

1755 Arroyo Drive Bloomfield, NM 87413 (505) 632-4700 Fax (505) 632-4782

VIA EMAIL: LeDoux.Erica@epa.gov

April 27, 2017

Erica LeDoux Environmental Engineer U.S. EPA - Region 6 Multimedia Division Air Permits Section 6MM-AP () 1445 Ross Avenue Dallas, TX 75202-2733

RE: 40 CFR 49.158 Synthetic Minor Permit in Indian Country Williams Four Corners LLC's Ojito Compressor Station

Dear Ms. LeDoux:

In accordance with 40 CFR 49.158, Williams Four Corners LLC (Williams) is pleased to submit the attached <u>Application for Synthetic Minor Limit</u> for the Ojito Compressor Station located in Rio Arriba County, New Mexico on Jicarilla Apache tribal land. The facility is an existing synthetic minor source, as defined in 40 CFR 49, Subpart C. The facility currently operates under the Part 71 Title V permit R6FOPP71-05, issued January 20, 2004. Rather than continue with the Title V permit renewal process, Williams wishes to withdraw the application currently under your review, and instead permit the facility as a synthetic minor source as defined at §49.152(d).

Please contact me at (505) 632-4708 or at <u>Mitch.Morris@williams.com</u>, or Bobby Myers of Cirrus Consulting at (801) 484-4412 or at <u>bmyers@cirrusllc.com</u> should you have any questions regarding this submittal.

Respectfully submitted,

Mitch Morris

Attachment:Ojito synthetic minor application (electronic copy)cc:Bobby Myers, Cirrus Consulting, LLC (electronic copy)

U.S. ENVIRONMENTAL PROTECTION AGENCY (REGION 6) APPLICATION FOR FEDERAL SYNTHETIC MINOR PERMIT (40 CFR PART 49.158)

OJITO COMPRESSOR STATION

Submitted By:

WILLIAMS FOUR CORNERS LLC 1755 Arroyo Drive Bloomfield, New Mexico 87413

Prepared By:

Círrus Consultíng, LLC

951 Diestel Road Salt Lake City, Utah 84105 (801) 484-4412

April 2017

Table of Contents

Introduction

Form SYNMIN - Application for Synthetic Minor Limit

- Attachment 1: Requested Limitation Items
- Attachment 2: Emissions Calculations, including Insignificant Emissions
- Attachment 3: Regulatory Applicability
- Attachment 4: Process Flow Diagram

Introduction

Williams Four Corners LLC (WFC) submitted a permit application in July 2008 to the Region 6 Environmental Protection Agency (EPA) Air Permits Section to renew the Part 71 Federal Title V Operating Permit R6FOPP71-05 for the Ojito Compressor Station. The facility is located within the Jicarilla Apache Indian Reservation, and as the Tribe has not developed their own rules and regulations concerning air emission sources, the facility is presently under the jurisdiction of the EPA.

With this application, WFC is requesting to withdraw the Title V renewal application and to accept federally-enforceable limitations through a synthetic minor NSR permit which reduces the facility's PTE to below the Title V "major source" threshold.

The Ojito Compressor Station, originally constructed prior to 1976, is a natural gas compressor station on a natural gas pipeline. This compressor station uses natural gas fired reciprocating engines to drive natural gas compressors in order to boost pipeline line pressure. The facility also includes a pig launcher which collects liquids (consisting of water and hydrocarbons condensed from the natural gas) removed from the pipeline by pigging operations. Emissions occur when the launcher is opened to insert the pig, releasing hydrocarbons, including volatile organic compounds (VOC) to the atmosphere. Previously permitted natural gas dehydrators have been decommissioned and are no longer in service. These dehydrators and the associated flare are not included in this synthetic minor application.

Emission units and control devices included in this permit application are identified in Table 1 below. Insignificant sources are identified in Table 2.

Source Emission Points

Emission Unit No.	Unit Description	Control Equipment
1	IC Engine Manufacturer - Cooper Superior, Model 8G825 Horsepower – 800 hp Installed - 1960 Maximum design heat input – 8.1 MMBTU/hr Fuel type - Natural gas Primary use - Compressor drive Serial Number – 275719.	Catalytic Converter and AFR controller
Control Equipment for EU-1	Device Type - Catalytic Converter / Air fuel ratio controller Pollutants Controlled / Control efficiency: NOx - 90%, CO - 80%, VOC - 50%	N/A
2	IC Engine Manufacturer - Cooper Superior, Model 8G825 Horsepower- 800 hp Installed - November 1968 Maximum design heat input – 8.1 MMBTU/hr Fuel type - Natural gas Primary use - Compressor drive Serial Number - 20810	Catalytic Converter and AFR controller
Control Equipment for EU-2	Device Type - Catalytic Converter / Air fuel ratio controller Pollutants Controlled / Control efficiency: NOx - 90%, CO - 80%, VOC - 50%	N/A
3	IC Engine Manufacturer - Cooper Superior, Model 8G825 Horsepower – 800hp Installed March 1994 Maximum design heat input – 8.1 MMBTU/hr Fuel type - Natural gas Primary use - Compressor drive Serial Number - 19835	Catalytic Converter and AFR controller
Control Equipment for EU-3	Device Type - Catalytic Converter / Air fuel ratio controller Pollutants Controlled / Control efficiency: NOx - 90%, CO - 80%, VOC - 50%	N/A

Table 1: Emission Units and Control Devices

T_11	4200 gal Condensate Storage Tank	Fixed Roof
1-11	Manufacturer – American Tank and Steel	TIXCU KOOI
	Model – N-5169	
	Installed – 1976	
	Primary use – Storage of natural gas condensate	
	Maximum usage gal/day – 126	
	Maximum usage gal/yr. – 23,100	
	Serial Number - N-5169	
T-12	4200 gal Condensate Storage Tank	Fixed Roof
1 12	Manufacturer – American Tank and Steel	I IACU ROOI
	Model – S-5168	
	Installed – 1976	
	Primary use – Storage of natural gas condensate	
	Maximum usage gal/day – 126	
	Maximum usage gal/yr. – 23,100	
	Serial Number - S-5168	
F-1	Valves, Flanges, Seals, etc (piping components)	None
	Installed – 1976	
SSM	Startup, shutdown and maintenance emissions from	None
	compressors and associated piping	
	Installed 1976	
PL	Pig Launcher emissions	None
	Installed 1976	
TL	Truck Loading Emissions	None

Number	Unit Description	Size	Exemptions to Federal Requirements
1 - IE1	Used Oil Storage Tank	750 gal	< 2 tpy
			40 CFR § 71.5(c)(11)(ii)
1 - IE2	Used Oil Storage Tank	1000 gal	< 2 tpy
			40 CFR § 71.5(c)(11)(ii)
1 – IE3	Ambitrol Storage Tank	100 bbl	< 2 tpy
			40 CFR § 71.5(c)(11)(ii)
1 - IE4	Used Oil Storage Tank	50 gal	< 2 tpy
			40 CFR § 71.5(c)(11)(ii)
2 – IE5 &	Water Storage Tank	2@ 100 bbl	< 2 tpy
IE6			40 CFR § 71.5(c)(11)(ii)
1 - IE7	Gasoline Storage Tank	210 bbl	< 2 tpy
			40 CFR § 71.5(c)(11)(ii)
1 – IE8	Lubrication Oil Storage Tank	300 gal	< 2 tpy
			40 CFR § 71.3(c)(11)(ll)
1 – IE9	On-road Diesel Storage Tank	500 gal	< 2 tpy 40 CFR § 71.5(c)(11)(ii)
2 – IE10 &	Methanol Storage Tank	2@ 100 bbl	< 2 tpy
IE11			40 CFR § 71.5(c)(11)(ii)
1 - IE12	Emergency Generator	180 hp	< 2 tpy
			40 CFR § /1.5(c)(11)(11)

Table 2. Insignificant Emission Units

UNITED STATES ENVIRONMENTAL PROTECTION AGENCY FEDERAL MINOR NEW SOURCE REVIEW PROGRAM IN INDIAN COUNTRY 40 CFR 49.151

Application For Synthetic Minor Limit

(Form SYNMIN)

Use of this information request form is voluntary and not yet approved by the Office of Management and Budget. The following is a check list of the type of information that Region 6 will use to process information on your proposed project. While submittal of this form is not required, it does offer details on the information we will use to complete your requested approval and providing the information requested may help expedite the process. Use of application forms for this program is currently under Office of Management and Budget review and these information request forms will be replaced/updated after that review is completed.

Please submit information to following two entities:

Federal Minor NSR Permit Coordinator U.S. EPA, Region 6 1445 Ross Ave., suite 1200, MS: 6PD-R	The Tribal Environmental Contact for the specific reservation:
Dallas, TX 75202	If you need assistance in identifying the appropriate
<u>R6airpermits@epa.gov</u>	Tribal Environmental Contact and address, please
	contact:
For more information, visit:	
http://www2.epa.gov/caa-permitting/tribal-nsr-	R6airpermits@epa.gov
implementation-epas-south-central-region	

A. GENERAL INFORMATION

Company Name (Who owns this facility?) Williams Four Corners LLC	Facility Name Ojito Compressor Station	
Company Contact (Who is the <u>primary</u> contact for the compa Mitch Morris	iny that owns this facility?)	Title Environmental Specialist
Mailing Address 1755 Arroyo Drive, Bloomfield New Mexico 87413		
Email Address Mitch.Morris@williams.com		
Telephone Number 505-632-4708	Facsimile Number 505-632-4782	

B. ATTACHMENTS

For each criteria air pollutant, hazardous air pollutant and for all emission units and air pollutant-generating activities to be covered by a limitation, include the following:

☑ Item 1 - The proposed limitation and a description of its effect on current actual, allowable and the potential to emit.
 ☑ Item 2 - The proposed testing, monitoring, recordkeeping, and reporting requirements to be used to demonstrate and assure compliance with the proposed limitation.

Item 3 - A description of estimated efficiency of air pollution control equipment under present or anticipated operating conditions, including documentation of the manufacturer specifications and guarantees.

Item 4 - Estimates of the Post-Change Allowable Emissions that would result from compliance with the proposed limitation, including all calculations for the estimates.

☑ Item 5 – Estimates of the potential emissions of Greenhouse Gas (GHG) pollutants.

The public reporting and recordkeeping burden for this collection of information is estimated to average 6 hours per response. Send comments on the Agency's need for this information, the accuracy of the

provided burden estimates, and any suggested methods for minimizing respondent burden, including through the use of automated collection techniques to the Director, Collection Strategies Division, U.S. Environmental Protection Agency (2822T), 1200 Pennsylvania Ave., NW, Washington, D.C. 20460. Include the OMB control number in any correspondence. Do not send the completed form to this address.

Instructions

Submit this form in addition to FORM NEW.

1. Who Can Request Federally-Enforceable Limitations Under the Tribal NSR Authority?

The Tribal NSR Rule applies only to sources located within the exterior boundaries of an Indian reservation in the United States of America or other lands as specified in 40 CFR part 49, collectively referred to as "Indian country". So, to use the authority in the Tribal NSR Rule to create federally-enforceable limitations, a source must be located within Indian country. Land ownership status (for example, whether the land is owned by a Tribal member or whether the land is owned in fee or in trust) does not affect how the rule applies.

2. Who Might Want to Request Federally-Enforceable Limitations?

The primary reason for requesting federally-enforceable limitations is to avoid an otherwise applicable federal Clean Air Act program, rule or requirement. Many federal Clean Air Act programs use a source's "potential to emit" (PTE) air pollution to determine which rules or requirements apply. A source's PTE is based on the maximum annual operational (production, throughput, etc) rate of the source taking into consideration the capacity and configuration of the equipment and operations. Emission or operational limits can also be taken into consideration as maximums if they are federally enforceable. So, using a synthetic minor NSR permit to establish federally enforceable limitations can lower a source's PTE and possibly allow the source to avoid certain federal Clean Air Act requirements.

Three examples of federal Clean Air Act programs that use PTE to determine whether they apply are (1) the Prevention of Significant Deterioration (PSD) construction permitting program, (2) the Title V operating permit program, and (3) the Maximum Achievable Control Technology (MACT) program. For example, existing sources that are considered "major" for Title V (meaning they have the potential to emit air pollution at levels defined in that rule as "major") must apply for a Title V operating permit. If a source accepts a federally-enforceable limitation through a synthetic minor NSR permit that reduces their PTE to below the "major" threshold, and the source does not meet any of the other requirements that would trigger applicability to the part 71 program, then the source no longer needs a Title V operating permit. When planning for the construction of a new source or expansion of an existing source, a source can also accept limitations on PTE (using a synthetic minor NSR permit) that allow the source to avoid PSD. Limitations on PTE can similarly help a source to avoid new MACT standards that would otherwise apply to the source.

3. Section B. ATTACHMENTS

This section lists the information that must be attached to the application form for each requested limitation. The requested limitation(s) must be described for each affected emissions unit (or pollutant-generating activity) and pollutant and must be accompanied by the supporting information listed on the form and described below. Note that applicability of many federal Clean Air Act requirements (such as Title V, PSD and MACT) is often based on source-wide emission levels of specific pollutants. In that case, all emissions units at a source and all pollutants regulated by that given rule or regulation must be addressed by this section of the application form.

Item 1 – The requested limitation and its effect on actual emissions or potential to emit must be presented in enough detail to document how the limitation will limit the source's actual or potential emissions as a legal and practical matter and, if applicable, will allow the source to avoid an otherwise applicable requirement. The information presented must clearly explain how the limitation affects each emission unit and each air pollutant from that emission unit. Use the information provided in response to Item 4 below to explain how the limitation affects emissions before and after the limitation is in effect.

Item 2 – For each requested limitation, the application must include proposed testing, monitoring, recordkeeping and reporting that will be used to demonstrate and assure compliance with the limitation. Testing approaches should incorporate and reference appropriate EPA reference methods where applicable. Monitoring should describe the emission, control or process parameters that will be relied on and should address frequency, methods, and quality assurance.

Item 3 – The application must include a description and estimated efficiency of air pollution control equipment under present or anticipated operating conditions. For control equipment that is not proposed to be modified to meet the requested limit, simply note that fact; however, for equipment that is proposed to be modified (e.g. improved efficiency) or newly installed to meet the proposed limit, address both current and future descriptions and efficiencies. Include manufacturer specifications and guarantees for each control device.

Items 4 – Any emission estimates submitted to the Reviewing Authority must be verifiable using currently accepted engineering criteria. The following procedures are generally acceptable for estimating emissions from air pollution sources:

- (i) Source-specific emission tests;
- (ii) Mass balance calculations;

(iii) Published, verifiable emission factors that are applicable to the source. (i.e., manufacturer specifications).

(iv) Other engineering calculations; or

(v) Other procedures to estimate emissions specifically approved by the Reviewing Authority.

<u>Post-Change Allowable Emissions</u>: A source's allowable emissions for a pollutant is expressed in tpy and generally is calculated by multiplying the allowed hourly emissions rate in pounds per hour (lbs/hr) times allowed hours (which is the number of hours in a year) and dividing by 2,000 (which is the number of pounds in a ton).

Item 5 - New construction projects that have the potential to emit GHG emissions of at least 100,000 tpy CO_2e and 100 or 250 tpy on a mass basis, modifications at existing PSD facilities that increase GHG emissions by at least 75,000 tpy CO_2e and minor sources that increase GHG emissions by at least 100,000 tpy CO_2e and 100 or 250 tpy on a mass basis are subject to PSD permitting requirements, even

if they do not significantly increase emissions of any other pollutant. As such, any requested limits to avoid PSD must take into account greenhouse gases.

Therefore, please include in your permit application estimates of the potential emissions of the following pollutants. More information about GHG permitting and how to calculate CO_2 equivalents (CO_2e), the mass emissions of each individual GHG adjusted for its Global Warming Potential (GWP) can be found at: http://epa.gov/nsr/ghgdocs/ghgpermittingguidance.pdf

- 1. Carbon dioxide (CO₂)
- 2. Methane (CH₄) and its CO₂e
- 3. Nitrous oxide (N_2O) and its CO_2e
- 4. Hydrofluorocarbons (HFCs) and its CO₂e
- 5. Perfluorocarbons (PFCs) and its CO_2e
- 6. Sulfur hexafluoride (SF₆) and its CO₂e

Attachment 1: Requested Limitation Items

Círrus Consultíng, LLC

ATTACHMENT 1 – Requested Limitation Items

This section lists the information that must be attached to the application form for each requested limitation.

Item 1 – Requested Limitations

The Ojito Compressor Station is a natural gas compressor station on a natural gas pipeline. The primary function of the facility is to compress natural gas for pipeline transportation using natural gas fired reciprocating internal combustion engines (RICE) to drive the compressors. These engines are 800 horsepower 4-stroke rich-burn (4SRB) Cooper Superior model 8G825 engines. Each engine utilizes a non-selective catalytic converter to reduce nitrogen oxide (NOx), carbon dioxide (CO2) and volatile organic compound (VOC) emissions. The emissions calculations in Item 4 below establish requested emission limitations (controlled emission rates) as brought forward from the current Part 71 Title V permit R6FOPP71-05.

The facility also includes condensate tanks and a pig launcher, which collect liquids (consisting of water and hydrocarbons condensed from the natural gas) removed from the pipeline by pigging operations, and associated condensate tank emissions. WFC requests a condensate throughput limitation 1,100 barrels of condensate per year.

Finally, an electrical generator driven by a 180-horsepower 4SRB RICE is used to provide electrical power when commercial utility power fails. WFC requests an annual operating limit of 500 hours per year for this emergency generator, thus maintaining its insignificant source status.

In addition, the three compressor engines and the generator will comply with the inspection and maintenance requirements of NESHAP ZZZZ, as described in Attachment 3, Applicable Federal Regulations.

Item 2 – Proposed Testing, Monitoring, Recordkeeping and Reporting

As noted in Item 1, the Ojito Compressor Station has two functions. The first is to compress natural gas using natural gas fired RICE whose combustion emissions are reduced by use of catalytic converters. The current Part 71 Title V permit R6FOPP71-05, which is to be cancelled with the issuance of this requested synthetic minor permit, requires periodic compliance testing to verify proper operation of the catalytic converters by measuring NOx emissions with a properly calibrated portable analyzer. For this synthetic minor permit, WFC proposes to measure both NOx and CO emissions on an annual basis with a properly calibrated portable analyzer to compare against the requested emissions limitations in Item 1 above. In addition, WFC will monitor the hours of operation of each unit, as well as the hours of operation of the emergency generator. Annually, WFC will quantify annual emissions from the compressor engines using the period test results and the annual hours of operation.

The facility also handles liquids removed from the pipeline via the pig launcher. WFC proposes to monitor condensate throughput on a monthly basis and perform an annual analysis of emissions from these activities based on this throughput.

Item 3 – Air Pollution Control Equipment

The only air pollution control equipment utilized at the Ojito Compressor Station are the catalytic converters on the compressor engines. As described in the emissions calculations in Item 4 below, manufacturer's data from the previous Part 71 Title V applications identified pollutant reduction efficiencies of 90% for NOx, 80% for CO and 50% for VOC. Periodic testing as described in Item 2 will assure that these reduction efficiencies are achieved by meeting the emissions limitations requested in Item 1.

Item 4 – Emissions Estimates

The requested limitations are based on potential to emit calculations presented Attachment 2, Emissions Calculations, along with supporting documentation for these calculations. Unless otherwise noted in the calculations, emission estimates assume operation at full site capacity for 8,760 hours per year. Attachment 2 includes documentation for insignificant emissions. Emissions are determined as follows:

Superior 8G825 Compressor Engines (Units 1-3)

The Nitrogen Oxides (NOx), Carbon Monoxide (CO), and Volatile Organic Compounds (VOC) emission factors for uncontrolled compressor engine emissions were taken from AGA stack test data. The NOx, CO and VOC emission factors for controlled compressor engine emissions were calculated from uncontrolled emissions tuned to the catalyst and the catalyst efficiencies provided by the manufacturer. A safety factor was included. As the fuel for the engines is sweet natural gas, PM10 and SO2 emissions were assumed to be negligible. Emissions for each engine were calculated using a design rate of 800 horsepower and 8760 hours of operation per year.

Hazardous Air Pollutant (HAP) emissions were calculated using GRI-HAPCalc 3.0.

In addition to the emission calculations and GRI-HaPCalc output file, copies of stack test results and the catalyst performance guarantee are provided as supporting documentation.

The facility also utilizes an emergency electrical generator driven by a 180-horsepower Waukesha engine. As an emergency generator, emissions are based on a conservative 500 hours per year of operation. Emissions calculations demonstrate that emissions are well below the significant emissions threshold of 2.0 tpy.

Storage Tanks (Units T-11 and T-12)

Flash emissions from the condensate tanks (Units T-11 and T-12) are calculated using actual condensate ticket sales for the entire station during calendar year 2007 (1100 barrels of flashed condensate total in 2007). ProMax is used to estimate the volume of VOC flashed to the atmosphere. Working and breathing losses were calculated using 1100 barrels of flashed condensate per tank per year using TANKS 4.0.9d.

A safety factor was applied to the calculated flash and working/breathing emissions to provide a margin of safety. This margin of safety allows for future variations in condensate composition and throughput, thus maximizing operational flexibility without exceeding the PSD major modification threshold.

The working and breathing losses for the gasoline, diesel, lubrication oil, ambitrol, and methanol storage tanks (Units IE-1 through IE-11) are also calculated using TANKS 4.0.9d. Based on the emission calculations, all of these tanks are included in this application as insignificant sources. Copies of the ProMax 3.2 and TANKS 4.0.9d output files are provided in this attachment.

Fugitive Emissions (Unit F1)

Fugitive emissions (F1) from leaking pipeline components (valves, flanges, seals, etc.) were calculated using emission factors from the *1993 Protocol for Equipment Leak Emission Estimates* published by the Environmental Protection Agency (EPA). Component counts were based on a survey conducted at a similar station which identified the number of components for each representative unit. The calculations are provided in this appendix.

Startup, Shutdown and Maintenance (SSM) Emissions

Emissions associated with startups, shutdowns and routine maintenance (SSM) from the compressor and piping (Unit SSM) are vented to the atmosphere. SSM emissions from the

compressor occur when high pressure gas is used to purge air from the compressor and associated piping prior to startups. This gas is then vented to atmosphere. Also, after shutdowns, high pressure gas in the compressors and associated piping is released to atmosphere as a safety precaution.

One common reason for compressor startup or shutdown is a change in the amount of compression required from the station due to fluctuations in the pipeline. To prolong the life of equipment and reduce engine emissions, the compressors are shutdown when not needed. It is "routine or predictable" that the compressors at the station will come on-line and drop off-line many times during the course of operation. It is also standard industry practice.

The compressor is also shut down for maintenance of the engine, compressor or other equipment at the station. Maintenance is scheduled based on time in service and/or monitoring of equipment (visual and automated) in accordance with company and standard industry practice. The maintenance is also "routine or predictable".

The VOC and HAP emissions from blowdown of the compressor and piping associated with the facility are calculated from the composition of the gas, the quantity of gas vented during each event, and the number of annual events. The composition of the gas is dependent on the gas in the determined from the most recent extended gas analysis. The quantity of gas vented during each event is determined by Williams engineering. For the compressor, the annual number of blowdown events is estimated from historical data. A safety factor is added because VOC and HAP emissions from each blowdown event are dependent on the composition of the gas in the pipeline, and because the number of blowdowns in a year may vary. Experience indicates the composition of the gas is likely to vary. The use of the safety factor is also designed to ensure an adequate emissions estimate that includes any emissions from other non-blowdown miscellaneous startup, shutdown and maintenance activities. It is estimated the compressor will experience no more than one blowdown per hour.

The SSM emissions identified in this application are routine or predictable startup/shutdown and scheduled maintenance and do not include malfunctions or upsets.

Pig Launcher (Unit PL) Emissions

The facility includes a pig launcher (unit PL), used to remove water from the pipeline during pigging operations. Pigs are periodically inserted and propelled through the pipeline for the purpose of cleaning and/or internally inspecting the pipeline. The pig is inserted into the line (pig launcher), and through the pressure of the natural gas behind it, is propelled downstream, pushing along with it residual material through the pipeline. A small amount of natural gas is

released when the pig launcher is opened to insert the pig, including VOC and HAP constituents in the natural gas.

The pig launcher VOC emissions are fugitive emissions that result from opening valves at the pig launching compartment along the line. The pigging emission calculations assume pig launching operations occur up to 260 times per year.

Truck Loading

Emissions of VOC from the condensate tank truck loading (unit L-1) activities are estimated using emission factors from AP-42 Section 5.2, *Truck Loading*, and the estimated maximum facility-wide condensate and produced water loaded annually. The emission calculations assume submerged loading during transfer operations.

The stabilized condensate liquid truck loading (unit L-1) constituent HAP emissions are based on the TANKS working and breathing loss emission calculations of HAP vapor mass fractions of VOC.

For the Potential To Emit emission calculations, the facility-wide annual volume of liquids loaded is equivalent to the sum of the storage tank annual throughputs from the tank emission calculations described above, resulting in a conservative estimate of facility-wide annual emissions from truck loading activities.

Item 5 – Greenhouse Gas (GHG) Emissions

Although this facility is not an existing PSD facility and this application does not request any new construction or modification, the emissions calculations in Item 4 above address GHG emissions, specifically CO2 and methane (CH4) emissions. Facility-wide GHG emissions are well below regulatory thresholds.

Attachment 2: Emissions Calculations, including Insignificant Emissions

Círrus Consultíng, LLC

Facility Total Projected Emissions (Criteria Pollutants)

Company: Williams Four Corners LLC Facility: Ojito Compressor Station Date/Rev: April 2017, Revision 0

Unit	Description	NC	DX,	С	О,	VC	DC,	SC	DX,	TSF	ρ,	PM	10,	PM	2.5,
Number		pph	tpy	pph	tpy	pph	tpy	pph	tpy	pph	tpy	pph	tpy	pph	tpy
1	Superior 8G825	2.82	12.36	7.05	30.90	0.88	3.86	0.00	0.02	1.28E-01	0.56	0.13	0.56	0.13	0.56
2	Superior 8G825	2.82	12.36	7.05	30.90	0.88	3.86	0.00	0.02	1.28E-01	0.56	0.13	0.56	0.13	0.56
3	Superior 8G825	2.82	12.36	7.05	30.90	0.88	3.86	0.00	0.02	1.28E-01	0.56	0.13	0.56	0.13	0.56
Gen	Waukesha H884U	3.96	0.99	3.42	0.86	0.06	0.01								
T-11	Condensate Tank						10.08								
T-12	Condensate Tank						1.02								
F-1	Fugitve Emissions					1.37	6.01								
SSM	SSM Emissions						13.40								
PL	Pig Launcher Emissions						7.59								
TL	Truck Loading Emissions					53.26	0.15								
	Total	12.43	38.07	24.58	93.56	57.34	49.85	0.01	0.05	0.38	1.68	0.38	1.68	0.38	1.68

Facility Total Projected Emissions Hazardous Air Pollutants)

Company: Williams Four Corners LLC Facility: Ojito Compressor Station Date/Rev: April 2017, Revision 0

Unit	Description	Total	HAPs,	Formalo	lehyde	n-He	exane	Ben	zene	Tolu	lene	Ethylb	enzene	Xyle	enes	2,2,4 Trime	ethylpentane
Number		pph	tpy	pph	tpy	pph	tpy	pph	tpy	pph	tpy	pph	tpy	pph	tpy	pph	tpy
1	Superior 8G825	0.13	0.56	7.38E-02	0.32			3.89E-02	0.17	1.25E-02	5.46E-02			2.99E-03	1.31E-02		
2	Superior 8G825	0.13	0.56	7.38E-02	0.32			3.89E-02	0.17	1.25E-02	5.46E-02			2.99E-03	1.31E-02		
3	Superior 8G825	0.13	0.56	7.38E-02	0.32			3.89E-02	0.17	1.25E-02	5.46E-02			2.99E-03	1.31E-02		
Gen	Waukesha H884U																
T-11	Condensate Tank		0.31				2.72E-01		3.78E-02		0		1.10E-03		1.17E-03		2.29E-03
T-12	Condensate Tank		4.92E-02				4.69E-02		2.03E-03		0		6.50E-05		7.00E-05		1.75E-04
F-1	Fugitve Emissions	3.94E-02	0.17			2.67E-02	0.12	4.07E-03	1.78E-02	6.47E-03	2.83E-02	2.23E-04	9.78E-04	1.65E-03	7.21E-03	3.00E-04	1.32E-03
SSM	SSM Emissions		0.38				0.26		3.97E-02		6.32E-02		2.18E-03		1.61E-02		2.58E-03
PL	Pig Launcher Emissions		0.22				0.15		2.25E-02		3.58E-02		1.24E-03		9.12E-03		1.46E-03
TL	Truck Loading Emissions	2.56	0.01			2.44	6.71E-03	0.11	2.90E-04			3.38E-03	9.30E-06	3.64E-03	1.00E-05	9.11E-03	2.50E-05
	Total	2.99	2.83	0.22	0.97	2.47E+00	0.85	0.23	0.63	4.39E-02	0.29	3.61E-03	5.57E-03	1.43E-02	7.30E-02	9.41E-03	7.84E-03

	Facility Total Emissions						
Sources	CO2,	CH4,	N2O,	GHG,	CO2e,		
	tpy	tpy	tpy	tpy	tpy		
Engine & Turbine Exhaust	11,200.58	2.11E-01	2.11E-02	11,200.81	11212.14		
SSM Blowdowns	0.77	32.20		32.97	805.71		
Reciprocating Compressor Venting	3.64	152.36		156.00	3812.67		
Pig Launcher	0.44	18.25		18.68	456.57		
Equipment Leaks	0.21	8.62		8.83	215.69		
Natural Gas Pneumatic Device Venting	1.08	45.07		46.15	1127.90		
Natural Gas Driven Pneumatic Pump Venting	0.05	1.92		1.97	48.10		
Storage Tanks	0.09	1.08		1.16	26.97		
Total	11,206.84	259.70	2.11E-02	11,466.56	17,705.74		

Engine & Turbine Exhaust Emissions

Unit		E	Emission Factor	S	Emission Rates			
Numbers	Description	CO2,	CH4,	N2O,	CO2,	CH4,	N2O,	
		kg/MMBtu	kg/MMBtu	kg/MMBtu	tpy	tpy	tpy	
1	Engine	53.06	1.00E-03	1.00E-04	3,733.53	7.04E-02	7.04E-03	
2	Engine	53.06	1.00E-03	1.00E-04	3,733.53	7.04E-02	7.04E-03	
3	Engine	53.06	1.00E-03	1.00E-04	3,733.53	7.04E-02	7.04E-03	
	Total				11,200.58	2.11E-01	2.11E-02	

The emissions factors are taken from 40 CFR 98, Subpart C, Tables C-1 & C-2 Emission Rates (tpy) = kg/MMBtu x 2.2 lb/kg x MMBtu/yr / 2,000 lb/ton

				LHV	H	ΗV
Unit			Operating	Design	Design	Fuel
Numbers	Description	Fuel Types	Times,	Heat Rates,	Heat Rates,	Usages,
			hr/yr	MMBtu/hr	MMBtu/hr	MMBtu/yr
1	Engine	Nat. Gas	8,760	6.57	7.30	63,967
2	Engine	Nat. Gas	8,760	6.57	7.30	63,967
3	Engine	Nat. Gas	8,760	6.57	7.30	63,967

The fuel types and operating times are provided by Williams

The LHV design heat rates are taken from manufacturers data

HHV Design Heat Rates (MMBtu/hr) = LHV Design Heat Rates (MMBtu/hr) / 0.9 LHV/HHV

HHV Fuel Usages (MMBtu/yr) = HHV Design Heat Rates (MMBtu/hr) x hr/yr

SSM Blowdown Emissions

			CO2	CH4		
Unit		Total	Emission	Emission	Emissic	n Rates
Numbers	Description	Gas Losses,	Factors,	Factors,	CO2,	CH4,
		scf/yr	lb/scf	lb/scf	tpy	tpy
SSM	SSM Blowdowns	1,950,000	0.0008	0.0330	0.77	32.20

The annual blowdown volumes are calculated from data provided by Williams

The CO2 and CH4 emission factors are calculated from the facility extended gas analysis

Emission Rates (tpy) = scf/yr x lb/scf / 2,000 lb/ton

Reciprocating Compressor Venting Emissions

Unit		Emissio	on Rates		
Numbers	Description	CO2,	CH4,		
		tpy	tpy		
NA	Blowdown Valve Leakage	0.35	14.55		
NA	Rod Packing Emissions	3.29	137.81		
NA	Isolation Valve Leakage	0.00	0.00		
	Total	3 64	152 36		

Operating or standby mode - includes blowdown valve leakage through blowdown vent stack

Operating mode - includes rod packing emissions

Non-operating depressurized mode - includes isolation valve leakage through open blowdown vents (without blind flanges)

Rod packing gas emissions assume 4 cylinders per compressor

A combination of equations W-26 & W-36 (Subpart W) is used to calculate reciprocating compressor emissions

As the NMED requires CO2 & CH4 emissions rather than CO2e emissions, it is not necessary to include the global warming potential from equation W-36

CO2 Emission Rates (tpy) = # x scf/hr x hr/yr x (CO2 Mole Percent (%) / 100) x CO2 Density (kg/scf)

 $\label{eq:chi} x~(2,204.6~lb/tonne~/~2,000~lb/ton)~/~1,000~kg/tonne~$ CH4 Emission Rates (tpy) = # x scf/hr x hr/yr x (CH4 Mole Percent (%) / 100) x CH4 Density (kg/scf)

x (2,204.6 lb/tonne / 2,000 lb/ton) / 1,000 kg/tonne

Unit		Number of	Gas	Operating	CO2 Mole	CH4 Mole	CO2	CH4
Numbers	Description	Compressors	Emissions,	Times,	Percents,	Percents,	Density,	Density,
		#	scf/hr	hr/yr	%	%	kg/scf	kg/scf
NA	Blowdown Valve Leakage	3	33.5	8,760	0.68	78.11	0.0526	0.0192
NA	Rod Packing Emissions	3	317.2	8,760	0.68	78.11	0.0526	0.0192
NA	Blowdown Valve Leakage (Sta	3	10.5	0	0.68	78.11	0.0526	0.0192

The number of compressors are provided by Williams

Blowdown valve leakage (33.5 scf/hr) and rod packing emissions occur in operating mode

Blowdown valve leakage (10.5 scf/hr) occurs in standby pressurized mode

Emission factors are the three year rolling average (2012-2014) of all measurements in the Williams Field Services, LLC compressor fleet located at natural gas processing plants

The operating times (the average operating times for all station compressors combined) are provided by Williams

The facility CO2 and CH4 contents are taken from the facility extended gas analysis

The CO2 & CH4 densities (kg/scf) are taken from Subpart W, Paragraph 98.233(v)

Pig Launcher Emissions

			CO2	CH4		
Unit		Total	Emission	Emission	Emissic	n Rates
Numbers	Description	Gas Losses,	Factors,	Factors,	CO2,	CH4,
		scf/yr	lb/scf	lb/scf	tpy	tpy
PL	Pig Launcher	1,105,000	0.0008	0.0330	0.44	18.25
	Total				0.44	18.25

The annual blowdown volumes are calculated from data provided by Williams

The CO2 and CH4 emission factors are calculated from the facility extended gas analysis

Emission Rates (tpy) = scf/yr x lb/scf / 2,000 lb/ton

Equipment Leaks Emissions

Unit			Emissio	n Rates
Numbers	Description		CO2,	CH4,
			tpy	tpy
NA	Valves		0.2	6.6
NA	Connectors		0.0	0.8
NA	Open-Ended Lines		0.0	0.5
NA	Pressure Relief Valves		0.0	0.7
		Total	0.2	8.6

A combination of equations W-31 & W-36 (Subpart W) is used to calculate uncombusted CO2 & CH4 emissions

As the NMED requires CO2 & CH4 emissions rather than CO2e emissions, it is not necessary to include the global warming potential from equation W-36

CO2 Emission Rate (tpy) = # x scf/hr/component x (CO2 Content (mole %) / 100) x hr/yr x CO2 Density (kg/scf) x (2,204.6 lb/tonne / 2,000 lb/ton) / 1,000 kg/tonne

CH4 Emission Rate (tpy) = # x scf/hr/component x (CH4 Content (mole %) / 100) x hr/yr x CH4 Density (kg/scf)

x (2,204.6 lb/tonne / 2,000 lb/ton) / 1,000 kg/tonne

			Emission					
Unit		Number of	Factors,	CO2	CH4	Operating	CO2	CH4
Numbers	Description	Components,	scf/hr	Contents,	Contents,	Times,	Density,	Density,
		#	/component	mole %	mole %	hr/yr	kg/scf	kg/scf
NA	Valves	378	0.121	0.68	78.11	8,760	0.0526	0.0192
NA	Connectors	339	0.017	0.68	78.11	8,760	0.0526	0.0192
NA	Open-Ended Lines	103	0.031	0.68	78.11	8,760	0.0526	0.0192
NA	Pressure Relief Valves	25	0.193	0.68	78.11	8,760	0.0526	0.0192

The number of sources are calculated based on the number of compressors and dehydrators at the station (see criteria pollutant and

HAP equipment leaks calculations)

The emission factors are taken from Subpart W, Table W-1A (Western U.S. - Gas Service)

The facility CO2 and CH4 contents are taken from the facility extended gas analysis

The operating times are provided by Williams (default is the entire year)

The CO2 & CH4 densities are taken from Subpart W, Paragraph 98.233(v)

Natural Gas Pneumatic Device Venting Emissions

Unit		Number	Emission	Operating	Emissic	n Rates
Numbers	Description	of Devices,	Factors,	Times,	CO2,	CH4,
			scf/hr/device	hr/yr	tpy	tpy
NA	Continuous High Bleed Pneumatic Devices	0	37.3	8,760	0.00	0.00
NA	Intermittent Bleed Pneumatic Devices	23	13.5	8,760	1.07	44.87
NA	Continuous Low Bleed Pneumatic Devices	1	1.39	8,760	0.00	0.20
	Total				1.08	45.07

The number of devices are provided by Williams

The emission factors are taken from Subpart W, Table W-1A (Western U.S. - Gas Service)

The operating times are provided by Williams

Equation W-1 (Subpart W) is used to calculate CO2 & CH4 emissions

As the NMED requires CO2 & CH4 emissions in addition to CO2e emissions, it is necessary to divide by the global warming potentials CO2 Emission Rates (tpy) = $#x \operatorname{scf/hr/device} x (CO2 \operatorname{Content} (\operatorname{mole} \%) / 100) x \operatorname{CO2} \operatorname{Conversion} \operatorname{Factors} (\operatorname{tonne} \operatorname{CO2e/scf}) x \operatorname{hr/yr}$

x (2,204.6 lb/tonne / 2,000 lb/ton) / CO2 Global Warming Potentials (tonne CO2e/tonne CO2)

CH4 Emission Rates (tpy) = # x scf/hr/device x (CH4 Contents (mole %) / 100) x CH4 Conversion Factors (tonne CO2e/scf) x hr/yr x (2,204.6 lb/tonne / 2,000 lb/ton) / CH4 Global Warming Potentials (tonne CO2e/tonne CH4)

				CO2	CH4	CO2 Global	CH4 Global
				Conversion	Conversion	Warming	Warming
Unit		CO2	CH4	Factors,	Factors,	Potentials,	Potentials,
Numbers	Description	Contents,	Contents,	tonne CO2e	tonne CO2e	tonne CO2e	tonne CO2e
		mole %	mole %	/scf	/scf	/tonne CO2	/tonne CH4
NA	Continuous High Bleed Pneumatic Devices	0.68	78.11	5.262E-05	4.790E-04	1	25
NA	Continuous Low Bleed Pneumatic Devices	0.68	78.11	5.262E-05	4.790E-04	1	25
NA	Intermittent Bleed Pneumatic Devices	0.68	78.11	5.262E-05	4.790E-04	1	25

The facility CO2 and CH4 contents are taken from the facility extended gas analysis

The conversion factors are taken from Subpart W, Paragraph 98.233(a)

The global warming potentials are taken from 40 CFR Part 98, Table A-1

Natural Gas Driven Pneumatic Pump Venting Emissions

Emission Rates

Unit		Number	Emission	Operating	Emission Rates	
Number	Description	of Pumps,	Factor,	Time,	CO2,	CH4,
		#	scf/hr/pump	hr/yr	tpy	tpy
ΝΔ	Pneumatic Pump Venting	1	13 3	8 760	0.05	1 02

The number of pumps are provided by Williams

The emission factor is taken from Subpart W, Table W-1A (Western U.S. - Gas Service)

The operating time is provided by Williams (default is the entire year)

Equation W-2 (Subpart W) is used to calculate CO2 & CH4 emissions

As the NMED requires CO2 & CH4 emissions in addition to CO2e emissions, it is necessary to divide by the global warming potentials CO2 Emission Rate (tpy) = $\# x \operatorname{scf/hr/pump} x$ (CO2 Content (mole %) / 100) x CO2 Conversion Factor (tonne CO2e/scf) x hr/yr

x (2,204.6 lb/tonne / 2,000 lb/ton) / CO2 Global Warming Potentials (tonne CO2e/tonne CO2)

CH4 Emission Rate (tpy) = # x scf/hr/pump x (CH4 Content (mole %) / 100) x CH4 Conversion Factor (tonne CO2e/scf) x hr/yr x (2,204.6 lb/tonne / 2,000 lb/ton) / CH4 Global Warming Potentials (tonne CO2e/tonne CH4)

				CO2	CH4	CO2 Global	CH4 Global
				Conversion	Conversion	Warming	Warming
Unit		CO2	CH4	Factor,	Factor,	Potential,	Potential,
Number	Description	Content,	Content,	tonne CO2e	tonne CO2e	tonne CO2e	tonne CO2e
		mole %	mole %	/scf	/scf	/tonne CO2	/tonne CH4
NA	Pneumatic Pump Venting	0.68	78.11	5.262E-05	4.790E-04	1	25

The facility CO2 and CH4 contents are taken from the facility extended gas analysis

The conversion factors are taken from Subpart W, Paragraph 98.233(a)

The operating time is provided by Williams (the default is the entire year)

The global warming potentials are taken from 40 CFR Part 98, Table A-1

Storage Tank Emissions

Unit		Emission Rates			
Number	Description	CO2,	CH4,		
		tpy	tpy		
T11	Storage Tank	8.62E-02	1.08		
T12	Storage Tank	0.00	0.00		
	Tota	0.09	1.08		

The emission rates are taken from ProMax output files, as applicable

Gas Stream Composition

				Weight	
	Mole	Molecular	Component	Percent	Emission
Components	Percents,	Weights,	Weights,	of Total,	Factors,
	%	lb/lb-mole	lb/lb-mole	%	lb/scf
Carbon Dioxide	0.6808	44.01	0.30	1.3930	0.0008
Hydrogen Sulfide	0.0000	34.07	0.00	0.0000	0.0000
Nitrogen	0.7255	28.01	0.20	0.9448	0.0005
Methane	78.1110	16.04	12.53	58.2517	0.0330
Ethane	10.8480	30.07	3.26	15.1662	0.0086
Propane	5.5588	44.09	2.45	11.3950	0.0065
IsoButane	0.9025	58.12	0.52	2.4387	0.0014
Normal Butane	1.4859	58.12	0.86	4.0152	0.0023
IsoPentane	0.5070	72.15	0.37	1.7007	0.0010
Normal Pentane	0.3935	72.15	0.28	1.3200	0.0007
Cyclopentane	0.0274	70.14	0.02	0.0894	0.0001
n-Hexane	0.1177	86.17	0.10	0.4715	0.0003
Cyclohexane	0.0559	84.16	0.05	0.2187	0.0001
Other Hexanes	0.2016	86.18	0.17	0.8078	0.0005
Heptanes	0.2047	100.20	0.21	0.9536	0.0005
Methylcyclohexane	0.0588	98.19	0.06	0.2684	0.0002
2,2,4-Trimethylpentane	0.0010	100.21	0.00	0.0047	0.0000
Benzene	0.0198	78.11	0.02	0.0719	0.0000
Toluene	0.0267	92.14	0.02	0.1144	0.0001
Ethylbenzene	0.0008	106.17	0.00	0.0039	0.0000
Xylenes	0.0059	106.17	0.01	0.0291	0.0000
C8+ heavies	0.0667	110.00	0.07	0.3411	0.0002
Total	100.0000		21.51	100.0000	0.0567
VOC			5.21		0.0137

Gas stream composition obtained from Ojito extended gas analysis dated 8/1/16

Component Weights (lb/lb-mole) = [Mole Percents (%) / 100] x Molecular Weights (lb/lb-mole)

Weight Percent of Total (%) = 100 x Component Weights (lb/lb-mole) / Total Component Weight (lb/lb-mole) Emission Factors (lb/scf) = [Mole Percents (%) / 100] x Molecular Weights (lb/lb-mole) / 379.4 scf/lb-mole

Equipment Leaks Emissions

Unit			Emissio	n Rates
Numbers	Description		CO2,	CH4,
			tpy	tpy
NA	Valves		0.2	6.6
NA	Connectors		0.0	0.8
NA	Open-Ended Lines		0.0	0.5
NA	Pressure Relief Valves		0.0	0.7
		Total	0.2	8.6

A combination of equations W-31 & W-36 (Subpart W) is used to calculate uncombusted CO2 & CH4 emissions

As the NMED requires CO2 & CH4 emissions rather than CO2e emissions, it is not necessary to include the global warming potential from equation W-36

CO2 Emission Rate (tpy) = # x scf/hr/component x (CO2 Content (mole %) / 100) x hr/yr x CO2 Density (kg/scf) x (2,204.6 lb/tonne / 2,000 lb/ton) / 1,000 kg/tonne

CH4 Emission Rate (tpy) = # x scf/hr/component x (CH4 Content (mole %) / 100) x hr/yr x CH4 Density (kg/scf)

x (2,204.6 lb/tonne / 2,000 lb/ton) / 1,000 kg/tonne

			Emission					
Unit		Number of	Factors,	CO2	CH4	Operating	CO2	CH4
Numbers	Description	Components,	scf/hr	Contents,	Contents,	Times,	Density,	Density,
		#	/component	mole %	mole %	hr/yr	kg/scf	kg/scf
NA	Valves	378	0.121	0.68	78.11	8,760	0.0526	0.0192
NA	Connectors	339	0.017	0.68	78.11	8,760	0.0526	0.0192
NA	Open-Ended Lines	103	0.031	0.68	78.11	8,760	0.0526	0.0192
NA	Pressure Relief Valves	25	0.193	0.68	78.11	8,760	0.0526	0.0192

The number of sources are calculated based on the number of compressors and dehydrators at the station (see criteria pollutant and

HAP equipment leaks calculations)

The emission factors are taken from Subpart W, Table W-1A (Western U.S. - Gas Service)

The facility CO2 and CH4 contents are taken from the facility extended gas analysis

The operating times are provided by Williams (default is the entire year)

The CO2 & CH4 densities are taken from Subpart W, Paragraph 98.233(v)

Natural Gas Pneumatic Device Venting Emissions

Unit		Number	Emission	Operating	Emissic	n Rates
Numbers	Description	of Devices,	Factors,	Times,	CO2,	CH4,
		#	scf/hr/device	hr/yr	tpy	tpy
NA	Continuous High Bleed Pneumatic Devices	0	37.3	8,760	0.00	0.00
NA	Intermittent Bleed Pneumatic Devices	23	13.5	8,760	1.07	44.87
NA	Continuous Low Bleed Pneumatic Devices	1	1.39	8,760	0.00	0.20
	Total				1.08	45.07

The number of devices are provided by Williams

The emission factors are taken from Subpart W, Table W-1A (Western U.S. - Gas Service)

The operating times are provided by Williams

Equation W-1 (Subpart W) is used to calculate CO2 & CH4 emissions

As the NMED requires CO2 & CH4 emissions in addition to CO2e emissions, it is necessary to divide by the global warming potentials CO2 Emission Rates (tpy) = $#x \operatorname{scf/hr/device} x (CO2 \operatorname{Content} (\operatorname{mole} \%) / 100) x \operatorname{CO2} \operatorname{Conversion} \operatorname{Factors} (\operatorname{tonne} \operatorname{CO2e/scf}) x \operatorname{hr/yr}$

x (2,204.6 lb/tonne / 2,000 lb/ton) / CO2 Global Warming Potentials (tonne CO2e/tonne CO2)

CH4 Emission Rates (tpy) = # x scf/hr/device x (CH4 Contents (mole %) / 100) x CH4 Conversion Factors (tonne CO2e/scf) x hr/yr x (2,204.6 lb/tonne / 2,000 lb/ton) / CH4 Global Warming Potentials (tonne CO2e/tonne CH4)

				CO2	CH4	CO2 Global	CH4 Global
				Conversion	Conversion	Warming	Warming
Unit		CO2	CH4	Factors,	Factors,	Potentials,	Potentials,
Numbers	Description	Contents,	Contents,	tonne CO2e	tonne CO2e	tonne CO2e	tonne CO2e
		mole %	mole %	/scf	/scf	/tonne CO2	/tonne CH4
NA	Continuous High Bleed Pneumatic Devices	0.68	78.11	5.262E-05	4.790E-04	1	25
NA	Continuous Low Bleed Pneumatic Devices	0.68	78.11	5.262E-05	4.790E-04	1	25
NA	Intermittent Bleed Pneumatic Devices	0.68	78.11	5.262E-05	4.790E-04	1	25

The facility CO2 and CH4 contents are taken from the facility extended gas analysis

The conversion factors are taken from Subpart W, Paragraph 98.233(a)

The global warming potentials are taken from 40 CFR Part 98, Table A-1

Natural Gas Driven Pneumatic Pump Venting Emissions

Emission Rates

Unit		Number	Emission	Operating	Emission Rates	
Number	Description	of Pumps,	Factor,	Time,	CO2,	CH4,
		#	scf/hr/pump	hr/yr	tpy	tpy
ΝΔ	Pneumatic Pump Venting	1	13 3	8 760	0.05	1 02

The number of pumps are provided by Williams

The emission factor is taken from Subpart W, Table W-1A (Western U.S. - Gas Service)

The operating time is provided by Williams (default is the entire year)

Equation W-2 (Subpart W) is used to calculate CO2 & CH4 emissions

As the NMED requires CO2 & CH4 emissions in addition to CO2e emissions, it is necessary to divide by the global warming potentials CO2 Emission Rate (tpy) = $\# x \operatorname{scf/hr/pump} x$ (CO2 Content (mole %) / 100) x CO2 Conversion Factor (tonne CO2e/scf) x hr/yr

x (2,204.6 lb/tonne / 2,000 lb/ton) / CO2 Global Warming Potentials (tonne CO2e/tonne CO2)

CH4 Emission Rate (tpy) = # x scf/hr/pump x (CH4 Content (mole %) / 100) x CH4 Conversion Factor (tonne CO2e/scf) x hr/yr x (2,204.6 lb/tonne / 2,000 lb/ton) / CH4 Global Warming Potentials (tonne CO2e/tonne CH4)

				CO2	CH4	CO2 Global	CH4 Global
				Conversion	Conversion	Warming	Warming
Unit		CO2	CH4	Factor,	Factor,	Potential,	Potential,
Number	Description	Content,	Content,	tonne CO2e	tonne CO2e	tonne CO2e	tonne CO2e
		mole %	mole %	/scf	/scf	/tonne CO2	/tonne CH4
NA	Pneumatic Pump Venting	0.68	78.11	5.262E-05	4.790E-04	1	25

The facility CO2 and CH4 contents are taken from the facility extended gas analysis

The conversion factors are taken from Subpart W, Paragraph 98.233(a)

The operating time is provided by Williams (the default is the entire year)

The global warming potentials are taken from 40 CFR Part 98, Table A-1

Storage Tank Emissions

Unit		Emission Rates			
Number	Description	CO2,	CH4,		
		tpy	tpy		
T11	Storage Tank	8.62E-02	1.08		
T12	Storage Tank	0.00	0.00		
	Tota	0.09	1.08		

The emission rates are taken from ProMax output files, as applicable

Gas Stream Composition

				Weight	
	Mole	Molecular	Component	Percent	Emission
Components	Percents,	Weights,	Weights,	of Total,	Factors,
	%	lb/lb-mole	lb/lb-mole	%	lb/scf
Carbon Dioxide	0.6808	44.01	0.30	1.3930	0.0008
Hydrogen Sulfide	0.0000	34.07	0.00	0.0000	0.0000
Nitrogen	0.7255	28.01	0.20	0.9448	0.0005
Methane	78.1110	16.04	12.53	58.2517	0.0330
Ethane	10.8480	30.07	3.26	15.1662	0.0086
Propane	5.5588	44.09	2.45	11.3950	0.0065
IsoButane	0.9025	58.12	0.52	2.4387	0.0014
Normal Butane	1.4859	58.12	0.86	4.0152	0.0023
IsoPentane	0.5070	72.15	0.37	1.7007	0.0010
Normal Pentane	0.3935	72.15	0.28	1.3200	0.0007
Cyclopentane	0.0274	70.14	0.02	0.0894	0.0001
n-Hexane	0.1177	86.17	0.10	0.4715	0.0003
Cyclohexane	0.0559	84.16	0.05	0.2187	0.0001
Other Hexanes	0.2016	86.18	0.17	0.8078	0.0005
Heptanes	0.2047	100.20	0.21	0.9536	0.0005
Methylcyclohexane	0.0588	98.19	0.06	0.2684	0.0002
2,2,4-Trimethylpentane	0.0010	100.21	0.00	0.0047	0.0000
Benzene	0.0198	78.11	0.02	0.0719	0.0000
Toluene	0.0267	92.14	0.02	0.1144	0.0001
Ethylbenzene	0.0008	106.17	0.00	0.0039	0.0000
Xylenes	0.0059	106.17	0.01	0.0291	0.0000
C8+ heavies	0.0667	110.00	0.07	0.3411	0.0002
Total	100.0000		21.51	100.0000	0.0567
VOC			5.21		0.0137

Gas stream composition obtained from Ojito extended gas analysis dated 8/1/16

Component Weights (lb/lb-mole) = [Mole Percents (%) / 100] x Molecular Weights (lb/lb-mole)

Weight Percent of Total (%) = 100 x Component Weights (lb/lb-mole) / Total Component Weight (lb/lb-mole) Emission Factors (lb/scf) = [Mole Percents (%) / 100] x Molecular Weights (lb/lb-mole) / 379.4 scf/lb-mole

Ojito Compressor Station

Engine Exhaust Emissions Calculations

Unit Number:	1, 2, 3
Description:	Cooper Superior 8G825
Туре:	Four Stroke Rich Burn (Naturally Aspirated)

Note: The data on this worksheet applies to each individual emissions unit identified above.

Horsepower Ca 6,960	Iculations ft above MSL	Elevation	
800	hp	Nameplate hp	Mfg. data
Fuel Consumpt	ion		
8215	Btu/hp-hr	Brake specific fuel consumption	Mfg. data
6.572	MMBtu/hr	Hourly fuel consumption	Btu/hp-hr x Mfg. site-rated hp / 1,000,000
900	Btu/scf	Field gas heating value	Nominal heat content
7,302	scf/hr	Hourly fuel consumption	MMBtu/hr x 1,000,000 / Btu/scf
8,760	hr/yr	Annual operating time	Williams Four Corners LLC
57,571	MMBtu/yr	Annual fuel consumption	MMBtu/hr x hr/yr
63.97	MMscf/yr	Annual fuel consumption	scf/hr x hr/yr / 1,000,000

Steady-State Emission Rates

	Emission			Control		
Pollutants	Factors,	Uncontrolled Emission Rates,		Efficiencies,	Controlled Emission Rate	
	g/hp-hr	pph	tpy	%	pph	tpy
NOX	16.00	28.22	123.60	90	2.82	12.36
со	20.00	35.27	154.50	80	7.05	30.90
VOC	1.00	1.76	7.73	50	8.82E-01	3.86

Emission factors taken from AGA test data

Uncontrolled Emission Rates (pph) = g/hp-hr x Mfg. Site-rated hp / 453.59 g/lb

Uncontrolled Emission Rates (tpy) = Uncontrolled Emission Rates (pph) x hr/yr / 2,000 lb/ton Control efficiencies taken from from previous applications

Controlled Emission Rates (pph) = Uncontrolled Emission Rates (pph) x (1 - (% / 100))Controlled Emission Rates (tpy) = Uncontrolled Emission Rates (tpy) x (1 - (% / 100))

	Emission			
Pollutants	Factors,	Uncontrolled Emission Rates,		
	lb/MMBtu	pph	tpy	
SO2	5.88E-04	3.86E-03	1.69E-02	
TSP	1.94E-02	1.28E-01	0.56	
PM10	1.94E-02	1.28E-01	0.56	
PM2.5	1.94E-02	1.28E-01	0.56	

Emission factors taken from AP-42, Table 3.2-3

Particulate factors include both filterable and condensible emissions

Uncontrolled Emission Rates (pph) = lb/MMBtu x MMBtu/hr

Uncontrolled Emission Rates (tpy) = Uncontrolled Emission Rates (pph) x hr/yr / 2,000 lb/ton

GRI-HAPCalc® 3.0 Engines Report

×				
ſ	Facility ID: OJITO Operation Type: COMPRI	ESSOR STATION	Notes:	
	Facility Name: OJITO C	OMPRESSOR STATION		a
	User Name:		8	
	Units of Measure: U.S. ST/	NDARD		
L Note: Er Th E	nissions less than 5.00E-09 tons (o lese emissions are indicated on the missions between 5.00E-09 and 5.0	r tonnes) per year are considered insignit report with a "0". 05-05 tons (or tonnes) per year are repres	ficant and are treated as zero. sented on the report with "0.0	000".
\square	Engine Unit	• .		
U	nit Name: SUPERIOR 1			
	Hours of Operation:	8,760 Yearly		
	Rate Power:	800 hp		
	Fuel Type:	FIELD GAS		
	Fogine Type:	4-Stroke, Rich Burn		
7	Emission Factor Sat	- EPA > FIELD > LITERATURE		
	Additional EE Cat	-NONE-		
	Additional Er Set.			
		Calculated Emission	ons (ton/yr)	
	Chemical Name HAPs	Emissions	Emission Factor	Emission Factor Set
	Formaldehyde	0.3233	0.04188340 g/bhp-hr	GRI Field
	Methanol	0.0515	0.00666670 g/bhp-hr	GRI Field
	Benzene	0.1706	0.02210000 g/bhp-hr	GRI Field
	Taluene	0.0548	0.00710000 g/bhp-hr	GRI Field
	Xylenes(m,p,o)	0.0131	0.00170000 g/bhp-hr	GRI Field
	Naphthalene	. 0.0021	0.00027540 g/bhp-hr	GRI Field
	2-Methylnaphthalene	0.0004	0.00005050 g/bhp-hr	GRI Field
	Acenaphanyiene	0.0001	0.00001890 g/bhp-hr	GRI Field
	Diberzofium	0.0001	0.00001090 g/bhp-hr	GRI Field
	Fluorene	0.0001	0.0000370 g/bhp-hr	GRI Field
	Anthracene	0.0000	0.00000400 g/bhp-hr	GRI Field
	Phenanthrane	0.0002	0.00003210 g/bhp-hr	GRI Field
	Fluoranthene	0.0001	0.00001260 g/bhp-hr	GRI Field
	Pyrene	0.0001	0.00000880 g/bhp-hr	GRI Field
	Benz(a)anthracene	0.0000	0.00000180 g/bhp-hr	GRI Field
	Chrysene	0.0000	0.00000220 g/bhp-hr	GRI Field
	Benzo(a)pyrene	0.0000	0.00000040 g/bhp-hr	GRI Field
	Benzo(b)fluoranthene	0.0000	0.00000220 g/bhp-hr	GRI Field
	Benzo(k)fluoranthene	0.0000	0.00000220 g/bhp-hr	GRI Field
	Benzo(g.h,i)perylene	0.0000	0.00000070 g/bhp-hr	GRI Field
	Indeno(1,2,3-c,d)pyrene	0.0000	0.00000050 g/bhp-hr	GRI Field
	Dibenz(a,h)anthracene	0.0000	0.0000020 g/bhp-hr	GRI Field
7/02/2001	07:31:14	GRHAPCalc 3.0		Page 1 of 2

07/0

-

Total	0.6165		
Criteria Pollutants			
CO	70.1070	9.06349210 g/bhp-hr	GRI Field
NMEHC	2.0373	0.26396820 g/bhp-hr	GRI Field
NOx	58.0904	7.52654670 g/bhp-hr	GRI Field
Other Pollutants			
Methane	7.5637	0.98000000 g/bhp-hr	GRI Field
Ethylene	0.9776	0.12666670 g/bhp-hr	GRI Field
Ethane	2.3669	0.30866670 g/bhp-hr	GRI Field
Propylene	0.1852	0.02400000 g/bhp-hr	GRI Field
Propane	0.7409	0.09600000 g/bhp-hr	GRI Field

07/02/2001 07:31:14

GRI-HAPCalc 3.0

Page 2 of 2

WHITE SUPERIOR 86825

3

;

1.

05/01/80

ENGINE TEST 98, TEST SI	LE, 50	EXHAUST	STACK ARE	A 30. FT.	
WHITE SUPERIOR 86825	RAT	ED 696	SP AT 400	3 RPM, 4-3	SIRURE NA
SOURCE: PR 15-92 HCR-	3.57 NO	X-CLH CO-	NDIR HC- I	FID OZ-POI	FLOW-CB
*				-	_
RUN	1	5	. 3	4	5
DATE	11/13/78	11/13/78	11/13/78	11/13/78	11/13/78
TIME	1215	1330	1415	1500	1000
OPERATIONAL DATA					
BAROMETER, IN. HG.	56.38	56.34	26.34	56.35	26.32
AMBIENT TEMP. DEG. F	63	58	58	58	58
INLET MAN. TEMP DEG. F	64	61	58	58	58
EXHAUST VEL. FT/SEC	104.05	88.49	74.68	99.20	PO*55
SP. HUMIDITY GRAIN/LB	35	55	22	25	22
ENGINE SPEED RPM	879	- 880	880	880	658
HORSEPOWER	753	647	548	705	478
SCAV, AIR PRES. IN. HG.	-3.7	-5.6	-7.5	-4.5	-6.7
IGNIT, TIME DEG. BTOC	33.0	33.0	. 33.0	33.0	33.0
FUEL SP. GR. (STP)	.7363	.7363	.7363	.7363	.7363
HI HEAT VALUE BTU/SCF	988	988	. 988	988	988
LO HEAT VALUE BTU/SCF	895	895	895	895	895
CALC. EXH. FLOW LB/HR	2020	4375	3774	4858	3241
EXHAUST SP. GR. (STP)	.9605	.9617	.9634	.9609	.9658
EXHAUST TEMP. DEG. F	1050	1015	980	1034	891
FUEL FLOW SCF/HR	6455	5684	4898	P515	4048
FUEL HIL. BTU/HR (HHV)	6.374	5.613	4.837	6.134	3,997
FUEL FLOW LB/HR	364	350	276	350	558
AIR FLOW LB/HR (WET)	4657	4054	3498	4478	3013
AIR/FUEL RATIO (WET)	15.8	12.7	12.7	15.8	13.2
BSFC BTU/HP HR (HHV)	8465	8675	8856	8701	8365
EXMAUST HEO PERCENT	17.92	17.95	18.00	17.83	17.39
and the second					
EMISSIONS AS MEASURED		and the second		St. Carolina andro ancessor	and the second second
NOX PPH	1536.00	1812.00	2169.00	1536.00	3300.00
NO PPM	ND	ND	ND	ND	- ND
NO2 PPM	ND	ND	ND	ND	ND
CO2 PERCENT	11.14	11.37	11.73	11.14	11.43
HC PPM	840.00	708.00	415.00	706.00	354.00
CO PPM	6866.00	6007.00	2528.00	7032.00	538.00
02 PERCENT	.10	.14	.20	.12	.77
NO/NOX	ND	ND	ND	ND	ND
NON-METH/TOTAL HC	.344	.329	ND	ND	.289
CALCULATED EMISSIONS					
NOX LB/HR	10.540	10.817	11.142	10.142	14.631
HC LB/HR TOTAL	1.956	1.434	.723	1.582	.487
HC LB/HR NON-METH	.673	. 472	ND	ND	.141
CO LB/HR	25.637	19.472	2.029	25.265	.573
NOX LB/MIL BTU	1.654	1.927	2.304	1.653	3.661
HC LB/MIL BTU TOTAL	.307	.256	.150	.258	.155
HC LB/MIL BTU NON-METH	.106	.084	ND	ND	.035
CO LB/MIL BTU	4.022	3.469	1.453	4.119	.143
NOX G/BHP HR	6.349	7.584	9.223	6.526	13.885
HC G/BHP HR TOTAL	1.178	1.006	- 599	1.018	. 463
HC GIBHP HR NON-METH	. 405	.331	ND	ND	.134
CO G/BHP HR	15.443	13.651	5.818	16.256	.543
NOX PPM CORR TO 15 PCT	436	515	618		967
NOTE: NOT AS NOT AND BU	AS HHY	500 CALCH	ATED ENT	RETONE	

NOTE: NOX AS NO2 AND BTU AS HHV FOR CALCULATED EMISSIONS

1 01 -

WHITE SUPERIOR RG825

PIIN	6	7			
DATE	11/13/78	11/13/78		<i>Q</i>	
TIME	1640	1720		÷.	
1THC					
OPERATIONAL DATA				• •	25 V
BAROMETER, IN. HG.	56.33	26.33			
AMBIENT TEMP. DEG. F	55	52		· .	
INLET MAN. TEMP DEG. F	54	52			·
EXHAUST VEL. FT/SEC	79.76	100.64			
SP. HUHIDITY GRAIN/LB	20	25			
ENGINE SPEED RPM	286	885			
HORSEPONER	658	217		*	
SCAV. AIR PRES. IN. HG.	-5.1	-7.5			25
IGNIT. TIME DEG. BIDC	33.0	33.0		• •	1 ²
FUEL SP. GR. (SIP)	./363	. /363			
LO HEAT VALUE BIU/SCF	996	180		• •	
CALC FYH FLOW I B/HR	3996				
EXHAUST SP CP (STP)	9632	9611			
EXHAUST TENP DEC. E	992	1036		۰.	
ENEL FLOW SCE/HP	5200	\$235	<i>t</i> :	2	
FUEL MTL. BTU/HR (HHV)	5,135	6.157			
FUEL FLOW LB/HR	293	351	03	· •	
AIR FLOW LB/HR (WET)	3703	4543	1.52	Ϋ́.	
AIR/FUEL RATIO (WET)	12.6	12.9		5	•
BSFC BTU/HP HR (HHV)	8176	8587			
EXHAUST HEO PERCENT	18-00	17.66			• •
				*8. jk	
EMISSIONS AS MEASURED		1503 00 -		•	
NUX PPH	275/-00	1587.00			
NU PPP			*		1.2
COD DEBCENT	1.1. 60	11.03			2-37
HC DON	452_00:5	681.00			
CO PPH	3512-00.	6784.00			
02 PERCENT	-20	51.			
NO/NOY	ND	ND			
NON-METH/TOTAL HC	ND	.357			÷.
		e 00	2		
CALCULATED EMISSIONS					÷ .
NOX LB/HR	13.367	10.641			
HC LB/HR TOTAL	.834	1.549		0	
HC LB/HR NON-METH	ND	.553			
CO LB/HR	10.347	24.775			
NOX LB/MIL BTU	5.603	1.728			4
HC LB/HIL BTU TOTAL	. 163	.252	0.00		
HC LB/HIL BTU NON-METH	ND	.090		•)	
CO LB/MIL BTU	2.015	4.024			
NOX G/BHP HR	9.655	6.732	× °		
HC G/BHP HR TOTAL	.603	.980			±
HC G/BHP HR NON-METH	ND	.350	<i>24</i>		~
CO G/BHP HR	7.473	15.674	34		
NOV DON COOP TO 15 DCT 0	2 700	461			

L

WHITE SUPERIOR 86825

05/01/80

NUM 1 2 3 4 5 RUN 11/15/78		ENGINE TEST 100, TEST SIT WHITE SUPERIOR 86825 SOURCE: PR 15-92 HCR-3	TE 20 • RAT	EXHAUST ED 696 P	STACK ARE HP AT 900 NDTR HC-	EA SQ. FT RPM, 4-	579 Stroke NA L Flow-CB
RUN DATE 1 2 3 4 5 DATE 11/15/78 11/15/78 11/15/78 11/15/78 11/15/78 11/15/78 TIME 1100 1200 1440 1530 1600 OPERATIONAL DATA RAROMETER, IN, HG. AMBIGHT TEMP. DEG. F 30.26 30.26 30.26 30.26 30.26 MAMIET TEMP. DEG. F 32 35 34 35 35 EXMAUST VEL, FT/SEC R4.05 70.20 84.7 75.74 75.26 SCAV, AIR PRES, IN, HG. 21 21 23 33.0 <t< td=""><td></td><td>SUGREE: FR IS-4E Fick-</td><td></td><td></td><td></td><td></td><td></td></t<>		SUGREE: FR IS-4E Fick-					
DATE 11/15/78 <th< td=""><td></td><td>RUN</td><td>l</td><td>2</td><td>Э</td><td>4</td><td>5</td></th<>		RUN	l	2	Э	4	5
TIME 1100 1200 1440 1530 1600 OPERATIONAL DATA RAROMETER, IN, HG, AMBIENT TEMP, DEG, F 30.26 30.2		DATE	11/15/78	11/15/78	.11/15/78	11/15/78	11/15/78
OPERATIONAL DATA RAROMETER, IN, MG. 30.26	2	TIME	1100	1500	1440	1530	1600
OPERATIONAL OATA RAROMETER, IN. HG. 30.26 30.31 35.3 35 32 32 22 21 21 55.7 30.7 40.7							
RAROMETER, IN., HG. 30.26 30.36 30.31 30.33.0 33.0 33.0 33.0 33.0 33.0 33.0 33.0 33.0 33.0 33.0 33.0 33.0 33.0 33.0 33.0 33.0 33.0		OPERATIONAL DATA			7627960 - 1026 - 2 11		
AMBLENT TEMP, DEG. F 32 35 34 35 35 INLET MAN, TEMP, DEG. F 45 ND NO NO NO EXALUST VEL, FT/SEC R9,05 70.20 89,47 57.46 75.26 P.MINDITY GRAIN/LB 81 21 23 22 21 ENGINE SPEED RPM 893 885 850 651 [775] HORSEPOWER [60] [51] [729] 564* 667 SCAV, AIR PRES, IN, HG, -3,5 -5,7 -3,7 -4,1 -4,3 IGNIT, TIME DEG, BTOC 33,0 33,0 33,0 33,0 33,0 IH FAT VALUE GTU/SCF 988 <		BAROMETER, IN. HG.	30.26	30.56	30.26	30.26	30.56
INLET MAN. IEMP DEG. F YS NO NO<		AMBIENT TEMP. DEG. F	35	35	34	96	35
EXAMUSI VUL, F1/SEL N*.05 V0.20 S*.77 37.35 72.28 ENGINE SPEED RPM 893 885 850 651 [725] HORSEPOWER [68] [55] [724] 564* 667 SCAV, AIR PRES, IN, HG. -3.5 -5.7 -3.7 -4.1 -4.3 JGNIT, TIME DEG, BTDC 33.0 33.0 33.0 33.0 33.0 33.0 HI HEAT VALUE RTU/SCF 988 988 988 988 988 985 CALC, EXM, FLOW LB/MR 5020 ¥107 4985 .9458 .9458 .9458 FXHAUST TEMP, DEG, F 1023 969 1040 898 988 988 FUEL FLOW SCF/MR 5551 4.496 6.278 4015 5.491 FUEL FLOW LB/MR 117 275 353 6378 4062 5561 FUEL FLOW LB/MR 117 17.63 3850 4627 3334 4002 AIR FLOW LB/MR 117 17.03 3850 15.932 12.49 14.50 12.49 FUEL FLOW		INLET MAN. TEMP DEG. F	45			67 9L	DE DE
SF. TORING SPEC RPM B33 B51 E50 651 [725] HORSEPOWER [681] [551] [723] 544 667 SCAV, AIR PRES, IN, HG. -3,5 -5,7 -4,1 -4,3 IGNIT, TIME DEG, BTDC 33,0 35,0 35,0 35,0 36,0 36,0 36,0 36,0 36,0 36,0 36,0 36,0 36,0 36,0 36,0 <td></td> <td>CO HUMIDITY CONTNAR</td> <td>21</td> <td>21</td> <td>54.70</td> <td>22</td> <td>21</td>		CO HUMIDITY CONTNAR	21	21	54.70	22	21
LIGATE LIGATE <thligate< th=""> <thligate< th=""> <thligate< td="" th<=""><td></td><td>ENGINE SPEED RPM</td><td>893</td><td>885</td><td>850</td><td>651</td><td>[775]</td></thligate<></thligate<></thligate<>		ENGINE SPEED RPM	893	885	850	651	[775]
SCAV. AIR PRES. IN. HG. -3.5 -5.7 -4.1 -4.3 IGNIT. TIME DEG. BTOC 33.0 33.0 33.0 33.0 33.0 33.0 FUEL SP. GR. (STP) -7363 .7363 <td></td> <td>HORSEPOWER</td> <td>681</td> <td>551</td> <td>729</td> <td>564 *</td> <td>667</td>		HORSEPOWER	681	551	729	564 *	667
IGNIT. TIME DEG. BTDC 33.0 30.0 30.0 30.0 30.0 30.0 30.0 30.0 30.0 30.0 30.0 30.0 30.0 30.0 30.0 30.0 30.0 30.0 30.0 30.0 <t< td=""><td></td><td>SCAV, AIR PRES. IN HG.</td><td>-3.5</td><td>-5.7</td><td>-3.7</td><td>-4.1</td><td>-4.3</td></t<>		SCAV, AIR PRES. IN HG.	-3.5	-5.7	-3.7	-4.1	-4.3
FUEL SP. GR. (STP) .7363 </td <td></td> <td>IGNIT, TIME DEG. BTOC</td> <td>33.0</td> <td>33.0</td> <td>33.0</td> <td>33.0</td> <td>33.0</td>		IGNIT, TIME DEG. BTOC	33.0	33.0	33.0	33.0	33.0
HI HEAT VALUE RTU/SCF 988 988 988 988 988 988 988 988 988 988 988 988 100 988 985 89		FUEL SP. GR. (STP)	.7363	.7363	.7363	.7363	.7363
LO HEAT VALUE OTU/SCF 895 895 895 895 895 895 CALC, EXH, FLOW LB/HR 5020 4107 4986 3568 9315 EXHAUST TEMP, DEG. F 1023 969 1040 898 998 998 FUEL FLOW SCF/HR 5631 4553 6378 4066 5561 FUEL MIL. BTU/HR (HHV) 5.561 4.496 6.298 4.015 5.491 FUEL FLOW LB/HR (HHV) 5.561 4.996 4.029 4.015 5.491 FUEL FLOW LB/HR (HHV) 5.561 4.996 4.029 4.015 5.491 FUEL FLOW LB/HR (HHV) 5.561 4.996 4.029 4.015 5.491 FUEL FLOW LB/HR (HHV) 5.561 4.996 4.029 4.015 5.491 FUEL FLOW LB/HR (HHV) 5.561 4.996 4.029 4.015 5.491 FUEL FLOW LB/HR (HHV) 8153 8160 8640 7119 4.8233 EXHAUST H20 PERCENT 15.70 15.43 17.61 15.93 17.67 FWH 2280.00 1533.00 1548.00 2844.00 1593.00 NO PPM 2090.00 1386.00 NO ND 1497.00 NO PPM 2090.00 147.00 ND ND 9.600 NO PPM 2090.00 147.00 ND ND 9.600 NO PPM 2090.00 147.00 ND ND 9.600 149.00 147.00 ND ND 9.600 12 PERCENT 10.07 9.85 11.14 10.24 11.08 4.00 2 PERCENT 10.07 9.85 11.14 10.24 11.08 4.00 2 PERCENT 3.00 3.35 .10 2.70 .15 NO/NOX .1140 559.00 541.00 5438.00 401.00 566.00 ND ND 9.02 PPM 259.00 541.00 5438.00 401.00 566.00 S2 PERCENT 3.00 3.35 .10 2.70 .15 NO/NOX .1417 .904 ND ND 9.90 .905 .900 541.00 5438.00 401.00 566.00 S2 PERCENT 3.00 3.35 .10 2.70 .15 NO/NOX .1317 .904 ND ND 9.95 .920 .138 .922 1.306 CO LB/HR TOTAL .188 .755 2.838 .898 2.899 HC LB/HR TOTAL .189 .720 1.385 .322 1.306 CO LB/HR TOTAL .115 .393 .451 .224 .526 HC LB/HIL BTU 704 .245 .408 .459 .322 1.306 CO LB/HR TOTAL .115 .393 .451 .224 .526 HC LB/HIL BTU NON-METH .034 .160 .220 0.00 .231 1.00 .271 4.025 NOX G/BHP HR 107AL .125 .533 .800 3.210 .271 4.025 NOX G/BHP HR 107AL .125 .533 .800 3.210 .271 4.025 NOX G/BHP HR TOTAL .425 1.453 .1766 .722 1.985 .0221 .006 .238 NOX LB/HR TOTAL .125 .533 .852 .259 .888 NOX LB/HR TOTAL .125 .533 .852 .259 .888 NOX CAR TO 15 PCT 02 752 .515 4.39 .922 1.500 NOX PDM CORR TO 15 PCT 02 752 .515 4.39 .922 1.500 NOX PDM CORR TO 15 PCT 02 752 .515 4.39 .922 4.551 NOX AS NO2 AND BTU AS HHV FOR CALCULATED EMISSIONS A BOY PPM CORR TO 15 PCT 02 752 .515 4.39 .922 4.553 NOTE: NOX AS NO2 AND BTU AS HHV FOR CALCULATED EMISSIONS		HI HEAT VALUE BTU/SCF	988	988	988	988	988
CALC. EXH. FLOW LB/HR 5020 4107 4986 3568 4315 EXHAUST SP. GR. (STP) 9685 9685 9617 9683 9612 FXHAUST TEMP. DEG. F 1023 969 1040 898 998 FUEL FLOW SCF/HR 5531 4553 6378 4066 5561 FUEL FLOW SCF/HR 317 256 359 229 313 AIR FLOW LB/HR (HHV) 5.561 4.496 6.298 4.015 5.491 FUEL FLOW LB/HR (HHV) 5.561 9.496 929 3339 4002 AIR/FUEL RATIO (WET) 4703 3850 4627 3339 4002 AIR/FUEL RATIO (WET) 14.8 15.0 12.9 14.6 12.8 BSFC BTU/HP HR (HHV) 8165 ³ 8160 ³ 8640 ³ 7119 4.8233 ³ EXHAUST H20 PERCENT 15.70 15.43 17.61 15.93 17.67 EMISSIONS AS MEASURED NOX PPM 2290.00 1533.00 1548.00 2844.00 1593.00 NO PPM 2290.00 1386.00 ND ND 1497.00 NO2 PPM 190.00 147.00 ND ND 1497.00 NO2 PPM 190.00 147.00 ND ND 1497.00 CO2 PERCENT 10.07 9.85 11.14 10.24 11.08 HC PPH 269.00 97.00 1224.00 534.00 4140.00 6866.00 CO2 PERCENT 3.00 3.35 .10 2.70 .15 NO/NOX .917 9.00 5438.00 401.00 6866.00 CO PPM 559.00 541.00 5438.00 401.00 6866.00 CO LB/HR NON-METH .188 1.765 2.838 .898 2.889 MOX LB/HR TOTAL .538 1.765 2.838 .898 2.809 CO LB/HR TOTAL .115 .393 .451 .224 .526 HC LB/MIL BTU TOTAL .115 .393 .451 .224 .526 HC LB/MIL BTU TOTAL .115 .393 .451 .224 .526 HC LB/MIL BTU TOTAL .115 .430 .210 .271 4.025 HC LB/MIL BTU TOTAL .115 .430 .210 .271 4.025 HC LB/MIL BTU A.386 .380 3.210 .271 4.025 HC LB/MIL BTU A.386 .380 3.210 .271 4.025 HC LB/MIL BTU A.386 .380 3.210 .271 4.025 HC C G/BHP HR TOTAL .125 .533 .862 .259 .888 HC C G/BHP HR TOTAL .125 .533 .862 .259 .888 HC C G/BHP HR TOTAL .125 .533 .862 .259 .888 HC C G/BHP HR TOTAL .126 .538 .873 .5		LO HEAT VALUE BTU/SCF	895	895	. 895	895	895
EXHAUST SP, GR, (STP) .9685 .9685 .9617 .9683 .9617 FXHAUST TEMP. DEG. F 1023 969 1040 898 .998 FUEL FLOW SCF/HR 5531 4553 6378 4066 5561 FUEL MIL, BTU/HR (HHY) 5.561 4.496 6.298 4.015 5.491 FUEL MIL, BTU/HR (HHY) 5.561 4.496 6.298 4.015 5.491 FUEL RATIO (MET) 14.8 15.0 12.9 14.6 12.8 BSFC BTU/HP HR (HHY) 8165 8160 86400 2844.00 1593.00 AIR/FUEL RATIO (MET) 15.70 15.43 17.61 15.93 17.67 EMISSIONS AS MEASURED NOX PPM 2090.00 1533.00 1548.00 2844.00 1593.00 NO PPM 2090.00 1533.00 1548.00 2844.00 1593.00 NO PPM 2090.00 1538.00 ND ND 1497.00 NO PPM 2090.00 1284.00 534.00 1440.00 CO PPM 259.00 97.00 1284.00 541.00 1440.00		CALC. EXH. FLOW LB/HR	5020	4107	4986	3568	4315
FXHAUST TEMP, DEG. F 1023 969 1040 898 998 FUEL FLOW SCF/HR 5531 4553 6378 4066 5561 FUEL FLOW LB/HR 317 256 359 229 313 AIR FLOW LB/HR 317 256 359 229 313 AIR FLOW LB/HR 117.8 15.0 12.9 14.6 12.8 BSFC BTU/HP HR (HHV) 8165 ³ 8160 ³ 8640 ³ 7119 8233 ³ EXHAUST H20 PERCENT 15.70 15.43 17.61 15.93 17.67 EMISSIONS AS MEASURED NOX PPM 2280.00 1533.00 1548.00 2844.00 1593.00 NOX PPM 2280.00 1533.00 1548.00 2844.00 1593.00 NOX PPM 2280.00 1533.00 1548.00 2844.00 1593.00 NOZ PPM 2290.00 1533.00 1548.00 2844.00 1593.00 NOZ PPM 2290.00 147.00 ND ND 966.00 CO PPM 2280.00 917.00 ND ND 946.00		EXHAUST SP. GR. (STP)	.9685	.9685	.9617	.9683	• 461S
FUEL FLON SCF/HR 5531 4533 6378 4065 S551 FUEL FLOW LB/HR 317 256 359 229 313 AIR FLOW LB/HR 317 256 359 229 313 AIR FLOW LB/HR (HET) 4703 3850 4627 3339 4002 AIR/FUEL RATIO (HET) 14.8 15.0 12.9 14.6 12.8 BSFC BTU/HP HR (HHV) 81653 81603 86403 2119 82333 EXHAUST H20 PERCENT 15.70 15.43 17.61 15.93 17.67 EMISSIONS AS MEASURED NOX PPM 2090.00 1386.00 ND ND 1497.00 NO2 PPM 2090.00 177.00 ND ND 96.00 1224.00 534.00 1490.00 C02 PERCENT 10.07 9.85 11.14 10.270 .15 MO/NOX .917 .904 ND ND .1490.00 .1490.00 </td <td></td> <td>EXHAUST TEMP. DEG. F</td> <td>1053</td> <td>. 969</td> <td>1040</td> <td>898</td> <td>998</td>		EXHAUST TEMP. DEG. F	1053	. 969	1040	898	998
FUEL MIL, BIU/AR (HHY) 5.561 4.446 6.248 4.015 5.441 FUEL FLOW LB/HR 317 256 359 229 313 AIR FLOW LB/HR (WET) 4703 3850 4627 3339 4002 AIR/FUEL RATIO (WET) 14.8 15.0 12.9 14.6 12.8 BSFC BTU/HP HR (HHV) 8165 ³ 8160 ³ 8640 ³ 2119 * 8233 ³ EXHAUST H20 PERCENT 15.70 15.43 17.61 15.93 17.67 EMISSIONS AS MEASURED NOX PPM 2280.00 1533.00 1548.00 2844.00 1593.00 NO2 PPM 2090.00 1385.00 ND ND 96.00 CO2 PERCENT 10.07 9.85 11.14 10.24 11.08 HC PPH 259.00 97.00 1224.00 534.00 140.00 O2 PERCENT 3.00 3.35 .10 2.70 .15 NO/NOX .917 .904 ND MO .940 NON-METH/TOTAL .638 1.765 2.838 .988 2.889 <t< td=""><td></td><td>FUEL FLOW SCF/HR</td><td>5631</td><td>4553</td><td>6378</td><td>4066</td><td>5561</td></t<>		FUEL FLOW SCF/HR	5631	4553	6378	4066	5561
POLL FLUW LB/RK 317 256 353 227 313 AIR FLOW LB/RK (WET) 14.8 15.0 12.9 14.6 12.8 AIR FLUEL RATIO (WET) 14.8 15.0 12.9 14.6 12.8 BSFC BTU/HP HR (HHY) 8165 ^a 8160 ^a 8640 ^a 2119* 8233 ^a EXHAUST H20 PERCENT 15.70 15.43 17.61 15.93 17.67 EMISSIONS AS MEASURED 2280.00 1533.00 1548.00 2844.00 1593.00 NOX PPM 2280.00 1533.00 1548.00 2844.00 1593.00 NO PPM 2280.00 147.00 ND ND 14.97.00 NO2 PPM 280.00 147.00 ND ND 96.00 CO2 PERCENT 10.07 9.85 11.14 10.24 11.08 NO PPH 259.00 541.00 534.00 140.00 6866.00 O2 PERCENT 3.00 3.35 .10 2.70 .15 NON-METH/TOTAL 4.07 9.417 9.440 NO ND .460 NON		FUEL MIL. BIU/HR (HHV)	5.561	4.446	6.248	4.015	5.441
AIR/FLUEL RATIO (MET) 14.8 15.0 12.9 14.6 12.8 BSFC BTU/HP HR (HHV) 8165 ⁸ 8160 ⁸ 8640 ⁸ <u>7119</u> * 8233 ⁸ EXHAUST H20 PERCENT 15.70 15.43 17.61 15.93 17.67 EMISSIONS AS MEASURED 2280.00 1533.00 1548.00 2844.00 1593.00 NOX PPM 2090.00 1386.00 NO ND 14.97.00 NOZ PPM 190.00 147.00 ND ND 497.00 NOZ PPM 190.00 147.00 ND ND 46.00 NOZ PPM 269.00 907.00 1224.00 534.00 1440.00 CO PPM 259.00 907.00 1224.00 534.00 1440.00 OZ PERCENT 3.00 3.35 .10 2.70 .15 NONNAX .917 .904 ND MD .940 NONN-METH/TOTAL .638 1.765 2.838 .898 2.889 MC LG/HR NON-METH .188 .720 1.385 .322 1.306 CO LB/HR NON-METH <		FUEL FLOW LB/MK	317	256	359	227	513
BSFC BTU/FD HR (HHV) B165° B160° B640° 711° B233° EXHAUST H20 PERCENT 15.70 15.43 17.61 15.93 17.67 EMISSIONS AS MEASURED NOX PPM 2280.00 1533.00 1548.00 2844.00 1593.00 NOX PPM 2090.00 1386.00 NO ND 1497.00 NO2 PPM 190.00 147.00 ND 96.00 NO2 PPH 190.00 147.00 ND 96.00 NO2 PERCENT 10.07 9.85 11.14 10.24 11.08 HC PPH 269.00 907.00 1224.00 534.00 1440.00 CO PERCENT 3.00 3.35 .10 2.70 .15 NO/NOX .917 .904 ND MD .940 NON-METH/TOTAL .638 1.765 2.838 .898 2.889 MC LB/HR TOTAL .638 1.765 2.838 .898 2.889 MC LB/HR NON-METH .188 .720 1.385 .322 1.306 CO LR/HR 2.146 1.708		ATP/FILE DATTO (WET)	14.8	15 0	12 9	14.6	12.8
Bit of the result 15.70 15.43 17.61 15.93 17.67 EMISSIONS AS MEASURED 2280.00 1533.00 1548.00 2844.00 1593.00 NOX PPM 2090.00 1386.00 ND ND 1497.00 NO2 PPM 190.00 147.00 ND ND 1497.00 NO2 PPM 190.00 147.00 ND ND 96.00 C02 PERCENT 10.07 9.85 11.14 10.24 11.08 HC PPH 269.00 907.00 1224.00 534.00 1440.00 C0 PPH 269.00 907.00 5438.00 401.40 6866.00 02 PERCENT 3.00 3.35 .10 2.70 .15 NO/NOX .917 .904 ND MD .940 NON-METH/TOTAL .638 1.765 2.893 .898 2.889 NOX L8/HR 15.932 8.793 10.577 14.092 9.419 MC L8/HR NON-METH .188 .720 1.385 .322 1.306 C0 L8/HR NOA		ALE BTILLE REITO CHETT	81658	81603	grang	7119 *	BFFCR
EMIRGOTINEOTIC 151100		EXHAUST HOD PERCENT	15.70	15.43	17 61	15.93	17.67
EMISSIONS AS MEASURED NOX PPM 2280.00 1533.00 1548.00 2844.00 1593.00 NO PPM 2090.00 1386.00 ND 1497.00 NO2 PPM 190.00 147.00 ND 96.00 NO2 PERCENT 10.07 985 11.14 10.24 11.08 HC PPM 269.00 907.00 1224.00 534.00 1440.00 C0 PFRCENT 3.00 3.35 .10 2.70 .15 NO/NOX .917 .904 ND .940 NON-METH/TOTAL .295 .408 .488 .359 .452 CALCULATED EMISSIONS .917 .904 ND ND .940 NOX LB/HR 15.932 8.793 10.577 14.092 9.419 MC LB/HR NON-METH .88 .720 1.385 .322 1.306 CO LS/HR .2146 1.708 20.217 1.090 22.101 NOX LB/HL BTU 2.865 1.657 3.510 1.715 HC LB/HR NON-METH .386 .380 .217 1.090		Excision neo reneem	131.0	13.13	1		
NOX PPH 2280.00 1533.00 1548.00 2844.00 1593.00 NO PPH 2090.00 1386.00 ND ND 1497.00 NO2 PPH 190.00 147.00 ND ND 96.00 NO2 PPH 190.00 147.00 ND ND 96.00 NO2 PPH 190.00 147.00 ND ND 96.00 CO2 PERCENT 100.7 9.85 11.14 10.24 11.08 HC PPH 269.00 907.00 1224.00 534.00 1440.00 CO PPM 559.00 541.00 5438.00 401.00 6866.00 O2 PERCENT 3.00 3.35 .10 2.70 .15 NO/NOX .917 .904 ND MD .940 NON-METH/TOTAL .638 1.765 2.838 .898 2.889 HC LB/HR TOTAL .638 1.705 2.938 .898 2.889 HC LB/HR NON-METH .188 .720 1.385 .322 1.306 CO LB/HR BTU TOTAL .115 .943		EMISSIONS AS MEASURED		1. 			
NO PPM 2090.00 1386.00 ND ND 1497.00 NO2 PPM 190.00 147.00 ND ND 96.00 CO2 PERCENT 10.07 9.85 11.14 10.24 11.08 HC PPM 2690.00 97.00 1224.00 534.00 1440.00 CO PERCENT 3.00 9.35 .10 2.70 .15 NO/NOX .917 .904 ND ND .940 NON-METH/TOTAL .917 .904 ND .940 NON-METH/TOTAL .917 .904 ND .940 NON-METH/TOTAL .917 .904 ND .940 NOX LB/HR 15.932 8.793 10.577 14.092 9.419 HC LB/HR TOTAL .638 1.765 2.838 .898 2.889 HC LB/HR NON-METH .188 .767 3.510 1.715 HC LB/HIL BTU 2.965 1.679<		NOX PPM	00.0855	1533.00	1548.00	2844.00	1593.00
NO2 PPM 190.00 147.00 ND ND 96.00 C02 PERCENT 10.07 9.85 11.14 10.24 11.08 HC PPH 269.00 907.00 1224.00 534.00 1440.00 C0 PPM 559.00 541.00 5438.00 401.00 6866.00 O2 PERCENT 3.00 3.35 10 2.70 .15 NO/NOX .917 .904 ND ND .940 NON-METH/TOTAL .638 1.765 2.638 .898 2.889 MC L8/HR 15.932 8.793 10.577 14.092 9.419 MC L8/HR TOTAL .638 1.765 2.638 .898 2.889 MC L8/HR NON-METH .188 .720 1.385 .322 1.306 C0 L8/HR NON-METH .188 .720 1.385 .322 1.01 NOX L8/HIL BTU 2.865 1.956 1.679 .510 1.715 HC L8/HIL BTU TOTAL .115 .393 .451 .224 .526 HC L8/HIL BTU NON-METH .034		NO PPM	00.0005	1386.00	ND .	ND	1497.00
CO2 PERCENT 10.07 9.85 11.14 10.24 11.08 HC PPH 269.00 907.00 1224.00 534.00 1440.00 CO PPM 559.00 541.00 548.00 401.00 6866.00 O2 PERCENT 3.00 3.35 .10 2.70 .15 NO/NOX .917 .904 ND ND .440 NON-METH/TOTAL .295 .408 .488 .359 .452 CALCULATED EMISSIONS .00 3.35 .10 2.70 .15 NOX L8/HR 15.932 8.793 10.577 14.092 9.419 MC L8/HR 15.932 8.793 10.577 14.092 9.419 MC L8/HR 15.932 8.793 10.577 14.092 9.419 MC L8/HR 105.932 1.385 .322 1.306 C0 L8/HR 10.41 .168 .720 1.385 .322 1.306 C0 L8/MIL BTU 2.865 1.956 1.679 3.510 1.715 HC L8/MIL BTU NON-METH .034 .160		NO2 PPM	190.00	147.00	ND	ND	96.00
HC PPH 269.00 907.00 1224.00 534.00 1440.00 CO PPM 559.00 541.00 5438.00 401.00 6866.00 O2 PERCENT 3.00 3.35 .10 2.70 .15 NO/NOX .917 .904 ND ND .940 NON-METH/TOTAL .295 .408 .488 .359 .452 CALCULATED EMISSIONS .917 .904 ND ND .940 NOX L8/HR 15.932 8.793 10.577 14.092 9.419 MC L8/HR TOTAL .638 1.765 2.838 .898 2.889 MC L8/HR NON-METH .188 .720 1.385 .322 1.306 C0 L8/HR NON-METH .188 .720 1.385 .322 1.306 C0 L8/HR NON-METH .193 .451 .224 .526 HC L8/HIL BTU 2.865 1.956 1.679 .510 1.715 NOX L8/M		CO2 PERCENT	10.07	9.85	11.14	10.24	11.08
C0 PPM 554.00 541.00 5438.00 401.00 6866.00 O2 PERCENT 3.00 3.35 .10 2.70 .15 NO/NOX .917 .904 ND ND .940 NON-METH/TOTAL .295 .408 .488 .359 .452 CALCULATED EMISSIONS .00 L8/HR 15.932 8.793 10.577 14.092 9.419 MC L8/HR 10.412 .638 1.765 2.838 .889 2.889 MC L8/HR NON-METH .188 .720 1.385 .322 1.306 MOX L8/MIL BTU 2.865 1.956 1.679 3.510 1.715		HC PPH	269.00	907.00	1224.00	534.00	1440.00
02 PERLENT 3.00 3.35 10 2.70 15 NO/NOX .917 .904 ND ND .940 NON-METH/TOTAL HC .295 .408 .488 .359 .452 CALCULATED EMISSIONS .001 .638 1.765 2.838 .898 2.889 HC LB/HR 15.932 8.793 10.577 14.092 9.419 HC LB/HR NON-METH .188 .720 1.385 .322 1.306 C0 LB/HR NON-METH .188 .720 1.385 .322 1.010 NOX LB/MIL BTU 2.865 1.956 1.679 3.510 1.715 HC LB/MIL BTU .386 .380 3.210 .271 4.025		CO PPM	554.00	541.00	5438.00	401.00	6866.00
NO/NOX .417 .404 ND ND .410 NON-METH/TOTAL .295 .408 .488 .359 .452 CALCULATED EMISSIONS .0577 14.092 9.419 MOX L8/HR 15.932 8.793 10.577 14.092 9.419 HC L8/HR 15.932 8.793 10.577 14.092 9.419 HC L8/HR TOTAL .638 1.765 2.838 .898 2.889 HC L8/HR NON-METH .189 .720 1.385 .322 1.306 CO L8/HR NON-METH .189 .720 1.385 .322 1.306 CO L8/HR NON-METH .189 .720 1.385 .322 1.01 NOX L8/MIL BTU 2.865 1.956 1.679 .3510 1.715 HC L8/MIL BTU NON-METH .034 .160 .220 .080 .238 CO L8/MIL BTU .386 .380 .210 .271 4.025		D2 PERCENT	3.00	3.35	10	2.70	.15
NON-METRY IDTAL		NO/NOX	-117	. 404		369	.440
CALCULATED EMISSIONS NOX L8/HR 15.932 8.793 10.577 14.092 9.419 HC L8/HR 10 638 1.765 2.838 898 2.889 HC L8/HR NON-METH 188 .720 1.385 .322 1.306 CO L8/HR 2.146 1.708 20.217 1.090 22.101 NOX L8/MIL BTU 2.865 1.956 1.679 3.510 1.715 HC L8/MIL BTU TOTAL .115 .393 .451 .224 .526 HC L8/MIL BTU NON-METH .034 .160 .220 .080 .238 CO L8/MIL BTU NON-METH .034 .160 .220 .080 .238 CO L8/MIL BTU .386 .380 3.210 .271 4.025 NOX G/BHP HR 10.612 7.239 6.581 11.334 6.405 HC G/BHP HR NON-METH .125 .593 .862 .259 .888 CO G/BHP HR NON-METH .125 .593 .862 .259 .888 CO G/BHP HR 1.430 1.406 12.580 .		NON-METRY TOTAL AC			. 100	.337	
NOX L8/HR 15.932 8.793 10.577 14.092 9.419 HC L8/HR TOTAL .638 1.765 2.838 .898 2.889 HC L8/HR NON_METH .188 .720 1.385 .322 1.306 CO L8/HR NON_METH .188 .720 1.385 .322 1.306 CO L8/HR 2.146 1.708 20.217 1.090 22.101 NOX L8/MIL BTU 2.865 1.956 1.679 3.510 1.715 HC L8/MIL BTU 2.865 1.956 1.679 3.510 1.715 HC L8/MIL BTU 0.34 .160 .220 .080 .238 CO L8/MIL BTU .386 .380 .210 .271 4.025 NOX G/BHP HR 10.612 7.239 6.581 11.334 6.405 HC G/BHP HR 1.255 .593 .862 .259 .888 CO G/BHP HR 1.430<		CALCULATED EMISSIONS			9	· 17"	
HC LB/HR TOTAL .638 1.765 2.838 .898 2.889 HC LB/HR NON-METH .188 .720 1.385 .322 1.306 CO LB/HR NON-METH .188 .720 1.385 .322 1.306 CO LB/HR 2.146 1.708 20.217 1.090 22.101 NOX LB/MIL BTU 2.865 1.956 1.679 3.510 1.715 HC LB/MIL BTU 7.865 1.679 3.510 1.715 HC LB/MIL BTU 7.865 1.679 3.510 1.715 HC LB/MIL BTU NON-METH .034 .160 .220 .080 .238 CO LB/MIL BTU .386 .380 3.210 .271 4.025 NOX G/BHP HR 10.612 7.239 6.581 11.334 6.405 HC G/BHP HR NON-METH .125 .593 .862 .259 .888 CO G/BHP <td></td> <td>NOX LB/HR</td> <td>15.932</td> <td>8.793</td> <td>10.577</td> <td>14.092</td> <td>9.419</td>		NOX LB/HR	15.932	8.793	10.577	14.092	9.419
HC LB/HR NON-METH 188 .720 1.385 .322 1.306 CO LB/HR 2.146 1.708 20.217 1.090 22.101 NOX LB/MIL BTU 2.865 1.956 1.679 3.510 1.715 HC LB/MIL BTU 7034 .160 .224 .526 HC LB/MIL BTU .034 .160 .220 .080 .238 CO LB/MIL BTU .386 .380 3.210 .271 4.025 NOX G/BHP HR 10.612 7.239 6.581 11.334 6.405 HC G/BHP HR 10.612 7.239 6.581 11.334 6.405 HC G/BHP HR 1.453 1.766 .722 1.965 HC G/BHP HR NON-METH .125 .593 .862 .259 .888 CO G/BHP HR 1.430 1.406 12.580 .877 15.030 NOX PPM CORR T		HC LB/HR TOTAL	.638	1.765	2.838	.898	2.889
C0 L8/HR 2.146 1.708 20.217 1.090 22.101 NOX L8/MIL BTU 2.865 1.956 1.679 3.510 1.715 HC L8/MIL BTU TOTAL .115 .393 .451 .224 .526 HC L8/MIL BTU NON-METH .034 .160 .220 .080 .238 C0 L8/MIL BTU NON-METH .034 .160 .220 .080 .238 C0 L8/MIL BTU .386 .380 3.210 .271 4.025 NOX G/BHP HR 10.612 7.239 6.581 11.334 6.405 HC G/BHP HR TOTAL .425 1.453 1.766 .722 1.965 HC G/BHP HR NON-METH .125 .593 .862 .259 .888 C0 G/BHP HR NON-METH .1430 1.406 12.580 .877 15.030 NOX PPM CORR TO 15 <td< td=""><td></td><td>HC LB/HR NON-METH</td><td>.188</td><td>.720</td><td>1.385</td><td>.355</td><td>1.306</td></td<>		HC LB/HR NON-METH	.188	.720	1.385	.355	1.306
NOX LB/MIL BTU 2.865 1.956 1.679 3.510 1.715 HC LB/MIL BTU TOTAL .115 .393 .451 .224 .526 HC LB/MIL BTU NON-METH .034 .160 .220 .080 .238 CO LB/MIL BTU .386 .380 3.210 .271 4.025 NOX G/BHP HR 10.612 7.239 6.581 11.334 6.405 HC G/BHP HR TOTAL .425 1.453 1.766 .722 1.965 HC G/BHP HR NON-METH .125 .593 .862 .259 .888 CO G/BHP HR NON-METH .125 .593 .862 .259 .888 CO G/BHP HR NON-METH .125 .593 .862 .259 .888 CO G/BHP HR 1.430 1.406 12.580 .877 15.030 NOX PPM CORR TO 15 PCT 02 .752 .515 #39 .922 #53 NOTE: NOX AS NO2 AND BTU AS HHV FOR CALCULATED EMISSIONS ³ BSFC APPEARS TO BE SOMEWHAT LOW		CO LA/HR	2.146	1.708	20.217	1.090	22.101
HC LB/MIL BTU TOTAL .115 .343 .451 .224 .526 HC LB/MIL BTU NON-METH .034 .160 .220 .080 .238 CO LB/MIL BTU .386 .380 3.210 .271 4.025 NOX G/BHP HR 10.612 7.239 6.581 11.334 6.405 HC G/BHP HR 10.612 7.239 6.581 11.334 6.405 HC G/BHP HR 10.612 7.239 6.581 11.334 6.405 HC G/BHP HR NON-METH .125 .543 1.766 .722 1.965 HC G/BHP HR NON-METH .125 .593 .862 .259 .888 CO G/BHP HR 1.430 1.406 12.580 .877 15.030 NOX PPH CORR TO 15 PCT 02 752 515 #39 922 #53 NOTE: NOX AND		NOX LB/MIL BTU	5.862	1.956	1.679	3,510	1.715
HC LB/MIL BTU NON-METH .034 .160 .220 .080 .238 CO LB/MIL BTU .386 .380 3.210 .271 4.025 NOX G/BHP HR 10.612 7.239 6.581 11.334 6.405 HC G/BHP HR TOTAL .425 1.453 1.766 .722 1.965 HC G/BHP HR NON-METH .125 .593 .862 .259 .888 CO G/BHP HR 1.430 1.406 12.580 .877 15.030 NOX PPM CORR TO 15 PCT 02 752 515 439 922 453 NOTE: NOX AS NOZ AND BTU AS HHV FOR CALCULATED EMISSIONS a BSFC APPEARS TO BE SOMEWHAT LOW		HC LB/MIL BTU TOTAL	.115	.393	.451		.556
CO LB/MIL BTU .386 .380 3.210 .271 4.025 NOX G/BHP HR 10.612 7.239 6.581 11.334 6.405 HC G/BHP HR TOTAL .425 1.453 1.766 .722 1.965 HC G/BHP HR NON-METH .125 .593 .862 .259 .888 CO G/BHP HR 1.430 1.406 12.580 .877 15.030 NOX PPM CORR TO 15 PCT 02 752 515 439 922 453 NOTE: NOX AS NOZ AND BTU AS HHV FOR CALCULATED EMISSIONS a BSFC APPEARS TO BE SOMEWHAT LOW		HC LB/MIL BTU NON-METH	.034	.160	.550	.080	.538
NUX G/BHP HR 10.612 7.239 6.581 11.334 6.405 HC G/BHP HR TOTAL .425 1.453 1.766 .722 1.965 HC G/BHP HR NON-METH .125 .593 .862 .259 .888 CO G/BHP HR 1.430 1.406 12.580 .877 15.030 NOX PPH CORR TO 15 PCT 02 752 515 439 922 453 NOTE: NOX AS NO2 AND BTU AS HHV FOR CALCULATED EMISSIONS ^a BSFC APPEARS TO BE SOMEWHAT LOW		CO LB/MIL BTU	.386	.380	3.210	.271	4.025
HL G/BHP HR TUTAL .125 1.453 1.766 .722 1.965 HC G/BHP HR NON-METH .125 .593 .862 .259 .888 CO G/BHP HR 1.430 1.406 12.580 .877 15.030 NOX PPH CORR TO 15 PCT 02 752 515 439 922 453 NOTE: NOX AS NO2 AND BTU AS HHV FOR CALCULATED EMISSIONS ^a BSFC APPEARS TO BE SOMEWHAT LOW		NUX G/BHP HR	10.615	7.239	6.581	11.334	6.405
CO G/BHP HR 1.430 1.406 12.580 .877 15.030 NOX PPM CORR TO 15 PCT 02 752 515 439 922 453 NOTE: NOX AS NO2 AND BTU AS HHV FOR CALCULATED EMISSIONS ^a BSFC APPEARS TO BE SOMEWHAT LOW		HC GIBHP HR TOTAL	.+25	1.453	1.766	.722	1.965
NOX PPH CORR TO 15 PCT 02 752 515 439 922 453 NOTE: NOX AS NOZ AND BTU AS HHV FOR CALCULATED EMISSIONS ^a BSFC APPEARS TO BE SOMEWHAT LOW		CO CIBHO HP	.125	.593	.862	.254	12 030
NOTE: NOX AS NOZ AND BTU AS HHV FOR CALCULATED EMISSIONS ^a BSFC APPEARS TO BE SOMEWHAT LOW		NOX PPH CORP TO 15 PCT (12 752	515	#30 TC*280	922	453
^a BSFC APPEARS TO BE SOMEWHAT LOW		NOTE: NOY AS NOT AND AT	AS HHV	FOR CALCU	ATED ENT	STONS	
		^a BSFC APPEARS TO BE SOM	EWHAT LOW				

* HIGH ENGINE TORQUE OVERLOAD

i

5

1 03

٠.

•	ENGINE TEST 100, TEST SIT WHITE SUPERIOR 86825	RATED	STAC STAC	K AREA SO. FT. 900 RPM, 4-STR	OKE NA
*	SOURCE: PR 15-92 HCR-	3.57 NOX-C	LH CO-NDIR	HC- FID 02-POL F	LUX-CB
	RUN	6			
	DATE	11/15/78	•		•
	TIME	1630			
	OPERATIONAL DATA			¥	
	BAROMETER, IN. HG.	30.26			
	AMBIENT TEMP. DEG. F	35			200
	INLET MAN. TEMP DEG. P	99.99			
	SP. HUHIDITY GRAIN/LB	23	* *	.•	
	ENGINE SPEED RPM	862	. *	*	
	HORSEPOWER	[784]		32 35	20 C
	TENTT, TIME DEG. BTDC	33.0		×	38 14
	FUEL SP. GR. (STP)	,7363			
	HE HEAT VALUE BTU/SCF	988		9 a	
	LO HEAT VALUE BTU/SCF	895	(* *)	\$	
	EXHAUST SP CP (STP)	9604			
	EXHAUST TEMP. DEG. F	1048			
	FUEL FLOW SCF/HR	6988			
	FUEL MIL. BTU/HR (HHV)	6.901			
	FUEL FLOW LB/HR	5150		*	
	AIR/FUEL RATIO (WET)	13.1	182	· ·	
	BSFC BTU/HP HR (HHV)	8746	•		1.00
	EXHAUST H20 PERCENT	17.36			
	EMISSIONS AS MEASURED	127. 			
*):	NOX PPM	1005.00	98 - 145 - 145		
	NO PPM	ND	×		
	CO2 PERCENT	10.68			
	HC PPM	1195.00		2 2	
	CO PPM	8104.00			
	NOZNOY	ND			
	NON-METH/TOTAL HC	.491			
	NOX LAZED EMISSIONS	7.668			
	HC LB/HR TOTAL	3.094			
	HC LB/HR NON-METH	1.519			240
	CO LB/HR	33.784			
	HC LEATE ATH TOTAL	1.111			
	HC LB/MIL BTU NON-METH	.220		· ·	
	CO LA/MIL BTU	4.896			
	NOX G/BHP HR	4.408			
	HC GARHP HR TOTAL	1.779		3.	
	CO G/BHP HR	19.423			
	NOX PPM CORR TO 15 PCT 0	285 5	•		*2
	NOTE: NOX AS NOZ AND BTI	I AS HHV FOR	CALCULATED	EMISSIONS	

Prepared For: Tom Ellis

WILLIAMS FIELD SERVICES

QUOTE: QUO-14683-L3J5 **Expires:** February 28, 2015

INFORMATION PROVIDED BY SUPERIOR

Engine:	8G825
Horsepower:	800
RPM:	900
Compression Ratio:	N/A
Exhaust Flow Rate:	4957 CFM
Exhaust Temperature:	1330 °F
Reference:	LEBQ9194
Fuel:	Natural Gas
Annual Operating Hours:	8760

Uncontrolled Emissions

	<u>g/bhp-hr</u>	<u>Lb/Hr</u>	<u>Tons/Year</u>
NOx:	12.60	22.22	97.34
CO:	7.17	12.65	55.39
THC:	1.43	2.52	11.05
NMHC	0.20	0.35	1.55
NMNEHC:	N/A	N/A	N/A
HCHO:	N/A	N/A	N/A
O2:	N/A		

POST CATALYST EMISSIONS

	% Reduction	<u>Lb/Hr</u>	<u>Tons/Year</u>
NOx:	>90 %	<2.22	<9.73
CO:	>80 %	<2.53	<11.08
VOC:	N/A	<0.00	<0.00

CONTROL EQUIPMENT

Catalyst Housing

Model:	EAH-3050-1212F-2CE0
Manufacturer:	EMIT Technologies, Inc
Element Size:	Round 30.5" x 3.5"
Housing Type:	2 Element Capacity
Catalyst Installation:	Accessible Housing
Construction:	10 gauge Carbon Steel
Sample Ports:	6 (0.5" NPT)
Inlet Connections:	12" Flat Face Flange
Outlet Connections:	12" Flat Face Flange
Configuration:	End In / Side Out
Silencer:	Integrated
Silencer Grade:	Hospital
Insertion Loss:	35-40 dBA
Estimated Lead Time:	2 Weeks to Ship

Catalyst Element

Model:	RE-3050-R
Catalyst Type:	NSCR, Standard Plus Precious Group Metals
Substrate Type:	BRAZED
Manufacturer:	EMIT Technologies, Inc
Element Quantity:	1
Element Size:	Round 30.5" x 3.5"
Estimated Lead Time:	7-10 Business Days to Ship

The information in this quotation, and any files transmitted with it, is confidential and may be legally privileged. It is intended only for the use of individual(s) within the company named above. If you are the intended recipient, be aware that your use of any confidential or personal information may be restricted by state and federal privacy laws
Emissions Control Equipment Specification Summary

APPLICATION

of Engines: Engine Operation: Fuel: Lubrication Oil:

Gas Compression Pipeline Quality Natural Gas 0.5 wt% sulfated ush or less

Engine Data: Engine: Power Output: Exhaust Temp: Exhaust Flow Rate:

Superior 8G825 789 bhp @ 862 rpm 1048° F 5,543 lb/hr

Combination Catalytic Converter/Silencer System Data: Catalytic Converter Model: EQ-800-10-D2

Catalytic Converter Model: Inlet / Outlet Pipe Size: Overall Length: Diameter: Weight: System Backpressure :

Catalyst Section Internals: Shell / Body Construction: Inlet / Outlet Connection: Instrumentation Ports: Oxygen Sensor Ports: Exhaust Noise Attenuation: Operating Temperature Limits:

304 SS Standard ANSI Flanges – FF 2 inlet / 2 outlet (1/2" NPT) 1 outlet (18 mm) 5-10 dB(A) 750 - 1,200° F {Inlet]

9" WC (Housing + Catalyst: Flange to Flange)

EMISSION REQUIREMENTS

10"

37" OAL

21.5" dia.

257 lb.

304 SS

Exhaust Gases	Engine Outputs (lb/hr)	Engine Outputs (gm/bhp-hr	Reduction (%)	Converter Output (gm/bhp-hr)	Area Limits (gm/bhp-hr)	
NOX	7.668	4.41	90	< 0.44	N/A	
CO	33.7	19.40	80	< 3.88	N/A	
NMHC	1.5	0.86	50	< 0.43	N/A	
Oxygen	0.07%	0.07%	·	-		

MiRATECH guarantees the performance of the converter, as stated above, if the engine output emissions and exhaust temperature at the catalyst are maintained as stated above using an air fuel ratio controller and the engine is operated in accordance with the manufacturer's recommended guidelines for maintenance and operations.

By: Wes Meyer

Date: 6/22/2001

Engine Exhaust Emissions Calculations

Unit Number:	Gen
Description:	Emergency generator, Waukesha RoiLine H884U
Type:	Four Stroke Rich Burn (Naturally Aspirated)

Note: The data on this worksheet applies to each individual emissions unit identified above.

Horsepower Calculations

6,960 ft above MSL	Elevation
180 hp	Nameplate hp
500 hr/yr	Annual operat

ting time

From previous applications Williams Four Corners LLC

Steady-State Emission Rates

	Emission				
Pollutants	Factors,	Uncontrolled Emission Rates,			
	lb/hp-hr	pph	tpy		
NOX	2.20E-02	3.96	0.99		
СО	1.90E-02	3.42	0.86		
VOC	3.09E-04	0.056	0.014		

Emission factors taken from AP-42 Section 3.2, Table 3.2-2, 1/95

Uncontrolled Emission Rates (pph) = g/hp-hr x Mfg. Site-rated hp / 453.6 g/lb Uncontrolled Emission Rates (tpy) = Uncontrolled Emission Rates (pph) x hr/yr / 2,000 lb/ton SO2 and Particulate (PM10 & PM2.5) emissions are assumed negligible

Table 3.2-2 (English Units). CRITERIA EMISSION FACTORS FOR UNCONTROLLED NATURAL GAS PRIME MOVERS^a

	Gas Turbines		2-Cycle Lean Bum		4-Cycle Lean Burn		4-Cycle Rich Burn	
	(SCC 2-02	-002-01)	(SCC 2-02	2-002-52)	(SCC 2-02	-002-53)	(SCC 2-02	-002-54)
Pollutant	lb/hp-hr (power output)	lb/MMBtu (fuel input)						
NO _x	2.87 E-03	0.34	0.024	2.7	0.026	3.2	0.022	2.3
со	1.83 E-03	0.17	3.31 E-03	0.38	3.53 E-03	0.42	0.019	1.6
CO2 ^b	0.89	110	0.89	110	0.89	110	0.89	110
TOC	3.97 E-04	0.053	0.013	1.5	0.011	1.2	2.65 E-03	0.27
TNMOC	2.20 E-05	0.002	9.48 E-04	0.11	1.59 E-03	0.18	3.09 E-04	0.03
CH₄	3.75 E-04	0.051	0.012	1.4	9.04 E-03	1.1	2.43 E-03	0.24

EMISSION FACTOR RATING: A (except as noted)

^a References 1-5. Factors are based on entire population. Factors for individual engines from specific manufacturers may vary.

SCC = Source Classification Code. TNMOC = total nonmethane organic compounds. ^b EMISSION FACTOR RATING: B. Based on 100% conversion of the fuel carbon to CO₂. CO₂ [lb/MMBtu] = 3.67*C/E, where C = carbon content of fuel by weight (0.75), and E = energy content of fuel, 0.0239 MMBtu/lb. The uncontrolled CO₂ emission factors are also applicable to natural gas prime movers controlled by combustion modifications, NSCR, and SCR.

3.2-4

Storage Tank Emissions Data and Calculations

Unit Number: Storage tanks

Description: Storage tank emissions summary

Source	Description	Uncon Working / Breathi (TAN (Ib/yr)	trolled ng (W/B) Losses VKS) (ton/yr)	Uncontrolled Flash Emissions (HYSYS or VMGSim) (ton/yr)	Total Uncontrolled Emissions (ton/yr)
Tank T11	Condensate Storage Tank (100 bbl)				
VOC	(including flash emissions)	2,046.82	1.02	9.05	10.08
Benzene		4.05	2.03E-03	3.58E-02	3.78E-02
Ethylbenzene		0.13	6.50E-05	1.04E-03	1.10E-03
n-Hexane		93.76	4.69E-02	0.22532	0.27
Toluene		0	0	0	0
Xylenes		0.14	7.00E-05	1.10E-03	1.17E-03
2,2,4 Trimethyl	pentane	0.35	1.75E-04	2.12E-03	2.29E-03
Tank T12	Condensate Storage Tank (100 bbl)				
VOC	(no flash emissions as this tank	2,046.82	1.02	0	1.02
Benzene	is an overflow tank for T-11)	4.05	2.03E-03	0	2.03E-03
Ethylbenzene		0.13	6.50E-05	0	6.50E-05
n-Hexane	assume throughput = Tank T-11	93.76	4.69E-02	0	4.69E-02
Toluene		0	0	0	0
Xylenes		0.14	7.00E-05	0	7.00E-05
2,2,4 Trimethyl	pentane	0.35	1.75E-04	0	1.75E-04

Ojito Condensate Flash Emissions

Process Streams		Condensate Truck Loading	FG from Tanks	Liquids to tanks
Composition	Status:	Solved	Solved	Solved
Phase: Total	From Block:	Condensate Storage Tank	Condensate Storage Tank	-
	To Block:		-	Condensate Storage Tank
Mass Fraction				
Nitrogen		0	0	*0
Methane Carbon Dioxide		0.000166370 3.82082E-05	0.0914968	0.00763299"
Ethane		0.00156936	0.130823	0.0121363*
Propane		0.0111260	0.251021	0.0307383*
Isobutane		0.0105982	0.0898366	0.0170762*
n-Butane		0.0305920	0.179439	0.0427609*
Isopentane		0.0383959	0.0833232	0.0420689*
n-Pentane		0.0421173	0.0668702	0.0441410*
Isohexane		0.0537157	0.0334483	0.0520587*
11-mexarie 2.2.4-Trimethylpentane		0.0434105	0.00180200	0.0414289
Benzene		0.00681456	0.00304708	0.00650655*
Heptane		0.226503	0.0315078	0.210562*
Toluene		0	0	0*
Octane		0.253246	0.0106546	0.233413*
Ethylbenzene		0.00243479	8.82787E-05	0.00224296*
m-Xylene		0.00312129	9.38779E-05	0.00287379*
Nonane		0.0596093	0.000782392	0.0548000*
C10 Mass Flow		0.215367 lb/h	0.000885707 lb/h	0.197832" lb/h
Nitrogen			0	0*
Methane		0.00501389	0.245503	0.250517*
Carbon Dioxide		0.00115148	0.0196694	0.0208208*
Ethane		0.0472959	0.351022	0.398317*
Propane		0.335305	0.673536	1.00884*
Isobutane		0.319398	0.241048	0.560446*
n-Bulane		0.921955	0.481469	1.40342
n-Pentane		1.13714	0.179425	1.30071 1.44872*
Isohexane		1.61883	0.0897481	1.70858*
n-Hexane		1.30827	0.0514427	1.35971*
2,2,4-Trimethylpentane		0.0354066	0.000483510	0.0358901*
Benzene		0.205371	0.00817588	0.213547*
Heptane		6.82615	0.0845413	6.91070*
Toluene		0	0	*0
Octane Ethylhonzono		7.63208	0.0285884	7.66067**
m-Xylene		0.0940666	0.000250888	0.0730144
Nonane		1.79645	0.00209930	1.79855*
C10		6.49053	0.00237652	6.49291*
Mole Fraction				
Nitrogen		0	0	0*
Methane Carbon Dioxido		0.00105038 8 70220E 05	0.240640	0.04324*
Ethane		0.00528621	0.183568	0.00131
Propane		0.0255555	0.240186	0.06335*
Isobutane		0.0184684	0.0652146	0.0267*
n-Butane		0.0533099	0.130259	0.06686*
Isopentane		0.0539011	0.0487271	0.05299*
n-Pentane		0.0591253	0.0391055	0.0556*
Isohexane		0.0631334	0.0163766	0.0549*
n-nexane		0.0510215	0.00938692 6.65600E.05	0.04369
Benzene		0.00883614	0.00164589	0.00757*
Heptane		0.228950	0.0132671	0.19097*
Toluene		0	0	0*
Octane		0.224548	0.00393548	0.1857*
Ethylbenzene		0.00232286	3.50839E-05	0.00192*
m-Xylene		0.00297779	3.73092E-05	0.00246*
Ivonane		0.0470740	0.000257385	0.03883*
		0.153310	0.000262648	0.12636*

Process Streams		Condensate Truck Loading	FG from Tanks	Liquids to tanks
Properties	Status:	Solved	Solved	Solved
Phase: Total	From Block:	Condensate Storage Tank	Condensate Storage Tank	-
	To Block:			Condensate Storage Tank
Property	Units			
Temperature	°F	65	65*	70*
Pressure	psia	11.9	11.9*	171.9*
Molecular Weight	lb/lbmol	101.284	42.1924	90.8786
Mass Density	lb/ft^3	43.1053	0.0903139	42.0628
Molar Flow	lbmol/h	0.297550	0.0635942	0.361144
Mass Flow	lb/h	30.1371	2.68319	32.8203
Liquid Volumetric Flow	gpm		3.70405	0.0972802
Std Liquid Volumetric Flow	sgpm	0.0875*	0.0108837	0.0983837
Vapor Volumetric Flow	ft^3/h		29.7096	0.780269
Std Vapor Volumetric Flow	MMSCFD	0.00270997	0.000579192	0.00328917

Certificate of Analysis

Number: 2030-16060333-001A

July 05, 2016

Williams Field Services Williams Field Services c/o Alpha Bioscience Company 2030 Afton Place Farmington, NM 87401

Field: Station Name: ENH Reiever Station Location: RIO Arriba Co, NM Sample Point: Analyzed: 07/05/2016 15:11:50 by GR

MM-GAS	
Liquid	Spot
06/23/2016	12:30
:150 psig, @	27 °F
GPA-2186N	1/GPA-2103
577	
	MM-GAS Liquid 06/23/2016 150 psig, @ GPA-2186N 577

Analytical Data							
Components	Mol. %	MW	Wt. %	Sp. Gravity	L.V. %		
Nitrogen	NIL	28.013	NIL	0.807	NIL		
Methane	4.324	16.043	0.805	0.300	1.836		
Carbon Dioxide	0.131	44.010	0.067	0.817	0.056		
Ethane	3.668	30.069	1.280	0.356	2.458		
Propane	6.335	44.096	3.242	0.507	4.372		
Iso-Butane	2.670	58.122	1.801	0.563	2.189		
n-Butane	6.686	58.122	4.510	0.584	5.280		
Iso-Pentane	5.299	72.149	4.437	0.625	4.855		
n-Pentane	5.560	72.149	4.656	0.631	5.049		
i-Hexanes	5.490	84.675	5.394	0.669	5.517		
n-Hexane	4.369	86.175	4.370	0.664	4.501		
2,2,4-Trimethylpentane	0.087	114.231	0.115	0.697	0.113		
Benzene	0.757	78.114	0.686	0.885	0.530		
Heptanes	19.097	94.554	20.956	0.720	19.909		
Toluene	NIL	NIL	NIL	NIL	NIL		
Octanes	18.570	108.620	23.412	0.734	21.835		
Ethylbenzene	0.192	106.167	0.237	0.872	0.186		
Xylenes	0.246	106.167	0.303	0.885	0.234		
Nonanes	3.883	123.996	5.591	0.753	5.081		
Decanes Plus	12.636	123.673	18.138	0.775	15.999		
	100.000		100.000		100.000		
Calculated Physical Properties			Total	C10+			
Specific Gravity at 60°F		0.	6840	0.7753			
API Gravity at 60°F		75	5.369	51.010			
Molecular Weight		80	5.161	123.673			
Pounds per Gallon (in Vacu	um)	Į	5.703	6.464			
Pounds per Gallon (in Air)		5.696 6		6.457			
Cu. Ft. Vapor per Gallon @	14.73 psia	2	25.058 19.788				

Patti L. Petro

Hydrocarbon Laboratory Manager

The above analyses are performed in accordance with ASTM, UOP, GPA guidelines for quality assurance, unless otherwise stated.

Certificate of Analysis

Number: 2030-16060333-001A

July 05, 2016

Williams Field Services Williams Field Services c/o Alpha Bioscience Company 2030 Afton Place Farmington, NM 87401

Field: Station Name: ENH Reiever Station Location: RIO Arriba Co, NM Sample Point: Analyzed: 07/05/2016 15:11:50 by GR Sampled By:MM-GASSample Of:LiquidSpotSample Date:06/23/2016 12:30Sample Conditions: 150 psig, @77 °FMethod:GPA-2186M/GPA-2103Cylinder No:577

Analytical Data							
Components	Mol. %	MW	Wt. %	Sp. Gravity	L.V. %		
Nitrogen	NIL	28.013	NIL	0.807	NIL		
Carbon Dioxide	0.131	44.010	0.067	0.817	0.056		
Methane	4.324	16.043	0.805	0.300	1.836		
Ethane	3.668	30.069	1.280	0.356	2.458		
Propane	6.335	44.096	3.242	0.507	4.372		
Iso-butane	2.670	58.122	1.801	0.563	2.189		
n-Butane	6.686	58.122	4.510	0.584	5.280		
Iso-pentane	5.299	72.149	4.437	0.625	4.855		
n-Pentane	5.560	72.149	4.656	0.631	5.049		
Hexanes	9.859	85.340	9.764	0.667	10.018		
Heptanes Plus	55.468	107.856	69.438	0.744	63.887		
	100.000		100.000		100.000		
Calculated Physica	al Properties		Тс	otal	C7+		
Specific Gravity at 6	0°F		0.68	840	0.7436		
API Gravity at 60°F			75.3	369	58.801		
Molecular Weight			86.1	161 10	07.856		
Pounds per Gallon (in Vacuum)		5.1	703	6.199		
Pounds per Gallon (in Air)		5.0	696	6.192		
Cu. Ft. Vapor per Ga	allon @ 14.73	psia	25.0	058	21.761		

Patter S. Jo bro

Hydrocarbon Laboratory Manager

Quality Assurance:

The above analyses are performed in accordance with ASTM, UOP, GPA guidelines for quality assurance, unless otherwise stated.

Williams Field Services Williams Field Services c/o Alpha Bioscience Company 2030 Afton Place Farmington, NM 87401

Field: Station Name: ENH Reiever Station Location: RIO Arriba Co, NM Sample Point:

Certificate of Analysis

Number: 2030-16060333-001A

Carencro Laboratory 4790 NE Evangeline Thruway Carencro, LA 70520 Phone 337-896-3055

July 05, 2016

Sampled By:MM-GASSample Of:LiquidSpotSample Date:06/23/201612:30Sample Conditions:150 psig, @ 77 °FCylinder No:577

Analytical Data

Test	Method	Result	Units	Detection Limit	Lab Tech.	Analysis Date
Color Visual	Proprietary	Water White	_		GR	07/05/2016
API Gravity @ 60° F	ASTM D-5002	66.68	0		GR	07/05/2016
Specific Gravity @ 60/60° F	ASTM D-5002	0.7140	_		GR	07/05/2016
Density @ 60° F	ASTM D-5002	0.7133	g/ml		GR	07/05/2016
Shrinkage Factor	Proprietary	0.9110	-		GR	07/05/2016
Flash Factor	Proprietary	161.3567 0	Cu. Ft./S.T. Bbl		GR	07/05/2016

Patti L. Petro

Hydrocarbon Laboratory Manager

Quality Assurance:

The above analyses are performed in accordance with ASTM, UOP, GPA guidelines for quality assurance, unless otherwise stated.

TANKS 4.0.9d Emissions Report - Detail Format Tank Indentification and Physical Characteristics

Identification

User Identification: City: State: Company: Type of Tank: Description:	Ojito T-11 & T-12 Bloomfield NM Williams Vertical Fixed Roof Tank Ojito 100 bbl condensate tanks T-11 & T-12
Tank Dimensions Shell Height (ft): Diameter (ft): Liquid Height (ft) : Avg. Liquid Height (ft): Volume (gallons): Turnovers: Net Throughput(gal/yr): Is Tank Heated (y/n):	14.00 7.00 14.00 7.00 4,200.00 10.95 45,990.00 N
Paint Characteristics Shell Color/Shade: Shell Condition Roof Color/Shade: Roof Condition:	Gray/Light Good Gray/Light Good
Roof Characteristics Type: Height (ft) Radius (ft) (Dome Roof)	Dome 0.00 7.00
Breather Vent Settings Vacuum Settings (psig): Pressure Settings (psig)	-0.03 0.03

Meterological Data used in Emissions Calculations: Albuquerque, New Mexico (Avg Atmospheric Pressure = 12.15 psia)

TANKS 4.0.9d Emissions Report - Detail Format Liquid Contents of Storage Tank

Ojito T-11 & T-12 - Vertical Fixed Roof Tank Bloomfield, NM

		Da Tem	aily Liquid S perature (d	urf. eg F)	Liquid Bulk Temp	Vapo	or Pressure	(psia)	Vapor Mol.	Liquid Mass	Vapor Mass	Mol.	Basis for Vapor Pressure
Mixture/Component	Month	Avg.	Min.	Max.	(deg F)	Avg.	Min.	Max.	Weight.	Fract.	Fract.	Weight	Calculations
Ojito 07-05-16	All	64.94	53.24	76.64	58.39	7.1163	5.6430	8.8667	62.5281			96.09	
2,2,4-Trimethylpentane (isooctane)						0.6857	0.4887	0.9450	114.2300	0.0012	0.0002	114.23	Option 2: A=6.8118, B=1257.84, C=220.74
Benzene						1.3372	0.9653	1.8208	78.1100	0.0069	0.0020	78.11	Option 2: A=6.905, B=1211.033, C=220.79
Decane (-n)						0.0374	0.0286	0.0489	142.2900	0.1814	0.0015	142.29	Option 1: VP60 = .033211 VP70 = .041762
Ethylbenzene						0.1286	0.0854	0.1894	106.1700	0.0024	0.0001	106.17	Option 2: A=6.975, B=1424.255, C=213.21
Heptane (-n)						0.7080	0.4981	0.9910	100.2000	0.2096	0.0320	100.20	Option 3: A=37358, B=8.2585
Hexane (-n)						2.1727	1.6003	2.9030	86.1700	0.0976	0.0458	86.17	Option 2: A=6.876, B=1171.17, C=224.41
i-butane						28.6704	23.0459	35.2667	58.1300	0.0450	0.2785	58.13	Option 1: VP60 = 26.098 VP70 = 31.306
Isopentane						11.2522	8.5746	14.3915	72.1500	0.0444	0.1078	72.15	Option 1: VP60 = 10.005 VP70 = 12.53
n-butane						28.6704	23.0459	35.2667	58.1300	0.0721	0.4462	58.13	Option 1: VP60 = 26.098 VP70 = 31.306
Nonane (-n)						0.0741	0.0558	0.0981	128.2600	0.0559	0.0009	128.26	Option 1: VP60 = .065278 VP70 = .08309
Octane (-n)						0.1666	0.1231	0.2250	114.2300	0.2341	0.0084	114.23	Option 1: VP60 = .145444 VP70 = .188224
Pentane (-n)						7.6199	5.8716	9.7769	72.1500	0.0466	0.0766	72.15	Option 3: A=27691, B=7.558
Xylenes (mixed isomers)						0.1073	0.0710	0.1586	106.1700	0.0030	0.0001	106.17	Option 2: A=7.009, B=1462.266, C=215.11

TANKS 4.0.9d Emissions Report - Detail Format Detail Calculations (AP-42)

Ojito T-11 & T-12 - Vertical Fixed Roof Tank Bloomfield, NM

Annual Emission Calcaulations	
Standing Losses (lb):	1,559.5769
Vapor Space Volume (cu ft):	287.8693
Vapor Density (lb/cu ft):	0.0790
Vapor Space Expansion Factor:	0.7176
Vented Vapor Saturation Factor:	0.2617
Tank Vapor Space Volume:	
Vapor Space Volume (cu ft):	287.8693
Tank Diameter (ft):	7.0000
Vapor Space Outage (ft):	7.4801
Tank Shell Height (ft):	14.0000
Average Liquid Height (π): Roof Outage (ft):	0.4801
Poof Outage (Dome Poof)	
Roof Outage (Done Roof)	0.4801
Dome Radius (ff):	7 0000
Shell Radius (ft):	3.5000
Vapor Density	
Vapor Density (lb/cu ft):	0.0790
Vapor Molecular Weight (lb/lb-mole):	62.5281
Vapor Pressure at Daily Average Liquid	
Surface Temperature (psia):	7.1163
Daily Avg. Liquid Surface Temp. (deg. R):	524.6094
Daily Average Ambient Temp. (deg. F):	56.1542
(psia cuff / (lb mol dog P));	10 731
(psia cuit / (ib-mol-deg R)).	518 0642
Tank Paint Solar Absorptance (Shell):	0.5400
Tank Paint Solar Absorptance (Boof):	0.5400
Daily Total Solar Insulation	0.0400
Factor (Btu/sqft day):	1,765.3167
Vapor Space Expansion Factor	
Vapor Space Expansion Factor:	0.7176
Daily Vapor Temperature Range (deg. R):	46.7976
Daily Vapor Pressure Range (psia):	3.2237
Breather Vent Press. Setting Range(psia):	0.0600
Vapor Pressure at Daily Average Liquid	
Surface Temperature (psia):	7.1163
Vapor Pressure at Daily Minimum Liquid	
Surface Temperature (psia):	5.6430
Vapor Pressure at Daily Maximum Liquid	
Surface Temperature (psia):	8.8667
Daily Avg. Liquid Surface Temp. (deg R):	524.6094
Daily Min. Liquid Surface Temp. (deg R):	512.9100
Daily Max. Liquid Surface Temp. (deg R):	536.3088
Daily Amplent Temp. Kange (deg. K):	27.9250
Vented Vapor Saturation Factor	0.0047
Vence Vapor Saturation Factor:	0.2617
vapor Pressure at Daily Average Liquid:	7 4400
Surrace Temperature (psia):	7.1163
vapor space Outage (π):	7.4801
Working Losses (Ib):	487.2416

Vapor Molecular Weight (lb/lb-mole): Vapor Pressure at Daily Average Liquid	62.5281
Surface Temperature (psia):	7.1163
Annual Net Throughput (gal/yr.):	45,990.0000
Annual Turnovers:	10.9500
Turnover Factor:	1.0000
Maximum Liquid Volume (gal):	4,200.0000
Maximum Liquid Height (ft):	14.0000
Tank Diameter (ft):	7.0000
Working Loss Product Factor:	1.0000
-	
Total Losses (lb):	2,046.8185

TANKS 4.0.9d Emissions Report - Detail Format Individual Tank Emission Totals

Emissions Report for: Annual

Ojito T-11 & T-12 - Vertical Fixed Roof Tank Bloomfield, NM

	Losses(lbs)						
Components	Working Loss	Breathing Loss	Total Emissions				
n-butane	217.40	695.87	913.27				
Isopentane	52.53	168.14	220.67				
Pentane (-n)	37.33	119.48	156.81				
Hexane (-n)	22.32	71.44	93.76				
Ojito 07-05-16	487.24	1,559.58	2,046.82				
i-butane	135.68	434.30	569.98				
Heptane (-n)	15.61	49.97	65.58				
Octane (-n)	4.10	13.13	17.24				
Nonane (-n)	0.44	1.39	1.83				
Decane (-n)	0.71	2.29	3.00				
2,2,4-Trimethylpentane (isooctane)	0.08	0.27	0.35				
Benzene	0.97	3.09	4.05				
Ethylbenzene	0.03	0.10	0.13				
Xylenes (mixed isomers)	0.03	0.11	0.14				

Equipment Leaks Emissions Calculations

Unit Number:

Description: Valves, Connectors, Seals & Open-Ended Lines

Steady-State Emission Rates

F1

	Number of	Emission	Emission	Uncontrolled TOC	
Equipment	Components,	Factors,	Factors,	Emissio	n Rates,
	# of sources	kg/hr/source	lb/hr/source	pph	tpy
Valves	378	0.0045	0.0099	3.74	16.39
Connectors	339	0.0002	0.0004	0.15	0.65
Pump Seals	0	0.0024	0.0053	0.00	0.00
Compressor Seals	36	0.0088	0.0194	0.70	3.05
Pressure Relief Valves	25	0.0088	0.0194	0.48	2.12
Open-Ended Lines	103	0.0020	0.0044	0.45	1.99
Tota	I			5.53	24.20

Number of components based on the numbers of compressors and dehydrators at the station (see next page)

Emission factors taken from the EPA "1995 Protocol for Equipment Leak Emission Estimates"

Emission factors (lb/hr/source) = Emission factors (kg/hr/source) x 2.2 lb/kg

Uncontrolled TOC Emission Rates (pph) = lb/hr/source x # of sources

Uncontrolled TOC Emission Rates (tpy) = Uncontrolled TOC Emission Rates (pph) x 8,760 hr/yr / 2,000 lb/ton

				Weight		
	Mole	Molecular	Component	Percent		
Components	Percents,	Weights,	Weights,	of TOC,	Uncontrolled E	mission Rates,
	%	lb/lb-mole	lb/lb-mole	%	pph	tpy
Carbon dioxide	0.6808	44.010				
Hydrogen sulfide	0.0000	34.070				
Nitrogen	0.7255	28.013				
Methane	78.1110	16.043	1253.135	59.641		
Ethane	10.8480	30.070	326.199	15.525		
Propane	5.5588	44.097	245.126	11.666	6.45E-01	2.82
Isobutane	0.9025	58.123	52.456	2.497	1.38E-01	0.60
n-Butane	1.4859	58.123	86.365	4.110	2.27E-01	0.99
Isopentane	0.5070	72.150	36.580	1.741	9.62E-02	0.42
n-Pentane	0.3935	72.150	28.391	1.351	7.47E-02	0.33
Cyclopentane	0.0274	70.134	1.922	0.091	5.05E-03	2.21E-02
n-Hexane	0.1177	86.177	10.143	0.483	2.67E-02	0.12
Cyclohexane	0.0559	84.161	4.705	0.224	1.24E-02	5.42E-02
Other hexanes	0.2016	86.177	17.373	0.827	4.57E-02	0.20
Heptanes	0.2047	100.204	20.512	0.976	5.39E-02	0.24
Methylcyclohexane	0.0588	98.188	5.773	0.275	1.52E-02	6.65E-02
2,2,4-Trimethylpentane	0.0010	114.231	0.114	0.005	3.00E-04	1.32E-03
Benzene	0.0198	78.114	1.547	0.074	4.07E-03	1.78E-02
Toluene	0.0267	92.141	2.460	0.117	6.47E-03	2.83E-02
Ethylbenzene	0.0008	106.167	0.085	0.004	2.23E-04	9.78E-04
Xylenes	0.0059	106.167	0.626	0.030	1.65E-03	7.21E-03
C8+ Heavies	0.0667	114.231	7.619	0.363	2.00E-02	8.78E-02
Total	100.0000		2101.132			
Total VOC				24.834	1.37E+00	6.01

Gas stream composition obtained from Ojito extended gas analysis dated 8/1/16

Component Weights (lb/lb-mole) = (% / 100) * Molecular Weights (lb/lb-mole)

Weight Percent of TOC (%) = 100 x Component Weights (lb/lb-mole) / Total Component Weight (lb/lb-mole)

Uncontrolled Emission Rates (pph) = Total Uncontrolled TOC Emission Rate (pph) x (% / 100)

Uncontrolled Emission Rates (tpy) = Total Uncontrolled TOC Emission Rate (tpy) x (% / 100)

Equipment Leaks Emissions Calculations

Unit Number: F1 Description: Valves, Connectors, Seals & Lines

Number of Compression Units at the Facility:3Number of Dehydrators at the Facility:0

	Equipment Count						Instrument Count		
					Pressure				
Process Equipment Description			Pump	Compressor	Relief				
	Valves	Connectors	Seals	Seals	Valves	Open-end	Flow	Level	Pressure
Station inlet, meter run to pulsation dampener	17	14	0	0	1	13	3	0	3
Pulsation dampener	12	8	0	0	0	2	0	4	1
Compressor suction header	7	4	0	0	0	3	0	0	1
Suction header feed to instrument gas header	3	1	0	0	0	1	0	0	0
Compressor discharge header and bypass to station discharge	6	5	0	0	0	3	0	1	1
Compressor discharge header and suction header bypass lines	4	2	0	0	0	2	0	0	1
Fuel gas header	2	2	0	0	1	2	0	0	1
Instrument gas header	2	2	0	0	1	2	0	0	0
Station discharge header	9	5	0	0	1	6	0	0	2
Fuel gas recovery header	2	2	0	0	1	2	0	0	0
Fuel gas feed and filter loop	15	9	0	0	0	1	0	4	1
Instrument gas feed and filter loop	9	11	0	0	0	3	0	0	0
Produced water storage tank	1	0	0	0	0	1	0	1	0
ESD panel	12	0	0	0	0	0	0	0	0
Starting gas header	6	2	0	0	1	3	0	0	0
Hot gas header	2	2	0	0	0	2	0	0	0
Volume bottle lop	12	4	0	24	1	2	0	0	1
Components from Compressors	132	177	0	12	18	33	0	12	27
Components from dehydrators	0	0	0	0	0	0	0	0	0
Total	253	250	0	36	25	81	3	22	39
Adjusted Total	378	339	0	36	25	103			

The following additions are included in the Adjusted Total:

1 valve is added for each open end line

2 connectors are added for each flow meter

2 valves, 2 connectors and 1 open end line are added for each level gauge

1 connector is added for each pressure gauge

The component count is based on an evaluation of the Sim Mesa Compressor Station (two stage compression)

Compressor Blowdown Emissions Calculations

Unit Number: SSM Description: Compressor & Piping Associated With Station

Throughput

- · ·	II at south a	Manual an atomic
3	# of units	Number of units
200	events/yr/unit	Blowdowns per year per unit
3,250	scf/event	Gas loss per blowdown
1,950,000	scf/yr	Annual gas loss

Williams Four Corners LLC Williams Four Corners LLC Williams Four Corners LLC # of units x events/yr/unit x scf/event

Emission Rates

		Uncontrolled
	Emission	Emission
Delluterate		
Pollutants	Factors,	Rates,
	lb/scf	tpy
VOC	1.374E-02	13.40
2,2,4-Trimethylpentane	2.641E-06	2.58E-03
Benzene	4.076E-05	3.97E-02
Ethylbenzene	2.239E-06	2.18E-03
n-Hexane	2.673E-04	2.61E-01
Toluene	6.484E-05	6.32E-02
Xylene	1.651E-05	1.61E-02

Emission factors calculated from gas composition (see table below) Uncontrolled Emission Rates (tpy) = scf/yr x lb/scf / 2,000 lb/ton

Gas Composition

	Mole	Molecular	Emission
Components	Percents,	Weights,	Factors,
	%	lb/lb-mole	lb/scf
Carbon dioxide	0.6808	44.01	7.897E-04
Hydrogen sulfide	0.0000	34.07	0.000E+00
Nitrogen	0.7255	28.01	5.356E-04
Methane	78.1110	16.04	3.302E-02
Ethane	10.8480	30.07	8.598E-03
Propane	5.5588	44.09	6.460E-03
Isobutane	0.9025	58.12	1.383E-03
n-Butane	1.4859	58.12	2.276E-03
Isopentane	0.5070	72.15	9.642E-04
n-Pentane	0.3935	72.15	7.483E-04
Cyclopentane	0.0274	70.14	5.065E-05
n-Hexane	0.1177	86.17	2.673E-04
Cyclohexane	0.0559	84.16	1.240E-04
Other hexanes	0.2016	86.18	4.579E-04
Heptanes	0.2047	100.20	5.406E-04
Methylcyclohexane	0.0588	98.19	1.522E-04
2,2,4-Trimethylpentane	0.0010	100.21	2.641E-06
Benzene	0.0198	78.11	4.076E-05
Toluene	0.0267	92.14	6.484E-05
Ethylbenzene	0.0008	106.17	2.239E-06
Xylenes	0.0059	106.17	1.651E-05
C8+ Heavies	0.0667	110.00	1.934E-04
Total	100.0000		
Total VOC			1.374E-02

Gas stream composition obtained from Ojito extended gas analysis dated $\frac{8}{1/16}$ Emission Factors (lb/scf) = (% / 100) x lb/lb-mole / 379.4 scf/lb-mole Ojito Compressor Station

Pig Launcher Emissions Calculations

Unit Number: PL Description: Pig Launcher

Throughput

260 events/yr 4,250 scf/event

1,105,000 scf/yr

Blowdowns per year Gas loss per blowdown 2.43 mcf/blowdown + 1.82 mcf per purge Annual gas loss Williams Four Corners LLC Williams Four Corners LLC

events/yr x scf/event

Emission Rates

		Uncontrolled,
	Emission	Emission
Pollutants	Factors,	Rates,
	lb/scf	tpy
VOC	1.374E-02	7.59
2,2,4-Trimethylpentane	2.641E-06	1.46E-03
Benzene	4.076E-05	2.25E-02
Ethylbenzene	2.239E-06	1.24E-03
n-Hexane	2.673E-04	1.48E-01
Toluene	6.484E-05	3.58E-02
Xylene	1.651E-05	9.12E-03

Emission factors calculated from gas composition (see table below) Uncontrolled Emission Rates (tpy) = scf/yr x lb/scf / 2,000 lb/ton

Gas Composition

	Mole	Molecular	Emission
Components	Percents,	Weights,	Factors,
	%	lb/lb-mole	lb/scf
Carbon dioxide	0.6808	44.01	7.897E-04
Hydrogen sulfide	0.0000	34.07	0.000E+00
Nitrogen	0.7255	28.01	5.356E-04
Methane	78.1110	16.04	3.302E-02
Ethane	10.8480	30.07	8.598E-03
Propane	5.5588	44.09	6.460E-03
Isobutane	0.9025	58.12	1.383E-03
n-Butane	1.4859	58.12	2.276E-03
Isopentane	0.5070	72.15	9.642E-04
n-Pentane	0.3935	72.15	7.483E-04
Cyclopentane	0.0274	70.14	5.065E-05
n-Hexane	0.1177	86.17	2.673E-04
Cyclohexane	0.0559	84.16	1.240E-04
Other hexanes	0.2016	86.18	4.579E-04
Heptanes	0.2047	100.20	5.406E-04
Methylcyclohexane	0.0588	98.19	1.522E-04
2,2,4-Trimethylpentane	0.0010	100.21	2.641E-06
Benzene	0.0198	78.11	4.076E-05
Toluene	0.0267	92.14	6.484E-05
Ethylbenzene	0.0008	106.17	2.239E-06
Xylenes	0.0059	106.17	1.651E-05
C8+ Heavies	0.0667	110.00	1.934E-04
Total	100.0000		
Total VOC			1.374E-02

Gas stream composition obtained from Ojito extended gas analysis dated 08/01/16Emission Factors (lb/scf) = (% / 100) x lb/lb-mole / 379.4 scf/lb-mole

TANKS 4.0.9d Emissions Report - Detail Format Tank Indentification and Physical Characteristics

Identification

User Identification: State: City: Type of Tank: Compestription:	210 bbl Gasoline Bloomfield NM Williams Vertical Fixed Roof Tank Ojito					
Tank Dimensions Shell Height (ft): Diameter (ft): Liquid Height (ft) : Avg. Liquid Height (ft): Volume (gallons): Turnovers: Net Throughput(gal/yr): Is Tank Heated (y/n):	13.00 11.00 12.00 7.00 8,530.80 7.00 59,715.59 N					
Paint Characteristics Shell Color/Shade: Shell Condition Roof Color/Shade: Roof Condition:	Gray/Light Good Gray/Light Good					
Roof Characteristics Type: Height (ft) Slope (ft/ft) (Cone Roof)	Cone 0.00 0.06					
Breather Vent Settings Vacuum Settings (psig): Pressure Settings (psig)	-0.03 0.03					

Meterological Data used in Emissions Calculations: Albuquerque, New Mexico (Avg Atmospheric Pressure = 12.15 psia)

TANKS 4.0.9d Emissions Report - Detail Format Liquid Contents of Storage Tank

210 bbl Gasoline - Vertical Fixed Roof Tank Bloomfield, NM

Mixture/Component	Month	Dail Temp Avg.	y Liquid Sur erature (deg Min.	f. J F) Max.	Liquid Bulk Temp (deg F)	Vapo Avg.	r Pressure (Min.	psia) Max.	Vapor Mol. Weight.	Liquid Mass Fract.	Vapor Mass Fract.	Mol. Weight	Basis for Vapor Pressure Calculations
Gasoline (RVP 10)	All	64.94	53.24	76.64	58.39	5.7019	4.5407	7.0892	66.0000			92.00	Option 4: RVP=10, ASTM Slope=3

TANKS 4.0.9d Emissions Report - Detail Format Detail Calculations (AP-42)

210 bbl Gasoline - Vertical Fixed Roof Tank Bloomfield, NM

Annual Emission Calcaulations	
Standing Losses (Ib): Vapor Space Volume (cu ft): Vapor Density (Ib/cu ft): Vapor Space Expansion Factor: Vented Vapor Saturation Factor:	2,365.2256 581.0883 0.0668 0.4751 0.3511
Tank Vapor Space Volume: Vapor Space Volume (cu ft): Tank Diameter (ft): Vapor Space Outage (ft): Tank Shell Height (ft): Average Liquid Height (ft): Roof Outage (ft):	581.0883 11.0000 6.1146 13.0000 7.0000 0.1146
Roof Outage (Cone Roof) Roof Outage (ft): Roof Height (ft): Roof Slope (ft/ft): Shell Radius (ft):	0.1146 0.0000 0.0625 5.5000
Vapor Density Vapor Density (lb/cu ft): Vapor Molecular Weight (lb/lb-mole): Vapor Pressure at Daily Average Liquid Surface Temperature (psia): Daily Average Ambient Temp. (deg. R): Daily Average Ambient Temp. (deg. F): Ideal Gas Constant R (psia cuff / (lb-mol-deg R)): Liquid Bulk Temperature (deg. R): Tank Paint Solar Absorptance (Roof): Daily Total Solar Absorptance (Roof): Daily Total Solar Insulation Factor (Btu/sqft day):	0.0668 66.0000 5.7019 524.6094 56.1542 10.731 518.0642 0.5400 0.5400 1,765.3167
Vapor Space Expansion Factor Vapor Space Expansion Factor: Daily Vapor Temperature Range (deg. R): Daily Vapor Pressure Range (psia): Breather Vent Press. Setting Range(psia): Vapor Pressure at Daily Average Liquid Surface Temperature (psia): Vapor Pressure at Daily Minimum Liquid Surface Temperature (psia): Vapor Pressure at Daily Maximum Liquid Surface Temperature (psia): Daily Avg. Liquid Surface Temp. (deg R): Daily Max. Liquid Surface Temp. (deg R): Daily Ambient Temp. Range (deg. R):	0.4751 46.7976 2.5485 0.0600 5.7019 4.5407 7.0892 524.6094 512.9100 536.3088 27.9250
Vented Vapor Saturation Factor Vented Vapor Saturation Factor: Vapor Pressure at Daily Average Liquid: Surface Temperature (psia):	0.3511 5.7019

Vapor Space Outage (ft):	6.1146
Working Losses (lb):	535.0594
Vapor Molecular Weight (lb/lb-mole):	66.0000
Vapor Pressure at Daily Average Liquid	
Surface Temperature (psia):	5.7019
Annual Net Throughput (gal/yr.):	59,715.5909
Annual Turnovers:	7.0000
Turnover Factor:	1.0000
Maximum Liquid Volume (gal):	8,530.7987
Maximum Liquid Height (ft):	12.0000
Tank Diameter (ft):	11.0000
Working Loss Product Factor:	1.0000
Total Losses (lb):	2,900.2850

TANKS 4.0.9d Emissions Report - Detail Format Individual Tank Emission Totals

Emissions Report for: Annual

210 bbl Gasoline - Vertical Fixed Roof Tank Bloomfield, NM

	Losses(lbs)								
Components	Working Loss	Breathing Loss	Total Emissions						
Gasoline (RVP 10)	535.06	2,365.23	2,900.28						

TANKS 4.0.9d Emissions Report - Detail Format Tank Indentification and Physical Characteristics

Identification

User Identification: City: State: Company: Type of Tank: Description:	500 gal Diesel Tank Bloomfield NM Williams Horizontal Tank Ojito	
Tank Dimensions		
Shell Length (ft):		6.00
Diameter (ft):		4.00
Volume (gallons): Turnovers:		500.00
Net Throughput(gal/vr):		12.000.00
Is Tank Heated (y/n):	Ν	,
Is Tank Underground (y/n):	Ν	
Paint Characteristics		
Shell Color/Shade: Shell Condition	Gray/Light Good	
Breather Vent Settings		0.00
Vacuum Settings (psig): Pressure Settings (psig)		-0.03
i lessure detuings (psig)		0.05

Meterological Data used in Emissions Calculations: Albuquerque, New Mexico (Avg Atmospheric Pressure = 12.15 psia)

TANKS 4.0.9d Emissions Report - Detail Format Liquid Contents of Storage Tank

500 gal Diesel Tank - Horizontal Tank Bloomfield , NM

		Dail Temp	y Liquid Su erature (deg	rf. g F)	Liquid Bulk Temp	Vapor	r Pressure (psia)	Vapor Mol.	Liquid Mass	Vapor Mass	Mol.	Basis for Vapor Pressure
Mixture/Component	Month	Avg.	Min.	Max.	(deg F)	Avg.	Min.	Max.	Weight.	Fract.	Fract.	Weight	Calculations
Distillate fuel oil no. 2	All	64.94	53.24	76.64	58.39	0.0082	0.0054	0.0110	130.0000			188.00	Option 1: VP60 = .0074 VP70 = .009

TANKS 4.0.9d Emissions Report - Detail Format Detail Calculations (AP-42)

500 gal Diesel Tank - Horizontal Tank Bloomfield , NM

Annual Emission Calcaulations	
Standing Losses (lb): Vapor Space Volume (cu ft): Vapor Density (lb/cu ft): Vapor Space Expansion Factor:	0.2806 48.0243 0.0002 0.0847
Vented Vapor Saturation Factor:	0.9991
Tank Vapor Space Volume: Vapor Space Volume (cu ft): Tank Diameter (ft): Effective Diameter (ft): Vapor Space Outage (ft): Tank Shell Length (ft):	48.0243 4.0000 5.5293 2.0000 6.0000
Vapor Density Vapor Density (lb/cu ft): Vapor Poensity (lb/cu ft): Vapor Pressure at Daily Average Liquid Surface Temperature (psia): Daily Average Ambient Temp. (deg. R): Daily Average Ambient Temp. (deg. F): Ideal Gas Constant R (psia cuft / (lb-mol-deg R)): Liquid Bulk Temperature (deg. R): Tank Paint Solar Absorptance (Shell): Daily Total Solar Insulation Factor (Btu/sqtf day):	0.0002 130.0000 0.0082 524.6094 56.1542 10.731 518.0642 0.5400 1,765.3167
Vapor Space Expansion Factor Vapor Space Expansion Factor: Daily Vapor Temperature Range (deg. R): Daily Vapor Pressure Range (psia): Breather Vent Press. Setting Range(psia): Vapor Pressure at Daily Average Liquid Surface Temperature (psia): Vapor Pressure at Daily Minimum Liquid Surface Temperature (psia): Vapor Pressure at Daily Maximum Liquid Surface Temperature (psia): Daily Aug. Liquid Surface Temp. (deg R): Daily Max. Liquid Surface Temp. (deg R): Daily Aug. Liquid Surface Temp. (deg R): Daily Max. Liquid Surface Temp. (deg R):	0.0847 46.7976 0.0056 0.0600 0.0082 0.0054 0.0110 524.6094 512.9100 536.3088 27.9250
Vented Vapor Saturation Factor Vented Vapor Saturation Factor: Vapor Pressure at Daily Average Liquid: Surface Temperature (psia): Vapor Space Outage (ft):	0.9991 0.0082 2.0000
Working Losses (lb): Vapor Molecular Weight (lb/lb-mole): Vapor Pressure at Daily Average Liquid Surface Temperature (psia): Annual Net Throughput (gal/yr.):	0.3042 130.0000 0.0082 12,000.0000

TANKS 4.0 Report

Annual Turnovers:	24.0000
Turnover Factor:	1.0000
Tank Diameter (ft):	4.0000
Working Loss Product Factor:	1.0000

0.5848

Total Losses (lb):

TANKS 4.0.9d Emissions Report - Detail Format Individual Tank Emission Totals

Emissions Report for: Annual

500 gal Diesel Tank - Horizontal Tank Bloomfield , NM

	Losses(lbs)								
Components	Working Loss	Breathing Loss	Total Emissions						
Distillate fuel oil no. 2	0.30	0.28	0.58						

TANKS 4.0.9d Emissions Report - Detail Format Tank Indentification and Physical Characteristics

Identification 1000 Lube Oil User Identification: Bloomfield City: State: NM Company: Type of Tank: Williams Vertical Fixed Roof Tank Description: Ojito **Tank Dimensions** Shell Height (ft): 7.00 Diameter (ft): 5.50 Liquid Height (ft) : 6.00 Avg. Liquid Height (ft): 4.00 Volume (gallons): 1,066.35 Turnovers: 24.00 Net Throughput(gal/yr): 25.592.40 Is Tank Heated (y/n): Ν **Paint Characteristics** Shell Color/Shade: Gray/Light Shell Condition Good Gray/Light Roof Color/Shade: Roof Condition: Good **Roof Characteristics** Type: Cone Height (ft) 0.00 Slope (ft/ft) (Cone Roof) 0.00 **Breather Vent Settings** -0.03 Vacuum Settings (psig): Pressure Settings (psig) 0.03

Meterological Data used in Emissions Calculations: Albuquerque, New Mexico (Avg Atmospheric Pressure = 12.15 psia)

TANKS 4.0.9d Emissions Report - Detail Format Liquid Contents of Storage Tank

1000 Lube Oil - Vertical Fixed Roof Tank Bloomfield, NM

Mixture/Component	Month	Dail Temp Avg.	y Liquid Sur erature (deg Min.	rf. g F) Max.	Liquid Bulk Temp (deg F)	Vapo Avg.	r Pressure (Min.	psia) Max.	Vapor Mol. Weight.	Liquid Mass Fract.	Vapor Mass Fract.	Mol. Weight	Basis for Vapor Pressure Calculations
Residual oil no. 6	All	64.94	53.24	76.64	58.39	0.0000	0.0000	0.0001	190.0000			387.00	Option 1: VP60 = .00004 VP70 = .00006

TANKS 4.0.9d Emissions Report - Detail Format Detail Calculations (AP-42)

1000 Lube Oil - Vertical Fixed Roof Tank Bloomfield, NM

Annual Emission Calcaulations	
Standing Losses (lb):	0.0037
Vapor Space Volume (culit):	/1.2/49
Vapor Space Expansion Factor:	0.0000
Vapor Space Expansion Factor:	1 0000
vented vapor Saturation ractor.	1.0000
Tank Vapor Space Volume:	74 07 40
Vapor Space Volume (cu ft):	/1.2/49
Tank Diameter (π):	5.5000
Tank Shall Height (ff):	7 0000
Average Liquid Height (ft):	4 0000
Roof Outage (ft):	0.0000
	0.0000
Roof Outage (Cone Roof)	
Roof Outage (ft):	0.0000
Rool Height (II):	0.0000
Sholl Bodius (ff):	2,7500
Shell Radius (it).	2.7500
Vapor Density	
Vapor Density (Ib/cu π):	0.0000
Vapor Molecular Weight (Ib/Ib-mole):	190.0000
Surface Temperature (psia):	0.000
Daily Avg Liquid Surface Temp (deg R):	524 6094
Daily Average Ambient Temp. (deg. R):	56 1542
Ideal Gas Constant R	00.1042
(psia cuft / (lb-mol-deg R)):	10.731
Liquid Bulk Temperature (deg. R):	518.0642
Tank Paint Solar Absorptance (Shell):	0.5400
Tank Paint Solar Absorptance (Roof):	0.5400
Daily Total Solar Insulation	
Factor (Btu/sqft day):	1,765.3167
Vapor Space Expansion Factor	
Vapor Space Expansion Factor:	0.0843
Daily Vapor Temperature Range (deg. R):	46.7976
Daily Vapor Pressure Range (psia):	0.0000
Breather Vent Press. Setting Range(psia):	0.0600
Vapor Pressure at Daily Average Liquid	
Surface Temperature (psia):	0.0000
Vapor Pressure at Daily Minimum Liquid	0.0000
Surrace Temperature (psia):	0.0000
Surface Temporature (psia):	0.0001
Daily Ava Liquid Surface Temp (deg P).	524 6004
Daily Avg. Liquid Surface Temp. (deg R):	512 9100
Daily Max Liquid Surface Temp. (deg R).	536 3088
Daily Ambient Temp. Range (deg. R):	27.9250
Vented Vapor Saturation Eactor	
Vented Vapor Saturation Factor:	1 0000
Vanor Pressure at Daily Average Liquid	1.0000
Surface Temperature (psia)	0.000
(poid).	0.0000

Vapor Space Outage (ft):	3.0000
Working Losses (lb): Vapor Molecular Weight (lb/lb-mole):	0.0058 190.0000
Vapor Pressure at Daily Average Liquid	
Surface Temperature (psia):	0.0000
Annual Net Throughput (gal/yr.):	25,592.3961
Annual Turnovers:	24.0000
Turnover Factor:	1.0000
Maximum Liquid Volume (gal):	1,066.3498
Maximum Liquid Height (ft):	6.0000
Tank Diameter (ft):	5.5000
Working Loss Product Factor:	1.0000
Total Losses (lb):	0.0095

TANKS 4.0.9d Emissions Report - Detail Format Individual Tank Emission Totals

Emissions Report for: Annual

1000 Lube Oil - Vertical Fixed Roof Tank Bloomfield, NM

	Losses(lbs)		
Components	Working Loss	Breathing Loss	Total Emissions
Residual oil no. 6	0.01	0.00	0.01

TANKS 4.0.9d Emissions Report - Detail Format Tank Indentification and Physical Characteristics

Identification

User Identification: State: City: Type of Tank: Compasyription:	100 bbl Ambitrol/ Glycol Bloomfield NM Williams Vertical Fixed Roof Tank Ojito
Tank Dimensions Shell Height (ft): Diameter (ft): Liquid Height (ft) : Avg. Liquid Height (ft): Volume (gallons): Turnovers: Net Throughput(gal/yr): Is Tank Heated (y/n):	14.00 7.00 14.00 7.00 4,030.39 24.00 96,729.39 N
Paint Characteristics Shell Color/Shade: Shell Condition Roof Color/Shade: Roof Condition:	Gray/Light Good Gray/Light Good
Roof Characteristics Type: Height (ft) Radius (ft) (Dome Roof)	Dome 0.00 0.00
Breather Vent Settings Vacuum Settings (psig): Pressure Settings (psig)	-0.03 0.03

Meterological Data used in Emissions Calculations: Albuquerque, New Mexico (Avg Atmospheric Pressure = 12.15 psia)
TANKS 4.0.9d Emissions Report - Detail Format Liquid Contents of Storage Tank

100 bbl Ambitrol/ Glycol - Vertical Fixed Roof Tank Bloomfield, NM

Mixture/Component	Month	Dail Temp Avg.	y Liquid Sur erature (deg Min.	f. g F) Max.	Liquid Bulk Temp (deg F)	Vapoi Avg.	r Pressure (Min.	psia) Max.	Vapor Mol. Weight.	Liquid Mass Fract.	Vapor Mass Fract.	Mol. Weight	Basis for Vapor Pressure Calculations
Propylene glycol	All	64.94	53.24	76.64	58.39	0.0012	0.0006	0.0023	76.1100			76.11	Option 2: A=8.2082, B=2085.9, C=203.54

TANKS 4.0.9d Emissions Report - Detail Format Detail Calculations (AP-42)

100 bbl Ambitrol/ Glycol - Vertical Fixed Roof Tank Bloomfield, NM

Annual Emission Calcaulations	
Standing Losses (lb):	0.1481
Vapor Space Volume (cu ft):	287.8693
Vapor Density (lb/cu ft):	0.0000
Vapor Space Expansion Factor:	0.0844
Vented Vapor Saturation Factor:	0.9995
Tank Vapor Space Volume:	
Vapor Space Volume (cu ft):	287.8693
Tank Diameter (ft):	7.0000
Vapor Space Outage (ft):	7.4801
Tank Shell Height (ft):	14.0000
Average Liquid Height (ft):	7.0000
Roof Outage (ff):	0.4801
Roof Outage (Dome Roof)	
Roof Outage (ft):	0.4801
Dome Radius (II):	7.0000
Shell Radius (ff):	3.5000
Vapor Density	0.0000
Vapor Density (Ib/cu it):	0.0000
Vapor Pressure at Daily Average Liquid	76.1100
Surface Temperature (psia):	0.0012
Daily Avg. Liquid Surface Temp. (deg. R):	524.6094
Daily Average Ambient Temp. (deg. F):	56.1542
Ideal Gas Constant R	
(psia cuft / (lb-mol-deg R)):	10.731
Liquid Bulk Temperature (deg. R):	518.0642
Tank Paint Solar Absorptance (Shell):	0.5400
Tank Paint Solar Absorptance (Root):	0.5400
Eactor (Btu/soft day):	1 765 3167
	1,703.3107
Vapor Space Expansion Factor	0.0044
Daily Vapar Temperature Range (deg. R):	0.0844
Daily Vapor Temperature Range (deg. R):	46.7976
Broather Vent Press, Setting Pange(psia):	0.0016
Vapor Pressure at Daily Average Liquid	0.0000
Surface Temperature (psia):	0.0012
Vapor Pressure at Daily Minimum Liquid	0.0012
Surface Temperature (psia):	0.0006
Vapor Pressure at Daily Maximum Liquid	010000
Surface Temperature (psia):	0.0023
Daily Avg. Liquid Surface Temp. (deg R):	524.6094
Daily Min. Liquid Surface Temp. (deg R):	512.9100
Daily Max. Liquid Surface Temp. (deg R):	536.3088
Daily Ambient Temp. Range (deg. R):	27.9250
Vented Vapor Saturation Factor	
Vented Vapor Saturation Factor:	0.9995
Vapor Pressure at Daily Average Liquid:	
Surface Temperature (psia):	0.0012
Vapor Space Outage (ft):	7.4801

Working Losses (lb):	0.2166	
Vapor Pressure at Daily Average Liquid	70.1100	
Surface Temperature (psia):	0.0012	
Annual Net Throughput (gal/yr.):	96,729.3869	
Annual Turnovers:	24.0000	
Turnover Factor:	1.0000	
Maximum Liquid Volume (gal):	4,030.3911	
Maximum Liquid Height (ft):	14.0000	
Tank Diameter (ft):	7.0000	
Working Loss Product Factor:	1.0000	
Total Losses (lb):	0.3646	

TANKS 4.0.9d Emissions Report - Detail Format Individual Tank Emission Totals

Emissions Report for: Annual

100 bbl Ambitrol/ Glycol - Vertical Fixed Roof Tank Bloomfield, NM

	Losses(lbs)							
Components	Working Loss	Breathing Loss	Total Emissions					
Propylene glycol	0.22	0.15	0.36					

TANKS 4.0.9d Emissions Report - Detail Format Tank Indentification and Physical Characteristics

Identification

User Identification: State: City: Type of Tank: Compessription:	100 bbl Methanol Bloomfield NM Williams Vertical Fixed Roof Tank Ojito
Tank Dimensions Shell Height (ft): Diameter (ft): Liquid Height (ft) : Avg. Liquid Height (ft): Volume (gallons): Turnovers: Net Throughput(gal/yr): Is Tank Heated (y/n):	14.00 7.00 14.00 7.00 4,030.39 24.00 96,729.39 N
Paint Characteristics Shell Color/Shade: Shell Condition Roof Color/Shade: Roof Condition:	Gray/Light Good Gray/Light Good
Roof Characteristics Type: Height (ft) Radius (ft) (Dome Roof)	Dome 0.00 0.00
Breather Vent Settings Vacuum Settings (psig): Pressure Settings (psig)	-0.03 0.03

Meterological Data used in Emissions Calculations: Albuquerque, New Mexico (Avg Atmospheric Pressure = 12.15 psia)

TANKS 4.0.9d Emissions Report - Detail Format Liquid Contents of Storage Tank

100 bbl Methanol - Vertical Fixed Roof Tank Bloomfield, NM

Mixture/Component	Month	Dail Temp Avg.	y Liquid Su erature (deg Min.	rf. g F) Max.	Liquid Bulk Temp (deg F)	Vapo Avg.	r Pressure (Min.	psia) Max.	Vapor Mol. Weight.	Liquid Mass Fract.	Vapor Mass Fract.	Mol. Weight	Basis for Vapor Pressure Calculations
Methyl alcohol	All	64.94	53.24	76.64	58.39	1.6820	1.1617	2.3895	32.0400			32.04	Option 2: A=7.897, B=1474.08, C=229.13

TANKS 4.0.9d Emissions Report - Detail Format Detail Calculations (AP-42)

100 bbl Methanol - Vertical Fixed Roof Tank Bloomfield, NM

Annual Emission Calcaulations	
Standing Losses (lb): Vapor Space Volume (cu ft): Vapor Density (lb/cu ft): Vapor Space Expansion Factor: Vented Vapor Saturation Factor:	121.1416 287.8693 0.0096 0.2008 0.6000
Tank Vapor Space Volume: Vapor Space Volume (cu ft): Tank Diameter (ft): Vapor Space Outage (ft): Tank Shell Height (ft): Average Liquid Height (ft): Roof Outage (ft):	287.8693 7.0000 7.4801 14.0000 7.0000 0.4801
Roof Outage (Dome Roof) Roof Outage (ft): Dome Radius (ft): Shell Radius (ft):	0.4801 7.0000 3.5000
Vapor Density Vapor Density (lb/cu ft): Vapor Molecular Weight (lb/lb-mole): Vapor Pressure at Daily Average Liquid Surface Temperature (psia): Daily Average Ambient Temp. (deg. R): Daily Average Ambient Temp. (deg. F): Ideal Gas Constant R (psia cuft / (lb-mol-deg R)): Liquid Bulk Temperature (deg. R): Tank Paint Solar Absorptance (Shell): Tank Paint Solar Absorptance (Roof): Daily Total Solar Insulation Factor (Btu/sqft day):	0.0096 32.0400 1.6820 524.6094 56.1542 10.731 518.0642 0.5400 0.5400 1.765.3167
Vapor Space Expansion Factor Vapor Space Expansion Factor: Daily Vapor Temperature Range (deg. R): Daily Vapor Pressure Range (psia): Breather Vent Press. Setting Range(psia): Vapor Pressure at Daily Average Liquid Surface Temperature (psia): Vapor Pressure at Daily Minimum Liquid Surface Temperature (psia): Vapor Pressure at Daily Maximum Liquid Surface Temperature (psia): Daily Avg. Liquid Surface Temp. (deg R): Daily Max. Liquid Surface Temp. (deg R): Daily Ambient Temp. Range (deg. R):	0.2008 46.7976 1.2278 0.0600 1.6820 1.1617 2.3895 524.6094 512.9100 536.3088 27.9250
Vented Vapor Saturation Factor Vented Vapor Saturation Factor: Vapor Pressure at Daily Average Liquid: Surface Temperature (psia): Vapor Space Outage (ft):	0.6000 1.6820 7.4801

Working Losses (lb):	124.1125	
Vapor Molecular Weight (lb/lb-mole):	32.0400	
Vapor Pressure at Daily Average Liquid		
Surface Temperature (psia):	1.6820	
Annual Net Throughput (gal/yr.):	96,729.3869	
Annual Turnovers:	24.0000	
Turnover Factor:	1.0000	
Maximum Liquid Volume (gal):	4,030.3911	
Maximum Liquid Height (ft):	14.0000	
Tank Diameter (ft):	7.0000	
Working Loss Product Factor:	1.0000	
Total Losses (lb):	245.2541	

TANKS 4.0.9d Emissions Report - Detail Format Individual Tank Emission Totals

Emissions Report for: Annual

100 bbl Methanol - Vertical Fixed Roof Tank Bloomfield, NM

	Losses(lbs)							
Components	Working Loss	Breathing Loss	Total Emissions					
Methyl alcohol	124.11	121.14	245.25					

Attachment 3: Regulatory Applicability

Círrus Consultíng, LLC

Attachment 3 – Applicable Federal Regulations

Federal standards and requirements are embodied in Title 40 (Protection of the Environment), Subchapter C (Air Programs) of the CFR, Parts 50 through 99.

FEDERAL REGU- LATIONS CITATION	Title	Applies? Enter Yes or No	Unit(s) or Facility	JUSTIFICATION:
40 CFR 50	NAAQS	No		This regulation defines national ambient air quality standards. For existing sources applying for a synthetic minor source permit pursuant to \$49.151(c)(1)(ii), demonstration of compliance with applicable national ambient air quality standards is not applicable.
NSPS 40 CFR 60, Subpart A	General Provisions	No		This regulation is not applicable because no other NSPS applies.
NSPS 40 CFR 60, Subpart K	Standards of Performance for Storage Vessels for Petroleum Liquids for which Construction, Reconstruction, or Modification Commenced After June 11, 1973, and Prior to May 19, 1978	No		This regulation is not applicable because the petroleum liquids storage tanks at the facility have capacities less than the minimum applicability threshold capacity of 40,000 gallons (§60.110(a)).
NSPS 40 CFR 60, Subpart Ka	Standards of Performance for Storage Vessels for Petroleum Liquids for which Construction, or Modification Commenced After May 18, 1978, and Prior to July 23, 1984	No		This regulation is not applicable because the petroleum liquids storage tanks at the facility have capacities less than the minimum applicability threshold capacity of 40,000 gallons (§60.110a(a)).
NSPS 40 CFR 60, Subpart Kb	Standards of Performance for Volatile Organic Liquid Storage Vessels (Including Petroleum Liquid Storage Vessels) for Which Construction, Reconstruction, or Modification Commenced After July 23, 1984	No		This regulation is not applicable because the petroleum liquids storage tanks at the facility have capacities less than the minimum applicability threshold capacity of 40,000 gallons (§60.110b(a)).
NSPS 40 CFR 60 Subpart IIII	Standards of performance for Stationary Compression Ignition Internal Combustion Engines	No		This regulation is not applicable because the facility is not equipped with stationary CI ICE.

FEDERAL REGULATIONS APPLICABILITY CHECKLIST

FEDERAL REGU- LATIONS CITATION	Title	Applies? Enter Yes or No	Unit(s) or Facility	JUSTIFICATION:
NSPS 40 CFR Part 60 Subpart JJJJ	Standards of Performance for Stationary Spark Ignition Internal Combustion Engines	No		This regulation is not applicable because all potentially affected SI RICE (Units 1, 2 & 3 and the emergency generator) had commenced construction prior to the regulatory applicability date of June 12, 2006 (§60.4230(a)(4)).
NSPS 40 CFR Part 60 Subpart OOOO	Standards of Performance for Crude Oil and Natural Gas Production, Transmission, and Distribution for which construction, modification or reconstruction commenced after August 23, 2011 and before September 18, 2015	No		This regulation is not applicable. The existing facility, a natural gas compressor station, is not equipped with "affected" sources that are constructed, modified, or reconstructed after August 23, 2011 and on or before September 18, 2015: gas wells, centrifugal or reciprocating compressors, pneumatic controllers, and storage vessels (§60.5365).
NSPS 40 CFR Part 60 Subpart OOOOa	Standards of Performance for Crude Oil and Natural Gas Facilities for which Construction, Modification or Reconstruction Commenced After September 18, 2015	No		This regulation is not applicable. The existing facility, a natural gas compressor station, is not equipped with "affected" sources that are constructed, modified, or reconstructed after September 18, 2015: gas wells, centrifugal or reciprocating compressors, pneumatic controllers, and storage vessels (§60.5365).
NESHAP 40 CFR 61 Subpart A	General Provisions	No		 This regulation is not applicable because none of the other 40 CFR Part 61 subparts apply (§61.1(c)). 40 CFR 61, subparts B through FF provide emission standards for hazardous air pollutants by specific source type. The facility is a natural gas compressor station, which is not included as a source category subject to 40 CFR 61; therefore, the regulation does not apply.
NESHAP 40 CFR 61 Subpart V	National Emission Standards for Equipment Leaks (Fugitive Emission Sources)	No		This subpart is not applicable because none of the potentially affected equipment at the facility is in VHAP service, as defined in 40 CFR 61.
MACT 40 CFR 63, Subpart A	National Emission Standards for Hazardous Air Pollutants (NESHAP) General Provisions	Yes	1, 2, 3 and Gen	This regulation is applicable because 40 CFR 63, Subpart ZZZZ applies (§63.1(b)).

FEDERAL REGU- LATIONS CITATION	Title	Applies? Enter Yes or No	Unit(s) or Facility	JUSTIFICATION:
MACT 40 CFR 63.760 Subpart HH	NESHAP for Oil and Natural Gas Production Facilities	No		This regulation is not applicable because the facility contains no affected sources. The facility is an area source of HAP as defined by the regulation. Under §63.760(b)(2) for an area source of HAP, an affected source is each triethylene glycol dehydration unit located at the facility. Potentially affected sources at the facility (TEG dehydrators) are no longer in service.
MACT 40 CFR 63 Subpart HHH	NESHAP for Natural Gas Transmission and Storage Facilities	No		This regulation is not applicable as the facility is not a natural gas transmission and storage facility as defined by the subpart.
MACT 40 CFR 63 Subpart ZZZZ	NESHAP for Stationary Reciprocating Internal Combustion Engines (RICE MACT)	Yes	1, 2, 3 and Gen	This regulation applies because the facility is a remote area HAP source as defined by the subpart and is equipped with stationary RICE (Units 1, 2, 3 and Gen) (§63.6580). As per §63.6675 <i>Remote Stationary RICE</i> criterion 2, the diagram following this table documents that there are no buildings intended for human occupancy or well-defined outside areas within a 1-mile buffer of the facility. Units 1, 2 and 3 are existing (constructed or reconstructed before June 12, 2006) non-emergency stationary RICE as defined by the subpart (§63.6590(1)(iii)). Therefore, they must meet the requirements of §63.6640(a) and Table 2d paragraph 8. The emergency generator, Gen, must meet the requirements of §63.6640(a) and Table 2d paragraph 5.
MACT 40 CFR 63 Subpart CCCCCC	NESHAP for Gasoline Dispensing Facilities	Yes	IE7	This regulation applies. Gasoline tank IE-7 has a monthly throughput of less than 10,000 gallons per month. Records are maintained as required by §63.11116.
40 CFR 64	Compliance Assurance Monitoring	No		As with the current Part 71 permit R6FOPP71-05, upon issuance of the synthetic minor NSR permit for which this application is being submitted, the facility will be permitted with federally enforceable limitations to assure the facility is not subject to CAM as per §64.2.
Title VI – 40 CFR 82	Protection of Stratospheric Ozone	No		This regulation is not applicable to the facility because it does not produce, manufacture, transform, destroy, import, or export ozone-depleting substances; does not maintain or service motor vehicle air conditioning units or refrigeration equipment; and does not sell, distribute, or offer for sale or distribution any product that contains ozone-depleting substances.
40 CFR 98	Mandatory Greenhouse Gas Reporting	No		This regulation is not applicable to the facility because its actual annual CO2e emissions are below the major source threshold as defined in Subpart A, <i>General Provision</i> , Subpart C, <i>General Stationary Fuel Combustion Sources</i> , and Subpart W, <i>Petroleum Oil and Natural Gas Systems</i> . The facility GHG emissions are below the reporting thresholds of the regulations.

Date: 3/15/2017
Path: Z:\West_FCA\GAS\2016\EPA_Appendix_ZZZZ\FCA 2016 EPA Appendix ZZZZ.mxd

0 0.125 0.25 0.5 0.75

Miles

Page No: 28

Attachment 4: Process Flow Diagram

Círrus Consultíng, LLC

Círrus Consultíng, LLC