

Innovative Subsurface Remediation Technologies

Richard T. Wilkin

ERIS Board-EPA Joint Meeting July 11, 2017

Office of Research and Development

Problem & Approach

- Development of groundwater remediation technologies to reduce reliance on pump-and-treat
- Treatment of groundwater contaminated with VOCs, metals, and other inorganics
- Applied research to address common issues:
 - Long-term performance of treatment
 - Matching technology compatibility with site characteristics
 - Coupling multiple technologies
 - Site characterization & monitoring strategies
- Transfer of applied research results to technical support activities

Technologies for Groundwater Remediation

- Thermal remediation
- In situ chemical oxidation (ISCO)
- In situ chemical reduction (ISCR)
- Permeable reactive barriers (PRBs)
- Subsurface barriers/soil vapor extraction
- Monitored natural attenuation (MNA)
 - organic compounds
 - metals, metalloids, and other inorganics

- Electrical Resistance Heating
- Used for Volatile Organic Compounds (VOCs)
- Used in Soil and Groundwater
- Depths to 100 ft
- VOCs captured in vapor stream & then extracted
- Boiling points of common VOCs in water range from 31 °C to 87 °C

Agency

In Situ Chemical Oxidation (ISCO) & Reduction (ISCR)

 ISCO

 VOCs
 Peroxide, permanganate, persulfate

 ISCR

 VOCs/metals

> Dithionite, hydrogen sulfide, ferrous sulfate, organic carbon, micro/nanoparticles

 Issues: Delivery of reagent(s) to subsurface; Subsurface compatibility of reagent(s); Region of influence of the injected reagent(s)

Permeable Reactive Barrier

Advantages

- Subsurface treatment
- Plume capture complete
- Passive treatment
- Lower costs vs. Pump/Treat
- Adaptable, property use
- Focused monitoring

Limitations

- Greater initial investment
- Post-construction issues
- Longevity concerns
 - > Treatment performance
 - > Hydraulic performance

6

PRB Research

Groundwater, Watershed, and Ecosystem Restoration Division, Ada, OK

- Research Areas: *i*) Long-term performance evaluations at full-scale PRB installations; *ii*) Pilot-scale tests for technology development & assessment; and *iii*) Basic problem research
- Collaboration with EPA regions, states, other federal agencies, academia and industry

Contents lists available at ScienceDirect

Science of the Total Environment

Science of the the second seco

journal homepage: www.elsevier.com/locate/scitotenv

Fifteen-year assessment of a permeable reactive barrier for treatment of chromate and trichloroethylene in groundwater

Richard T. Wilkin^{a,*}, Steven D. Acree^a, Randall R. Ross^a, Robert W. Puls^b, Tony R. Lee^a, Leilani L. Woods^c

^a United States Environmental Protection Agency, National Risk Management Research Laboratory, Ground Water and Ecosystems Restoration Division, 919 Kerr Research Drive, Ada, OK, 74820, USA

^b Oklahoma Water Survey, University of Oklahoma, 301 David L. Boren Blvd., Norman, OK, 73019, USA

^c U.S. Coast Guard Base Elizabeth City, 1664 Weeksville Road, Bldg 981, Elizabeth City, NC, 27909, USA

HIGHLIGHTS

- Longest available record of a permeable reactive barrier
- Chromate effectively remediated over 15 years
- Continued system performance is expected based on geochemistry
- Trichloroethylene is also treated, but influent concentrations have increased with time

PRB Research: Nitrate Treatment in Groundwater

- Concentrated Animal Feeding Operation site located in OK
- Facility in operation for about 7 y, closed in 1999; groundwater impact from leaking lagoon
- Groundwater remediation strategy developed for separate ammonia and nitrate plumes
- Remedies implemented in late 2002 (site owner, OK Dept. Agriculture, EPA Region 6)

Monitored Natural Attenuation: Inorganics

- Natural attenuation relies on natural processes to decrease concentrations of contaminants in groundwater
- Applied with other more active remedial tools at sites where biogeochemical conditions favor natural processes that degrade or immobilize harmful contaminants
- Examples of inorganics: chromium, arsenic, lead, nitrate

SEPA United States Environmental Protection Agency

Monitored Natural Attenuation of Inorganic Contaminants in Ground Water Volume 1 Technical Basis for Assessment

Evolution of Inorganic Contaminant Plume

SEPA United States Environmental Protection

Monitored Natural Attenuation of Inorganic Contaminants in Ground Water

Volume 2

Assessment for Non-Radionuclides Including Arsenic, Cadmium, Chromium, Copper, Lead, Nickel, Nitrate, Perchlorate, and Selenium

SEPA United States Environmental Protection

Monitored Natural Attenuation of Inorganic Contaminants in Ground Water

Volume 3

Assessment for Radionuclides Including Tritium, Radon, Strontium, Technetium, Uranium, Iodine, Radium, Thorium, Cesium, and Plutonium-Americium

Monitored Natural Attenuation: Inorganics

Technical/Regulatory Guidance

A Decision Framework for Applying Monitored Natural Attenuation Processes to Metals and Radionuclides in Groundwater

 Monitored Natural Attenuation: Interstate Technology & Regulatory Council (ITRC) guidance is based on 3-volume EPA Technical Guidance

- Training
- Technology transfer

December 2010

Prepared by The Interstate Technology & Regulatory Council Attenuation Processes for Metals and Radionuclides Team

Technical Support & Research Relating to PRBs & Thermal

- EPA Region 1 site, NH
- Chlorinated solvents & 1,4dioxane
- Example of combined technologies: thermal remediation in source, w/ downgradient PRB
- Access along road precludes conventional trenching installation
- Issue: frack-emplaced PRB will be thin and may not meet residence time requirements
- Application of natural tracers (Rare Earth Elements); C isotopic ratio of chlorinated ethenes

South Municipal Water Supply Well Superfund Site

Impacts of Applied Research

Take Home Messages

- Technical Guidance on remedy selection, application and performance
 ISCO, PRBs, MNA
- Technical Guidance on site characterization for refining conceptual site models
- State-of-the-art tools
 - Provide guidance and support on use of new tools, e.g., sequential extractions, isotopic tools, synchrotron-based spectroscopy
- Research directions developed from national perspective

Contact Information

Richard T. Wilkin

US EPA Office of Research and Development National Risk Management Research Laboratory Groundwater, Watershed and Ecosystem Restoration Division Ada, OK

580-436-8874 wilkin.rick@epa.gov