

www.epa.gov/airscience

AIR CLIMATE & ENERGY RESEARCH PROGRAM

BUILDING A SCIENTIFIC FOUNDATION FOR SOUND ENVIRONMENTAL DECISIONS

Introduction to GENERATE: The Game of Energy Choices

The big picture: What is the energy system?

Primary energy resources

Fossil: coal, natural gas, petroleum

Other: uranium

Renewable: wind, solar, hydro, geothermal, biomass

 Technologies to convert primary resources to useable energy like electricity, gasoline, ...

Petroleum Refineries

Electric Power Generation

End-use sectors

- Residential
- Commercial
- Industrial
- Transportation

 Energy services – What people actually need and want: For example, mobility (vehicle miles of travel), lighting (lumens of light), comfort (space heating and cooling). Energy is a "derived demand"

Connecting the dots: where we use what energy

Connecting the dots: where we use what energy

Energy and our environment: why it matters

Energy-related impacts

Criteria air pollutants*

 $NO_X - 93\%$ CO - 61% $SO_2 - 81\%$ $PM_{2.5} - 63\%$ (excl. misc.)

Greenhouse gases:

 $CO_2 - 97\%$ Methane – 42% Nitrous oxide – 12%

Water use

51% of total surface freshwater withdrawals are used for electric power

*includes fuel combustion (elec., ind. & other), petroleum & related industries, highway & off-highway from 2016 Air Pollutant Emissions Trends Data

Generate: The Game of Energy Choices

- A simple "simulation" of an energy system
- Helps us to see some of the challenges and tradeoffs involved in making energy choices
- Each team has roughly the same total energy (area of available pieces)
- Each team does not have the same mix of energy pieces
- Goal is to fill the game board with energy types to achieve the *lowest* total score

Score = purchase cost + operating cost + CO₂ cost

	Round 1	Round 2	Round 3	Round 4	Round 5
Nuclear					
Coal					
Coal - Existing					
Coal with CCS					
Natural Gas					
Wind – Small					
Wind – Large					
Wind – Large w. Battery					
Solar – Small					
Solar – Large					
Solar – Large w. Battery					
Small Efficiency					
Large Efficiency					
Score					
Rank					

The game board = the "grid"

- Students teams are the decision makers for how they want to produce energy
- They will use this board for multiple rounds of game play
- Each team can be thought of as a town, state, region or country

Types of energy pieces (each team will have a different mix)

Parts of the energy pieces

Type:

What primary energy resource does it use?

Size:

How much energy does it produce?

CO₂ emissions: How much CO₂ does it produce each year?

Purchase Cost:

How much does it cost up front to build/purchase?

Annual Cost:

How much does it cost *each year* to run/operate?

Lifetime: All energy pieces will last 30 years

Cost per piece = $785 + (20 * 30) + (4.5 * 30) * CO_2 cost$ (for 30 years) = 1385 (if CO₂ cost is zero)

Now let's play a few rounds of Generate!

