Natural Gas Dehydration

Lessons Learned from Natural Gas STAR

Producers Technology Transfer Workshop

Devon Energy and EPA's Natural Gas STAR Program Casper, Wyoming August 30, 2005

Natural Gas Dehydration: Agenda

- ★ Methane Losses
- ★ Methane Recovery
- ★ Is Recovery Profitable?
- ★ Industry Experience
- ★ Discussion Questions

Methane Losses from Production

★ 1990-2004 Partners reported saving ~ 12.5 Bcf (Billion cubic feet) from dehydrators

What is the Problem?

- ★ Produced gas is saturated with water, which must be removed for gas transmission
- ★ Glycol dehydrators are the most-common equipment to remove water from gas
 - ♦ 38,000 dehydration systems in the natural gas production sector
 - ◆ Most use triethylene glycol (TEG)
- ★ Glycol dehydrators create emissions
 - **♦ Methane, VOCs, HAPs from reboiler vent**
 - Methane from pneumatic controllers

Basic Glycol Dehydrator System Process Diagram

Methane Recovery: Four Options

- ★ Optimized glycol circulation rates
- * Flash tank separator (FTS) installation
- * Electric pump installation
- Replace glycol unit with desiccant dehydrator

Optimizing Glycol Circulation Rate

- ★ Gas well's initial production rate decreases over its lifespan
 - Glycol circulation rates designed for initial, highest production rate
 - ◆ Operators tend to "set it and forget it"
- ★ Glycol overcirculation results in more methane emissions without significant reduction in gas moisture content

NaturalGas 🖍

- ◆ Partners found circulation rates two to three times higher than necessary
- Methane emissions are directly proportional to circulation rate

Installing Flash Tank Separator

- ★ Flashed methane can be captured using an FTS
- ★ Many units are not using an FTS

Methane Recovery

- ★ Recovers ~ 90% of methane emissions
- ★ Reduces VOCs by 10 to 90%
- ★ Must have an outlet for low pressure gas

Flash Tank Costs

- Lessons Learned study provides guidelines for scoping costs, savings and economics
- ★ Capital and installation costs:
 - ◆ Capital costs range from \$5,000 to \$10,000 per flash tank
 - ♦ Installation costs range from \$2,400 to \$4,300 per flash tank
- ★ Negligible O&M costs

Installing Electric Pump

Overall Benefits

- ★ Financial return on investment through gas savings
- ★ Increased operational efficiency
- ★ Reduced O&M costs
- ★ Reduced compliance costs (HAPs, BTEX)
- * Similar footprint as gas assist pump

Is Recovery Profitable?

Three Options for Minimizing Glycol Dehydrator Emissions

Option	Capital Costs	Annual O&M Costs	Emissions Savings	Payback Period
Optimize Circulation Rate	Negligible	Negligible	130 – 13,133 Mcf/year	Immediate
Install Flash Tank	\$5,000 - \$10,000	Negligible	236 – 7,098 Mcf/year	5 months - 17 months
Install Electric Pump	\$4,200 - \$23,400	\$3,600	360 – 36,000 Mcf/year	< 2 months – several years

Replace Glycol Unit with Desiccant Dehydrator

- ★ Desiccant Dehydrator
 - Wet gasses pass through drying bed of desiccant tablets
 - Tablets absorb moisture from gas and dissolve
- ★ Moisture removal depends on:
 - ◆ Type of desiccant (salt)
 - ◆ Gas temperature and pressure

Hygroscopic Salts	Typical T and P for Pipeline Spec	Cost
Calcium chloride	47°F 440 psig	Least expensive
Lithium chloride	60°F 250 psig	More expensive

Desiccant Performance

Desiccant Performance Curves at Maximum
Pipeline Moisture Spec (7 pounds water / MMcf)

Desiccant Dehydrator Schematic

Estimate Capital Costs

- ★ Determine amount of desiccant needed to remove water
- ★ Determine inside diameter of vessel
- ★ Costs for single vessel desiccant dehydrator
 - Capital cost varies between \$3,000 and \$17,000
 - ◆ Gas flow rates from 1 to 20 MMcf/day
 - Capital cost for 20-inch vessel with 1 MMcf/day gas flow is \$6,500
 - Installation cost assumed to be 75% of capital cost

Note:

MMcf = Million Cubic Feet

How Much Desiccant Is Needed?

Example:

D = ?

B = 1/3

Where:

D = Amount of desiccant needed (pounds/day)

F = 1 MMcf/day F = Gas flow rate (MMcf/day)

I = 21 pounds/MMcf I = Inlet water content (pounds/MMcf)

O = 7 pounds/MMcf O = Outlet water content (pounds/MMcf)

B = Desiccant/water ratio vendor rule of thumb

Calculate:

D = F * (I - O) * B

D = 1 *(21 - 7) * 1/3

D = 4.7 pounds desiccant/day

Source: Van Air

Note:

MMcf = Million Cubic Feet

Calculate Vessel Inside Diameter

Example:

ID = ?

T = 7 days

B = 55 pounds/cf

H = 5 inch

Where:

ID = Inside diameter of the vessel (inch)

D = 4.7 pounds/day D = Amount of desiccant needed (pounds/day)

T = Assumed refilling frequency (days)

B = Desiccant density (pounds/cf)

H = Height between minimum and maximum bed level (inch)

Calculate:

ID =
$$12*\sqrt{\frac{4*D*T*12}{H*B*\pi}}$$
 = 16.2 inch

Commercially ID available = 20 inch

Note: cf = Cubic Feet

Source: Van Air

Operating Costs

- ★ Operating costs
 - Desiccant: \$2,059/year for 1 MMcf/day example
 - \$1.20/pound desiccant cost
 - ◆ Brine Disposal: Negligible
 - \$1/bbl brine or \$14/year
 - ◆ Labor: \$1,560/year for 1 MMcf/day example
 - \$30/hour
- ★ Total: ~\$3,633/year

Savings

- ★ Gas savings
 - ◆ Gas vented from glycol dehydrator
 - Gas vented from pneumatic controllers
 - ◆ Gas burner for fuel in glycol reboiler
 - ◆ Gas burner for fuel in gas heater
- * Less gas vented from desiccant dehydrator
- ★ Methane emission savings calculation
 - ◆ Glycol vent + Pneumatics vents Desiccant vents
- ★ Operation and maintenance savings
 - ◆ Glycol O&M + Glycol fuel Desiccant O&M

Gas Vented from Glycol Dehydrator

Example:

GV = ?

F = 1 MMcf/day

R = 3 gallons/pound

OC = 150%

G = 3 cf/gallon

Where:

GV= Gas vented annually (Mcf/year)

F = Gas flow rate (MMcf/day)

W = 21-7 pounds $H_2O/MMcf$ $W = Inlet-outlet H_2O$ content (pounds/MMcf)

R = Glycol/water ratio (rule of thumb)

OC = Percent over-circulation

G = Methane entrainment (rule of thumb)

Calculate:

GV = (F * W * R * OC * G * 365 days/year)1,000 cf/Mcf

GV = 69 Mcf/year

Glycol Dehydrator Unit Source: GasTech

Gas Vented from Pneumatic Controllers

Example:

GE= ?

PD=4

EF = 126 Mcf/device/year

Where:

GE = Annual gas emissions (Mcf/year)

PD = Number of pneumatic devices per dehydrator

EF = Emission factor (Mcf natural gas leakage/ pneumatic devices per year)

Calculate:

GE = EF * PDGE= 504 Mcf/year

Source: norriseal.com

Norriseal Pneumatic Liquid **Level Controller**

Gas Lost from Desiccant Dehydrator

Example:

GLD = ?

%G = 45%

 $P_1 = 15 Psia$

 $P_2 = 450 \text{ Psig}$

T = 7 days

Where:

GLD = Desiccant dehydrator gas loss (Mcf/year)

ID = 20 inch (1.7 feet) ID = Inside Diameter (feet)

H = 76.75 inch (6.4 feet) H = Vessel height by vendor specification (feet)

%G = Percentage of gas volume in the vessel

 P_1 = Atmospheric pressure (Psia)

 P_2 = Gas pressure (Psig)

T = Time between refilling (days)

Calculate:

GLD = $H * ID^2 * \pi * P_2 * \%G * 365 days/year$ 4 * P₁ * T * 1,000 cf/Mcf

GLD = 10 Mcf/year

Desiccant Dehydrator and Glycol Dehydrator Cost Comparison

Type of Costs and Savings	Desiccant (\$/yr)	Glycol (\$/yr)
Implementation Costs		
Capital Costs Desiccant (includes the initial fill)	13,000	20,000
Glycol Other costs (installation and engineering)	9,750	20,000 15,000
Total Implementation Costs:	22,750	35,000
Annual Operating and Maintenance Costs		
Desiccant Cost of desiccant refill (\$1.20/pound) Cost of brine disposal Labor cost	2,059 14 1,560	
Glycol Cost of glycol refill (\$4.50/gallon) Material and labor cost		167 4,680
Total Annual Operation and Maintenance Costs:	3,633	4,847

[•]Based on 1 MMcfd natural gas operating at 450 psig and 47°F

NaturalGas (

[•]Installation costs assumed at 75% of the equipment cost

Partner Reported Experience

- ★ Partners report cumulative methane reduction of 12.5 Bcf since 1990
- ★ Past emission reduction estimates for U.S offshore is 500 MMcf/year or \$1.5 million/year

Case Study

- ★ One partner routes glycol gas from FTS to fuel gas system, saving 24 Mcf/day (8,760 Mcf/year) at each dehydrator unit
- ★ Texaco has installed FTS
 - ◆ Recovers 98% of methane from the glycol
 - ♦ Reduced emissions from 1,232 1,706 Mcf/year to <47 Mcf/year</p>

Lessons Learned

- Optimizing glycol circulation rates increase gas savings, reduce emissions
 - Negligible cost and effort
- ★ FTS reduces methane emissions by ~ 90 percent
 - Require a gas sink and platform space
- ★ Electric pumps reduce O&M costs, reduce emissions, increase efficiency
 - **♦** Require electrical power source
- ★ Desiccant dehydrator reduce O&M costs and reduce emissions compared to glycol
 - ♦ Best for cold gas

Discussion Questions

- ★ To what extent are you implementing these technologies?
- * How can the Lessons Learned studies be improved upon or altered for use in your operation(s)?
- * What are the barriers (technological, economic, lack of information, regulatory, focus, manpower, etc.) that are preventing you from implementing this technology?

