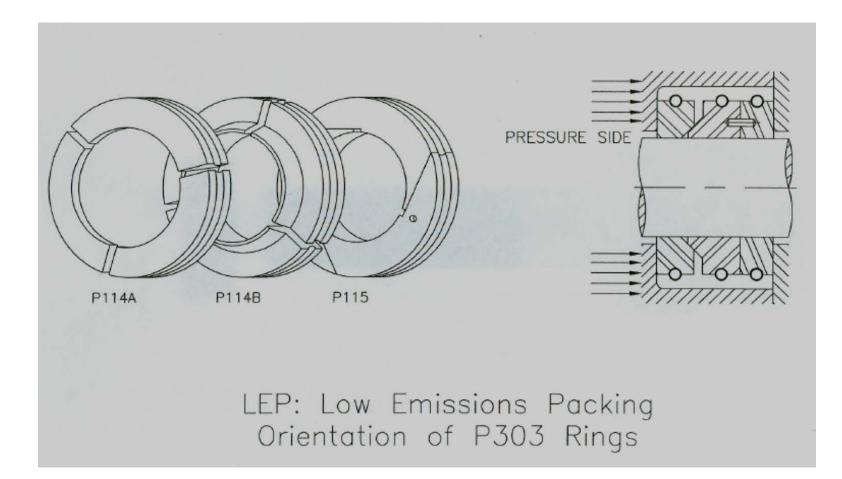
- Approximate packing replacement cost is \$3,000 per compressor rod (parts/labor)
- Assuming gas at \$7/Mcf: 1 cubic foot/minute = 28.3 liters/minute
 - 50 liters/minute/28.316 = 1.8 scf/minute
 - 1.8 x 60 minutes/hour= 108 scf/hr
 - 108 x 24/1000 = 2.6 Mcf/day

 - § 950 x \$7/Mcf = \$6,650 per year leakage
 - This replacement pays back in <6 months</p>



Low Emission Packing

- Low emission packing (LEP) overcomes low pressure to prevent leakage
- The side load eliminates clearance and maintains positive seal on cup face
- LEP is a static seal, not a dynamic seal. No pressure is required to activate the packing
- This design works in existing packing case with limited to no modifications required



LEP Packing Configuration

Orientation in Cup

Reasons to Use LEP

- Vpgrade is inexpensive
- Significant reduction of greenhouse gas are major benefit
- A Refining, petrochemical and air separation plants have used this design for many years to minimize fugitive emissions
- With gas at \$7/Mcf, packing case leakage should be identified and fixed.

Discussion

- Industry experience applying these technologies and practices
- Limitations on application of these technologies and practices
- Actual costs and benefits