

# **Analytical Methods Approved for Compliance Monitoring under the Long Term 2 Enhanced Surface Water Treatment Rule**

Analysis for the following contaminants shall be conducted in accordance with the methods in the following table, or their equivalent as determined by EPA. The methods for *Cryptosporidium* are listed at 40 CFR 141.704, the methods for enumeration of *E. coli* in source water are listed in Table 1H at 40 CFR 136.3(a) and the methods for turbidity are listed at 40 CFR 141.74. Additional approved methods are listed in Appendix A to Subpart C of Part 141.

The CFR is the legal reference for approved methods and takes precedence over this table. The table should accurately reflect the analytical methods information published in 40 CFR 141. If discrepancies are found, please notify the Safe Drinking Water Hotline (800-426-4791) so that EPA can correct the table.

### **Contaminant**

#### Cryptosporidium:

Systems must analyze at least a 10 L sample or a packed pellet volume of at least 2 mL. Systems unable to process a 10 L sample must analyze as much sample volume as can be filtered by two filters approved by EPA for the methods listed, up to a packed pellet volume of at least 2 mL.

| Method        | Organization | Reference Title                                           | Date             | EPA Publication<br>Number |
|---------------|--------------|-----------------------------------------------------------|------------------|---------------------------|
| <u>1622</u>   | EPA          | Cryptosporidium in Water by Filtration/IMS/FA             | December<br>2005 | EPA-815-R-05-001          |
| <u>1623</u>   | EPA          | Cryptosporidium and Giardia in Water by Filtration/IMS/FA | December<br>2005 | EPA-815-R-05-002          |
| <u>1623.1</u> | EPA          | Cryptosporidium and Giardia in Water by Filtration/IMS/FA | January 2012     | EPA-816-R-12-001          |

Office of Water (MS – 4606 M) EPA 821-F-17-001 February 2017

#### Contaminant

#### Escherichia coli:

The time from sample collection to initiation of analysis may not exceed 30 hours. The State may approve on a case-by-case basis the holding of an *E.coli* sample for up to 48 hours between sample collection and initiation of analysis if the State determines that analyzing an *E.coli* sample within 30 hours is not feasible. *E. coli* samples held between 30 to 48 hours must be analyzed by the Colilert reagent version of Standard Method 9223B as listed in § 136.3 (a) Table 1H of this title.

Systems must maintain samples between 0°C and 10°C during storage and transit to the laboratory.

Tests must be conducted to provide organism enumeration (density). Select the appropriate configuration of tubes/filtrations and dilutions/volumes to account for the quality, character, consistency, and anticipated organism density of the water sample.

To assess the comparability of results obtained with individual methods, it is suggested that side-by-side tests be conducted across seasons of the year with the water samples routinely tested in accordance with the most current Standard Methods for the Examination of Water and Wastewater or EPA alternate test procedure (ATP) guidelines.

| Method                   | Organization                  | Reference Title                                                                                                                                                         | Date | Notes                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |
|--------------------------|-------------------------------|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| 9221B.2 F-<br>2006       | Standard<br>Methods<br>Online | Online version. Approval year is designated by the last 4 digits. Only online versions cited in the regulations or in Appendix A to Subpart C of Part 141 are approved. | 2006 | Samples shall be enumerated by the multiple-tube or multiple-well procedure.  Using multiple-tube procedures, employ an appropriate tube and dilution configuration of the sample as needed and report the Most Probable Number (MPN).  The multiple-tube fermentation test is used in 9221B.2-2006. Lactose broth may be used in lieu of lauryl tryptose broth (LTB), if at least 25 parallel tests are conducted between this broth and LTB using the water samples normally tested, and this comparison demonstrates that the false-positive rate and false-negative rate for total coliform using lactose broth is less than 10 percent. No requirement exists to run the completed phase on 10 percent of all total coliform-positive tubes on a seasonal basis.  After prior enrichment in a presumptive medium for total coliform using 9221B.2-2006, all presumptive tubes or bottles showing any amount of gas, growth or acidity within 48 ± 3 h of incubation shall be submitted to 9221 F-2006. Commercially available EC-MUG medium or EC medium supplemented in the laboratory with 50 μg/mL of MUG may be used. |
| 9223 B-2004<br>Colilert® | Standard<br>Methods<br>Online | Online version. Approval year is designated by the last 4 digits. Only online versions cited in the regulations or in Appendix A to Subpart C of Part 141 are approved. | 2004 | Multiple tube or multiple well  These tests are collectively known as defined substrate tests, where, for example, a substrate is used to detect the enzyme β-glucuronidase produced by <i>E. coli</i> Descriptions of the Colilert®, Colilert-18®, and Quanti-Tray® may be obtained from IDEXX Laboratories Inc.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |

| Method                      | Organization                  | Reference Title                                                                                                                                                         | Date | Notes                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
|-----------------------------|-------------------------------|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| 9223 B-2004<br>Colilert-18® | Standard<br>Methods<br>Online | Online version. Approval year is designated by the last 4 digits. Only online versions cited in the regulations or in Appendix A to Subpart C of Part 141 are approved. | 2004 | Multiple tube or multiple well  These tests are collectively known as defined substrate tests, where, for example, a substrate is used to detect the enzyme β-glucuronidase produced by <i>E. coli</i> Colilert-18® is an optimized formulation of the Colilert® for the determination of total coliforms and <i>E.coli</i> that provides results within 18 h of incubation at 35° C, rather than the 24 h required for the Colilert® test, and is recommended for marine water samples.  Descriptions of the Colilert®, Colilert-18®, and Quanti-Tray® may be obtained from IDEXX Laboratories Inc. |
| 991.15<br>Colilert®         | AOAC<br>International         | Official Methods of Analysis<br>of AOAC International, 16 <sup>th</sup><br>Edition, Volume I, Chapter 17                                                                | 1995 | Multiple tube or multiple well  These tests are collectively known as defined substrate tests, where, for example, a substrate is used to detect the enzyme β-glucuronidase produced by <i>E. coli</i> Descriptions of the Colilert®, Colilert-18®, and Quanti-Tray® may be obtained from IDEXX Laboratories Inc.                                                                                                                                                                                                                                                                                    |
| 991.15<br>Colilert-18®      | AOAC<br>International         | Official Methods of Analysis<br>of AOAC International, 16 <sup>th</sup><br>Edition, Volume I, Chapter 17                                                                | 1995 | Multiple tube or multiple well  These tests are collectively known as defined substrate tests, where, for example, a substrate is used to detect the enzyme β-glucuronidase produced by <i>E. coli</i> Colilert-18® is an optimized formulation of the Colilert® for the determination of total coliforms and <i>E.coli</i> that provides results within 18 h of incubation at 35° C, rather than the 24 h required for the Colilert® test, and is recommended for marine water samples.  Descriptions of the Colilert®, Colilert-18®, and Quanti-Tray® may be obtained from IDEXX Laboratories Inc. |

| Method | Organization | Reference Title                                                                                                                                                            | Date | Notes                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |
|--------|--------------|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| 1103.1 | EPA          | EPA Method 1103.1:  Escherichia coli (E.coli) in  Water by Membrane Filtration Using membrane- Thermotolerant Escherichia coli Agar (mTEC), EPA-821-R- 10-002, March 2010. | 2010 | A 0.45-µm membrane filter (MF) or other pore size certified by the manufacturer to fully retain organisms to be cultivated and to be free of extractables which could interfere with their growth.  Because the MF technique usually yields low and variable recovery from chlorinated wastewaters, the Most Probable Number method will be required to resolve any controversies.  Tests must be conducted to provide organism enumeration (density). Select the appropriate configuration of tubes/filtrations and dilutions/volumes to account for the quality, character, consistency, and anticipated organism density of the water sample.  When the MF method has not been used previously to test waters with high turbidity, large numbers of noncoliform bacteria, or samples that may contain organisms stressed by chlorine, a parallel test should be conducted with a multiple-tube technique to demonstrate applicability and comparability of results.  To assess the comparability of results obtained with individual methods, it is suggested that side-by-side tests be conducted across seasons of the year with the water samples routinely tested in accordance with the most current Standard Methods for the Examination of Water and Wastewater or EPA alternate test procedure (ATP) guidelines. |

| Method                          | Organization                  | Reference Title                                                                                                                                                         | Date | Notes                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |
|---------------------------------|-------------------------------|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| 9222 B-<br>2006/9222 G-<br>2006 | Standard<br>Methods<br>Online | Online version. Approval year is designated by the last 4 digits. Only online versions cited in the regulations or in Appendix A to Subpart C of Part 141 are approved. | 2006 | A 0.45-µm membrane filter (MF) or other pore size certified by the manufacturer to fully retain organisms to be cultivated and to be free of extractables which could interfere with their growth.  Because the MF technique usually yields low and variable recovery from chlorinated wastewaters, the Most Probable Number method will be required to resolve any controversies.  Tests must be conducted to provide organism enumeration (density). Select the appropriate configuration of tubes/filtrations and dilutions/volumes to account for the quality, character, consistency, and anticipated organism density of the water sample.  When the MF method has not been used previously to test waters with high turbidity, large numbers of noncoliform bacteria, or samples that may contain organisms stressed by chlorine, a parallel test should be conducted with a multiple-tube technique to demonstrate applicability and comparability of results.  To assess the comparability of results obtained with individual methods, it is suggested that side-by-side tests be conducted across seasons of the year with the water samples routinely tested in accordance with the most current Standard Methods for the Examination of Water and Wastewater or EPA alternate test procedure (ATP) guidelines.  Subject total coliform positive samples determined by 9222B-2006 or other |
|                                 |                               |                                                                                                                                                                         |      | membrane filter procedure to 9222G-2006 using NA-MUG medium.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |

| Method           | Organization        | Reference Title                                                                              | Date | Notes                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |
|------------------|---------------------|----------------------------------------------------------------------------------------------|------|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| 9222 D/9222<br>G | Standard<br>Methods | Standard Methods for the<br>Examination of Water and<br>Wastewater, 20 <sup>th</sup> edition | 1998 | A 0.45-µm membrane filter (MF) or other pore size certified by the manufacturer to fully retain organisms to be cultivated and to be free of extractables which could interfere with their growth.  Because the MF technique usually yields low and variable recovery from chlorinated wastewaters, the Most Probable Number method will be required to resolve any controversies.  Tests must be conducted to provide organism enumeration (density). Select the appropriate configuration of tubes/filtrations and dilutions/volumes to account for the quality, character, consistency, and anticipated organism density of the water sample.  When the MF method has not been used previously to test waters with high turbidity, large numbers of noncoliform bacteria, or samples that may contain organisms stressed by chlorine, a parallel test should be conducted with a multiple-tube technique to demonstrate applicability and comparability of results.  To assess the comparability of results obtained with individual methods, it is suggested that side-by-side tests be conducted across seasons of the year with the water samples routinely tested in accordance with the most current Standard Methods for the Examination of Water and Wastewater or EPA alternate test procedure (ATP) guidelines.  Subject total coliform positive samples determined by 9222B-2006 or other membrane filter procedure to 9222G-2006 using NA-MUG medium. |

| Method      | Organization                  | Reference Title                                                                                                                                                         | Date | Notes                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |
|-------------|-------------------------------|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| 9213 D-2007 | Standard<br>Methods<br>Online | Online version. Approval year is designated by the last 4 digits. Only online versions cited in the regulations or in Appendix A to Subpart C of Part 141 are approved. | 2007 | A 0.45-µm membrane filter (MF) or other pore size certified by the manufacturer to fully retain organisms to be cultivated and to be free of extractables which could interfere with their growth.  Because the MF technique usually yields low and variable recovery from chlorinated wastewaters, the Most Probable Number method will be required to resolve any controversies.  Tests must be conducted to provide organism enumeration (density). Select the appropriate configuration of tubes/filtrations and dilutions/volumes to account for the quality, character, consistency, and anticipated organism density of the water sample.  When the MF method has not been used previously to test waters with high turbidity, large numbers of noncoliform bacteria, or samples that may contain organisms stressed by chlorine, a parallel test should be conducted with a multiple-tube technique to demonstrate applicability and comparability of results.  To assess the comparability of results obtained with individual methods, it is suggested that side-by-side tests be conducted across seasons of the year with the water samples routinely tested in accordance with the most current Standard Methods for the Examination of Water and Wastewater or EPA alternate test procedure (ATP) guidelines. |

| Method   | Organization          | Reference Title                                                                             | Date | Notes                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |
|----------|-----------------------|---------------------------------------------------------------------------------------------|------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| D5392-93 | ASTM<br>International | Annual Book of ASTM<br>Standards – Water and<br>Environmental Technology.<br>Section 11.02. | 1996 | A 0.45-µm membrane filter (MF) or other pore size certified by the manufacturer to fully retain organisms to be cultivated and to be free of extractables which could interfere with their growth.  Because the MF technique usually yields low and variable recovery from chlorinated wastewaters, the Most Probable Number method will be required to resolve any controversies.  Tests must be conducted to provide organism enumeration (density). Select the appropriate configuration of tubes/filtrations and dilutions/volumes to account for the quality, character, consistency, and anticipated organism density of the water sample.  When the MF method has not been used previously to test waters with high turbidity, large numbers of noncoliform bacteria, or samples that may contain organisms stressed by chlorine, a parallel test should be conducted with a multiple-tube technique to demonstrate applicability and comparability of results.  To assess the comparability of results obtained with individual methods, it is suggested that side-by-side tests be conducted across seasons of the year with the water samples routinely tested in accordance with the most current |
|          |                       |                                                                                             |      | Standard Methods for the Examination of Water and Wastewater or EPA alternate test procedure (ATP) guidelines.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |

| Method   | Organization          | Reference Title                                                                             | Date | Notes                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |
|----------|-----------------------|---------------------------------------------------------------------------------------------|------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| D5392-93 | ASTM<br>International | Annual Book of ASTM<br>Standards – Water and<br>Environmental Technology.<br>Section 11.02. | 1999 | A 0.45-µm membrane filter (MF) or other pore size certified by the manufacturer to fully retain organisms to be cultivated and to be free of extractables which could interfere with their growth.  Because the MF technique usually yields low and variable recovery from chlorinated wastewaters, the Most Probable Number method will be required to resolve any controversies.  Tests must be conducted to provide organism enumeration (density). Select the appropriate configuration of tubes/filtrations and dilutions/volumes to account for the quality, character, consistency, and anticipated organism density of the water sample.  When the MF method has not been used previously to test waters with high turbidity, large numbers of noncoliform bacteria, or samples that may contain organisms stressed by chlorine, a parallel test should be conducted with a multiple-tube technique to demonstrate applicability and comparability of results.  To assess the comparability of results obtained with individual methods, it is suggested that side-by-side tests be conducted across seasons of the year with the water samples routinely tested in accordance with the most current |
|          |                       |                                                                                             |      | Standard Methods for the Examination of Water and Wastewater or EPA alternate test procedure (ATP) guidelines.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |

| Method   | Organization          | Reference Title                                                                                                                                                                                | Date | Notes                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |
|----------|-----------------------|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| D5392-93 | ASTM<br>International | Annual Book of ASTM<br>Standards – Water and<br>Environmental Technology.<br>Section 11.02.                                                                                                    | 2000 | A 0.45-µm membrane filter (MF) or other pore size certified by the manufacturer to fully retain organisms to be cultivated and to be free of extractables which could interfere with their growth.  Because the MF technique usually yields low and variable recovery from chlorinated wastewaters, the Most Probable Number method will be required to resolve any controversies.  Tests must be conducted to provide organism enumeration (density). Select the appropriate configuration of tubes/filtrations and dilutions/volumes to account for the quality, character, consistency, and anticipated organism density of the water sample.  When the MF method has not been used previously to test waters with high turbidity, large numbers of noncoliform bacteria, or samples that may contain organisms stressed by chlorine, a parallel test should be conducted with a multiple-tube technique to demonstrate applicability and comparability of results.  To assess the comparability of results obtained with individual methods, it is suggested that side-by-side tests be conducted across seasons of the year with the water samples routinely tested in accordance with the most current Standard Methods for the Examination of Water and Wastewater or EPA alternate test procedure (ATP) guidelines. |
| 1603     | EPA                   | EPA Method 1603:  Escherichia coli (E. coli) in  Water by Membrane Filtration Using Modified membrane-Thermotolerant Escherichia coli Agar (Modified mTEC), EPA-821-R- 14-010, September 2014. | 2014 |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |
| 1604     | EPA                   | EPA Method 1604: Total Coliforms and Escherichia coli (E.coli) in Water by Membrane Filtration by Using a Simultaneous Detection Technique (MI Medium), EPA 821-R-02-024, September 2002.      | 2002 | Preparation and use of MI agar with a standard membrane filter procedure is set forth in the article, Brenner et al. 1993. New Medium for the Simultaneous Detection of Total Coliform and <i>Escherichia coli</i> in Water. Appl. Environ.  Microbiol. 59: 3534-3544                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |

| Method            | Organization | Reference Title | Date | Notes                                                                     |
|-------------------|--------------|-----------------|------|---------------------------------------------------------------------------|
| mColiBlue-<br>24® | Hach Company |                 |      | A description of the mColiBlue24® test may be obtained from Hach Company. |

## **Water Quality Parameters**

Turbidity: §141.704(c) Systems must use methods for turbidity measurement approved in 141.74 (a)(1).

| Method   | Organization            | Reference Title                                                                                               | Date | Notes                                                                                                                                                                                                                       |
|----------|-------------------------|---------------------------------------------------------------------------------------------------------------|------|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| 2130 B   | Standard Methods        | Standard Methods for the<br>Examination of Water and<br>Wastewater, 18 <sup>th</sup> Edition                  | 1992 | Styrene divinyl benzene beads (e.g. AMCO-AEPA-1 or equivalent) and stablilized formazin (e.g. Hach StablCal™                                                                                                                |
| 2130 B   | Standard Methods        | Standard Methods for the Examination of Water and Wastewater, 19 <sup>th</sup> Edition                        | 1995 | or equivalent) are acceptable substitutes for formazin  Styrene divinyl benzene beads (e.g. AMCO-AEPA-1 or equivalent) and stablilized formazin (e.g. Hach StablCal™ or equivalent) are acceptable substitutes for formazin |
| 2130 B   | Standard Methods        | Standard Methods for the<br>Examination of Water and<br>Wastewater, 20 <sup>th</sup> Edition                  | 1998 | Styrene divinyl benzene beads (e.g. AMCO-AEPA-1 or equivalent) and stablilized formazin (e.g. Hach StablCal™ or equivalent) are acceptable substitutes for formazin                                                         |
| 2130 B   | Standard Methods        | Standard Methods for the<br>Examination of Water and<br>Wastewater, 21 <sup>st</sup> Edition                  | 2005 | Styrene divinyl benzene beads (e.g. AMCO-AEPA-1 or equivalent) and stablilized formazin (e.g. Hach StablCal™ or equivalent) are acceptable substitutes for formazin                                                         |
| 2130 B   | Standard Methods        | Standard Methods for the<br>Examination of Water and<br>Wastewater, 22 <sup>nd</sup> Edition                  | 2012 | Styrene divinyl benzene beads (e.g. AMCO-AEPA-1 or equivalent) and stablilized formazin (e.g. Hach StablCal™ or equivalent) are acceptable substitutes for formazin                                                         |
| 180.1    | EPA                     | Methods for the Determination of Inorganic Substances in Environmental Samples, EPA/600/R-93/100, August 1993 | 1993 | Styrene divinyl benzene beads (e.g. AMCO-AEPA-1 or equivalent) and stablilized formazin (e.g. Hach StablCal™ or equivalent) are acceptable substitutes for formazin                                                         |
| Method 2 | Great Lakes Instruments | Great Lakes Instruments<br>Method 2, Turbidity,<br>November 2, 1992                                           | 1992 | Styrene divinyl benzene beads (e.g. AMCO-AEPA-1 or equivalent) and stablilized formazin (e.g. Hach StablCal™ or equivalent) are acceptable substitutes for formazin                                                         |

| Method             | Organization                       | Reference Title                                                                                             | Date | Notes                                                                                                                                                               |
|--------------------|------------------------------------|-------------------------------------------------------------------------------------------------------------|------|---------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| 10133              | Hach                               | Hach FilterTrak Method 10133 Determination of Turbidity by Laser Nephelometry January 2000 Revision 2.0     | 2000 | Styrene divinyl benzene beads (e.g. AMCO-AEPA-1 or equivalent) and stablilized formazin (e.g. Hach StablCal™ or equivalent) are acceptable substitutes for formazin |
| M5271              | Leck Mitchell                      | Mitchell Method M5271, Revision 1.1, Determination of Turbidity by Laser Nephelometry, March 5, 2009        | 2009 | Styrene divinyl benzene beads (e.g. AMCO-AEPA-1 or equivalent) and stablilized formazin (e.g. Hach StablCal™ or equivalent) are acceptable substitutes for formazin |
| M5331              | Leck Mitchell                      | Mitchell Method M5331, Revision 1.1, Determination of Turbidity by LED Nephelometry, March 5, 2009          | 2009 | Styrene divinyl benzene beads (e.g. AMCO-AEPA-1 or equivalent) and stablilized formazin (e.g. Hach StablCal™ or equivalent) are acceptable substitutes for formazin |
| AMI Turbiwell      | Swan Analytische Instrumente<br>AG | Continuous Measurement of Turbity Using A SWAN AMI Turbiwell Turbidimeter, August 2009                      | 2009 | Styrene divinyl benzene beads (e.g. AMCO-AEPA-1 or equivalent) and stablilized formazin (e.g. Hach StablCal™ or equivalent) are acceptable substitutes for formazin |
| AQ4500             | Thermo Scientific                  | Orion Method AQ4500,<br>Revision 1.0, Determination<br>of Turbidity by LED<br>Nephelometry,<br>May 8, 2009  | 2009 | Styrene divinyl benzene beads (e.g. AMCO-AEPA-1 or equivalent) and stablilized formazin (e.g. Hach StablCal™ or equivalent) are acceptable substitutes for formazin |
| M5331, Rev.<br>1.2 | Leck Mitchell                      | Mitchell Method M5331, Revision 1.2, Determination of Turbidity by LED or Laser Nephelometry, February 2016 | 2016 | Styrene divinyl benzene beads (e.g. AMCO-AEPA-1 or equivalent) and stablilized formazin (e.g. Hach StablCal™ or equivalent) are acceptable substitutes for formazin |
| 10258              | Hach Company                       | Hach Method 10258,<br>Determination of Turbidity by<br>360° Nephelometry,<br>January 2016                   | 2016 | Styrene divinyl benzene beads (e.g. AMCO-AEPA-1 or equivalent) and stablilized formazin (e.g. Hach StablCal™ or equivalent) are acceptable substitutes for formazin |