

Directed Inspection & Maintenance: An Overview of Gas STAR Practices

Technology Transfer Workshop June 8, 2005 Midland , Texas

Outline

Background
Phase I - Study
Pipeline Leak Study
Monument Gas Plant
Phase II - Study

Background

★ GRI Study – D I & M

★D I & M - BMP

Dynegy's experience with DI&M

Phase I Study

★ Two DMS facilities in study

★ Cost was \$ 30 K

Amount methane saved = 100 MMSCF/yr (\$700K @ \$7/MSCF)

Savings Realized within 18 Months – Largest Cost-Effective Leaks Repaired

Chico Gas Plant

Chico Gas Plant – Old Flares

Chico Gas Plant – New Flare

Economics of LAUF

Lost and Unaccounted For Product Potential \$ Savings Equating Pure Methane Leak Rate to Dollars

Optical Remote Leak Detection

Infrared Differential Absorption ★ Mid wave Infrared - 3 to 5 µm ★ Long wave Infrared - 8 to 11 µm ★ Visible - 0.4 to 1.0 Microns ★ Near IR -0.9 to 1.6 Microns Remote sensing is the science and art of obtaining information about an object, area, or phenomenon through the analysis of data acquired by a device that is not in contact with the object, area, or phenomenon under investigation.

From Remote Sensing and Image Interpretation, Lilles and and Kiefer, 1987

Similar to Gas Chromatography

Active vs. Passive Imaging

Active techniques employ an artificial radiation source (e.g. a microwave transmitter, a laser, a thermal heater, etc.) for illumination of the target area

Passive techniques utilize the naturally occurring ambient radiation

Passive Remote Optical Infrared Leak Detection, Quantification, and Speciation

PAT

LSI Camera Visualizes Gasoline Vapor

★ Field Portable

- **+** Rugged
- **+** Reliable
- ★ Repeatable
- ***** Sensitivity
- Ease of Use Doesn't Require Frequent Adjustment
- Capable of Identifying "Inaccessible" Leaks

LSI Leak Surveys Video Imagery

Flange Leak

Buried Pipeline Leak

Infrared LSI Camera

High Volume Sampler

Pipeline Leak Study

Driving – visible signs (e.g. vegetation stress)

- Driving with sniffer trucks twice a year
- ★25 40 miles per day

Pipeline Leak Study

- Mass Balance Discrepancy Identified Need for Survey
- Infrared Remote Sensing from helicopter
- ★ 200-400 miles per day
- Amount of methane estimated at ~146 MM SCF /yr or (0.5 MMSCFD)

- Infrared survey conducted to identify sources of leakage
- ~200 leaking sources identified
- Largest opportunities blow down vents and valve packing
- Amount of methane saved is ~146 MMSCF/yr \$1022K
 @ \$7/MSCF

- ★26 engines to be replaced with integral electric compression
- 18, 500 HP Replaced
- Amount of fuel saved is 1.5 BCF/yr and Corresponding CO2 Reductions

Cost of this project \$ 8.3 MM

- Amount of fugitive methane losses saved is ~41 MMSCF/yr
- Ancillary Benefit Criteria (e.g. NOx) and HAPs pollutant reduction

Phase II Study

★ Eunice Gas Plant and upstream compressors

Chico Gas Plant Retest and upstream compressors

Included the LSI Infra red camera (tool kit)

Eunice Plant – Engine Room

Chico Plant

Future Plans

 Coordinated Efforts for Sharing BMPs with Field Operations and Maintenance Personnel in 2005.
 Increase management commitment through awareness of cost effective opportunities
 Dynegy is evaluating implementing D, I & M system

wide

Contact Information

Shankar Ananthakrishna Senior Environmental Engineer Dynegy Midstream Services, L.P. Phone #: (713)-507-6753 Email: anan@dynegy.com

David Furry Leak Surveys Inc. P.O. Box 3066 1102 Early Blvd. Early, Texas 76802-2261 (325) 641-8147 Website: http://www.leaksurveysinc.com/ Jeffrey A. Panek Principal Innovative Environmental Solutions, Inc. P.O. Box 177 Cary, II 60013-0177 (847)516-3658 japanek@ameritech.net

