Replacing High-Bleed Pneumatic Devices

Lessons Learned from Natural Gas STAR

Small and Medium Sized Producer Technology Transfer Workshop

Bill Barrett Corporation, Evergreen Resources Inc,
Southern Gas Association and
EPA's Natural Gas STAR Program

June 29, 2004

Pneumatic Devices: Agenda

- Methane Losses
- Methane Recovery
- Is Recovery Profitable?
- Industry Experience
- Discussion Questions

What is the Problem?

- Pneumatic devices are major source of methane emissions from the natural gas industry
- □ Pneumatic devices used throughout the natural gas industry
 - ◆ Over 250,000 in production sector
 - → ~ 13,000 in processing sector
 - ♦ 90,000 to 130,000 in transmission sector

Location of Pneumatic Devices at Production Sites

SOV = Shut-off Valve (Unit Isolation)

LC = Level Control (Separator, Contactor, TEG

Regenerator)

TC = Temperature Control (Regenerator Fuel Gas)

FC = Flow Control (TEG Circulation, Compressor

Bypass)

PC = Pressure Control (FTS Pressure, Compressor

Suction/Discharge)

Methane Emissions

- □ As part of normal operations, pneumatic devices release natural gas to atmosphere
- □ High-bleed devices bleed in excess of 6 cf/hr
 - ◆ Equates to >50 Mcf/yr
 - ◆ Typical high-bleed pneumatic devices bleed an average of 140 Mcf/yr
- Actual bleed rate is largely dependent on device's design

Pneumatic Device Schematic

Emissions from Pneumatic Devices

	Gas Industry	Oil Industry	
Production	34.9 Bcf	21.7 Bcf	
Processing	0.6 Bcf		
Transmission	14.1 Bcf		

49.6 Bcf

Total Gas/Oil

71.3 Bcf/yr

21.7 Bcf

Total

How Can Methane Emissions be Reduced?

Option 1: Replace high-bleed devices

with low-bleed devices

Option 2: Retrofit controller with bleed

reduction kits

Option 3: Maintenance aimed at reducing

losses

◆ Field experience shows that up to 80% of all high-bleed devices can be replaced or retrofitted with low-bleed equipment

Option 1: Replace High-Bleed Devices

- Most applicable to:
 - **♦** Controllers: liquid-level and pressure
 - Positioners and transducers
- Suggested action: evaluate replacements
 - ◆ Replace at end of device's economic life
 - ◆ Early replacement

Norriseal
Pneumatic Liquid
Level Controller

Fisher
Electro-Pneumatic
Transducer

Source: www.norriseal.com

NaturalGas (

Source: www.emersonprocess.com

Option 1: Replace High-Bleed Devices (cont'd)

- Costs vary with size
 - ◆ Typical costs range from \$700 to \$3,000 per device
 - ◆ Incremental costs of low-bleed devices are modest (\$150 to \$250)
 - ◆ Gas savings often pay for replacement costs in short periods of time (5 to 12 months)

Option 2: Retrofit with Bleed Reduction Kits

- Applicable to most high-bleed controllers
- Suggested action: evaluate cost effectiveness as alternative to early replacement
- □ Retrofit kit costs ~ \$500
- □ Payback time ~ 9 months

Option 3: Maintenance to Reduce Losses

- Applies to all pneumatic devices
- Suggested action: add to routine maintenance procedures
 - ◆ Field survey of controllers
 - ♦ Where process allows, tune controllers to minimize bleed

Option 3: Maintenance to Reduce Losses (cont'd)

- Suggested action (cont'd)
 - ◆ Re-evaluate the need for pneumatic positioners
 - ◆ Repair/replace airset regulators
 - ◆ Reduce regulated gas supply pressure to minimum
 - ◆ Routine maintenance should include repairing/replacing leaking components
- □ Cost is low

Becker Single-Acting Valve Positioner

Source: www.bpe950.com

Five Steps for Reducing Methane Emissions from Pneumatic Devices

Locate and INVENTORY high-bleed devices ESTABLISH the technical feasibility and costs of alternatives **ESTIMATE** the savings **EVALUATE** economics of alternatives

DEVELOP an implementation plan

Suggested Analysis for Replacement

- Replacing high-bleed controllers at end of economic life
 - ◆ Determine incremental cost of low-bleed device over high-bleed equivalent
 - ◆ Determine gas saved with low-bleed device using manufacturer specifications
 - ◆ Compare savings and cost

NaturalGas 🖍

- □ Early replacement of high-bleed controllers
 - Compare gas savings of low-bleed device with full cost of replacement

Economics of Replacement

	Poplace et	Early Replacements	
Implementationa	Replace at End of Life	Level Control	Pressure Control
Cost (\$)	150 – 250 ^b	380	1,340
Annual Gas Savings (Mcf)	50 – 200	166	228
Annual Value of Saved Gas (\$) ^c	150 – 600	498	684
IRR (%)	97 – 239	129	42
Payback (months)	5 – 12	9	24

^a All data based on Partners' experiences. See Lessons Learned for more information.

 $^{^{\}circ}$ Gas price is assumed to be \$3/Mcf.

^b Range of incremental costs of low-bleed over high bleed equipment

Suggested Analysis for Retrofit

- □ Retrofit of low-bleed kit
 - ◆ Compare savings of low-bleed device with cost of conversion kit
 - ◆ Retrofitting reduces emissions by average of 90%

Economics of Retrofit

	Retrofit ^a
Implementation Costs ^b	\$500
Bleed rate reduction	
(Mcf/device/yr)	219
Value of gas saved	
(\$/yr) ^c	657
Payback (months)	9
IRR	129%

^a On high-bleed controllers

^c Gas price is assumed to be \$3/Mcf.

^b All data based on Partners' experiences. See *Lessons Learned* for more information.

Suggested Analysis for Maintenance

- □ For maintenance aimed at reducing gas losses
 - ♦ Measure gas loss before and after procedure
 - Compare savings with labor (and parts) required for activity

Economics of Maintenance

	Reduce supply pressure	Repair & retune	Change settings	Remove valve positioners
Implementation Cost (\$) ^a	153	23	0	0
Gas savings (Mcf/yr)	175	44	88	158
Value of gas saved (\$/yr) b	525	132	264	474
Payback (months)	3.5	2	<1	<1
IRR	343%	574%		

^a All data based on Partners' experiences. See Lessons Learned for more information.

^b Gas price is assumed to be \$3/Mcf.

Pneumatic Devices

- □ Factors affecting economics of replacement
 - ◆ Operating cost differential and capital costs
 - **♦** Estimated leak rate reduction per new device
 - ◆ Price of gas (\$/Mcf)

Natural Gas (

Source: www.eia.doe.gov

Lessons Learned

- Most high-bleed pneumatics can be replaced with lower bleed models
- □ Replacement options save the most gas and are often economic
- □ Retrofit kits are available and can be highly cost-effective
- Maintenance is low-cost and reduces gas loss

Case Study – Marathon

- □ Surveyed 158 pneumatic devices at 50 production sites
- □ Half of the controllers were low-bleed
- □ High-bleed devices included
 - ♦ 35 of 67 level controllers
 - ♦ 5 of 76 pressure controllers
 - ♦ 1 of 15 temperature controllers

Marathon Study: Hear It? Feel It? Replace It!

- Measured gas losses total 5.1 MMcf/yr
- □ Level controllers account for 86% of losses
 - ◆ Losses averaged 7.6 cf/hr
 - ◆ Losses ranged up to 48 cf/hr
- Concluded that excessive losses can be heard or felt

Recommendations

- □ Evaluate all pneumatics to identify candidates for replacement and retrofit
- □ Choose lower bleed models at change-out where feasible
- Identify candidates for early replacement and retrofits by doing economic analysis
- Improve maintenance
- Develop an implementation plan

Discussion Questions

- ☐ To what extent are you implementing this BMP?
- □ How can this BMP be improved upon or altered for use in your operation(s)?
- What are the barriers (technological, economic, lack of information, regulatory, etc.) that are preventing you from implementing this technology?

