NPDES PERMIT NO. NM0020672 FACT SHEET

FOR THE DRAFT NATIONAL POLLUTANT DISCHARGE ELIMINATION SYSTEM (NPDES) PERMIT TO DISCHARGE TO WATERS OF THE UNITED STATES

APPLICANT

City of Gallup WWTP P.O. Box 1270 Gallup, NM 87305

ISSUING OFFICE

U.S. Environmental Protection Agency Region 6 1445 Ross Avenue Dallas, Texas 75202-2733

PREPARED BY

Quang T. Nguyen Environmental Engineer NPDES Permits & TMDL Branch (6WQ-P) Water Division

VOICE: 214-665-7238 FAX: 214-665-2191

EMAIL: Nguyen.quang@epa.gov

DATE PREPARED

June 01, 2017

PERMIT ACTION

Proposed reissuance of the current National Pollutant Discharge Elimination System (NPDES) permit issued August 30, 2011, with an effective date of October 1, 2011, and an expiration date of September 30, 2016.

RECEIVING WATER - BASIN

Puerco River – Lower Colorado River Basin

DOCUMENT ABBREVIATIONS

In the document that follows, various abbreviations are used. They are as follows:

4Q3 Lowest four-day average flow rate expected to occur once every three-years

BAT Best available technology economically achievable BCT Best conventional pollutant control technology

BPT Best practicable control technology currently available

BMP Best management plan

BOD Biochemical oxygen demand (five-day unless noted otherwise)

BPJ Best professional judgment

CBOD Carbonaceous biochemical oxygen demand (five-day unless noted otherwise)

CD Critical dilution

CFR Code of Federal Regulations
cfs Cubic feet per second
COD Chemical oxygen demand
COE United States Corp of Engineers

CWA Clean Water Act

DMR Discharge monitoring report

DO Dissolved oxygen

ELG Effluent limitation guidelines

EPA United States Environmental Protection Agency

ESA Endangered Species Act

FWS United States Fish and Wildlife Service

mg/l Milligrams per liter ug/l Micrograms per liter

lbs Pounds

MG Million gallons

MGD Million gallons per day

NMAC New Mexico Administrative Code NMED New Mexico Environment Department

NMIP New Mexico NPDES Permit Implementation Procedures

NMWQS New Mexico State Standards for Interstate and Intrastate Surface Waters

NPDES National Pollutant Discharge Elimination System

MQL Minimum quantification level

O&G Oil and grease

POTW Publically owned treatment works

RP Reasonable potential SS Settleable solids

SIC Standard industrial classification s.u. Standard units (for parameter pH) SWQB Surface Water Quality Bureau

TDS Total dissolved solids
TMDL Total maximum daily load
TRC Total residual chlorine
TSS Total suspended solids
UAA Use attainability analysis

USGS United States Geological Service

WLA Waste Load allocation WET Whole effluent toxicity

WQCC New Mexico Water Quality Control Commission

WQMP Water Quality Management Plan WWTP Wastewater treatment plant

I. CHANGES FROM THE PREVIOUS PERMIT

Changes from the permit previously issued on August 30, 2011, with an effective date of October 1, 2011, and an expiration date of September 30, 2016, are as follow:

- The TDS net incremental increase limit has been established:
- Bis(2-ethylhexyl) Phthalate, Chloroform, and Chlorodibromomethane limits have been established;
- Compliance schedules for TDS, Bis(2-ethylhexyl) Phthalate, Chloroform, and Chlorodibromomethane have been established;
- Ammonia, Beryllium, Mercury, and Cadmium monitoring requirements have been added;
- Minimum Quantification Level and Sufficiently Sensitive Methods requirements have been added;
- DMR electronic reporting requirements have been added; and,
- A 7-Day biomonitoring testing using *Ceriodaphnia dubia* in place of the acute 48-hour biomonitoring testing using *Daphnia pulex* has been added;

II. APPLICANT LOCATION and ACTIVITY

As described in the application, the wastewater treatment plant is located at 800 Sweetwater Place, City of Gallup, McKinley County, New Mexico. Under the Standard Industrial Classification Code 4952, the facility is a POTW with a design flow of 3.5 MGD serving a population of 25,109.

There are five lift stations that direct flow to the Gallup WWTP from the city. The influent flow enters through a 27-inch diameter interceptor that is metered through a 12-inch Parshall flume. The flow then enters the headwork's wet well where it is lifted approximately 23 feet by three screw pumps. The influent then flows by gravity through two band screens. Flow then enters a grit detritor and grit trap. Influent screenings and grit are emptied into waiting receptacles and taken to the landfill.

Flow from the head works is then directed to three primary clarifiers. A fourth primary clarifier is available for increased flows. Sludge and scum are removed and sent to the digesters. Flow is then recombined and sent to aeration basin #1.

Aeration basin #1 consists of four aeration zones which provide oxygen via fine bubble diffusers. Flow is then sent to aeration basin #2 which is an oxidation ditch equipped with four brush aerators. Flow is split at the end of the oxidation ditch and sent to three secondary clarifiers. All three clarifiers then introduce the return activated sludge (RAS) to the front of aeration basin #1 where it combines with the flow from the primary clarifiers. Waste activated sludge (WAS) and scum are removed and sent to the digesters.

Effluent from the secondary clarifiers, if necessary, can be split into lines that feed two disc filters. The filter effluent channel, filtered or bypassed, feeds the process water system providing the facility with its non-potable water supply. Effluent is then sent to the chlorine contact basin where it is disinfected with gas chlorine. De-chlorination is accomplished with sulfur dioxide.

Effluent then flows to the outfall where it is metered through an 18" Parshall flume, or to the reuse wet well for pumping to the reuse system; golf course and sports complex.

Waste activated sludge and primary sludge are pumped to the digestion process which includes a primary digester, mechanical (rotary) sludge thickener, secondary digester and a gravity thickener. Digested sludge can then be processed through the use of a two-meter belt filter press or liquid hauled to the City owned sludge disposal site. The sludge may also be sent to four drying beds for added flexibility. The plant also has a sludge drying system capable of producing Class A bio-solids.

The discharge from the POTW is to the Puerco River Segment 20.6.4.99, which was referred to as Rio Puerco of the West in the previous permit; a perennial stream that flows into Arizona and the Lower Colorado River Basin. The discharge is located at Latitude 35° 31' 03" North, Longitude 108° 49' 02" West.

III.EFFLUENT CHARACTERISTICS

A quantitative description of the discharge(s) described in the EPA Permit Application Form 2A and addendum received June 9, 2016 and May 31, 2017, respectively, is presented in Table 1.

Table 1

Tubic 1		1
Parameter	Max (mg/L)	Avg (mg/L)
Flow, million gallons/day (MGD)	2.59	2.25
pH, minimum, standard units (su)	7.0	N/A
pH, maximum, standard units (su)	7.67	N/A
Temperature, winter, (°F)	20	N/A
Temperature, summer, (°F)	85	N/A
Biochemical Oxygen Demand, 5-day (BOD ₅)	6	6
Fecal Coliform (bacteria/100 ml)	130	130
Total Suspended Solids	4	4
Chlorine, Total Residual (ug/L)	7	7
Dissolved Oxygen	6.21	5.74
Total Kjeldahl Nitrogen	2.8	2.8
Nitrate plus Nitrite Nitrogen	15	15
Phosphorus, T	0.58	0.58
Total Dissolved Solids	1260	1195

Footnotes:

T - Total metal form

The facility has to sample and report all the priority pollutants identified in Part D, Expanded Effluent Testing Data of Form 2A. From that list, the pollutants in Table 2 were either tested above MQLs or were tested at levels above EPA MQL and reported as being non detect. When a pollutant was tested at a detection level that was greater than the EPA MQL then for screening purposes that pollutant was assumed to have a concentration at that detection level. For toxics that were tested at the minimum quantification level (MQL) and reported as less than the MQL, those pollutants are not shown.

Table 2

Parameter	Max	Avg
Cadmium	2 ug/l	2 ug/l
Arsenic, T	0.99 ug/l	0.99 ug/l
Copper, T	4.24 ug/l	4.24 ug/l
Lead	0.32 ug/l	0.32 ug/l
Zinc, T	47 ug/l	47 ug/l
Hardness (as CaCO ₃)	130 mg/l	130 mg/l
Total Phenolic Compound	132 ug/l	132 ug/l
Bis(2-Ethylhexyl) Phthalate	1.84 ug/l	1.84 ug/l
Mercury	0.2 ug/l	0.2 ug/l
Nickel	10 ug/l	10 ug/l
Selenium	0.75 ug/l	0.75 ug/l
2,4,6-Trichlorophenol	0.38 ug/l	0.38 ug/l
Silver	5 ug/l	5 ug/l
Beryllium	2 ug/l	2 ug/l
Chlorodibromomethane	1.88 ug/l	1.88 ug/l
Chloroform	9.7 ug/l	9.7 ug/l

A summary of the last 48 months of available pollutant data (i.e., January 2013 through January 2017) taken from DMRs indicates copper had one reported 30-day average exceedance; August 2013. Total residual chlorine had five reported instance maximum exceedances; August 2016, October 2016, November 2016, December 2016 and January 2017. And, E. coli had two reported daily maximum exceedances; October 2016 and November 2016.

IV. REGULATORY AUTHORITY/PERMIT ACTION

In November 1972, Congress passed the Federal Water Pollution Control Act establishing the NPDES permit program to control water pollution. These amendments established technology-based or end-of-pipe control mechanisms and an interim goal to achieve "water quality which provides for the protection and propagation of fish, shellfish, and wildlife and provides for recreation in and on the water"; more commonly known as the "swimmable, fishable" goal. Further amendments in 1977 of the CWA gave EPA the authority to implement pollution control programs such as setting wastewater standards for industry and established the basic structure for regulating pollutants discharges into the waters of the United States. In addition, it made it unlawful for any person to discharge any pollutant from a point source into navigable waters, unless a permit was obtained under its provisions. Regulations governing the EPA administered NPDES permit program are generally found at 40 CFR §122 (program requirements & permit conditions), §124 (procedures for decision making), §125 (technology-based standards) and §136 (analytical procedures). Other parts of 40 CFR provide guidance for specific activities and may be used in this document as required.

It is proposed that the permit be reissued for a 5-year term following regulations promulgated at 40 CFR §122.46(a). The previous permit will be expired on September 30, 2016. The application was submitted on June 9, 2016. The facility, also, submitted an addendum on May 31, 2017. The existing permit is administratively continued until this permit is issued.

V. DRAFT PERMIT RATIONALE AND PROPOSED PERMIT CONDITIONS

A. OVERVIEW of TECHNOLOGY-BASED VERSUS WATER QUALITY STANDARDS-BASED EFFLUENT LIMITATIONS AND CONDITIONS

Regulations contained in 40 CFR §122.44 NPDES permit limits are developed that meet the more stringent of either technology-based effluent limitation guidelines, numerical and/or narrative water quality standard-based effluent limits, or the previous permit.

Technology-based effluent limitations are established in the proposed draft permit for TSS, BOD5 and percent removal for both. Water quality-based effluent limitations are established in the proposed draft permit for copper, E. coli bacteria, pH, TDS and TRC.

B. TECHNOLOGY-BASED EFFLUENT LIMITATIONS/CONDITIONS

1. General Comments

Regulations promulgated at 40 CFR §122.44 (a) require technology-based effluent limitations to be placed in NPDES permits based on ELGs where applicable, on BPJ in the absence of guidelines, or on a combination of the two. In the absence of promulgated guidelines for the discharge, permit conditions may be established using BPJ procedures. EPA establishes limitations based on the following technology-based controls: BPT, BCT, and BAT. These levels of treatment are:

BPT - The first level of technology-based standards generally based on the average of the best existing performance facilities within an industrial category or subcategory.

BCT - Technology-based standard for the discharge from existing industrial point sources of conventional pollutants, including BOD, TSS, *E. coli* bacteria, pH, and O&G.

BAT - The most appropriate means available on a national basis for controlling the direct discharge of toxic and non-conventional pollutants to navigable waters. BAT effluent limits represent the best existing performance of treatment technologies that are economically achievable within an industrial point source category or subcategory.

2. Effluent Limitation Guidelines

The facility is a POTW treating sanitary wastewater. POTW's have technology-based ELG's established at 40 CFR Part 133, Secondary Treatment Regulation. Pollutants with ELG's established in this Chapter are BOD₅, TSS and pH. BOD₅ limits of 30 mg/l for the 30-day average and 45 mg/l for the 7-day average and 85% percent (minimum) removal are found at 40 CFR §133.102(a). TSS limits, 30 mg/l for the 30-day average and 45 mg/l for the 7-day average, and 85% percent (minimum) removal, are, also, found at 40 CFR §133.102(b). ELG's for pH are between 6-9 s.u. and are found at 40 CFR §133.102(c). Regulations at 40 CFR §122.45(f)(1) require all pollutants limited in permits to have limits expressed in terms of mass such as pounds per day. When determining mass limits for POTW's, the plant's design flow is used to establish the mass load. Mass limits are determined by the following mathematical relationship:

Loading in lbs/day = pollutant concentration in mg/l * 8.345 lbs/gal * design flow in MGD

```
30-day average TSS loading = 30 mg/l * 8.345 lbs/gal * 3.5 MGD 30-day average TSS loading = 876 lbs
```

```
7-day average TSS loading = 45 mg/l * 8.345 lbs/gal * 3.5 MGD 7-day average TSS loading = 1,314 lbs
```

```
30-day average BOD<sub>5</sub> loading = 30 mg/l * 8.345 lbs/gal * 3.5 MGD 30-day average BOD<sub>5</sub> loading = 876 lbs
```

```
7-day average BOD<sub>5</sub> loading = 45 mg/l * 8.345 lbs/gal * 3.5 MGD 7-day average BOD<sub>5</sub> loading = 1,314 lbs
```

Technology-Based Effluent Limits - 3.5 MGD design flow

Table 3: Discharge Limitations

Parameter	30-Day Avg. (lbs/day)	7-Day Avg. (lbs/day)	30-Day Avg. (mg/L)	7-Day Avg. (mg/L)
Flow	N/A	N/A	Measure MGD	Measure MGD
BOD ₅	876	1,314	30	45
BOD ₅ , % removal *1	≥ 85			
TSS	876	1,314	30	45
TSS, % removal *1	≥ 85			

^{*}I % removal is calculated using the following equation: [(average monthly influent concentration – average monthly effluent concentration) ÷ average monthly influent concentration] * 100.

The facility will be required to maintain a log and kept at the facility showing the influent of BOD and TSS on a once per week frequency to be used to determine the removal percentage. This data is not required to be submitted but must be made available to EPA or its agents upon request.

C. WATER QUALITY BASED LIMITATIONS

1. General Comments

Water quality based requirements are necessary where effluent limits more stringent than technology-based limits are necessary to maintain or achieve federal or state water quality limits. Under Section 301(b)(1)(C) of the CWA, discharges are subject to effluent limitations based on Federal or State/Tribe WQS. Effluent limitations and/or conditions established in the draft permit are in compliance with applicable State/Tribal WQS and applicable State/Tribe water quality management plans to assure that surface WQS of the receiving waters are protected and maintained or attained.

2. Implementation

The NPDES permits contain technology-based effluent limitations reflecting the best controls available. Where these technology-based permit limits do not protect water quality or the designated uses, additional water quality-based effluent limitations and/or conditions are included in the NPDES permits. State/Tribe narrative and numerical water quality standards are used in conjunction with EPA criterion and other available toxicity information to determine the adequacy of technology-based permit limits and the need for additional water quality-based controls.

3. State of New Mexico Water Quality Standards (NMWQS)

The general and specific stream standards are provided in New Mexico State Standards for Interstate and Intrastate Surface Water (20.6.4 NMAC, effective March 2, 2017). The facility discharges into the Puerco River Segment 20.6.4.99, which was referred to as Rio Puerco of the West in the previous permit, perennial stream. The designated uses of the receiving waters are livestock watering, wildlife habitat, primary contact, and warmwater aquatic life.

4. Navajo Nation Surface Water Quality Standards (NNSWQS)

The discharge into the Puerco River Segment 20.6.4.99 starts from New Mexico state land and travels approximately 22.21 stream miles to the Arizona –New Mexico border. When the discharge reaches the Arizona border, the water (Puerco River within Navajo Nation) enters Navajo Nation (NN) land. Based on the permit writer's judgment, the discharge from the facility that are compliant with permit limitations and conditions will not have a significant impact on NN waters due to permit limitations protective of both NMWQS and NNSWQS and the distance to NN waters.

The general and specific stream standards for the Navajo Nation are provided in Surface Water Quality Standards passed by Navajo Nation Resources Committee on May 13, 2008, effective March 26, 2009. The Navajo Nation Surface Water Quality Standards (NNSWQS) have designated uses for the Puerco River (the Arizona segment name of the Rio Puerco of the West) as adopted pursuant to §104(b) and §201 of the Navajo Nation Clean Water Act. The designated uses for the Puerco River within Navajo Nation land are domestic water supply, secondary human contact, fish consumption, aquatic & wildlife habitat and livestock watering. As the draft permit develops limitations and conditions below, appropriate sections of the NNSWQS will be identified.

5. Permit Action - Water Quality-Based Limits

Regulations promulgated at 40 CFR §122.44(d) require limits in addition to, or more stringent than effluent limitation guidelines (technology based). New Mexico WQS that are more stringent than effluent limitation guidelines are as follows:

a. pH

Limits of 6.6 to 9.0 standard units (su) for pH in the previous permit will be continued in the draft permit.

b. Bacteria

The 126 cfu/100 m1 daily monthly geometric mean and 410 cfu/100 ml daily maximum for E. coli bacteria in the previous permit will be continued in the draft permit.

c. Dissolved Oxygen (DO)

The low flow or 4Q3 of the receiving stream which was provided by NMED is zero (0). No modeling to evaluate the biochemical oxygen demand of the discharge was conducted. Since 4Q3 is zero, the discharge must meet end-of-pipe criteria.

d. Total Residual Chlorine (TRC)

The previous permit established a TRC limit of 11 ug/L. This will be continued in the draft permit. NNSWQS are identical with NMWQS and no additional considerations are required for this pollutant.

e. Total Dissolved Solids (TDS)

The Colorado River flows more than 1400 miles from it headwaters in the Rocky Mountains through portions of seven states and the Republic of Mexico before it discharges into the Gulf of California. Salinity impacts have been a major concern in the United States and Mexico. The salinity of the Colorado River increases as it flows downstream. The Colorado River has carried an average salt load of approximately 9 million tons annually past Hoover Dam, the uppermost location at which numeric criteria have been established. Many of the saline sediments of the Basin were deposited in prehistoric marine environments. Salts contained within the sedimentary rocks are easily eroded, dissolved, and transported into the river system. (Source: 2014 Review, Water Quality Standards for Salinity, Colorado River System - coloradoriversalinity.org).

In 1973, the Colorado River Basin States came together in 1973 and organized the Colorado River Basin Salinity Control Forum (Forum). In 1974, in coordination with the Department of the Interior and the U.S. State Department, the Forum worked with Congress in the passage of the Colorado River Basin Salinity Control Act (Act). Since implementation of the Program, measures have been put in place which now reduce the annual salt load of the Colorado River by more than 1.3 million tons. The salinity concentration at Imperial Dam has been reduced by about 90 mg/L. However, even with these efforts the quantified damages to U.S. users are still approximately \$382 million per year. Damages are projected to increase to \$614 million per year by 2035 if the Program does not continue to be aggressively implemented (Source: *Colorado River Basin Salinity Control Forum - coloradoriversalinity.org*).

The discharge to the Rio Puerco of the West is part of the Colorado River Basin where a basin wide Colorado River Salinity Control Program (CRSCP) was established. The objective of the CRSCP, as provided in Sections I.A. and I.B., is to achieve "no salt return" whenever practicable for industrial discharges and an incremental increase in salinity over the supply water for municipal discharges. According to the Forum-adopted NPDES permit program policies (for Municipal Discharges), in order for a permittee to be in compliance with the Forum's municipal discharges criteria, the incremental increase in salinity shall be 400 mg/1 or less, which is considered to be a reasonable incremental increase above the flow weighted average salinity of the intake water supply. Based on the facility 2013-2015 DMR data, the facility exceeded the CRSCP net TDS incremental increase of 400 mg/l numerous times. Consistent with the CRSCP requirement, the draft permit proposes a 30-day average TDS limit of 400 mg/L net incremental increase. The facility shall have a 3-year compliance schedule to achieve final limitations. The permit will require a compliance report schedule. The draft permit will, also, maintain the TDS report requirements in the previous permits.

NNSWQS have the same CRSCP as these described above and no additional limitations are required for the protection of CRSCP beneficial uses.

f. Toxics

The Clean Water Act in Section 301 (b) requires that effluent limitations for point sources include any limitations necessary to meet water quality standards. Federal regulations found at 40 CFR §122.44 (d) state that if a discharge poses the reasonable potential to cause an in-stream excursion above a water quality criterion, the permit must contain an effluent limit for that pollutant.

All applicable facilities are required to fill out appropriate sections of the Form 2A, 2S or 2E, to apply for an NPDES permit or reissuance of an NPDES permit. The new form is applicable not only to POTWs, but also to facilities that are similar to POTWs, but which do not meet the regulatory definition of "publicly owned treatment works" (like private domestics, or similar facilities on Federal property). The forms were designed and promulgated to "make it easier for permit applicants to provide the necessary information with their applications and minimize the need for additional follow-up requests from permitting authorities," per the summary statement in the preamble to the Rule. These forms became effective December 1, 1999, after publication of the final rule on August 4, 1999, Volume 64, Number 149, pages 42433 through 42527 of the FRL. The facility is designated as a major and supplied the Form 2A expanded pollutant testing list in their June 9, 2016 application. However, some of the pollutant testing data in the submitted Form 2A were found erroneously reported. On May 31, 2017, the facility submitted the revised data presented in Part III of this Fact Sheet.

Arsenic, Chloroform, Copper, Lead, 2,4,6-Trichlorophenol, Selenium, Chlorodibromomethane, Total Phenolic Compounds, Bis(2-Ethylhexyl) Phthalate, and Zinc were found to be above minimum MQL. Meanwhile, Nickel, Beryllium, Mercury, Silver, and Cadmium were tested at levels above EPA MQL and reported as being non detect.

All of these pollutants will be evaluated for RP to cause or contribute to WQS exceedances. If RP exists, the screen would also calculate the appropriate permit limit needed to be protective of such designated uses. The RP screening which is based on the NMIP as of March 15, 2012 was conducted. The application Form 2A provided the hardness; 130 mg/1, expressed as CaC03, for those hardness dependent WQS. The 4Q3 is zero (0). The receiving water is a perennial waterbody. When the 4Q3 of receiving water is zero, the discharge must meet end-of-pipe criteria, and the CD is 100%. The results of New Mexico and Navajo Nation RP screening are shown in Appendices 1 and 2, respectively.

The NNSWQS for Bis(2-Ethylhexyl) Phthalate, Chloroform, and Chlorodibromomethane are more stringent than the NMWQS. The results of the RP screening indicate Chloroform, Chlorodibromomethane, and Bis(2-Ethylhexyl) Phthalate demonstrate RP to exceed the Navajo Nation water quality standards consistent with the designated uses for the receiving water. The Navajo Nation is a downstream state, and the permit limits developed for this permit must ensure that its WQS are protected (See 40 CFR 122.4(d)). The draft permit will propose a daily maximum and monthly average limits of 0.4 ug/L, 5.7 ug/L and 1.2 ug/L for Chlorodibromomethane, Chloroform, and Bis(2-Ethylhexyl) Phthalate, respectively. The facility shall have a 3-year compliance schedule to achieve final limitations for Chlorodibromomethane, Chloroform, and Bis(2-Ethylhexyl) Phthalate pollutants. The permit will require compliance report schedules. The NPDES compliance evaluation inspection report dated July 29, 2016 indicates that copper has been reported in the wrong units on the DMR

reports. The facility is correcting DMR and quarterly reports. The copper limits with monitoring frequency of once per month in the previous permit will be continued in the draft permit.

The preliminary toxic analysis, also, shows RPs exist for Beryllium, Mercury and Cadmium. Because the permittee has not met the sufficient sensitive test requirement per 40 CFR 122.21(e)(3), EPA proposes monitoring for these parameters at 3 times per week in this draft permit. During the public comment period, the permittee may submit the analysis result using EPA Methods 1630 (for Mercury) and 200.7 (for Beryllium and Cadmium). EPA may reconsider this monitoring requirement upon the result(s). Pollutants applicable to the Tribe and State WQS that are not listed in Part D of Form 2A will be tested during the permit term pursuant to 40 CFR 122.21(j)(4)(iv).

D. MONITORING FREQUENCY FOR LIMITED PARAMETERS

Regulations require permits to establish monitoring requirements to yield data representative of the monitored activity 40 CFR §122.48(b) and to assure compliance with permit limitations 40 CFR §122.44(i)(1). Sample frequency is based on the March 2012, NMIP. Flow is proposed to be monitored continuously using a totalizing meter. E. coli bacteria, BOD5 and TSS, are proposed to be sampled once per week. For Bis(2-Ethylhexyl) Phthalate, Chloroform, Chlorodibromomethane, Cadmium, Mercury, and Beryllium, the monitoring frequencies of 3 times per week are proposed. Sample type for Copper, BOD5, TDS, and TSS is 6-Hr composite. Meanwhile, grab sample is for E. coli bacteria, Bis(2-Ethylhexyl) Phthalate, Chloroform, Chlorodibromomethane, Cadmium, Mercury, and Beryllium. The parameters TSS and BOD5 percent removal calculations are required once per week. The monitoring frequencies of daily and instantaneous grab samples for TRC, pH are consistent with the previous permit. Report requirements of once per month for TDS is also consistent with the previous permit and the CRSCP guidelines.

E. WHOLE EFFLUENT TOXICITY

The previous permit required the facility to conduct both acute 48-hour biomonitoring testing using *Daphnia pulex* and a chronic 7-day biomonitoring testing using *Pimephales promelas*. The facility effluent exhibited one failure out of 20 acute 48-hour biomonitoring tests performed during the period from February of 2012 to May of 2016. Meanwhile, there were 6 failures out of 22 chronic 7-day biomonitoring tests with *Pimephales promelas* conducted during the same time period. EPA conducted an analysis of the facility past WET data to determine reasonable potential. The results show reasonable potential exists for *Pimephales promelas* (see Appendix 3).

Due to current classification of receiving stream (perennial), effluent dominated receiving stream (4Q3 = 0 cfs and 100% CD), aquatic life protection and existing reasonable potential, the draft permit proposes a chronic 7-day biomonitoring test using Ceriodaphnia dubia in place of the previously required acute 48-hour biomonitoring testing. This is to be performed at a once per three-month in addition to a chronic 7-day biomonitoring test using *Pimephales promelas* at a once per three-month, which was required in the previous permit. The WET limit for toxicity for the *Pimephales promelas* in the previous permit remain in the draft permit. The CD is 100%. In addition to the CD, the permittee is required to perform four other dilutions in addition to a control consistent with the NMIP. The other dilutions are 32%, 42%, 56% and 75%.

During the period beginning the effective date of the permit and lasting through the expiration date of the permit, the permittee is authorized to discharge from Outfall 001- the discharge to the Puerco River. Discharges shall be limited and monitored by the permittee as specified in Tables 4 and 5:

Table 4: Discharge Limitations

Whole Effluent Toxicity Limit	NOEC
(7-Day NOEC) *1	
Pimephales promelas	100%
Whole Effluent Toxicity Testing	NOEC
(7-Day NOEC) *1	
Ceriodaphnia dubia	REPORT

^{*1} Monitoring and reporting requirements begin on the effective date of this permit.

Table 5: Monitoring Requirements

EFFLUENT CHARACTERISTIC	FREQUENCY	<u>TYPE</u>
Pimephales promelas	Once/Quarter	24-HR. Composite
Ceriodaphnia dubia	Once/Quarter	24-HR. Composite

VI. FACILITY OPERATIONAL PRACTICES

A. SEWAGE SLUDGE

The permittee shall use only those sewage sludge disposal or reuse practices that comply with the federal regulations established in 40 CFR Part 503 "Standards for the Use or Disposal of Sewage Sludge". The specific requirements in the permit apply as a result of the design flow of the facility, the type of waste discharged to the collection system, and the sewage sludge disposal or reuse practice utilized by the treatment works. The permittee shall submit an Annual Sludge Status report in accordance with NPDES Permit NM0020672, Parts I and Parts IV.

B. WASTE WATER POLLUTION PREVENTION REQUIREMENTS

The permittee shall institute programs directed towards pollution prevention. The permittee will institute programs to improve the operating efficiency and extend the useful life of the treatment system.

C. INDUSTRIAL WASTEWATER CONTRIBUTIONS

The applicant identified no non-categorical Significant Industrial User's (SIU) and no Categorical Industrial User's (CIU) in the permit application. The EPA has tentatively determined that the permittee will not be required to develop a full pretreatment program. However, general pretreatment provisions have been required. The facility is required to report to EPA, in terms of character and volume of pollutants any significant indirect dischargers into the POTW subject to pretreatment standards under §307(b) of the CWA and 40 CFR Part 403.

D. OPERATION AND REPORTING

The applicant is required to operate the treatment facility at maximum efficiency at all times; to monitor the facility's discharge on a regular basis; and report the results monthly. Reporting requirements and the requirement of using EPA-approved test procedures (methods) for the analysis and quantification of

pollutants or pollutant parameters are contained in 40 CFR 122.41(l) and 40 CFR 122.21 (e), respectively. As required by 40 CFR 127.16, <u>all Discharge Monitoring Reports</u> (DMRs) shall be <u>electronically reported</u>. The monitoring results will be available to the public.

VII. 303(d) LIST/TMDL REQUIREMENTS

The facility discharges into the Puerco River Segment 20.6.4.99 perennial stream. The EPA approved 2016-2018 State of New Mexico CWA §303(d) / §305(b) Integrated Report identifies the Segment is impaired due to Ammonia. EPA is proposing monitoring of total ammonia at a frequency of twice per month, starting on the effective date of the permit and lasting until the permit expiration date. The data would assist NMED to develop the TMDLs. The permit has a standard reopener clause that would allow the permit to be changed if at a later date additional requirements on new or revised TMDLs are completed. In accordance with the NMIP Ammonia Strategy, WET conditions are used to address ammonia toxicity.

VIII. ANTIDEGRADATION

The NMAC, Section 20.6.4.8 "Antidegradation Policy and Implementation Plan" sets forth the requirements to protect designated uses through implementation of the State water quality standards. The limitations and monitoring requirements set forth in the proposed permit are developed from the State water quality standards and are protective of those designated uses. Furthermore, the policy sets forth the intent to protect the existing quality of those waters, whose quality exceeds their designated use. The permit requirements and the limits are protective of the assimilative capacity of the receiving water, which is protective of the designated uses of that water, NMAC Section 20.6.4.8.A.2.

IX. ANTIBACKSLIDING

The proposed permit is consistent with the requirements to meet anti-backsliding provisions of the Clean Water Act, Section 402(o) and 40 CFR §122.44(l)(i)(A), which state in part that interim or final effluent limitations must be as stringent as those in the previous permit, unless material and substantial alterations or additions to the permitted facility occurred after permit issuance which justify the application of a less stringent effluent limitation.

X. ENDANGERED SPECIES CONSIDERATIONS

The US Fish and Wildlife Service (USFWS), Southwest Region 2 website, https://ecos.fws.gov/ecp0/reports/species-by-current-range-county?fips=35031, recently listed five species in McKinley County as endangered (E), threatened (T) or candidate (C). One of the species is aquatic and includes the Zuni bluehead sucker (*Catostomus discobolus yarrow*), E. Three of the species are avian and include the Yellow-billed Cuckoo (*Coccyzus americanus*), T, the Mexican spotted owl (*Strix occidentalis lucida*), T, and the Southwestern willow flycatcher (*Empidonax traillii extimus*), E. One flowering plant species is the Zuni fleabane (*Erigeron rhizomatus*), T.

In accordance with requirements under section 7(a)(2) of the Endangered Species Act, EPA has reviewed this permit for its effect on listed threatened and endangered species and designated critical habitat. After review, EPA has determined that the reissuance of this permit will have "no effect" on listed threatened and endangered species nor will adversely modify designated critical habitat. EPA makes this determination based on the following:

The Zuni bluehead sucker currently occupies 9 river miles (15 kilometers) in 3 headwater stream of the Rio Nutria in New Mexico, and potentially occurs in 27 miles in (43 kilometers) the Kinlichee drainage of Arizona. However, the number of occupied miles in Arizona is unknown and the genetic composition of these fish is still under investigation. Zuni bluehead sucker range reduction and fragmentation is caused by discontinuous surface water flow, introduced species, and habitat degradation from fine sediment deposition. Zuni bluehead sucker persist in very small creeks that are subject to very low flows and drying during periods of drought. Because of climate change (warmer air temperatures), stream flow is predicted climate change (warmer air temperatures), stream flow is predicted to decrease in the Southwest, even if precipitation were to increase moderately. Warmer winter and spring temperatures cause an increased fraction of precipitation to fall as rain, resulting in a reduced snow pack, an earlier snow melt, and a longer dry season leading to decreased stream flow in the summer and a longer fire season. These changes would have a negative effect on Zuni bluehead sucker. Another major impact to populations of Zunibluehead sucker was the application of fish toxicants through at least two dozen treatments in the Nutria and Pescado rivers between 1960 and 1975. Large numbers of Zuni bluehead suckers were killed during these treatments. The Zuni bluehead sucker is most likely extirpated from Rio Pescado as none have been collected from that river since 1993. The discharge from the POTW is to the Puerco River Segment 20.6.4.99; a perennial stream that flows into Arizona and the Lower Colorado River Basin. Besides, the permit does not authorize activities that may cause alteration of stream flow that could cause destruction of the Zuni bluehead sucker habitat, if it is existing at the Puerco River, and issuance of the permit will have no effect on this species.

The yellow-billed cuckoo is a Neotropical migrant bird that winters in South America and breeds in North America. The yellow-billed cuckoo has been listed as endangered. The primary cause of loss and degradation of yellow-billed cuckoo is the loss and degradation of riparian breeding habitat, which is believed to have caused the declines in the distribution and abundance of the species Conversion to agriculture and other land uses, urbanization, dams and river flow management, stream channelization and bank stabilization, and livestock grazing are the causes of riparian habitat losses. The permit does not authorize activities that may cause destruction of the yellow-billed cuckoo habitat, and issuance of the permit will have no effect on this species.

Research of available material finds that the primary cause for the population decreases leading to threatened status for the Mexican Spotted Owl is destruction of habitat. No pollutants are identified which might affect species habitat or prey species and are not limited by the permit. Catastrophic fires and elimination of riparian habitat also were identified as threats to species habitat. The NPDES program regulates the discharge of pollutants and does not regulate forest management practices and agricultural practices, which contribute to catastrophic fires and elimination of riparian habitat, and thus, species habitat. The issuance of this permit is found to have no impact on the habitat of this species.

Southwestern Willow Flycatchers habitat occurs in riparian areas along streams, rivers, and other wetlands where dense willow, cottonwood, buttonbush and arrow weed are present. The primary reason for decline is the reduction, degradation and elimination of the riparian habitat. Other reasons include brood parasitism by the brown headed cowbird and stochastic events like fire and floods that destroy fragmented populations. The permit does not authorize activities that may cause destruction of the flycatcher habitat, and issuance of the permit will have no effect on this species.

All known Zuni fleabane population sites occur on public lands. The known sites occur on lands managed by the U.S. Forest Service in the Cibola National Forest and Bureau of Land Management.

Zuni fleabane is threatened by modification of its habitat due to mineral exploration and development. The distribution of Zuni fleabane is geologically associated with the distribution of uranium deposits in west-central New Mexico. Any significant development of these deposits would seriously jeopardize the Zuni fleabane. In addition, off-road vehicles activities are becoming increasingly more popular and a potential threat to the fragile habitat of this species. The permit does not authorize activities that may cause destruction of the Zuni fleabane habitat, and issuance of the permit will have no effect on this species.

XI. HISTORICAL and ARCHEOLOGICAL PRESERVATION CONSIDERATIONS

The reissuance of the permit should have no impact on historical and/or archeological sites since no construction activities are planned in the reissuance.

XII. PERMIT REOPENER

The permit may be reopened and modified during the life of the permit if relevant portions of "New Mexico's Water Quality Standards for Interstate and Intrastate Streams" are revised or remanded by the New Mexico Water Quality Control Commission or if changes are made to the "Water Quality Standards for Salinity - Colorado River System" by the Colorado River Basin Salinity Control Forum. In addition, the permit may be reopened and modified during the life of the permit if relevant procedures implementing the Water Quality Standards are either revised or promulgated by the New Mexico Environment Department. Should the State adopt a State water quality standard, and/or develop or amend a TMDL, this permit may be reopened to establish effluent limitations for the parameter(s) to be consistent with that approved State standard and/or water quality management plan, in accordance with 40 CFR §122.44(d). Modification of the permit is subject to the provisions of 40 CFR §124.5.

XIII. VARIANCE REQUESTS

None

XIV. CERTIFICATION

The permit is in the process of certification by the State Agency following regulations promulgated at 40 CFR 124.53. A draft permit and draft public notice will be sent to the District Engineer of COE, to the Regional Director of FWS and to the National Marine Fisheries Service prior to the publication of that notice.

XV. FINAL DETERMINATION

The public notice describes the procedures for the formulation of final determinations.

XVI. ADMINISTRATIVE RECORD

The following information was used to develop the proposed permit:

A. APPLICATION(s)

EPA Application Form 2A and addendum were received on June 9, 2016 and May 31, 2017, respectively.

B. 40 CFR CITATIONS

Sections 122, 124, 125, 131, 133, 136

C. MISCELLANEOUS

New Mexico State Standards for Interstate and Intrastate Surface Water, 20.6.4 NMAC, effective March 2, 2017.

Procedures for Implementing National Pollutant Discharge Elimination System Permits in New Mexico, March 2012.

Statewide Water Quality Management Plan, December 17, 2002.

State of New Mexico 303(d) List for Assessed Stream and River Reaches, 2014 -2016.

2014 Review Water Quality Standards for Salinity - Colorado River System, Colorado River Basin Salinity Control Forum - October 2014.

Navajo Nation Surface Water Quality Standards 2007, passed by Navajo Nation Resources Committee on May 13, 2008

Appendix 1

					CALCULAT	IONS OF N	EW MEXIC	O WATER (QUALITY-B	ASED EFFL	UENT LIMIT	ATIONS				
NMAC 20.6.4.					(EPA approve	d site-specific	criteria for alu	minum, cadmi	ium, and zinc	on April 30, 201	2)					
Calculations Sp	ecifications:				Excel	Revised as	s of July 10	, 2012		·						
· ·																
Prepared By:					Quang Nguyer	1										
					0 0 7											
STEP 1:	REFERENCE I	MPLEMENTATIO	ON PROCEDU	RES			Append	ix 1 of Fa	act Sheet							
	INPUT FACILI	TY AND RECEIV	/ING STREAM	/ DATA												
	LIST SOURCE	OF DATA INPL	Л													
IMPLEMENTATIO	ON PROCEDURE	S														
The State of Ne	w Mexico Stand	lards for Interst	tate and Intra	state Sur	face Waters are	implemented	in this spread	sheet								
by using proced																
, , , , ,																
FACILTY							DATA INPUT									
Permittee							City of Gallup	WWTP								
NPDES Permit N	lo.						NM0020672									
Outfall No.(s)							1									
Plant Effluent Fl	ow (MGD)						3.5		For industria	l and federal fa	acility, use the	highest monthly	average flow			
Plant Effluent Fl	ow (cfs)						5.425		for the past 2	24 months. For	POTWs, use t	he design flow				
RECEIVING STR	REAM						DATA INPUT									
Receiving Strea	am Name						Puerco River									
Basin Name							Low er Color	ado River Bas	sin							
Waterbody Seg	ment Code No.						20.6.4.99									
ls a publicly ow	ned lake or rese	rvoir (enter "1"	if it's a lake,	"0" if not))		0									
Are acute aqua	tic life criteria co	onsidered (1= y	es, 0= no)	(MUST e	enter "1" for 200	5 Standards)	1									
Are chronic aqu	uatic life criteria	considered (1=	yes, 0=no)				1									
Are domestic w	ater supply crite	eria considered	(1= yes, 0=r	10)			1									
Are irrigation w	ater supply crite	ria considered	(1= yes, 0=n	0)			1									
Livestock w ate	ring and wildlife	habitat criteria	applied to all	streams												
USGS Flow Sta	ition						USGS									
WQ Monitoring	Station No.						SJR									
Receiving Stream	am TSS (mg/l)						4		For intermitte	nt stream, ente	r effluent TSS					
Receiving Stream	ım Hardness (m	g/l as CaCOs)			RANGE: 0 - 40	10	130		For intermitte	nt stream, ente	r effluent Hard	lness (If no data	a, 20 mg/l is use	d)		
Receiving Strea	m Critical Low F	low (4Q3) (cfs)				0		Enter "0" for	intermittent stre	eam and lake.					
Receiving Stream	am Harmonic Mea	an Flow (cfs)					0		Enter harmon	nic mean or mo	dified harmonic	mean flow dat	a or 0.001 if no	data is availa	ible	
Avg. Receiving	Water Tempera	ture (C)					21.55									
pH (Avg), Rece	iving Stream						8.6									
Fraction of stre	am allow ed for r	mixing (F)					1		Enter 1, if str	eam morpholog	y data is not a	vailable or for i	ntermittent strea	ims.		
Fraction of Critic	cal Low Flow						0									

STEP 2:	INPUT AMBIE	NT AND EFFLUE	NT DATA													
	CALCULATE	IN-STREAM WA	STE CONCE	NTRATIOI	NS											
DATA INPUT					etric mean conc	entration as mid	ro-gram per l	iter (ua/l or pr	ob)							
					pecified for the		3	(19.1)								
							ut the DI is a	reater than M	Ol innut "1/2	DL" for calcula	tion					
					ed as "< detecti	. ,					alom.					
					akue is reported					inputtou.						
			# a 1000 tric	ar mage ve	ando io reported	, input citator tir	o roportou va	100 01 0 101	ouloulution.							
			The followi	na formul	ar is used to ca	loulate the lectr	oam Wasto C	oncontration	(C4)							
				•	cedures for Imp				(64)							
						•	S rellins ill i	New INEXICO								
				(G) + (G	(e*2.13*Ce)] / (F	· Qa + Qe)										
			Where:		•											
					Concentration											
				raction of stream allowed for mixing (see "Procedures for Implementing NPDES Permits in New Mexico") eported concentration in effluent												
					concentration	upstream of dis	charge									
			Qe = Plant													
			Qa = Critica	l low flov	of stream at d	lischarge point	expressed as	the 4Q3 or h	armonic mear	flow for huma	n health criteri	a				
The follow ing fo	rmular convert	metals reported	in total form	to dissol	ved form if crite	ria are in dissol	ved form									
See the current	"Procedures fo	r Implementing N	NPDES Permi	ts in New	Mexico"											
Kp = Kpo * (TSS	;**a)				Kp = Linear pa	artition coefficie	nt; Kpo and a	can be found	d in table belo	W						
C/Ct = 1/ (1 + Kp	*TSS* 10^-6)				TSS = Total su	spended solids	concentration	n found in red	ceiving stream	n (or in effluent	for intermittent	stream)				
Total Metal Crite	ria (Ct) = Cr / (C/Ct)			C/Ct = Fraction	of metal disso	lved; and Cr =	= Dissolved co	riteria value							
			Stream Line	ear Partitio	on Coefficient					Lake Linear Pa	artition Coeffici	ent				
Total Metals	Total Value		Кро	alpha (a)	Кр	C/Ct	Dissolved Va	alue in Stream	1	Кро	alpha (a)	Кр	C/Ct	Dissolved Va	alue in Lake	
Arsenic	0.99		480000	-0.73		0.588960475				480000	-0.73		0.588960475			
Chromium III	0		3360000	-0.93		0.212657313	0			2170000	-0.27	1492462.873		0		
Copper	4.24		1040000	-0.74		0.401394693				2850000	-0.9		0.233984339			
Lead	0.32		2800000	-0.8		0.213009688				2040000	-0.53		0.203508585			
Nickel	10		490000	-0.57		0.529277299				2210000	-0.76		0.244954939			
Silver	5		2390000	-1.03	573160.3113	0.303707548	1.51853774			2390000	-1.03	573160.3113	0.303707548	1.5185377		
Zinc	47		1250000	-0.7	473661.427	0.345465422	16.2368748			3340000	-0.68	1301204.848	0.161165046	7.5747571		
The follow ing fo	rmular is used	to calculate hard	dness depen	dent crite	ria					Dissolved						
(Please refer to										WQC (ug/l)						
Aluminum (T)			Acute			e(1.3695[ln(ha	ardness)]+1.8	308)		4899.49996		If StreampH <	6.5, enter 750	in cell O113		
			Chronic			e(1.3695[ln(ha	ardness)]+0.9	161)		1962.919981		If StreampH <	6.5, enter 87 in	n cell P113		
Cadmium (D)			Acute			e(0.8968[ln(ha	ardness)]-3.5	699)*CF1		2.066756852		CF1 = 1.13667	'2 - 0.041838*lr	n(hardness)		
			Chronic			e(0.7647[ln(ha	ardness)1-4.2	180)*CF2		0.546973575		CF2 = 1.10167	'2 - 0.041838*lr	n(hardness)		

										Name to 1						
										Dissolved						
										WQC (ug/l)						
Chromium III (D)			Acute			0.316 e(0.819	[In(hardness)]+3.7256)		706.3406651						
			Chronic			0.860 e(0.819	[In(hardness)]+0.6848)		91.88040863						
Copper (D)			Acute			0.960 e(0.942	2[In(hardness)]-1.700)		17.20790661						
			Chronic			0.960 e(0.854	5[In(hardness)]-1.702)		11.20641288						
Lead (D)			Acute			e(1.273[ln(har	dness)]-1.46)	*CF3		85.83082697		CF3 = 1.46203	3 - 0.145712*ln(hardness)		
			Chronic			e(1.273[ln(har	dness)]-4.70	5)*CF4		3.344704105		CF4 = 1.46203	- 0.145712*ln(hardness)		
Manganese (D)			Acute			e(0.3331[ln(ha	ardness)]+6.4	676)		3258.348417						
			Chronic			e(0.3331[ln(ha	ardness)]+5.8	743)		1800.240823						
Nickel (D)			Acute			0.998 e(0.846	[In(hardness)]+2.255)		584.6025078						
			Chronic			0.997 e(0.846	[In(hardness)]+0.0584)		64.93129014						
Silver (D)			Acute			0.85 e(1.72[ln	(hardness)]-6	.59)		5.051273175						
Zinc (D)			Acute			0.978 e(0.909	4[In(hardness)]+0.9095)		203.1186356						
			Chronic			0.986 e(0.909	47[In(hardnes	s)]+0.6235)		153.8960897						
						Instream	Waste Conc	entration				Livestock&	Acute	Chronic	Human	Nee
POLLUTANTS				Ambient	Effluent	Acute	Domestic	Chronic	Human	Domestic	Irrigation	Wildlife	Aquatic	Aquatic	Health	TMD
				Conc.	Conc.	Aquatic	Supply	Aquatic	Health	Criteria	Criteria	Criteria	Criteria	Criteria	Criteria	
		CAS No.	MQL	Ca (ug/l)	Ce (ug/l)	2.13*Ce	Cd,dom (ug/l)	Cd (ug/l)	Cd,hh (ug/l)	ug/l	ug/l	ug/l	ug/l	ug/l	ug/l	
Radioactivity, Nu	utrients. and	d Chlorine											Ĭ		- V	
Aluminum, total		7429-90-5	2.5			0	0	0	0	1E+100	5000	1E+100	4899.49996	1962.92	1E+100	N/A
Barium, dissolved		7440-39-3	100			0	0	0	0	2000	1E+100	1E+100	1E+100	1E+100	1E+100	N/A
Boron, dissolved		7440-42-8	100			0	0	0	0	1E+100	750	5000	1E+100	1E+100	1E+100	N/A
Cobalt, dissolved		7440-48-4	50			0	0	0	0	1E+100	50	1000	1E+100	1E+100	1E+100	N/A
Uranium, dissolve	4	7440-40-4	0.1			0	0	0	0	30	1E+100	1E+100	1E+100	1E+100	1E+100	N/A
Vanadium, dissolve		7440-61-1	50			0	0	0	0	1E+100	100	100	1E+100	1E+100	1E+100	N/A
		7440-02-2	50			0	0		0		1E+100	30				N/A
Ra-226 and Ra-22	28 (PO/I)							0		5			1E+100	1E+100	1E+100	
Strontium (pCi/l)						0	0	0	0	8	1E+100	1E+100	1E+100	1E+100	1E+100	N/A
Tritium (pCi/l)	m					0	0	0	0	20000	1E+100	20000	1E+100	1E+100	1E+100	N/A
Gross Alpha (pCi						0	0	0	0	15	1E+100	15	1E+100	1E+100	1E+100	N/A
Asbestos (fibers/						0	0	0	0	7000000	1E+100	1E+100	1E+100	1E+100	1E+100	N/A
Total Residual Chl		7782-50-5	33			0	0	0	0	1E+100	1E+100	11	19	11	1E+100	N/A
Nitrate as N (mg/l)						0	0	0	0	10	1E+100	1E+100	1E+100	1E+100	1E+100	N/A
Nitrite + Nitrate (m				6.35	15	31.95	31.95	31.95	31.95	1E+100	1E+100	132	1E+100	1E+100	1E+100	N/A
METALS AND CY																
Antimony, dissolv		7440-36-0	60			0	0	0	0	6	1E+100	1E+100	1E+100	1E+100	640	N/A
Arsenic, dissolve		7440-38-2	0.5	2	0.58307087	1.241940953				10	100	200	340	150	9	N/A
Beryllium, dissolve	ed	7440-41-7	0.5		2	4.26	4.26	4.26	4.26	4	1E+100	1E+100	1E+100	1E+100	1E+100	N/A
Cadmium, dissolve	ed	7440-43-9	1	0	2	4.26	4.26	4.26	4.26	5	10	50	2.066756852	0.5469736	1E+100	N/A
Chromium (III), dis	solved	16065-83-1	10			0	0	0	0	1E+100	1E+100	1E+100	706.3406651	91.880409	1E+100	N/A
Chromium (VI), dis	ssolved	18540-29-9	10			0	0	0	0	1E+100	1E+100	1E+100	16	11	1E+100	N/A
Chromium, dissolv	red	7440-47-3				0	0	0	0	100	100	1000	1E+100	1E+100	1E+100	N/A
Copper, dissolved	i	7440-50-8	0.5	0	1.701913497	3.625075749	3.62507575	3.62507575	3.62507575	1300	200	500	17.20790661	11.206413	1E+100	N/A
Lead, dissolved		7439-92-1	0.5	0.6	0.0681631	0.145187403	0.1451874	0.1451874	0.1451874	15	5000	100	85.83082697	3.3447041	1E+100	N/A
Manganese, disso	shrad	7439-96-5				0	0	0	0	1E+100	1E+100	1E+100	3258.348417	1800.2408	1E+100	NA

						la de constant	Masta Co			15	A	Obsessio	Uluman	Need		
							Waste Conc			Livestock&	Acute	Chronic	Human	Need		
				Ambient	Effluent	Acute	Domestic	Chronic	Human	Domestic	Irrigation	Wildlife	Aquatic	Aquatic	Health	TMDL
POLLUTANTS				Conc	Conc.	Aquatic	Supply	Aquatic	Health	Criteria	Criteria	Criteria	Criteria	Criteria	Criteria	
		CAS No.	MQL	Ca (ug/l)	Ce (ug/l)	2.13*Ce	Cd,dom (ug/l)		Cd,hh (ug/l)	ug/l	ug/l	ug/l	ug/l	ug/l	ug/l	
Mercury, dissolve	d	7439-97-6	0.005			0	0	0	0	1E+100	1E+100	1E+100	1.4	0.77	1E+100	N/A
Mercury, total		7439-97-6	0.005		0.2	0.426	0.426	0.426	0.426	2	1E+100	0.77	1E+100	1E+100	1E+100	N/A
Molybdenum, diss	olved	7439-98-7				0	0	0	0	1E+100	1000	1E+100	1E+100	1E+100	1E+100	N/A
Molybdenum, total	l recoverable	7439-98-7				0	0	0	0	1E+100	1E+100	1E+100	7920	1895	1E+100	N/A
Nickel, dissolved ((P)	7440-02-0	0.5	0	5.292772987	11.27360646	11.2736065	11.2736065	11.2736065	700	1E+100	1E+100	584.6025078	64.93129	4600	N/A
Selenium, dissolve	ed (P)	7782-49-2	5		0.75	1.5975	1.5975	1.5975	1.5975	50	130	50	1E+100	1E+100	4200	N/A
Selenium, dis (SO	4 >500 mg/l)		5			0	0	0	0	50	250	50	1E+100	1E+100	4200	N/A
Selenium, total red	coverable	7782-49-2	5			0	0	0	0	1E+100	1E+100	5	20	5	1E+100	N/A
Silver, dissolved		7440-22-4	0.5	0	1.518537741	3.234485389	3.23448539	3.23448539	3.23448539	1E+100	1E+100	1E+100	5.051273175	1E+100	1E+100	N/A
Thallium, dissolve	d (P)	7440-28-0	0.5		0	0	0	0	0	2	1E+100	1E+100	1E+100	1E+100	0.47	N/A
Zinc, dissolved		7440-66-6	20	17.18	16.23687482	34.58454336	34.5845434	34.5845434	34.5845434	10500	2000	25000	203.1186356	153.89609	26000	N/A
Cyanide, total rec	overable	57-12-5	10			0	0	0	0	200	1E+100	5.2	22	5.2	140	N/A
Dioxin		1764-01-6	0.00001			0	0	0	0	3.00E-05	1E+100	1E+100	1E+100	1E+100	5.1E-08	N/A
VOLATILE COMI	POUNDS															
Acrolein		107-02-8	50			0	0	0	0	18	1E+100	1E+100	1E+100	1E+100	9	N/A
Acrylonitrile		107-13-0	20			0	0	0	0	0.65	1E+100	1E+100	1E+100	1E+100	2.5	N/A
Benzene		71-43-2	10			0	0	0	0	5	1E+100	1E+100	1E+100	1E+100	510	N/A
Bromoform		75-25-2	10			0	0	0	0	44	1E+100	1E+100	1E+100	1E+100	1400	N/A
Carbon Tetrachlor	ride	56-23-5	2			0	0	0	0	5	1E+100	1E+100	1E+100	1E+100	16	N/A
Chlorobenzene		108-90-7	10			0	0	0	0	100	1E+100	1E+100	1E+100	1E+100	1600	N/A
Clorodibromometh	iane	124-48-1	10			0	0	0	0	4.2	1E+100	1E+100	1E+100	1E+100	130	N/A
Chloroform	uno	67-66-3	50		9.7	20.661	20.661	20.661	20.661	57	1E+100	1E+100	1E+100	1E+100	4700	N/A
Dichlorobromomet	thana	75-27-4	10		1.88	4.0044	4.0044	4.0044	4.0044	5.6	1E+100	1E+100	1E+100	1E+100	170	N/A
1,2-Dichloroethar		107-06-2	10		1.00	0	0	0	0	5	1E+100	1E+100	1E+100	1E+100	370	N/A
		75-35-4	10			0	0	0	0	7	1E+100	1E+100	1E+100	1E+100	7100	N/A
1,1-Dichloroethyl			10						0	5		1E+100				
1,2-Dichloropropa		78-87-5				0	0	0	-		1E+100		1E+100	1E+100	150	N/A
1,3-Dichloropropy	yiene	542-75-6	10			0	0	0	0	3.5	1E+100	1E+100	1E+100	1E+100	210	N/A
Ethylbenzene		100-41-4	10			0	0	0	0	700	1E+100	1E+100	1E+100	1E+100	2100	N/A
Methyl Bromide		74-83-9	50			0	0	0	0	49	1E+100	1E+100	1E+100	1E+100	1500	N/A
Methylene Chlorid		75-09-2	20			0	0	0	0	5	1E+100	1E+100	1E+100	1E+100	5900	N/A
1,1,2,2-Tetrachlo		79-34-5	10			0	0	0	0	1.8	1E+100	1E+100	1E+100	1E+100	40	N/A
Tetrachloroethyle	ne	127-18-4	10			0	0	0	0	5	1E+100	1E+100	1E+100	1E+100	33	N/A
Tolune		108-88-3	10			0	0	0	0	1000	1E+100	1E+100	1E+100	1E+100	15000	N/A
1,2-trans-Dichlor	oethylene	156-60-5	10			0	0	0	0	100	1E+100	1E+100	1E+100	1E+100	10000	N/A
1,1,1-Trichloroeth	nane	71-55-6				0	0	0	0	200	1E+100	1E+100	1E+100	1E+100	1E+100	N/A
1,1,2-Trichloroeth	nane	79-00-5	10			0	0	0	0	5	1E+100	1E+100	1E+100	1E+100	160	N/A
Trichloroethylene		79-01-6	10			0	0	0	0	5	1E+100	1E+100	1E+100	1E+100	300	N/A
Vinyl Chloride		75-01-4	10			0	0	0	0	2	1E+100	1E+100	1E+100	1E+100	24	N/A
ACID COMPOUN	DS															
2-Chlorophenol		95-57-8	10			0	0	0	0	175	1E+100	1E+100	1E+100	1E+100	150	N/A
2,4-Dichlorophen	ol	120-83-2	10			0	0	0	0	105	1E+100	1E+100	1E+100	1E+100	290	N/A
2,4-Dimethylphen	iol	105-67-9	10			0	0	0	0	700	1E+100	1E+100	1E+100	1E+100	850	N/A
4,6-Dinitro-o-Cres		534-52-1	50			0	0	0	0	14	1E+100	1E+100	1E+100	1E+100	280	N/A

					Instrea	m Waste Conce	entration				Livestock&	Acute	Chronic	Human	Need
			Ambient	Effluent	Acute	Domestic	Chronic	Human	Domestic	Irrigation	Wildlife	Aquatic	Aquatic	Health	TMDL
POLLUTANTS			Conc	Conc.	Aquatic	Supply	Aquatic	Health	Criteria	Criteria	Criteria	Criteria	Criteria	Criteria	
	CAS No.	MQL	Ca (ug/l)	Ce (ug/l)	2.13*Ce	Cd,dom (ug/l)	Cd (ug/l)	Cd,hh (ug/l)	ug/l	ug/l	ug/l	ug/l	ug/l	ug/l	
2,4-Dinitrophenol	51-28-5	50			0	0	0	0	70	1E+100	1E+100	1E+100	1E+100	5300	N/A
Pentachlorophenol	87-86-5	50			0	0	0	0	1	1E+100	1E+100	19	15	30	N/A
Phenol	108-95-2	10			0	0	0	0	10500	1E+100	1E+100	1E+100	1E+100	860000	N/A
2,4,6-Trichlorophenol	88-06-2	10		0.38	0.8094	0.8094	0.8094	0.8094	32	1E+100	1E+100	1E+100	1E+100	24	N/A
BASE/NEUTRAL															
Acenaphthene	83-32-9	10			0	0	0	0	2100	1E+100	1E+100	1E+100	1E+100	990	N/A
Anthracene	120-12-7	10			0	0	0	0	10500	1E+100	1E+100	1E+100	1E+100	40000	N/A
Benzidine	92-87-5	50			0	0	0	0	0.0015	1E+100	1E+100	1E+100	1E+100	0.002	N/A
Benzo(a)anthracene	56-55-3	5			0	0	0	0	0.048	1E+100	1E+100	1E+100	1E+100	0.18	N/A
Benzo(a)pyrene	50-32-8	5			0	0	0	0	0.2	1E+100	1E+100	1E+100	1E+100	0.18	N/A
3,4-Benzofluoranthene	205-99-2	10			0	0	0	0	0.048	1E+100	1E+100	1E+100	1E+100	0.18	N/A
Benzo(k)fluoranthene	207-08-9	5			0	0	0	0	0.048	1E+100	1E+100	1E+100	1E+100	0.18	N/A
Bis(2-chloroethyl)Ether	111-44-4	10			0	0	0	0	0.3	1E+100	1E+100	1E+100	1E+100	5.3	N/A
Bis(2-chloroisopropyl)Ether	108-60-1	10			0	0	0	0	1400	1E+100	1E+100	1E+100	1E+100	65000	N/A
Bis(2-ethylhexyl)Phthalate	117-81-7	10		1.84	3.9192	3.9192	3.9192	3.9192	6	1E+100	1E+100	1E+100	1E+100	22	N/A
Butyl Benzyl Phthalate	85-68-7	10			0	0	0	0	7000	1E+100	1E+100	1E+100	1E+100	1900	N/A
2-Chloronapthalene	91-58-7	10			0	0	0	0	2800	1E+100	1E+100	1E+100	1E+100	1600	NA
Chrysene	218-01-9	5			0	0	0	0	0.048	1E+100	1E+100	1E+100	1E+100	0.18	N/A
Dibenzo(a,h)anthracene	53-70-3	5			0	0	0	0	0.048	1E+100	1E+100	1E+100	1E+100	0.18	N/A
1,2-Dichlorobenzene	95-50-1	10			0	0	0	0	600	1E+100	1E+100	1E+100	1E+100	1300	N/A
1,3-Dichlorobenzene	541-73-1	10			0	0	0	0	469	1E+100	1E+100	1E+100	1E+100	960	N/A
1,4-Dichlorobenzene	106-46-7	10			0	0	0	0	75	1E+100	1E+100	1E+100	1E+100	190	N/A
3,3'-Dichlorobenzidine	91-94-1	5			0	0	0	0	0.78	1E+100	1E+100	1E+100	1E+100	0.28	N/A
Diethyl Phthalate	84-66-2	10			0	0	0	0	28000	1E+100	1E+100	1E+100	1E+100	44000	N/A
Dimethyl Phthalate	131-11-3	10			0	0	0	0	350000	1E+100	1E+100	1E+100	1E+100	1100000	N/A
Di-n-Butyl Phthalate	84-74-2	10			0	0	0	0	3500	1E+100	1E+100	1E+100	1E+100	4500	N/A
2,4-Dinitrotoluene	121-14-2	10			0	0	0	0	1.1	1E+100	1E+100	1E+100	1E+100	34	N/A
1,2-Diphenylhydrazine	122-66-7	20			0	0	0	0	0.44	1E+100	1E+100	1E+100	1E+100	2	N/A
Fluoranthene	206-44-0	10			0	0	0	0	1400	1E+100	1E+100	1E+100	1E+100	140	N/A
Fluorene	86-73-7	10			0	0	0	0	1400	1E+100	1E+100	1E+100	1E+100	5300	N/A
Hexachlorobenzene	118-74-1	5			0	0	0	0	1	1E+100	1E+100	1E+100	1E+100	0.0029	N/A
Hexachlorobutadiene	87-68-3	10			0	0	0	0	4.5	1E+100	1E+100	1E+100	1E+100	180	N/A
Hexachlorocyclopentadiene	77-47-4	10			0	0	0	0	50	1E+100	1E+100	1E+100	1E+100	1100	N/A
Hexachloroethane	67-72-1	20			0	0	0	0	25	1E+100	1E+100	1E+100	1E+100	33	N/A
ndeno(1,2,3-cd)Pyrene	193-39-5	5			0	0	0	0	0.048	1E+100	1E+100	1E+100	1E+100	0.18	N/A
sophorone	78-59-1	10			0	0	0	0	368	1E+100	1E+100	1E+100	1E+100	9600	N/A
litrobenzene	98-95-3	10			0	0	0	0	18	1E+100	1E+100	1E+100	1E+100	690	N/A
n-Nitrosodimethylamine	62-75-9	50			0	0	0	0	0.0069	1E+100	1E+100	1E+100	1E+100	30	N/A
n-Nitrosodi-n-Propylamine	621-64-7	20			0	0	0	0	0.05	1E+100	1E+100	1E+100	1E+100	5.1	N/A
n-Nitrosodiphenylamine	86-30-6	20			0	0	0	0	71	1E+100	1E+100	1E+100	1E+100	60	N/A
Nonylphenol	84852-15-3				0	0	0	0	1E+100	1E+100	1E+100	28	6.6	1E+100	N/A
Pyrene	129-00-0	10			0	0	0	0	1050	1E+100	1E+100	1E+100	1E+100	4000	N/A
1,2,4-Trichlorobenzene	120-82-1	10			0	0	0	0	70	1E+100	1E+100	1E+100	1E+100	70	N/A

						Instrear	n Waste Conce	entration				Livestock&	Acute	Chronic	Human	Need
				Ambient	Effluent	Acute	Domestic	Chronic	Human	Domestic	Irrigation	Wildlife	Aquatic	Aquatic	Health	TMDL
OLLUTANTS				Conc	Conc.	Aquatic	Supply	Aquatic	Health	Criteria	Criteria	Criteria	Criteria	Criteria	Criteria	
		CAS No.	MQL	Ca (ug/l)	Ce (ug/l)	2.13*Ce	Cd,dom (ug/l)	Cd (ug/l)	Cd,hh (ug/l)	ug/l	ug/l	ug/l	ug/l	ug/l	ug/l	
PESTICIDES AN	ID PCBS				(0)		, , , ,	() ,	, (0,			Ů				
Aldrin		309-00-2	0.01			0	0	0	0	0.021	1E+100	1E+100	3	1E+100	0.0005	N/A
Alpha-BHC		319-84-6	0.05			0	0	0	0	0.056	1E+100	1E+100	1E+100	1E+100	0.049	N/A
Beta-BHC		319-85-7	0.05			0	0	0	0	0.091	1E+100	1E+100	1E+100	1E+100	0.17	N/A
Gamma-BHC		58-89-9	0.05			0	0	0	0	0.2	1E+100	1E+100	0.95	1E+100	1.8	N/A
Chlordane		57-74-9	0.2			0	0	0	0	2	1E+100	1E+100	2.4	0.0043	0.0081	N/A
4,4'-DDT and de	arivativas	50-29-3	0.02			0	0	0	0	1	1E+100	0.001	1.1	0.001	0.0022	N/A
4,4-bb1 and de Dieldrin	STIVALIVES .	60-57-1	0.02			0	0	0	0	0.022	1E+100	1E+100	0.24	0.056	0.0022	N/A
Diazinon		333-41-5	0.02			0	0	0	0	1E+100	1E+100	1E+100	0.24	0.036	1E+100	N/A
	_		0.04													
Alpha-Endosulfa		959-98-8	0.01			0	0	0	0	62	1E+100	1E+100	0.22	0.056	89	N/A
Beta-Endosulfan		33213-65-9	0.02			0	0	0	0	62	1E+100	1E+100	0.22	0.056	89	N/A
Endosulfan sulfa	ate	1031-7-8	0.1			0	0	0	0	62	1E+100	1E+100	1E+100	1E+100	89	N/A
Endrin		72-20-8	0.02			0	0	0	0	2	1E+100	1E+100	0.086	0.036	0.06	N/A
Endrin Aldehyde		7421-93-4	0.1			0	0	0	0	10.5	1E+100	1E+100	1E+100	1E+100	0.3	N/A
Heptachlor		76-44-8	0.01			0	0	0	0	0.4	1E+100	1E+100	0.52	0.0038	0.00079	N/A
Heptachlor Epoix	xde	1024-57-3	0.01			0	0	0	0	0.2	1E+100	1E+100	0.52	0.0038	0.00039	N/A
PCBs		1336-36-3	0.2			0	0	0	0	0.5	1E+100	0.014	2	0.014	0.00064	N/A
Toxaphene		8001-35-2	0.3			0	0	0	0	3	1E+100	1E+100	0.73	0.0002	0.0028	N/A
STEP 3:		TIAL INSTREAM					ALITY CRITERIA	4								
	ANDESTABL	IOU ELLFOEINI F	JIVII IA HONE	FUR ALL	APPLICABLE	PARAMETERS										
No limito ara aata	abliahad if the re	ani ina atraom	in not donin	nated for th	a posticulos u											
No limits are esta								t.								
No limits are esta								teria.								
The most applica																
Nater quality cri																
f background co			quality crite	eria, w ater	quality criteria	apply. And "N	eed IMDL" sho	own to the ne	ext column of A	vg. Mass						
Monthly avg con	centration = dai	ly max. / 1.5.														
APPLICABLE WA	ATER QUALITY	BASED LIMITS														
	The following	formular is use	d to calculat	e the allow	able daily max	imum effluent	cincentration		See the curre	ent "Procedure	s for Implemen	ting NPDES Pern	nits in New Me	xico"		
		nc. = Cs + (Cs -					Conc. = Daily I									
Where:		le water quality		Ė		, ,										
		stream concent														
		of stream allow		ng (1,0 is a	ssigned to dor	nestic water si	Jooly and hum	an health use	es)							
	Qe = Plant eff		_G.GI IIIAII	.5 (to to di			- Joy Grandin		,							
	Sec - Flant CII	IGOTIL HOW												_		

7429- 7440- 7440- 7440- 7440-	90-5 01105 39-3 01007 42-8 01022 48-4 01037 61-1 22706 62-2 01087 11503	N/A N/A N/A N/A	Irrigation Limits NA	Limits N/A N/A N/A	Aquatic Limits N/A N/A	Aquatic Limits N/A	Limits	Max Conc ug/l	Avg Conc ug/l	ug/l	ug/l	Max Load lb/day	Avg Load lb/day
7429- 7440- 7440- 7440- 7440- 7440-	90-5 01105 39-3 01007 42-8 01022 48-4 01037 61-1 22706 62-2 01087 11503	N/A N/A N/A N/A N/A N/A	N/A N/A N/A	N/A N/A N/A	N/A								•
7429- 7440- 7440- 7440- 7440- 7440-	90-5 01105 39-3 01007 42-8 01022 48-4 01037 61-1 22706 62-2 01087 11503	N/A N/A N/A N/A	N/A N/A N/A	N/A N/A		N/A	A1/A						
7440- 7440- 7440- 7440-	42-8 01022 48-4 01037 61-1 22706 62-2 01087 11503	N/A N/A N/A	N/A N/A	N/A	N/A		NA	N/A	N/A	N/A	N/A	NA	N/A
7440- 7440- 7440-	42-8 01022 48-4 01037 61-1 22706 62-2 01087 11503	N/A N/A N/A	N/A			N/A	N/A	N/A	N/A	NA	NA	N/A	N/A
7440- 7440- 7440-	48-4 01037 61-1 22706 62-2 01087 11503	N/A N/A	N/A		N/A	N/A	N/A	N/A	N/A	N/A	NA	N/A	N/A
7440- 7440-	61-1 22706 62-2 01087 11503	N/A		N/A	N/A	N/A	N/A	N/A	N/A	NA	NA	N/A	N/A
7440-	62-2 01087 11503		N/A	N/A	N/A	N/A	N/A	N/A	N/A	NA	NA	N/A	NA
	11503	N/A	N/A	N/A	N/A	N/A	NA	N/A	N/A	N/A	N/A	N/A	NA
	,		N/A	N/A	N/A	N/A	NA	N/A	N/A	N/A	N/A	N/A	NA
	13501	N/A	NA	N/A	N/A	N/A	NA	N/A	N/A	NA	N/A	N/A	NA
	04124		NA	N/A	N/A	N/A	NA	N/A	N/A	NA	N/A	N/A	NA
	80029		NA	N/A	N/A	N/A	N/A	N/A	N/A	NA	N/A	N/A	NA
													NA
e 7782-	50-5 50060												N/A
1102	,												N/A
	,												N/A
DE as Total	00000	IVA	IVA	IVA	IVA	IVA	IVA	INA	IVA	IWA	IWA	IVA	IVA
	36-0 01007	NI/A	N/Δ	N/A	N/Δ	N/Δ	N/Δ	N/A	N/Δ	N/A	N/Δ	N/Δ	N/A
										r	7		N/A
	,												0.11676
	,												0.015966159
	7									r	7		0.015900159 N/A
	7												N/A
	7												N/A
	,												N/A
													N/A
	,												N/A
	,												N/A
													N/A
													N/A
	,									r	r		N/A
													N/A
	F												N/A
													N/A
	· ·									r	7		N/A
	,												N/A
										7	7		N/A
													N/A
able 57-1	2-5 00720	N/A	NA	N/A	N/A	N/A	N/A	N/A	NA	NA	NA	N/A	N/A
				h	.,,,					N/-		N/-	0
	U1-6 34675	N/A	N/A	N/A	N/A	N/A	N/A	N/A	N/A	N/A	N/A	N/A	N/A
					.,,,		A111				L		
													N/A
	,												N/A
	,												N/A
	,				N/A	N/A	N/A	N/A			NA	N/A	N/A N/A
1	DE, as Total 7440- 7440- 7440- 2440- 7440- 2440- 7440- 7439- 7439- 7439- 7439- 7440- 7782- 2500 mg/l) 27440- 7440-	DE, as Total 7440-36-0 7440-38-2 7440-41-7 7440-39-9 10027 16065-83-1 10103 18540-29-9 10104 7440-47-3 10104 7440-50-8 7439-92-1 101051 17439-96-5 7439-97-6 71900 7439-97-6 71900 7439-97-6 71900 7439-97-6 71900 7439-98-7 1060 7439-98-7 1060 7439-98-7 1060 7439-98-7 1060 7440-02-0 10147 7440-20-0 10147 7440-20-0 10147 7440-20-0 10147 7440-20-0 10147 7440-20-0 10147 7440-20-0 10147	DE, as Total 7440-36-0 7440-38-2 1002 7440-41-7 7440-43-9 101027 7440-43-9 101033 NA 16065-83-1 101034 NA 7440-47-3 101034 NA 7440-50-8 101042 NA 7439-92-1 101051 NA 17439-96-5 101056 NA 17439-97-6 171900 NA 17439-97-6 171900 NA 17439-98-7 1060 NA 17440-02-0 10167 NA 1782-49-2 101147 NA 1782-49-2 101147 NA 17440-22-4 101077 NA 17440-22-4 101077 NA 17440-28-0 101059 NA 1764-01-6 1092 NA 1764-01-6 1092 NA 107-13-0 108-108-108-108-108-108-108-108-108-108-	## 7782-50-5 50060 N/A N/A N/A	1782-50-5 50060				17782-50-5 50060 NA	8 7782-50-5 50060 NA	9 7782-50-5 50060 NA	9	1782-95-5 50660

POLLUTANTS	CAS No.	STORET	Domestic	Irrigation	Livestock or Wildlife	Acute Aquatic	Chronic Aquatic	Human Health	Daily Max Conc	Monthly Avg Conc	Daily Max Total	Mon. Avg	Daily Max Load	Monthly Avg Load
OLLOTAINIO	ONO NO.	OTONET	Limits	Limits	Limits	Limits	Limits	Limits	ug/l	ug/l	ug/l	ug/l	lb/day	lb/day
hlorobenzene	108-90-7	34301	N/A	NA	NA	N/A	NA	NA	N/A	N/A	N/A	N/A	NA	NA
Corodibromomethane	124-48-1	32105	N/A	N/A	N/A	N/A	N/A	N/A	N/A	N/A	N/A	N/A	N/A	N/A
Chloroform	67-66-3	32106	N/A	N/A	N/A	N/A	N/A	N/A	N/A	N/A	N/A	N/A	N/A	N/A
Dichlorobromomethane	75-27-4	32101	N/A	N/A	N/A	N/A	N/A	N/A	N/A	N/A	N/A	N/A	N/A	N/A
1,2-Dichloroethane	107-06-2	34531	N/A	N/A	N/A	N/A	N/A	N/A	N/A	N/A	N/A	N/A	N/A	N/A
1,1-Dichloroethylene	75-35-4	34501	N/A	N/A	N/A	N/A	N/A	N/A	N/A	N/A	N/A	N/A	N/A	N/A
1,2-Dichloropropane	78-87-5	34541	N/A	N/A	N/A	N/A	N/A	N/A	N/A	N/A	N/A	N/A	N/A	N/A
1,3-Dichloropropylene	542-75-6	34561	N/A	N/A	N/A	N/A	N/A	N/A	N/A	N/A	N/A	N/A	N/A	N/A
Ethylbenzene	100-41-4	34371	N/A	N/A	N/A	N/A	N/A	N/A	N/A	N/A	N/A	N/A	N/A	N/A
Methyl Bromide	74-83-9	34413	N/A	N/A	N/A	N/A	N/A	N/A	N/A	N/A	N/A	N/A	N/A	N/A
Methylene Chloride	75-09-2	34423	N/A	N/A	N/A	N/A	N/A	N/A	N/A	N/A	N/A	N/A	N/A	N/A
1,1,2,2-Tetrachloroethane	79-34-5	34516	N/A	N/A	N/A	N/A	N/A	N/A	N/A	N/A	N/A	N/A	N/A	N/A
Tetrachloroethylene	127-18-4	34475	N/A	N/A	N/A	N/A	N/A	N/A	N/A	N/A	N/A	N/A	N/A	N/A
Tolune	108-88-3	34010	N/A	N/A	N/A	N/A	N/A	N/A	N/A	N/A	N/A	N/A	N/A	N/A
1,2-trans-Dichloroethylene	156-60-5	34546	N/A	N/A	N/A	N/A	N/A	N/A	N/A	N/A	N/A	N/A	N/A	N/A
1,1,1-Trichloroethane	71-55-6	,	N/A	N/A	N/A	N/A	N/A	N/A	N/A	N/A	N/A	N/A	N/A	N/A
1,1,2-Trichloroethane	79-00-5	34511	N/A	N/A	N/A	N/A	N/A	N/A	N/A	N/A	N/A	N/A	N/A	NA
richloroethylene	79-01-6	39180	N/A	N/A	N/A	N/A	N/A	N/A	N/A	N/A	N/A	N/A	N/A	N/A
/inyl Chloride	75-01-4	39175	N/A	N/A	N/A	N/A	N/A	N/A	N/A	N/A	N/A	N/A	N/A	NA
ACID COMPOUNDS		,												
2-Chlorophenol	95-57-8	34586	N/A	N/A	N/A	N/A	N/A	NA	N/A	N/A	N/A	N/A	N/A	N/A
2,4-Dichlorophenol	120-83-2	34601	N/A	N/A	NA	N/A	N/A	N/A	N/A	N/A	N/A	N/A	NA	N/A
2,4-Dimethylphenol	105-67-9	34606	N/A	N/A	N/A	N/A	N/A	N/A	N/A	N/A	N/A	N/A	NA	N/A
4,6-Dinitro-o-Cresol	534-52-1	34657	N/A	N/A	N/A	N/A	N/A	N/A	N/A	N/A	N/A	N/A	N/A	N/A
2,4-Dinitrophenol	51-28-5	34616	N/A	N/A	N/A	N/A	N/A	N/A	N/A	N/A	N/A	N/A	N/A	N/A
Pentachlorophenol Phenol	87-86-5 108-95-2	39032 34694	N/A N/A	N/A N/A	N/A N/A	N/A N/A	N/A N/A	N/A N/A	N/A N/A	N/A N/A	N/A N/A	N/A N/A	N/A N/A	N/A N/A
2,4,6-Trichlorophenol	88-06-2	34621	N/A N/A	N/A N/A	N/A N/A	N/A	N/A	N/A	N/A N/A	N/A	N/A N/A	N/A	N/A N/A	N/A N/A
BASE/NEUTRAL	00-00-2	34021	INA	IWA	INA	IWA	IWA	IWA	INA	IWA	INA	IWA	INA	IVA
Acenaphthene	83-32-9	34205	N/A	N/A	N/A	N/A	N/A	N/A	N/A	N/A	N/A	N/A	N/A	N/A
Anthracene	120-12-7	34220	N/A	N/A	N/A	N/A	N/A	N/A	N/A	N/A	N/A	N/A	N/A	N/A
Benzidine	92-87-5	39120	N/A	N/A	N/A	N/A	NA	NA	N/A	N/A	N/A	N/A	N/A	N/A
Benzo(a)anthracene	56-55-3	34526	N/A	N/A	N/A	N/A	NA	NA	N/A	N/A	N/A	N/A	N/A	N/A
Benzo(a)pyrene	50-32-8	34247	N/A	N/A	N/A	N/A	N/A	N/A	N/A	N/A	N/A	N/A	N/A	N/A
3,4-Benzofluoranthene	205-99-2	34230	N/A	N/A	N/A	N/A	N/A	N/A	N/A	N/A	N/A	N/A	N/A	N/A
Benzo(k)fluoranthene	207-08-9	34242	N/A	N/A	N/A	N/A	N/A	N/A	N/A	N/A	N/A	N/A	N/A	N/A
Bis(2-chloroethyl)Ether	111-44-4	34273	N/A	N/A	N/A	N/A	N/A	NA	N/A	N/A	N/A	N/A	N/A	N/A
Bis(2-chloroisopropyl)Ether	108-60-1	34283	N/A	N/A	N/A	N/A	N/A	N/A	N/A	N/A	N/A	N/A	N/A	N/A
Bis(2-ethylhexyl)Phthalate	117-81-7	39100	N/A	N/A	N/A	N/A	N/A	N/A	N/A	N/A	N/A	N/A	N/A	N/A
Butyl Benzyl Phthalate	85-68-7	34292	N/A	N/A	N/A	N/A	N/A	N/A	N/A	N/A	N/A	N/A	N/A	N/A
2-Chloronapthalene	91-58-7	34581	N/A	N/A	N/A	N/A	N/A	N/A	N/A	N/A	N/A	N/A	N/A	N/A
Chrysene	218-01-9	34320	N/A	N/A	N/A	N/A	N/A	N/A	N/A	N/A	N/A	N/A	N/A	N/A
Dibenzo(a,h)anthracene	53-70-3	34556	N/A	N/A	N/A	N/A	N/A	N/A	N/A	N/A	N/A	N/A	N/A	N/A
1,2-Dichlorobenzene	95-50-1	34536	N/A	N/A	N/A	N/A	N/A	N/A	N/A	N/A	N/A	N/A	N/A	N/A

						Livestock	Acute	Chronic	Human	Daily	Monthly	Daily Max	Mon. Avg	Daily	Daily
POLLUTANTS		CAS No.	STORET	Domestic	Irrigation	or Wildlife	Aquatic	Aquatic	Health	Max Conc	Avg Conc	Total	Total	Max Load	Avg Load
				Limits	Limits	Limits	Limits	Limits	Limits	ug/l	ug/l	ug/l	ug/l	lb/day	lb/day
1,3-Dichlorobenzer	ne	541-73-1	34566	N/A	N/A	NA	N/A	N/A	N/A	N/A	NA	N/A	N/A	N/A	N/A
1,4-Dichlorobenzer	ne	106-46-7	34571	N/A	N/A	N/A	N/A	N/A	N/A	N/A	N/A	N/A	N/A	N/A	N/A
3,3'-Dichlorobenzidi	ine	91-94-1	34631	N/A	N/A	N/A	N/A	N/A	N/A	N/A	NA	N/A	N/A	N/A	N/A
Diethyl Phthalate		84-66-2	34336	N/A	N/A	N/A	N/A	N/A	N/A	N/A	NA	N/A	N/A	N/A	N/A
Dimethyl Phthalate		131-11-3	34341	N/A	N/A	N/A	N/A	N/A	N/A	N/A	N/A	N/A	N/A	N/A	N/A
Di-n-Butyl Phthalate		84-74-2	39110	N/A	N/A	N/A	N/A	N/A	N/A	N/A	N/A	N/A	N/A	N/A	N/A
2,4-Dinitrotoluene		121-14-2	34611	N/A	N/A	N/A	N/A	N/A	N/A	N/A	NA	N/A	N/A	N/A	N/A
1,2-Diphenylhydraz	zine	122-66-7	34346	N/A	N/A	N/A	N/A	N/A	N/A	N/A	NA	N/A	N/A	N/A	N/A
luoranthene		206-44-0	34376	N/A	N/A	N/A	N/A	N/A	N/A	N/A	N/A	N/A	N/A	N/A	N/A
Tuorene		86-73-7	34381	N/A	N/A	N/A	N/A	N/A	N/A	N/A	NA	N/A	N/A	N/A	N/A
Hexachlorobenzene	Э	118-74-1	39700	N/A	N/A	N/A	N/A	N/A	N/A	N/A	N/A	N/A	N/A	N/A	N/A
Hexachlorobutadier	ne	87-68-3	34391	N/A	N/A	N/A	N/A	N/A	N/A	N/A	N/A	N/A	N/A	N/A	N/A
Hexachlorocyclope	ntadiene	77-47-4	34386	N/A	N/A	N/A	N/A	N/A	N/A	N/A	N/A	N/A	N/A	N/A	N/A
Hexachloroethane		67-72-1	34396	N/A	N/A	N/A	N/A	N/A	N/A	N/A	N/A	N/A	N/A	N/A	N/A
ndeno(1,2,3-cd)Py	rene	193-39-5	34403	N/A	N/A	N/A	N/A	N/A	N/A	N/A	N/A	N/A	N/A	N/A	N/A
sophorone		78-59-1	34408	N/A	N/A	N/A	N/A	N/A	N/A	N/A	N/A	N/A	N/A	N/A	N/A
Vitrobenzene		98-95-3	34447	N/A	N/A	NA	N/A	N/A	N/A	N/A	NA	N/A	N/A	N/A	N/A
n-Nitrosodimethylan	nine	62-75-9	34438	N/A	N/A	N/A	N/A	N/A	N/A	N/A	N/A	N/A	N/A	N/A	NΑ
n-Nitrosodi-n-Propy	lamine	621-64-7	34428	N/A	N/A	NA	N/A	N/A	N/A	N/A	NA	N/A	N/A	N/A	N/A
n-Nitrosodiphenylar	mine	86-30-6	34433	N/A	N/A	NA	N/A	N/A	N/A	N/A	NA	N/A	N/A	N/A	N/A
Nonylphenol		84852-15-3		N/A	N/A	N/A	N/A	N/A	N/A	N/A	N/A	N/A	N/A	N/A	NΑ
Pyrene		129-00-0	34469	N/A	N/A	N/A	N/A	N/A	N/A	N/A	N/A	N/A	N/A	N/A	NΑ
1,2,4-Trichlorobenz	zene	120-82-1	34551	N/A	N/A	NA	N/A	N/A	N/A	N/A	NA	N/A	N/A	N/A	N/A
PESTICIDES AND F	CBS														
Aldrin		309-00-2	39330	N/A	N/A	NA	N/A	N/A	N/A	N/A	NA	N/A	N/A	N/A	N/A
Alpha-BHC		319-84-6	39337	N/A	N/A	NA	N/A	N/A	N/A	N/A	NA	N/A	N/A	N/A	N/A
Beta-BHC		319-85-7	39338	N/A	N/A	NA	N/A	N/A	N/A	N/A	NA	N/A	N/A	N/A	N/A
Gamma-BHC		58-89-9	39340	N/A	N/A	NA	N/A	N/A	N/A	N/A	NA	N/A	N/A	N/A	N/A
Chlordane		57-74-9	39350	N/A	N/A	N/A	N/A	N/A	N/A	N/A	NA	N/A	N/A	N/A	N/A
4,4'-DDT and deriva	atives	50-29-3	39300	N/A	N/A	N/A	N/A	N/A	N/A	N/A	NA	N/A	N/A	N/A	N/A
Dieldrin		60-57-1	39380	N/A	N/A	N/A	N/A	N/A	N/A	N/A	NA	N/A	N/A	N/A	N/A
Diazinon		333-41-5	39570	N/A	N/A	N/A	N/A	N/A	N/A	N/A	N/A	N/A	N/A	N/A	N/A
Alpha-Endosulfan		959-98-8	34361	N/A	N/A	N/A	N/A	N/A	N/A	N/A	N/A	N/A	N/A	N/A	N/A
Beta-Endosulfan		33213-65-9	34356	N/A	N/A	N/A	N/A	N/A	N/A	N/A	N/A	N/A	N/A	N/A	N/A
ndosulfan sulfate		1031-7-8	34351	N/A	N/A	N/A	N/A	N/A	N/A	N/A	N/A	N/A	N/A	N/A	N/A
indrin		72-20-8	39390	N/A	N/A	N/A	N/A	N/A	N/A	N/A	N/A	N/A	N/A	N/A	NA
ndrin Aldehyde		7421-93-4	34366	N/A	N/A	N/A	N/A	N/A	N/A	N/A	N/A	N/A	N/A	N/A	N/A
Heptachlor		76-44-8	39410	N/A	N/A	N/A	N/A	N/A	N/A	N/A	N/A	N/A	N/A	N/A	NA
leptachlor Epoixde		1024-57-3	39420	N/A	N/A	N/A	N/A	N/A	N/A	N/A	N/A	N/A	N/A	N/A	NA
CBs		1336-36-3	39516	N/A	N/A	NA	N/A	N/A	N/A	N/A	NA	N/A	N/A	N/A	N/A
Toxaphene		8001-35-2	39400	N/A	N/A	N/A	N/A	N/A	N/A	N/A	N/A	N/A	N/A	N/A	N/A

Appendix 2

					CALCULAT	IONS OF N	AVAJO NAT	ION WAT	ER QUALIT	Y-BASED EF	FLUENT LI	MITATIONS				
NMAC 20.6.4.					(EPA approve	d site-specific	criteria for alur	ninum, cadmi	um, and zinc o	n April 30, 201	2)					
Calculations Spe	ecifications:				Excel	Revised as	s of July 10,	2012								
Prepared By:					Quang Nguye	n										
STEP 1:	REFERENCE I	MPLEMENTATIO	N PROCEDU	RES			Appendi	x 2 of Fa	ct Sheet							
	INPUT FACILI	TY AND RECEIV	ING STREAM	/ DATA												
	LIST SOURCE	OF DATA INPL	Л													
IMPLEMENTATIO	ON PROCEDURE	S														
The Navajo Natio	on Standards fo	r Surface Wate	ers are imple	mented in	this spread she	et										
by using proced	dures establishe	d in the current	"Procedures	for Imple	menting NPDES	Permits in Nev	v Mexico"									
FACILTY							DATA INPUT									
Permittee							City of Gallup	WWTP								
NPDES Permit No	b.						NM0020672									
Outfall No.(s)							1									
Plant Effluent Flo	ow (MGD)						3.5		For industria	l and federal fa	acility, use the I	nighest monthly	average flow			
Plant Effluent Flo	ow (cfs)						5.425		for the past 2	4 months. For	POTWs, use t	he design flow.				
RECEIVING STR	EAM						DATA INPUT									
Receiving Stream	m Name						Puerco River									
Basin Name							Low er Colora	do River								
Waterbody Segr	ment Code No.						20.6.4.99									
ls a publicly ow r	ned lake or rese	rvoir (enter "1"	if it's a lake,	"0" if not)			0									
Are acute aquat	tic life criteria co	onsidered (1= y	es, 0= no)	(MUST e	nter "1" for 200	5 Standards)	1									
Are chronic aqu	uatic life criteria	considered (1=	yes, 0=no)				1									
Are domestic w	ater supply crit	eria considered	(1= yes, 0=r	10)			1									
Are irrigation wa	ater supply crite	ria considered	(1= yes, 0=n	10)			1									
Livestock w ater	ring and wildlife	habitat criteria	applied to all	streams			1									
USGS Flow Stat	tion						USGS									
WQ Monitoring S	Station No.						SJR									
Receiving Stream	m TSS (mg/l)						4		For intermitte	nt stream, ente	r effluent TSS					
Receiving Stream	m Hardness (m	g/l as CaCOs)			RANGE: 0 - 40	00	130		For intermitte	nt stream, ente	r effluent Hard	ness (If no data	a, 20 mg/l is use	ed)		
Receiving Stream	m Critical Low F	low (4Q3) (cfs)				0		Enter "0" for i	intermittent stre	am and lake.					
Receiving Stream	m Harmonic Me	an Flow (cfs)					0		Enter harmon	ic mean or mod	dified harmonic	mean flow dat	a or 0.001 if no	data is availa	ible	
Avg. Receiving	Water Tempera	ture (C)					21.55									
pH (Avg), Recei	iving Stream						8.6									
Fraction of strea	am allow ed for i	mixing (F)					1		Enter 1, if stre	eam morpholog	y data is not a	vailable or for in	termittent strea	ams.		
Fraction of Critic	cal Low Flow						0									

STEP 2:	INPUT AMBIE	NT AND EFFLUE	NT DATA													
	CALCULATE	IN-STREAM WA	STE CONCE	NTRATION	NS .											
DATA INPUT			Input polluta	ant geome	tric mean conc	entration as mic	ro-gram per l	iter (ug/l or pp	ob)							
				-	pecified for the											
							ut the DL is q	reater than M	QL, input "1/2	DL" for calcula	tion.					
					ed as "< detecti											
					kue is reported	. ,										
			11 01 1000 1110	ar mac vo	indo io roportod	, input ourior un	o roportou va	100 01 0 101	odiodiation.							
			The follow i	na formula	ar is used to ca	Lulate the Instr	eam Waste C	oncentration ((C4)							
				•	cedures for Imp				(00)							
					e*2.13*Ce)]/(F		O T OTTINO III I	W MOXIOO								
			Where:	(Ca) 1 (G	C 2.10 OC/J/ (I	Qu i Qu										
				om Wasta	Concentration											
						miving (coo "Dr	occidurac for	Implementing	NIDDES Dorm	ite in Now Movie	20")					
						-	oceuules 101	inplementing	INFUES PEIII	its in New Mexic	JU J					
					ntration in efflu		oborac									
					concentration	upstream of dis	cnarge									
			Qe = Plant e			[#h+ 400 c= h		. flam for home	- h-add-ad					
			Qa = Critica	I IOW TIOW	or stream at d	ischarge point	expressed as	the 4Q3 or n	armonic mear	n flow for huma	n nealth criteri	a 				
			16		17 7 5		.,									
The following fo						ria are in dissol	ved form									
See the current		r Implementing i	NPDES Permi	ts in New				. ,								
Kp = Kpo * (TSS					· ·	rtition coefficie										
C/Ct = 1/ (1 + Kp										n (or in effluent	for intermittent	stream)				
Total Metal Crite	ria (Ct) = Cr / (C	/(Ct)			C/Ct = Fraction	of metal disso	ived; and Cr :	= Dissolved cr	riteria value							
					n Coefficient					Lake Linear Pa						
Total Metals	Total Value		Кро	alpha (a)	Кр	C/Ct	Dissolved Va	alue in Stream	1	Кро	alpha (a)	Кр	C/Ct	Dissolved Va	alue in Lake	
	0.00		400000	. =0	474470 7004	0.500000175				400000	. =-	474470 7004	0.500000.475	0.5000700		
Arsenic	0.99		480000	-0.73		0.588960475				480000	-0.73	174476.7021				
Chromium III	0		3360000	-0.93		0.212657313	0			2170000	-0.27	1492462.873		0		
Copper	4.24		1040000	-0.74		0.401394693				2850000	-0.9	818447.5779				
Lead	0.32		2800000	-0.8		0.213009688				2040000	-0.53	978449.4017				
Nickel	10		490000	-0.57		0.529277299				2210000	-0.76	770595.8757				
Silver 	5		2390000	-1.03		0.303707548				2390000	-1.03	573160.3113				
Zinc	47		1250000	-0.7	473661.427	0.345465422	16.2368748			3340000	-0.68	1301204.848	0.161165046	7.5747571		
The fallowing f	amalas is one of	II								Diagram J						
The following fo				aent crite	ria					Dissolved						
(Mease refer to	State Water Qu	ality Standards	tor details)							WQC (ug/l)						
Aluminum (T)			Aoute			o/4 200FIL/IL	urdnooc\1.4 0	200/		4000 40000		# Ctroc===11	C E ont 750	in call C442		
Aluminum (T)	Acute			e(1.3695[ln(ha				4899.49996		If StreampH <						
0.1.1.70			· ·				rdness)]+0.9	,		1962.919981		If StreampH <				
Cadmium (D)			Acute			e(1.0166[ln(ha				2.598699864		CF1 = 1.13667				
			Chronic			e(0.7409[ln(ha	rdness)]-4.7	19)*CF2		0.295170505		CF2 = 1.10167	2 - 0.041838*li	n(hardness)		

										Dissolved						
										WQC (ug/l)						
						0040 (0040	n a 1 3	. 0.7050)		700.0400054						
Chromium III (D)			Acute			0.316 e(0.819				706.3406651						
. (5)			Chronic			0.860 e(0.819				91.88040863						
Copper (D)			Acute			0.960 e(0.942				17.20790661						
			Chronic			0.960 e(0.854				11.20641288						
Lead (D)			Acute			e(1.273[In(har				85.83082697			3 - 0.145712*ln(
			Chronic			e(1.273[In(har				3.344704105		CF4 = 1.46203	3 - 0.145712*ln(hardness)		
Vanganese (D)			Acute			e(0.3331[ln(ha				3258.348417						
			Chronic			e(0.3331[ln(ha				1800.240823						
Nickel (D)			Acute			0.998 e(0.846				584.6025078						
			Chronic			0.997 e(0.846	[In(hardness)]	+0.0584)		64.93129014						
Silver (D)			Acute			0.85 e(1.72[ln	(hardness)]-6	.59)		5.051273175						
Zinc (D)			Acute			0.978 e(0.847				146.3522418						
			Chronic			0.986 e(0.847	3[In(hardness)]+0.884)		147.5493971						
						Instream	n Waste Conc	entration				Livestock&	Acute	Chronic	Human	Need
POLLUTANTS				Ambient	Effluent	Acute	Domestic	Chronic	Human	Domestic	Irrigation	Wildlife	Aquatic	Aquatic	Health	TMDL
				Conc.	Conc.	Aquatic	Supply	Aquatic	Health	Criteria	Criteria	Criteria	Criteria	Criteria	Criteria	
		CAS No.	MQL	Ca (ug/l)	Ce (ug/l)	2.13*Ce	Cd,dom (ug/l)	Cd (ug/l)	Cd,hh (ug/l)	ug/l	ug/l	ug/l	ug/l	ug/l	ug/l	
Radioactivity, Nu	trients, and	Chlorine														
Aluminum, total		7429-90-5	2.5	0	0	0	0	0	0	1E+100	5000	1E+100	750	87	1E+100	N/A
Barium, dissolved		7440-39-3	100			0	0	0	0	2000	1E+100	1E+100	1E+100	1E+100	1E+100	N/A
Boron, dissolved		7440-42-8	100			#VALUE!	#VALUE!	#VALUE!	#VALUE!	1E+100	750	5000	1E+100	1E+100	1E+100	N/A
Cobalt, dissolved		7440-48-4	50			0	0	0	0	1E+100	50	1000	1E+100	1E+100	1E+100	N/A
Uranium, dissolved	t	7440-61-1	0.1			0	0	0	0	30	1E+100	1E+100	1E+100	1E+100	1E+100	N/A
Vanadium, dissolv	ed	7440-62-2	50			0	0	0	0	1E+100	100	100	1E+100	1E+100	1E+100	N/A
Ra-226 and Ra-22	8 (pCi/l)					0	0	0	0	5	1E+100	30	1E+100	1E+100	1E+100	N/A
Strontium (pCi/l)						0	0	0	0	8	1E+100	1E+100	1E+100	1E+100	1E+100	N/A
Tritium (pCi/l)						0	0	0	0	20000	1E+100	20000	1E+100	1E+100	1E+100	N/A
Gross Alpha (pCi/l	1)					0	0	0	0	15	1E+100	15	1E+100	1E+100	1E+100	N/A
Asbestos (fibers/l						0	0	0	0	7000000	1E+100	1E+100	1E+100	1E+100	1E+100	N/A
Total Residual Chlo		7782-50-5	33			#VALUE!	#VALUE!	#VALUE!	#VALUE!	4000	N/A	11	19	11	4000	N/A
Nitrate as N (mg/l)	-					0	0	0	0	10000	N/A	N/A	N/A	N/A	N/A	N/A
Nitrite + Nitrate (mg	2/1)			6.35	15	31.95	31.95	31.95	31.95	1000	N/A	N/A	N/A	N/A	93330	N/A
METALS AND CY												1	1			
Antimony, dissolve		7440-36-0	60			#VALUE!	#VALUE!	#VALUE!	#VALUE!	5.6	N/A	88 and 30	88	30	370	N/A
Arsenic, dissolved		7440-38-2	0.5	2	0.58307087	1.241940953				10	2000	200	340	150	30	N/A
Beryllium, dissolve		7440-41-7	0.5		2	4.26	4.26	4.26	4.26	4	N/A	N/A	N/A	N/A	1870	N/A
Cadmium, dissolve		7440-43-9	1	0	2	4.26	4.26	4.26	4.26	5	50	50	2.598699864	0.2951705	470	N/A
		16065-83-1	10			#VALUE!	#VALUE!	#VALUE!	#VALUE!	1E+100	1E+100	1E+100	706.3406651	91.880409		N/A
Chromium (III), diss Chromium (VI), dis		18540-29-9	10			#VALUE!	#VALUE!	#VALUE!	#VALUE!	1E+100 1E+100	1E+100	1E+100	16	11	1E+100 1E+100	N/A N/A
			10				-		-							
Chromium, dissolv	eu	7440-47-3	0.5	0	1.701913497	0 3.625075749	0 00507575	0	0	100	100 200	1000 500	1E+100 17.20790661	1E+100	1E+100	N/A
											700	500	17 20790661	11.206413	9330	N/A
Copper, dissolved		7440-50-8 7439-92-1	0.5	0.6	0.0681631	0.145187403		0.1451874	0.1451874	15	10000	100	85.83082697	3.3447041	15	N/A

						Instream	Waste Conc	entration		Livestock&			Acute	Chronic	Human	Need
				Ambient	Effluent	Acute	Domestic	Chronic	Human	Domestic	Irrigation	Wildlife	Aquatic	Aquatic	Health	TMDL
POLLUTANTS				Conc	Conc.	Aquatic	Supply	Aquatic	Health	Criteria	Criteria	Criteria	Criteria	Criteria	Criteria	INDL
OLLOTAINIO		CAS No.	MQL	Ca (ug/l)	Ce (ug/l)		Cd,dom (ug/l)		Cd,hh (ug/l)	ug/l	ug/l	ug/l	ug/l	ug/l	ug/l	
Mercury, dissolve	nd.	7439-97-6	0.005	Ca (ug/l)	Ce (ug/i)	#VALUE!	#VALUE!	#VALUE!	#VALUE!	2	N/A	2.4 and 0.001	2.4	0.001	280	N/A
•	eu .				0.0											
Mercury, total		7439-97-6	0.005		0.2	0.426	0.426	0.426	0.426	2	N/A	2.4	2.4	0.001	280	N/A
Wolybdenum, diss		7439-98-7				#VALUE!	#VALUE!	#VALUE!	#VALUE!	N/A	1000	N/A	N/A	N/A	N/A	Need TMD
Molybdenum, total		7439-98-7				0	0	0	0	1E+100	1E+100	1E+100	7920	1895	1E+100	NA
Nickel, dissolved (,	7440-02-0	0.5	0	5.292772987	11.27360646		11.2736065		610	N/A		584.6025078	64.93129	18670	N/A
Selenium, dissolve		7782-49-2	5		0.75	1.5975	1.5975	1.5975	1.5975	50	20	33 and 2	33	2	4670	N/A
Selenium, dis (SO			5			0	0	0	0	50	250	50	1E+100	1E+100	4200	N/A
Selenium, total red	coverable	7782-49-2	5			0	0	0	0	1E+100	1E+100	5	20	5	1E+100	N/A
Silver, dissolved		7440-22-4	0.5	0	1.518537741	3.234485389	3.23448539	3.23448539	3.23448539	35	N/A	5.051273175	5.051273175	N/A	4670	N/A
Thalllium, dissolve	ed (P)	7440-28-0	0.5		0	0	0	0	0	2	N/A	700	700	150	75	N/A
Zinc, dissolved		7440-66-6	20	17.18	16.23687482	34.58454336	34.5845434	34.5845434	34.5845434	2100	10000	146.3522418	146.3522418	147.5494	280000	N/A
Cyanide, total rec	overable	57-12-5	10			0	0	0	0	200	1E+100	5.2	22	5.2	140	N/A
Dioxin		1764-01-6	0.00001			0	0	0	0	3.00E-05	1E+100	1E+100	1E+100	1E+100	5.1E-08	N/A
VOLATILE COM	POUNDS															
Acrolein		107-02-8	50			0	0	0	0	18	1E+100	1E+100	1E+100	1E+100	9	N/A
Acrylonitrile		107-13-0	20			#VALUE!	#VALUE!	#VALUE!	#VALUE!	0.65	1E+100	1E+100	1E+100	1E+100	2.5	N/A
Benzene		71-43-2	10			0	0	0	0	5	1E+100	1E+100	1E+100	1E+100	510	N/A
Bromoform		75-25-2	10			0	0	0	0	44	1E+100	1E+100	1E+100	1E+100	1400	N/A
Carbon Tetrachlor	ride	56-23-5	2			#VALUE!	#VALUE!	#VALUE!	#VALUE!	5	1E+100	1E+100	1E+100	1E+100	16	N/A
Chlorobenzene		108-90-7	10			0	0	0	0	100	1E+100	1E+100	1E+100	1E+100	1600	N/A
Clorodibromometh	nane	124-48-1	10		1.88	4.0044	4.0044	4.0044	4.0044	0.4	N/A	N/A	N/A	N/A	18670	N/A
Chloroform		67-66-3	50		9.7	20.661	20.661	20.661	20.661	5.7	N/A	14000 and 900	14000	900	9330	N/A
Dichlorobromomet	thane	75-27-4	10			#VALUE!	#VALUE!	#VALUE!	#VALUE!	N/A	N/A	N/A	N/A	N/A	NA	N/A
1,2-Dichloroethar		107-06-2	10			0	0	0	0	5	1E+100	1E+100	1E+100	1E+100	370	NA
1,1-Dichloroethyl		75-35-4	10			0	0	0	0	7	1E+100	1E+100	1E+100	1E+100	7100	N/A
1,2-Dichloropropa		78-87-5	10			0	0	0	0	5	1E+100	1E+100	1E+100	1E+100	150	N/A
		542-75-6				0	0	0	0			1E+100		1E+100	210	N/A
1,3-Dichloropropy	yierie		10							3.5	1E+100		1E+100			
Ethylbenzene		100-41-4	10			0	0	0	0	700	1E+100	1E+100	1E+100	1E+100	2100	N/A
Methyl Bromide		74-83-9	50			0	0	0	0	49	1E+100	1E+100	1E+100	1E+100	1500	N/A
Methylene Chlorid		75-09-2	20			#VALUE!	#VALUE!	#VALUE!	#VALUE!	5	1E+100	1E+100	1E+100	1E+100	5900	NA
1,1,2,2-Tetrachlo		79-34-5	10			0	0	0	0	1.8	1E+100	1E+100	1E+100	1E+100	40	NA
Tetrachloroethyle	ne	127-18-4	10			0	0	0	0	5	1E+100	1E+100	1E+100	1E+100	33	N/A
Tolune		108-88-3	10			0	0	0	0	1000	1E+100	1E+100	1E+100	1E+100	15000	N/A
1,2-trans-Dichlor		156-60-5	10			0	0	0	0	100	1E+100	1E+100	1E+100	1E+100	10000	N/A
1,1,1-Trichloroeth	hane	71-55-6				0	0	0	0	200	1E+100	1E+100	1E+100	1E+100	1E+100	N/A
1,1,2-Trichloroeth		79-00-5	10			0	0	0	0	5	1E+100	1E+100	1E+100	1E+100	160	N/A
Trichloroethylene		79-01-6	10			0	0	0	0	5	1E+100	1E+100	1E+100	1E+100	300	N/A
/inyl Chloride		75-01-4	10			0	0	0	0	2	1E+100	1E+100	1E+100	1E+100	24	N/A
ACID COMPOUN	DS															
2-Chlorophenol		95-57-8	10			0	0	0	0	175	1E+100	1E+100	1E+100	1E+100	150	N/A
2,4-Dichlorophen	iol	120-83-2	10			0	0	0	0	105	1E+100	1E+100	1E+100	1E+100	290	N/A
2,4-Dimethylphen	nol	105-67-9	10			0	0	0	0	700	1E+100	1E+100	1E+100	1E+100	850	NA
4,6-Dinitro-o-Cres	enl	534-52-1	50			0	0	0	0	14	1E+100	1E+100	1E+100	1E+100	280	N/A

						Instrea	m Waste Conce	entration				Livestock&	Acute	Chronic	Human	Need
				Ambient	Effluent	Acute	Domestic	Chronic	Human	Domestic	Irrigation	Wildlife	Aquatic	Aquatic	Health	TMDL
OLLUTANTS				Conc	Conc.	Aquatic	Supply	Aquatic	Health	Criteria	Criteria	Criteria	Criteria	Criteria	Criteria	
		CAS No.	MQL	Ca (ug/l)	Ce (ug/l)	2.13*Ce	Cd,dom (ug/l)	Cd (ug/l)	Cd,hh (ug/l)	ug/l	ug/l	ug/l	ug/l	ug/l	ug/l	
2,4-Dinitrophenol		51-28-5	50			0	0	0	0	70	1E+100	1E+100	1E+100	1E+100	5300	N/A
Pentachloropheno	ol	87-86-5	50			0	0	0	0	1	1E+100	1E+100	19	15	30	N/A
Phenol		108-95-2	10			#VALUE!	#VALUE!	#VALUE!	#VALUE!	10500	1E+100	1E+100	1E+100	1E+100	860000	N/A
2,4,6-Trichloroph	enol	88-06-2	10		0.38	0.8094	0.8094	0.8094	0.8094	1.4	N/A	160	160	25	130	N/A
BASE/NEUTRAL																
Acenaphthene		83-32-9	10			0	0	0	0	2100	1E+100	1E+100	1E+100	1E+100	990	N/A
Anthracene		120-12-7	10			0	0	0	0	10500	1E+100	1E+100	1E+100	1E+100	40000	N/A
Benzidine		92-87-5	50			0	0	0	0	0.0015	1E+100	1E+100	1E+100	1E+100	0.002	N/A
Benzo(a)anthrace	ene	56-55-3	5			0	0	0	0	0.048	1E+100	1E+100	1E+100	1E+100	0.18	N/A
Benzo(a)pyrene		50-32-8	5			0	0	0	0	0.2	1E+100	1E+100	1E+100	1E+100	0.18	N/A
3,4-Benzofluorar	nthene	205-99-2	10			0	0	0	0	0.048	1E+100	1E+100	1E+100	1E+100	0.18	N/A
Benzo(k)fluoranth	nene	207-08-9	5			0	0	0	0	0.048	1E+100	1E+100	1E+100	1E+100	0.18	N/A
Bis(2-chloroethyl))Ether	111-44-4	10			0	0	0	0	0.3	1E+100	1E+100	1E+100	1E+100	5.3	N/A
Bis(2-chloroisopr	opyl)Ether	108-60-1	10			0	0	0	0	1400	1E+100	1E+100	1E+100	1E+100	65000	N/A
Bis(2-ethylhexyl)I	Phthalate	117-81-7	10		1.84	3.9192	3.9192	3.9192	3.9192	1.2	N/A	N/A	400	360	330	N/A
Butyl Benzyl Phth	alate	85-68-7	10			0	0	0	0	7000	1E+100	1E+100	1E+100	1E+100	1900	N/A
2-Chloronapthale	ene	91-58-7	10			0	0	0	0	2800	1E+100	1E+100	1E+100	1E+100	1600	N/A
Chrysene		218-01-9	5			0	0	0	0	0.048	1E+100	1E+100	1E+100	1E+100	0.18	N/A
Dibenzo(a,h)anth	racene	53-70-3	5			0	0	0	0	0.048	1E+100	1E+100	1E+100	1E+100	0.18	N/A
1,2-Dichlorobenz		95-50-1	10			0	0	0	0	600	1E+100	1E+100	1E+100	1E+100	1300	N/A
1,3-Dichlorobenz		541-73-1	10			0	0	0	0	469	1E+100	1E+100	1E+100	1E+100	960	N/A
1,4-Dichlorobenz		106-46-7	10			0	0	0	0	75	1E+100	1E+100	1E+100	1E+100	190	N/A
3,3'-Dichlorobenz		91-94-1	5			0	0	0	0	0.78	1E+100	1E+100	1E+100	1E+100	0.28	N/A
Diethyl Phthalate		84-66-2	10			0	0	0	0	28000	1E+100	1E+100	1E+100	1E+100	44000	NA
Dimethyl Phthalate		131-11-3	10			0	0	0	0	350000	1E+100	1E+100	1E+100	1E+100	1100000	N/A
Di-n-Butyl Phthala		84-74-2	10			0	0	0	0	3500	1E+100	1E+100	1E+100	1E+100	4500	NA
2,4-Dinitrotoluene		121-14-2	10			0	0	0	0	1.1	1E+100	1E+100	1E+100	1E+100	34	NA
1,2-Diphenylhydr		122-66-7	20			0	0	0	0	0.44	1E+100	1E+100	1E+100	1E+100	2	N/A
Fluoranthene		206-44-0	10			0	0	0	0	1400	1E+100	1E+100	1E+100	1E+100	140	N/A
Fluorene		86-73-7	10			0	0	0	0	1400	1E+100	1E+100	1E+100	1E+100	5300	N/A
Hexachlorobenze	ne	118-74-1	5			0	0	0	0	1	1E+100	1E+100	1E+100	1E+100	0.0029	NA
Hexachlorobutadi		87-68-3	10			0	0	0	0	4.5	1E+100	1E+100	1E+100	1E+100	180	N/A
Hexachlorocyclop		77-47-4	10			0	0	0	0	50	1E+100	1E+100	1E+100	1E+100	1100	N/A
Hexachloroethan		67-72-1	20			0	0	0	0	25	1E+100	1E+100	1E+100	1E+100	33	N/A
ndeno(1,2,3-cd)F		193-39-5	5			0	0	0	0	0.048	1E+100	1E+100	1E+100	1E+100	0.18	N/A
sophorone	,	78-59-1	10			0	0	0	0	368	1E+100	1E+100	1E+100	1E+100	9600	N/A
Vitrobenzene		98-95-3	10			0	0	0	0	18	1E+100	1E+100	1E+100	1E+100	690	N/A
n-Nitrosodimethyl	amine	62-75-9	50			0	0	0	0	0.0069	1E+100	1E+100	1E+100	1E+100	30	N/A
n-Nitrosodi-n-Prop		621-64-7	20			0	0	0	0	0.0069	1E+100	1E+100	1E+100	1E+100	5.1	N/A
n-Nitrosodiphenyl		86-30-6	20			0	0	0	0	71	1E+100	1E+100	1E+100	1E+100	60	N/A
	anile	84852-15-3	20			0	0	0	0	1E+100	1E+100	1E+100	28	6.6	1E+100	N/A N/A
Nonylphenol			10			0	0	0	0	1050		1E+100 1E+100		1E+100	1E+100 4000	N/A N/A
Pyrene	nzene	129-00-0 120-82-1	10			0	0	0	0	70	1E+100 1E+100	1E+100 1E+100	1E+100 1E+100	1E+100	70	N/A N/A

						Instrea	m Waste Conce	entration				Livestock&	Acute	Chronic	Human	Need
				Ambient	Effluent	Acute	Domestic	Chronic	Human	Domestic	Irrigation	Wildlife	Aquatic	Aquatic	Health	TMDL
POLLUTANTS				Conc	Conc.	Aquatic	Supply	Aquatic	Health	Criteria	Criteria	Criteria	Criteria	Criteria	Criteria	IIIDL
IOLLOTAINIO		CAS No.	MQL	Ca (ug/l)	Ce (ug/l)	2.13*Ce	Cd,dom (ug/l)		Cd,hh (ug/l)	ug/l	ug/l	ug/l	ug/l	ug/l	ug/l	
PESTICIDES AND	n nene	CAS NO.	IVIQL	Ca (ug/i)	Ce (ug/i)	2.13 06	Cu,uoiii (ug/i)	Cu (ug/i)	Cu,iii (ug/i)	ugn	ugn	ugri	ugn	ugn	ug/i	
	D F C ES	200.00.0	0.04			0	0	0		0.004	45,400	45.400		45.400	0.0005	N/A
Aldrin		309-00-2	0.01				-	0	0	0.021	1E+100	1E+100	3	1E+100	0.0005	N/A
Alpha-BHC		319-84-6	0.05			0	0	0	0	0.056	1E+100	1E+100	1E+100	1E+100	0.049	N/A
Beta-BHC		319-85-7	0.05			0	0	0	0	0.091	1E+100	1E+100	1E+100	1E+100	0.17	N/A
Gamma-BHC		58-89-9	0.05			0	0	0	0	0.2	1E+100	1E+100	0.95	1E+100	1.8	N/A
Chlordane		57-74-9	0.2			0	0	0	0	2	1E+100	1E+100	2.4	0.0043	0.0081	N/A
4,4'-DDT and der	rivatives	50-29-3	0.02			0	0	0	0	1	1E+100	0.001	1.1	0.001	0.0022	N/A
Dieldrin		60-57-1	0.02			0	0	0	0	0.022	1E+100	1E+100	0.24	0.056	0.00054	N/A
Diazinon		333-41-5				0	0	0	0	1E+100	1E+100	1E+100	0.17	0.17	1E+100	N/A
Alpha-Endosulfar	n	959-98-8	0.01			0	0	0	0	62	1E+100	1E+100	0.22	0.056	89	N/A
Beta-Endosulfan		33213-65-9	0.02			0	0	0	0	62	1E+100	1E+100	0.22	0.056	89	N/A
Endosulfan sulfat	te	1031-7-8	0.1			0	0	0	0	62	1E+100	1E+100	1E+100	1E+100	89	N/A
Endrin		72-20-8	0.02			0	0	0	0	2	1E+100	1E+100	0.086	0.036	0.06	N/A
Endrin Aldehyde		7421-93-4	0.1			0	0	0	0	10.5	1E+100	1E+100	1E+100	1E+100	0.3	N/A
Heptachlor		76-44-8	0.01			0	0	0	0	0.4	1E+100	1E+100	0.52	0.0038	0.00079	N/A
Heptachlor Epoix	de	1024-57-3	0.01			0	0	0	0	0.2	1E+100	1E+100	0.52	0.0038	0.00039	N/A
PCBs		1336-36-3	0.2			0	0	0	0	0.5	1E+100	0.014	2	0.014	0.00064	N/A
Toxaphene		8001-35-2	0.3			0	0	0	0	3	1E+100	1E+100	0.73	0.0002	0.0028	N/A
							-		-	-						
STEP 3:	SCAN DOTEN	TIAL INSTREAM	WASTE OO	AICENTEAT	TIONS AGAINS	T WATER OLL	AT ITY COITEDIA	,								
0121 0.		ISH EFFLUENT L					ALIII GRIILA	1								
	AIND ESTABL	ION EFFLUEINI L	IIVITA HONO	FOR ALL	APPLICABLE	ARAIVETERS										
Nie Parka and a stal	LP-1 - 17 d		ta a se da sta		La carda da com											
No limits are estal																
No limits are estal								teria.								
The most applicat																
Water quality crite																
If background cor			quality crite	eria, w ater	quality criteria	apply. And "N	leed TMDL" sho	own to the ne	ext column of A	Avg. Mass						
Monthly avg cond	centration = da	ly max. / 1.5.														
APPLICABLE WA	TER QUALITY	BASED LIMITS														
	The following	formular is used	d to calculat	e the allow	able daily max	imum effluent	cincentration		See the curre	ent "Procedure	s for Implemen	ting NPDES Pern	nits in New Me	kico"		
	Daily Max. Co	nc. = Cs + (Cs -	Ca)(F*Qa/C	le)		Monthly Avg.	Conc. = Daily I	Max. Conc./	1.5							
Where:	Cs = Applicat	le water quality	standard													
	Ca = Ambient	stream concent	ration													
		of stream allow		ng (1.0 is a	ssigned to don	nestic water s	upply and hum	an health use	es)							
	Qe = Plant eff								i i							

						Livestock	Acute	Chronic	Human	Daily	Monthly	Daily Max	Mon. Avg	Daily	Monthly
POLLUTANTS		CAS No.	STORET	Domestic	Irrigation	or Wildlife	Aquatic	Aquatic	Health	Max Conc	Avg Conc	Total	Total	Max Load	Avg Load
				Limits	Limits	Limits	Limits	Limits	Limits	ug/l	ug/l	ug/l	ug/l	lb/day	lb/day
Radioactivity, Nut	rients, and (Chlorine, as 1	otal												
Aluminum, Total		7429-90-5	01105	N/A	N/A	N/A	N/A	N/A	N/A	N/A	N/A	N/A	N/A	N/A	N/A
Barium, Total		7440-39-3	01007	N/A	NA	NA	N/A	N/A	N/A	N/A	N/A	N/A	N/A	N/A	N/A
Boron, Total		7440-42-8	01022	#VALUE!	#VALUE!	#VALUE!	#VALUE!	#VALUE!	#VALUE	#VALUE!	#VALUE!	#VALUE!	#VALUE!	#VALUE!	#VALUE
Cobalt, Total		7440-48-4	01037	N/A	NA	NA	N/A	N/A	N/A	N/A	N/A	N/A	N/A	N/A	N/A
Uranium, Total		7440-61-1	22706	N/A	NA	NA	N/A	N/A	N/A	N/A	N/A	N/A	N/A	N/A	N/A
Vanadium, Total		7440-62-2	01087	N/A	N/A	N/A	N/A	N/A	N/A	N/A	N/A	N/A	N/A	N/A	N/A
Ra-226 and Ra-228	B (pCi/l)		11503	N/A	NA	NA	N/A	N/A	N/A	N/A	N/A	N/A	N/A	N/A	NA
Strontium (pCi/l)			13501	N/A	NA	NA	N/A	N/A	N/A	N/A	N/A	N/A	N/A	N/A	N/A
Tritium (pCi/l)			04124	N/A	NA	NA	N/A	N/A	N/A	N/A	N/A	N/A	N/A	N/A	NA
Gross Alpha (pCi/l)			80029	N/A	NA	N/A	N/A	N/A	N/A	N/A	N/A	N/A	N/A	N/A	NA
Asbestos (fibers/l)				N/A	NA	N/A	N/A	N/A	N/A	N/A	N/A	N/A	N/A	N/A	N/A
Total Residual Chlo	rine	7782-50-5	50060	#VALUE!	#VALUE!	#VALUE!	#VALUE!	#VALUE!	#VALUE	#VALUE!	#VALUE!	#VALUE!	#VALUE!	#VALUE!	#VALUE!
Nitrate as N (mg/l)			00620	N/A	N/A	N/A	N/A	N/A	N/A	N/A	N/A	N/A	N/A	N/A	N/A
Nitrite + Nitrate (mg	1)		00630	N/A	NA	N/A	N/A	N/A	N/A	N/A	N/A	N/A	N/A	N/A	N/A
METALS AND CY	ANIDE, as To	tal													
Antimony, Total (P)		7440-36-0	01097	#VALUE!	#VALUE!	#VALUE!	#VALUE!	#VALUE!	#VALUE	#VALUE!	#VALUE!	#VALUE!	#VALUE!	#VALUE!	#VALUE!
Arsenic, Total (P)		7440-38-2	1002	N/A	NA	N/A	N/A	N/A	N/A	N/A	N/A	N/A	N/A	N/A	N/A
Beryllium, Total		7440-41-7	01012	4	NA	NA	N/A	N/A	N/A	4	4	4	4	0.11676	0.11676
Cadmium, Total		7440-43-9	01027	N/A	NA	NA	2.59869986	0.29517051	NA	0.295170505	0.295170505	0.295170505	0.2951705	0.00861603	0.008616027
Chromium (III), diss	olved	16065-83-1	01033	#VALUE!	#VALUE!	#VALUE!	#VALUE!	#VALUE!	#VALUE	#VALUE!	#VALUE!	#VALUE!	#VALUE!	#VALUE!	#VALUE!
Chromium (VI), diss	olved	18540-29-9	01034	N/A	NA	N/A	N/A	N/A	N/A	N/A	N/A	N/A	N/A	N/A	N/A
Chromium, Total		7440-47-3	01034	N/A	N/A	N/A	N/A	N/A	N/A	N/A	N/A	N/A	N/A	N/A	N/A
Copper, Total		7440-50-8	01042	N/A	NA	N/A	N/A	N/A	N/A	N/A	N/A	N/A	N/A	N/A	N/A
Lead, Total		7439-92-1	01051	N/A	N/A	N/A	N/A	N/A	N/A	N/A	N/A	N/A	N/A	N/A	N/A
Manganese, dissov	rled	7439-96-5	01056	N/A	NA	N/A	N/A	N/A	N/A	N/A	N/A	N/A	N/A	N/A	N/A
Mercury, Total		7439-97-6	71900	#VALUE!	#VALUE!	#VALUE!	#VALUE!	#VALUE!	#VALUE	#VALUE!	#VALUE!	#VALUE!	#VALUE!	#VALUE!	#VALUE!
Mercury, Total		7439-97-6	71900	N/A	NA	NA	N/A	0.001	NA	0.001	0.001	0.001	0.001	0.00002919	0.00002919
Molybdenum, disso	lved	7439-98-7	1060	#VALUE!	#VALUE!	#VALUE!	#VALUE!	#VALUE!	#VALUE	#VALUE!	#VALUE!	#VALUE!	#VALUE!	#VALUE!	#VALUE!
Molybdenum, total i	ecoverable	7439-98-7	01062	N/A	NA	N/A	N/A	N/A	N/A	N/A	N/A	N/A	N/A	N/A	N/A
Nickel, Total (P)		7440-02-0	01067	N/A	NA	NA	N/A	N/A	N/A	N/A	N/A	N/A	N/A	N/A	NA
Selenium, Total (P)		7782-49-2	01147	N/A	NA	N/A	N/A	N/A	N/A	N/A	N/A	N/A	N/A	N/A	N/A
Selenium, Total (SC	04 >500 mg/l)		01147	N/A	N/A	N/A	N/A	N/A	N/A	N/A	N/A	N/A	N/A	N/A	N/A
Selenium, Total rec	overable	7782-49-2	01147	N/A	NA	N/A	N/A	N/A	N/A	N/A	N/A	N/A	N/A	N/A	N/A
Silver, Total		7440-22-4	01077	N/A	N/A	N/A	N/A	N/A	N/A	N/A	N/A	N/A	N/A	N/A	N/A
Thallium, Total (P)		7440-28-0	01059	N/A	N/A	N/A	N/A	N/A	N/A	N/A	N/A	N/A	NA	N/A	N/A
Zinc, Total		7440-66-6	1092	N/A	N/A	N/A	N/A	N/A	N/A	N/A	N/A	N/A	N/A	N/A	N/A
Cyanide, total reco	verable	57-12-5	00720	N/A	N/A	N/A	N/A	N/A	N/A	N/A	N/A	N/A	N/A	N/A	N/A
DIOXIN															0
2,3,7,8-TCDD		1764-01-6	34675	N/A	N/A	N/A	N/A	N/A	N/A	N/A	N/A	N/A	N/A	N/A	N/A
VOLATILE COMP	DUNDS														
Acrolein		107-02-8	34210	N/A	N/A	N/A	N/A	N/A	N/A	N/A	N/A	N/A	N/A	N/A	N/A
Acrylonitrile		107-13-0	34215	#VALUE!	#VALUE!	#VALUE!	#VALUE!	#VALUE!	#VALUE	#VALUE!	#VALUE!	#VALUE!	#VALUE!	#VALUE!	#VALUE!
Benzene		71-43-2	34030	N/A	N/A	N/A	N/A	N/A	N/A	N/A	N/A	N/A	N/A	N/A	N/A
Bromoform		75-25-2	32104	N/A	NA	N/A	N/A	N/A	N/A	N/A	N/A	N/A	N/A	N/A	N/A
Carbon Tetrachlori	de	56-23-5	32102	#VALUE!	#VALUE!	#VALUE!	#VALUE!	#VALUE!	#VALUE!	#VALUE!	#VALUE!	#VALUE!	#VALUE!	#VALUE!	#VALUE

						Livestock	Acute	Chronic	Human	Daily	Monthly	Daily Max	Mon. Avg	Daily	Monthly
POLLUTANTS		CAS No.	STORET	Domestic	Irrigation	or Wildlife	Aquatic	Aquatic	Health	Max Conc	Avg Conc	Total	Total	Max Load	Avg Load
				Limits	Limits	Limits	Limits	Limits	Limits	ug/l	ug/l	ug/l	ug/l	lb/day	lb/day
Chlorobenzene		108-90-7	34301	N/A	N/A	N/A	N/A	N/A	N/A	N/A	N/A	N/A	N/A	N/A	N/A
Clorodibromometh	ane	124-48-1	32105	0.4	NA	N/A	N/A	N/A	N/A	0.4	0.4	0.4	0.4	0.011676	0.011676
Chloroform		67-66-3	32106	5.7	NA	N/A	N/A	N∕A	N/A	5.7	5.7	5.7	5.7	0.166383	0.166383
Dichlorobromomet	thane	75-27-4	32101	#VALUE!	#VALUE!	#VALUE!	#VALUE!	#VALUE!	#VALUE!	#VALUE!	#VALUE!	#VALUE!	#VALUE!	#VALUE!	#VALUE
1,2-Dichloroethar	ne	107-06-2	34531	N/A	N/A	N/A	N/A	N/A	N/A	N/A	N/A	N/A	N/A	N/A	N/A
1,1-Dichloroethyl	ene	75-35-4	34501	N/A	N/A	N/A	N/A	N/A	N/A	N/A	N/A	N/A	N/A	N/A	N/A
1,2-Dichloropropa	ane	78-87-5	34541	N/A	N/A	N/A	N/A	N/A	N/A	N/A	N/A	N/A	N/A	N/A	N/A
1,3-Dichloropropy	ylene	542-75-6	34561	N/A	N/A	N/A	N/A	N/A	N/A	N/A	N/A	N/A	N/A	N/A	N/A
Ethylbenzene		100-41-4	34371	N/A	N/A	N/A	N/A	N/A	N/A	N/A	N/A	N/A	N/A	N/A	N/A
Methyl Bromide		74-83-9	34413	N/A	N/A	N/A	N/A	N/A	N/A	N/A	N/A	N/A	N/A	N/A	N/A
Methylene Chlorid	le	75-09-2	34423	#VALUE!	#VALUE!	#VALUE!	#VALUE!	#VALUE!	#VALUE!	#VALUE!	#VALUE!	#VALUE!	#VALUE!	#VALUE!	#VALUE
1,1,2,2-Tetrachlo	roethane	79-34-5	34516	N/A	N/A	N/A	N/A	N/A	N/A	N/A	N/A	N/A	N/A	N/A	N/A
etrachloroethyle	ne	127-18-4	34475	N/A	N/A	N/A	N/A	N/A	N/A	N/A	N/A	N/A	N/A	N/A	N/A
Folune		108-88-3	34010	N/A	N/A	N/A	N/A	N/A	N/A	N/A	N/A	N/A	N/A	N/A	N/A
1,2-trans-Dichlor	oethylene	156-60-5	34546	N/A	N/A	N/A	N/A	N/A	N/A	N/A	N/A	N/A	N/A	N/A	N/A
1,1,1-Trichloroeth	nane	71-55-6		N/A	N/A	N/A	N/A	N/A	N/A	N/A	N/A	N/A	N/A	N/A	N/A
1,1,2-Trichloroeth	nane	79-00-5	34511	N/A	N/A	N/A	N/A	N/A	N/A	N/A	N/A	N/A	N/A	N/A	N/A
richloroethylene		79-01-6	39180	N/A	N/A	N/A	N/A	N/A	N/A	N/A	N/A	N/A	N/A	N/A	N/A
/inyl Chloride		75-01-4	39175	N/A	N/A	N/A	N/A	N/A	N/A	N/A	N/A	N/A	N/A	N/A	N/A
ACID COMPOUN	DS														
2-Chlorophenol		95-57-8	34586	N/A	N/A	N/A	N/A	N/A	N/A	N/A	N/A	N/A	N/A	N/A	N/A
2,4-Dichlorophen	ol	120-83-2	34601	N/A	N/A	N/A	N/A	N/A	N/A	N/A	N/A	N/A	N/A	N/A	N/A
2,4-Dimethylphen	iol	105-67-9	34606	N/A	N/A	N/A	N/A	N/A	N/A	N/A	N/A	N/A	N/A	N/A	N/A
4,6-Dinitro-o-Cres	sol	534-52-1	34657	N/A	N/A	N/A	N/A	N/A	N/A	N/A	N/A	N/A	N/A	N/A	N/A
2,4-Dinitrophenol		51-28-5	34616	N/A	N/A	N/A	N/A	N/A	N/A	N/A	N/A	N/A	N/A	N/A	N/A
Pentachloropheno	ol	87-86-5	39032	N/A	N/A	N/A	N/A	N/A	N/A	N/A	N/A	N/A	N/A	N/A	N/A
Phenol		108-95-2	34694	#VALUE!	#VALUE!	#VALUE!	#VALUE!	#VALUE!	#VALUE!	#VALUE!	#VALUE!	#VALUE!	#VALUE!	#VALUE!	#VALUE
2,4,6-Trichloroph	enol	88-06-2	34621	N/A	N/A	N/A	N/A	N/A	N/A	N/A	N/A	N/A	N/A	N/A	NA
BASE/NEUTRAL															
Acenaphthene		83-32-9	34205	N/A	N/A	N/A	N/A	N/A	N/A	N/A	N/A	N/A	N/A	N/A	NA
Anthracene		120-12-7	34220	N/A	N/A	N/A	N/A	N/A	N/A	N/A	N/A	N/A	N/A	N/A	N/A
Benzidine		92-87-5	39120	N/A	N/A	N/A	N/A	N/A	N/A	N/A	N/A	N/A	N/A	N/A	N/A
Benzo(a)anthrace	ene	56-55-3	34526	N/A	N/A	N/A	N/A	N/A	N/A	N/A	N/A	N/A	N/A	N/A	N/A
Benzo(a)pyrene		50-32-8	34247	N/A	N/A	N/A	N/A	N/A	N/A	N/A	N/A	N/A	N/A	N/A	N/A
3,4-Benzofluorar	nthene	205-99-2	34230	N/A	N/A	N/A	N/A	N/A	N/A	N/A	N/A	N/A	N/A	N/A	N/A
Benzo(k)fluoranth	nene	207-08-9	34242	N/A	N/A	N/A	N/A	N/A	N/A	N/A	N/A	N/A	N/A	N/A	N/A
Bis(2-chloroethyl)	Ether	111-44-4	34273	N/A	N/A	N/A	N/A	N/A	N/A	N/A	N/A	N/A	N/A	N/A	N/A
Bis(2-chloroisopro	opyl)Ether	108-60-1	34283	N/A	N/A	N/A	N/A	N/A	N/A	N/A	N/A	N/A	N/A	N/A	N/A
Bis(2-ethylhexyl)F	Phthalate	117-81-7	39100	1.2	N/A	N/A	N/A	N/A	N/A	1.2	1.2	1.2	1.2	0.035028	0.03502
Butyl Benzyl Phth	alate	85-68-7	34292	N/A	N/A	N/A	N/A	N/A	N/A	N/A	N/A	N/A	N/A	N/A	N/A
2-Chloronapthale	ne	91-58-7	34581	N/A	N/A	N/A	N/A	N/A	N/A	N/A	N/A	N/A	N/A	N/A	N/A
Chrysene		218-01-9	34320	N/A	N/A	N/A	N/A	N/A	N/A	N/A	N/A	N/A	N/A	N/A	N/A
Dibenzo(a,h)anthi	racene	53-70-3	34556	N/A	N/A	N/A	N/A	N/A	N/A	N/A	N/A	N/A	N/A	N/A	N/A
1,2-Dichlorobenz	ene	95-50-1	34536	N/A	N/A	N/A	N/A	N/A	N/A	N/A	N/A	N/A	N/A	N/A	NA

						Livestock	Acute	Chronic	Human	Daily	Monthly	Daily Max	Mon. Avg	Daily	Daily
POLLUTANTS		CAS No.	STORET	Domestic	Irrigation	or Wildlife	Aquatic	Aquatic	Health	Max Conc	Avg Conc	Total	Total	Max Load	Avg Load
				Limits	Limits	Limits	Limits	Limits	Limits	ug/l	ug/l	ug/l	ug/l	lb/day	lb/day
1,3-Dichlorobenz	ene	541-73-1	34566	N/A	N/A	N/A	N/A	N/A	N/A	N/A	N/A	N/A	N/A	N/A	N/A
1,4-Dichlorobenz	ene	106-46-7	34571	N/A	N/A	NA	N/A	N/A	N/A	N/A	NA	N/A	N/A	N/A	N/A
3,3'-Dichlorobenzi	idine	91-94-1	34631	N/A	N/A	NA	N/A	N/A	N/A	N/A	NA	N/A	N/A	N/A	N/A
Diethyl Phthalate		84-66-2	34336	N/A	N/A	N/A	N/A	N/A	N/A	N/A	NA	N/A	N/A	N/A	NΑ
Dimethyl Phthalate	e	131-11-3	34341	N/A	N/A	NA	N/A	N/A	N/A	N/A	NA	N/A	N/A	N/A	N/A
Di-n-Butyl Phthala	ite	84-74-2	39110	N/A	N/A	N/A	N/A	N/A	N/A	N/A	NA	N/A	N/A	N/A	N/A
2,4-Dinitrotoluene	Э	121-14-2	34611	N/A	N/A	N/A	N/A	N/A	N/A	N/A	NA	N/A	N/A	N/A	N/A
1,2-Diphenylhydr	azine	122-66-7	34346	N/A	N/A	NA	N/A	N/A	N/A	N/A	NA	N/A	N/A	N/A	NA
Tuoranthene		206-44-0	34376	N/A	N/A	NA	N/A	N/A	N/A	N/A	NA	N/A	N/A	N/A	NA
Tuorene		86-73-7	34381	N/A	N/A	NA	N/A	N/A	N/A	N/A	NA	N/A	N/A	N/A	N/A
Hexachlorobenze	ne	118-74-1	39700	N/A	N/A	N/A	N/A	N/A	N/A	N/A	NA	N/A	N/A	N/A	N/A
-lexachlorobutadi	ene	87-68-3	34391	N/A	N/A	N/A	N/A	N/A	N/A	N/A	NA	N/A	N/A	N/A	N/A
Hexachlorocyclop	pentadiene	77-47-4	34386	N/A	N/A	NA	N/A	N/A	N/A	N/A	NA	N/A	N/A	N/A	N/A
-lexachloroethane	е	67-72-1	34396	N/A	N/A	N/A	N/A	N/A	N/A	N/A	NA	N/A	N/A	N/A	N/A
ndeno(1,2,3-cd)F	Pyrene	193-39-5	34403	N/A	N/A	N/A	N/A	N/A	N/A	N/A	NA	N/A	N/A	N/A	N/A
sophorone		78-59-1	34408	N/A	N/A	N/A	N/A	N/A	N/A	N/A	N/A	N/A	N/A	N/A	N/A
Nitrobenzene		98-95-3	34447	N/A	N/A	NA	N/A	N/A	N/A	N/A	NA	N/A	N/A	N/A	N/A
n-Nitrosodimethyla	amine	62-75-9	34438	N/A	N/A	N/A	N/A	N/A	N/A	N/A	N/A	N/A	N/A	N/A	N/A
n-Nitrosodi-n-Prop	pylamine	621-64-7	34428	N/A	N/A	NA	N/A	N/A	N/A	N/A	NA	N/A	N/A	N/A	NA
n-Nitrosodiphenyl	amine	86-30-6	34433	N/A	N/A	N/A	N/A	N/A	N/A	N/A	N/A	N/A	N/A	N/A	N/A
Nonylphenol		84852-15-3		N/A	N/A	N/A	N/A	N/A	N/A	N/A	NA	N/A	N/A	N/A	N/A
Pyrene		129-00-0	34469	N/A	N/A	N/A	N/A	N/A	N/A	N/A	N/A	N/A	N/A	N/A	N/A
1,2,4-Trichlorobe	nzene	120-82-1	34551	N/A	N/A	N/A	N/A	N/A	N/A	N/A	N/A	N/A	N/A	N/A	N/A
PESTICIDES AND	PCBS														
Aldrin		309-00-2	39330	N/A	N/A	N/A	N/A	N/A	N/A	N/A	N/A	N/A	N/A	N/A	N/A
Alpha-BHC		319-84-6	39337	N/A	N/A	N/A	N/A	N/A	N/A	N/A	NA	N/A	N/A	N/A	N/A
Beta-BHC		319-85-7	39338	N/A	N/A	N/A	N/A	N/A	NA	N/A	NA	N/A	N/A	N/A	NA
Gamma-BHC		58-89-9	39340	N/A	N/A	N/A	N/A	NA	N/A	N/A	N/A	N/A	N/A	N/A	N/A
Chlordane		57-74-9	39350	N/A	N/A	N/A	N/A	N/A	N/A	N/A	N/A	N/A	N/A	N/A	N/A
4,4'-DDT and deri	ivatives	50-29-3	39300	N/A	N/A	N/A	N/A	NA	N/A	N/A	N/A	N/A	N/A	N/A	N/A
Dieldrin		60-57-1	39380	N/A	N/A	N/A	N/A	NA	N/A	N/A	N/A	N/A	N/A	N/A	N/A
Diazinon		333-41-5	39570	N/A	N/A	N/A	N/A	N/A	N/A	N/A	N/A	N/A	N/A	N/A	N/A
Alpha-Endosulfan	1	959-98-8	34361	N/A	N/A	N/A	N/A	NA	N/A	N/A	N/A	N/A	N/A	N/A	N/A
Beta-Endosulfan		33213-65-9	34356	N/A	N/A	N/A	N/A	N/A	N/A	N/A	N/A	N/A	N/A	N/A	N/A
Indosulfan sulfat	e	1031-7-8	34351	N/A	N/A	N/A	N/A	N/A	N/A	N/A	N/A	N/A	N/A	N/A	N/A
Endrin		72-20-8	39390	N/A	N/A	N/A	N/A	N/A	N/A	N/A	N/A	N/A	N/A	N/A	N/A
Endrin Aldehyde		7421-93-4	34366	N/A	N/A	N/A	N/A	N/A	N/A	N/A	N/A	N/A	N/A	N/A	N/A
Heptachlor		76-44-8	39410	N/A	N/A	N/A	N/A	NA	N/A	N/A	N/A	N/A	NA	N/A	N/A
leptachlor Epoixo	de	1024-57-3	39420	N/A	N/A	N/A	N/A	N/A	N/A	N/A	N/A	N/A	N/A	N/A	N/A
свя		1336-36-3	39516	N/A	N/A	NA	N/A	N/A	N/A	N/A	N/A	N/A	N/A	N/A	N/A
Toxaphene		8001-35-2	39400	N/A	N/A	N/A	N/A	N/A	N/A	N/A	N/A	N/A	N/A	N/A	N/A

Appendix 3

Reasonable Potential Analyzer

Facility Name		City	of Gallup					
NPDES Perm	it Number	NM00206	672			Outf	all Number	001
Proposed Criti	ical Dilution*	100		•				
			*Critical Dil	ution in draft	permit, do not	use % sign.		
			Enter data i	n yellow shade	d cells only. F	ifty percent shou	ld be entered	as 50, not 50%.
Test Data								
_		VERTEBRATE				INVERTEBRAT		
	Lethal NOEC	Sublethal NOEC	Lethal TU	Subtethal TU		Sublethal NOEC		Sublethal TU
Feb-12	100	100	1.00	1.00	100		1.00	
May-12	100	100	1.00	1.00	100 100		1.00	
Sep-12 Nov-12	100	100	1.00	1.00	100		1.00	
Mar-13	42	0.1	2.38	1000.00	100		1.00	
Apr-13	75	75	1.33	1,33	100		1,00	
Jun-13	100	100	1.00	1.00	100		1.00	
Jul-13	100	100	1.00	1.00				
Sep-13	100	100	1.00	1.00	100		1.00	
Nov-13	100	100	1.00	1.00	100		1.00	
Mar-14	75	32	1.33	3.13	100		1.00	
Apr-14	56		1.79	1.79				
Jun-14	0.1	0.1	1000.00	1000,00	0.1		1000.00	
Jun-14	0.1	0.1	1000,00	1000.00	100		1.00	
Sep-14	100	100	1.00	1.00	100		1.00	
Sep-14 Oct-14					100		1.00	
Mar-15	100	100	1.00	1.00	100		1.00	#VALUE!
Jun-15	100	100	1.00	1.00	100		1.00	# VALUE:
Sep-15	100	100	1.00	1.00	100		1.00	
Dec-15	100	100	1.00	1.00	100		1.00	
Mar-16	100	100	1.00	1.00	100		1.00	
May-16	100	100	1.00	1.00	100		1.00	
	0.1	0.1	1000,00	1000,00	0.1	0	1000,00	#DIV/0!
Count			20	20			75	_
Mean			101.042	151.012			14.320	
Std. Dev.			307,437	365,912			115,355	#VALUE!
CV			3.0	2.4	l		8.1	0.6
DDME			2		г			< 21
RPMF			D 11	D 4 6 14	l		2	6.2
				e Potential A				
Vertebrate Le	thal	2000,000	Reasonab	le Potential	exists, Perm	it requires WE	T monitorir	ng and WET lim
Vertebrate Su	iblethal	2000.000	Reasonal	le Potential	exists. Perm	it requires WE	T monitorir	ng and WET lim
					,	4		0
Invertebrate I	athal	2000 000	Dancorch	la Dotantial	aviete Dares	it manipas WT?	T monitorie	o and WET Em
invertebrate 1	euiai	2000,000	Reasonat	ne Potential	exists, Perm	it requires WE	1 monton	ng and WET lim
Invertebrate S	Rublethal	#DIV/0t	#DIV/0!					

^{**} EPA concludes that this effluent has the reasonable potential to exceed water quality standards for whole effluent toxicity as shown by the vertebrate species, *Pimephales promelas*. A WET limit is established for this species. The type of test and species has changed from an acute 48hr WET test using *Daphnia pulex* to a 7day Chronic WET test using *Ceriodaphnia dubia* as required by the New Mexico Implementation Procedures. Biomonitoring is required for this species without a limit.