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INSTALLATION INSTRUCTIONS

System Requirements
Users must have at least 6 GB free hard drive space, 6+ GB of RAM, i5 processor or
AMD equivalent, and Windows 7 or newer. As a general recommendation, COBRA will
perform better with a faster processor and a faster hard drive. A SSD drive is preferred.
COBRA performance is strongly impacted by hard drive performance. Antivirus
programs and full disk encryption programs may negatively impact performance.
Typical COBRA run time is 5 to 15 minutes.

Installation
COBRA can be downloaded directly to your computer or installed from a CD sent to you
in the mail. If you are downloading the COBRA model, note that the installer file is large
and the amount of time required to complete the download will depend on your
connection speed. Find the program ‘setup.exe’ in the location where the installer file
was saved. If you are installing the COBRA model from a CD, exit all programs and
insert the Installation disk into your CD-ROM drive. The installation program may start
automatically; if not, go to Start... Run... and then find the program ‘setup.exe’ in your
computer’s CD-ROM drive.

During installation, follow the prompts on your screen. COBRA is a large program, and
depending on the configuration of your computer, it will take five minutes up to an hour
to complete the installation.

Launching the Model
To launch the model, go to Start... Programs... COBRA. To allow COBRA to run
efficiently, turn off any antivirus programs.

Technical Assistance

For more information, please contact Denise Mulholland at 202-343-9274 or
mulholland.denise@epa.gov.
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CHAPTER 1. Introduction

What is COBRA?

COBRA is a screening tool that provides preliminary estimates of the impact of air
pollution emission changes on ambient particulate matter (PM) air pollution
concentrations, translates this into health effect impacts, and then monetizes these
impacts,® as illustrated below.

User-defined Changes in ch _ Changes in
changesin ——  ambientPMzs —— anges in monetary
emissions concentrations health effects impacts

The model does not require expertise in air quality modeling, health effects assessment,
or economic valuation. Built into COBRA are emissions inventories, a simplified air
quality model, health impact equations, and economic valuations ready for use, based on
assumptions that EPA currently uses as reasonable best estimates. COBRA also enables
advanced users to import their own datasets of emissions inventories, population,
incidence, health impact functions, and valuation functions. Analyses can be performed at
the state or county level and across the 14 major emissions categories (these categories
are called “tiers”) included in the National Emissions Inventory.2 COBRA presents
results in tabular as well as geographic form, and enables policy analysts to obtain a first-
order approximation of the benefits of different mitigation scenarios under consideration.
However, COBRA is only a screening tool. More sophisticated, albeit time- and resource-
intensive, modeling approaches are currently available to obtain a more refined picture of
the health and economic impacts of changes in emissions.

11n calculating health impacts, COBRA generates mean estimates of health impacts. This is in contrast to a risk
assessment, which typically builds in a margin of safety by presenting 95" percentile estimates.

2 The emissions inventory in COBRA includes fourteen broad tier 1 categories (e.g., on-road motor vehicles); within
each of these larger categories there are tier 2 (e.g., diesels), and tier 3 (e.g., heavy duty diesels) categories. The
fourteen tier 1 categories include: Chemical & Allied Product Manufacturing, Fuel Comb Electric Utilities, Fuel
Combustion Industrial, Fuel Combustion Other, Highway Vehicles, Metals Processing, Miscellaneous, Natural
Sources, Off-Highway, Other Industrial Processes, Petroleum & Related Industries, Solvent Utilization, Storage &
Transport, and Waste Disposal & Recycling.
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How is COBRA used?

COBRA can be used to quickly identify important emission sources and compare the
impacts of different types of control options. Using the mapping capabilities in COBRA,
users can identify the locations and types of emissions sources that contribute to local air
quality problems. When considering different policy options, COBRA can help identify
those options that are likely to maximize health benefits, or that could be expected to
achieve health risk reductions in the most cost-effective manner. Once state and local
officials narrow the set of most promising

then conduct analyses with more like to quickly identify important

sophisticated air quality models to finalize emission sources and compare the
their policy choices. impacts of different control options;
e Analysts looking to improve their
understanding of the air quality
improvements and health benefits

The model contains detailed emissions

eSt'mates fOI‘ the yearS 2017 and 2025 associated with clean energy po"cies
These baseline emissions estimates account under consideration; _
for federal and state measures promulgated * Environmental agencies trying to

. . inexpensively screen through many
or under. reconS|derat|or1 b.y De'cember 2014, options to identify those that
The projected EGU emissions include the maximize the health benefits and to
effects of the Final Mercury and Air Toxics ﬁhjs:‘gggr;h:nfs‘fonom'c value of health
(MATS) rule announced on_Decemk_Jer 21, e Energy officials looking to estimate
2011 and the Cross-State Air Pollution Rule and promote the air quality, health,
(CSAPR) issued July 6, 2011. The Clean and associated economic co-benefits

. . . of their energy efficiency or

Power Plar! IS not_lnt_:luded in t2e 2017 or renewable energy policies: and
2025 baseline emissions cases. e Transportation planners interested

in understanding the air quality and
health impacts of fuel switching or

Usmg COBRA, yOu can create your own reductions in vehicle miles traveled.

new scenarios by specifying increases or
reductions to the baseline emissions estimates for the analysis year. Baseline data is
preloaded for analysis years 2017 and 2025, and advanced users can analyze other years
by importing custom datasets. Emissions changes can be entered at the county, state, or
national level.

COBRA then generates changes in PM2s concentrations between the baseline scenario
(the “business-as-usual” estimates for the analysis year) and the control scenario (the
analysis year modified by the user’s emissions changes). A source-receptor matrix
translates the air pollution emissions changes into changes in ambient PM2s (for more

3 More details about the development of the 2017 and 2025 baseline emissions case are available in the Technical
Support Document Preparation of Emissions Inventories for the Version 6.2, 2011 Emissions Modeling Platform,
available here: https://www.epa.govi/sites/production/files/2015-

10/documents/2011v6_2_ 2017 2025 emismod_tsd_aug2015.pdf

6 September 2017


https://www.epa.gov/sites/production/files/2015-10/documents/2011v6_2_2017_2025_emismod_tsd_aug2015.pdf
https://www.epa.gov/sites/production/files/2015-10/documents/2011v6_2_2017_2025_emismod_tsd_aug2015.pdf

information about the emissions inventory and the source-receptor matrix, see Appendix
A). Using a range of health impact functions, COBRA then translates the ambient PM2s
changes into changes in the incidence of human health effects (see Appendices B through
E). Finally, the model places a dollar value on these health effects (for more information,
see Appendix F).* COBRA estimates the change in air pollution-related health impacts,
and estimates the economic value of these impacts, using an approach that is generally
consistent with EPA Regulatory Impact Analyses (U.S. EPA, 2012f; U.S. EPA, 2012g).
These analyses reflect the current state of the science regarding the relationship between
particulate matter and adverse human health.

Outcomes can be modeled nationwide or for smaller geographic areas. Results include
changes in ambient PM2s concentrations, and changes in the number of cases of a variety
of health endpoints that have been associated with PM2s. These health endpoints include:

e Adult and infant mortality;

e Non-fatal heart attacks;

e Respiratory-related and cardiovascular-related hospitalizations;
e Acute bronchitis;

e Upper and lower respiratory symptoms;

e Asthma-related emergency room visits;

e Asthma exacerbations;

e Minor restricted activity days (i.e., days on which activity is reduced, but not
severely restricted); and

e Work days lost due to illness.

Users can view the results in tabular or map form as well as export the data for use in
their own communications.

Overview of Model

The COBRA screening model is a stand-alone Windows application that contains all of
the data needed for the analysis of alternative emissions scenarios; the user is only
required to enter changes in emissions. Upon launching the model, you will see the
Introduction screen.

4 There is a large literature regarding the health impacts of air pollution and approaches to value these impacts.
COBRA uses a subset that EPA deems most credible. More sophisticated users interested in using additional
approaches may want to use EPA’s Environmental Benefits Mapping and Analysis Program (BenMAP), which is
available at: https://www.epa.gov/benmap.
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Once you are ready to run a comparison, go to the 1. Select Analysis Year screen and
select the analysis year of interest. Advanced users can load a customized baseline
emissions inventory at this stage, which is discussed in more detail in Chapter 3.

4 COBRA

File  Help

Introduction | 1. Select Analysis Year |2. Create Emissions Scenario | 3. Execute Run | 4. View Health Effects and Valuation Results

Basic Options | Advanced Options

Choose an Analysis Year:

Select the year for which you would like to estimate health impacts of emissions changes. COBRA wil
automatically use the baseline emissions, population, health incidence, and health impact valuation datasets

comesponding to that year. After clicking “apply analysis year data™ you can proceed to step 2 to enter your
emissions changes.

2025 V] [ Apply Analysis Year Data

Then, go to the 2. Create Emissions Scenario screen. Use the ‘Select Location’ panel
on the top left of the Emissions Scenario tab to indicate the geographic level at which
you wish to make your emissions changes. ‘US’ means that any emissions changes will
be applied to all sources in that category throughout the entire U.S. Alternatively, you can
enter emissions changes for selected states or selected counties.

Next, select the category of emissions that a policy or action is expected to affect in the
‘Select Emissions Tier’ panel. For example, to assess the impacts of a renewable energy
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or energy efficiency policy that is expected to affect utility-related emissions, you would
select ‘FUEL COMB. ELEC. UTIL.’ as the first tier. COBRA provides three levels of
emissions sources (tiers) in a directory tree structure. If you know the specific fuel

source within the utility category that would be reduced or displaced (e.g. coal or natural
gas), you can select the appropriate second tier. If you do not know the specific fuel
source within the utility category that would be reduced or displaced, you can enter
emissions changes at the tier 1 level. For a policy that involves fuel switching or
reductions in transportation through vehicle miles traveled, for example, you would select
‘HIGHWAY VEHICLES’ as the first tier. If you knew the specific fuel (e.g. diesel) that
would be reduced, you would select it in the second tier.

& COBRA

File  Help
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Cear Selected Trs

Once your geography is determined, you can enter your emissions changes for the nation,
a single state, groups of states, a single county, or groups of counties, depending on your

previous selection.
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Exhibit 1. Basic Tools and Data Sources for Determining Emission Reductions

Online Tool

Description

EPA’s Emissions & Generation Resource Integrated
Database (eGrid)
(https://www.epa.gov/energy/emissions-generation-
resource-integrated-database-egrid)

Provides data on the environmental characteristics
of electric generation by power plants in the United
States.

EPA’s AVoided Emissions and geneRation Tool
(AVERT)
(https://www.epa.gov/statelocalenergy/avoided-
emissions-and-generation-tool-avert)

Estimates displaced emissions (at the county, state,
and regional levels) at electric power plants due to
renewable energy or energy efficiency policies and
programs.

EPA’s Motor Vehicle Emission Simulator
(MOVES) (https://www.epa.gov/moves)

Estimates emissions from mobile sources,
including emissions from cars, trucks, and
motorcycles.

National Emissions Inventory
(https://www.epa.gov/air-emissions-
inventories/national-emissions-inventory-nei)

Allows users to view emissions by sector (for 60
emissions inventory sectors) for specific pollutants
at varying levels of geographic aggregation.

Power Profiler (https://www.epa.gov/energy/power-  Allows users to view the emissions that can be
profiler) attributed to electricity use in homes or businesses.

Note: For more details on these basic tools and on other methods, see: (1) Chapter 4 of EPA’s “Assessing the Multiple
Benefits of Clean Energy: A Resource for States” report (U.S. EPA, 2011a), available at
https://www.epa.gov/statelocalenergy/assessing-multiple-benefits-clean-energy-resource-states; or (2) Appendix | of
EPA’s “Roadmap for Incorporating Energy Efficiency/Renewable Energy Policies and Programs into State and Tribal
Implementation Plans” (U.S. EPA, 2012¢), available at https://www.epa.gov/energy-efficiency-and-renewable-energy-

sips-and-tips.

Once you have determined the appropriate tier category and location, enter the emission
changes for one or more of the five included pollutants in the ‘2. Create Emissions
Scenario’ panel at the top right of the COBRA screen. You can enter emissions changes
in tons or percentages. Absolute emission reductions in tons can be estimated using a
variety of methods. See Exhibit 1 above for a description of a few basic methods.
Percentage reductions can be used to assess the benefits of a goal that results in
reductions in activity levels or emissions from a particular source (or group of sources),
such as a renewable portfolio standard, transportation policies requiring reductions in
vehicle miles traveled, and energy efficiency programs.

For example, EPA’s Emissions & Generation Resource Integrated Database (eGRID)
website provides electric generation data and corresponding emissions rates for the
United States.® On the eGRID website, click on ‘eGR1D2014 Summary Tables (PDF).’®

> While eGRID provides a basic approach for estimating changes in emissions from energy efficiency and renewable
energy using annual data, another useful resource available for estimating changes in emissions is EPA’s Avoided
Emissions and Generation Tool (AVERT). AVERT enables users to estimate the regional, state, and county-level
emission impacts of different energy efficiency and/or renewable energy programs based on temporal energy

10 September 2017


https://www.epa.gov/energy/emissions-generation-resource-integrated-database-egrid
https://www.epa.gov/energy/emissions-generation-resource-integrated-database-egrid
https://www.epa.gov/statelocalenergy/avoided-emissions-and-generation-tool-avert
https://www.epa.gov/statelocalenergy/avoided-emissions-and-generation-tool-avert
https://www.epa.gov/moves
https://www.epa.gov/air-emissions-inventories/national-emissions-inventory-nei
https://www.epa.gov/air-emissions-inventories/national-emissions-inventory-nei
https://www.epa.gov/energy/power-profiler
https://www.epa.gov/energy/power-profiler
https://www.epa.gov/statelocalenergy/assessing-multiple-benefits-clean-energy-resource-states
https://www.epa.gov/energy-efficiency-and-renewable-energy-sips-and-tips
https://www.epa.gov/energy-efficiency-and-renewable-energy-sips-and-tips
https://www.epa.gov/energy/power-profiler
https://www.epa.gov/energy/power-profiler
https://www.epa.gov/energy/power-profiler
https://www.epa.gov/energy/power-profiler
https://www.epa.gov/energy/power-profiler
https://www.epa.gov/energy/power-profiler
https://www.epa.gov/energy/power-profiler
https://www.epa.gov/energy/power-profiler
https://www.epa.gov/energy/power-profiler
https://www.epa.gov/energy/power-profiler
https://www.epa.gov/energy/power-profiler
https://www.epa.gov/energy/power-profiler
https://www.epa.gov/energy/power-profiler
https://www.epa.gov/energy/power-profiler
https://www.epa.gov/energy/power-profiler
https://www.epa.gov/energy/power-profiler
https://www.epa.gov/energy/power-profiler
https://www.epa.gov/energy/power-profiler
https://www.epa.gov/energy/power-profiler
https://www.epa.gov/energy/power-profiler
https://www.epa.gov/energy/power-profiler
https://www.epa.gov/energy/power-profiler
https://www.epa.gov/energy/power-profiler
https://www.epa.gov/energy/power-profiler
https://www.epa.gov/energy/power-profiler
https://www.epa.gov/energy/power-profiler
https://www.epa.gov/energy/power-profiler
https://www.epa.gov/energy/power-profiler
https://www.epa.gov/energy/power-profiler
https://www.epa.gov/energy/power-profiler
https://www.epa.gov/energy/power-profiler
https://www.epa.gov/energy/power-profiler
https://www.epa.gov/energy/power-profiler
https://www.epa.gov/statelocalenergy/assessing-multiple-benefits-clean-energy-resource-states

Using the Western Electricity Coordinating Council (WECC) Southwest Region (which
includes Arizona and New Mexico) as an example, you can obtain the following
information:

e Emissions: The “Subregion Emissions - Criteria Pollutants (eGRID 2014)” table
on page 3 summarizes emissions data in several regions. The annual sulfur
dioxide (SO2) emissions for the WECC Southwest Region in 2014 were 21,800
tons.

e Electric Generation: The “Subregion Resource Mix (eGRID 2014)” table on page
6 summarizes electric generation data by region. The net generation for the
WECC Southwest Region in 2014 was approximately 133,681,798 megawatt
hours (MWh).

e Emissions Rates: The “Subregion Output Emission Rates - Criteria Pollutants
(eGRID 2014)” table on page 5 provides the WECC Southwest Region’s non-
baseload output emissions rate for SO2: 0.3 Ibs. per MWh.’

If a policy is expected to reduce electric generation by 2% in the WECC Southwest
Region, you can calculate the reduction in MWh: 2% x 133,681,798 MWh = 2,673,636
MWHh. You can then calculate the emission reductions as:

Emission Reduction = 2,673,636 MWh x 0.3 Ibs. SO2 per MWh = 802,091 Ibs. SOa.
This reduction is equal to about 400 tons (802,091 Ibs. + 2000 Ibs. per ton) of SO2.2

After you have calculated emissions changes, you can enter these changes for as many
tier categories as you wish, and you can enter different sets of changes for each state or
county (or groups of states and/or counties, if you choose to select more than one). After
each change in emissions for a state, county, or group of states or counties, click Apply
Changes.

savings and hourly generation profiles. For more information or to download AVERT, see:
https://www.epa.gov/statelocalenergy/avoided-emissions-and-generation-tool -avert.

% Note that because the latest edition of eGRID was developed using 2014 data, it would be most appropriate to
choose the 2017 baseline for the analysis in COBRA.

" Non-baseload emissions come from power plants which dispatch to the grid when demand for power exceeds
baseload needs (U.S. EPA, 2017).

8 For more information on the benefits of reductions in SO, emissions, see EPA’s “Assessing the Multiple Benefits
of Clean Energy: A Resource for States” report (U.S. EPA, 2011a), available at:
https://www.epa.govi/sites/production/files/2015-08/documents/epa_assessing_benefits.pdf.
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Modify Emissions
Emissions
Scenario / Baseline

pMz5 @ reducsby oo @ P B.68253 [tons |/ 11.576.71 [tons |
) increase by ) tons

sz @ reduceby oo @ P 49,941.34 [tons ]/ 66.588.45 [tons |
) increase by ) tons

N @ reducsby Zooe] @ P 8935612 [tons ] / 119,141.49 [tons ]
) increase by ) tons

NH3 @ reduceby P 143188 [tons ]/ 1,809.17 [tons ]
) increaze by _) tons

voc @ reduceby oo @ e 1.311.47 [tons ]/ 1.748.63 [tons ]
) increase by ) tons

[ Apply Changes

To review your scenario, click View Detailed Emissions Changes.

Then, go to the 3. Execute Run screen to select settings for running your scenario. This
tab asks you to choose a discount rate (described in more detail in the Chapter 2
Tutorial). Choose a 3% or 7% discount rate and click Run using above options to run
the comparison between the scenario you have just created and the baseline scenario.
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The model may take 5 to 15 minutes to run, depending on your computer
model is done running, you can examine the results in the 4. View Health Effects and
Valuation Results tab. Regardless of the geographic level at which you made your
emissions changes, you can examine the results for every county in every state in the
country. For each county, COBRA calculates three types of results: the change in
ambient PM2.s concentration; the change in health effects associated with that change;
and the dollar value associated with the change in health effects.

. When the

These results can be viewed in a table (in the Table tab) or geographically on a map of
the United States (in the Map tab).

Expon m Sl
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The results table includes a row with blue text that summarizes the total impact of the
scenario. To view the impact of the scenario on a specific state, filter the “state” column
for the state of interest. For example, results in the table above show estimated impacts of
the scenario for Pennsylvania. According to these results, the emissions reductions in
2025 would result in the following health effects in Pennsylvania:

e 36.6 to 82.8 avoided premature adult deaths (over the next 20 years), valued at an
estimated $324 and $734 million;

e 4.31t040.2 avoided nonfatal heart attacks (in 2025), valued at an estimated
$508,000, to $4,710,000 and

e 17.8 avoided asthma emergency room visits (in 2025), valued at an estimated
$7,560.

Note that health effects are not necessarily whole numbers. This is because COBRA
calculates small statistical risk reductions which are then aggregated over the population.
For example, if 150,000 people experience a 0.001% reduction in mortality risk, this
would be reported as 1.5 “statistical lives saved.” This statistical life and its associated
monetary value represents the sum of many small risk reductions and does not
correspond to the loss or value of an individual life. Users may want to round these
values to the nearest whole before presenting the results.

Result sets can be exported for use in outside programs and presentations. To save your
results in a table form, click on Export to CSV or Export to Excel (depending on your
preferred format) in the Table tab. To save your results in map form, navigate to the

Map tab, right click on the data in the ‘Legend’ panel, then click Data...Export Data.
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Caveats and Limitations

There are limitations to the COBRA screening model that make it inappropriate for
certain types of analyses:

Determination of attainment. Modeling the attainment of National Ambient Air
Quality Standards (NAAQS) requires more sophisticated air quality modeling
than that currently built into COBRA.

Estimating dynamic market effects. COBRA does not account for changes in
emissions that can result from changes in electricity market responses to policy.
For example, emissions in some states and regions are “capped” by laws or
regulations and emission allowances can then be traded across entities within a
capped region. In these regions, a reduction in emissions in one location may
result in an increase (rebound) in emissions in another area subject to the cap.
COBRA does not automatically capture these types of potential effects in
electricity market dispatch, so care should be exercised when interpreting
COBRA results to analyze the net impacts of a change in policy. COBRA is more
suited to an attributable risk assessment, which addresses the magnitude of an
emission source and the impact of controlling its emissions. That information can
be used to develop policies targeted to the appropriate sources.

Because COBRA is intended primarily as a screening tool, it uses a relatively simple air
quality model, which introduces additional uncertainty. While comparative work to test
the performance of COBRA’s air quality model is ongoing, it is not yet fully validated.

As with more complex air pollution benefits models, there is substantial uncertainty
surrounding the values of key inputs to COBRA — in the air quality model, emissions
inventory, health impact functions, and economic values — and users should exercise
caution when interpreting the results of analyses.

Some of the uncertainty in COBRA reflects variability (for example, a health impact
function that is appropriate for one location may not be appropriate for another location if
the function actually varies across locations). Much of the uncertainty, however, reflects
the insufficient level of knowledge about the true values of model inputs.

The appendices discuss these issues and provide sources for additional information.
However, developing a quantified confidence interval for the results is beyond the scope

of this model. As an alternative, users should consider using sensitivity analyses to
determine how their conclusions might change with differences in the location and
amount of emissions. When more detailed analyses are required, users should be

cognizant of the model’s limitations, and consider using more sophisticated modeling

approaches.
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Chapter 2 of this User’s Manual provides a quick tutorial for the new user. Baseline data
are examined, and a simple new scenario is defined and run, and the results are displayed
in tables and maps. Subsequent chapters provide more detailed information on each step,

and describe additional options you can use for more complex analyses.

Chapter 3 describes the process of selecting and exploring baseline data.

Chapter 4 provides details on different ways to define your new scenario, and run the
comparison between it (the control scenario) and the baseline scenario.

Chapter 5 describes the different ways to view and save your results.

Chapter 6 explains how to use COBRA’s mapping functionality.

A Glossary is provided at the end of the manual.

Additional Information

The Appendices to this manual provide additional information on the methods and
assumptions used in the model.

Appendix A: Description of Source-Receptor Matrix and Emissions Data.
Describes the source-receptor matrix embedded within the model that translates
the air pollution emissions changes into changes in ambient particulate matter.

Appendix B: Derivation of Health Impact Functions. Explains the derivation
of the types of health impact functions used in COBRA.

Appendix C: COBRA Health Impact Functions. Provides an overview of all
the functions used to convert changes in ambient PM2s into health effects.

Appendix D: Baseline Incidence Rates for Adverse Health Effects. Lists the
baseline incidence rates for each of the types of adverse health effects.

Appendix E: Population Forecasts. Describes the forecasting procedure.

Appendix F: Economic Value of Health Effects. Lists the equations and sources
of the values used to monetize the health effects.

Appendix G: Additional Quick Start Tutorials. Explains how to run sample
COBRA scenarios.

Appendix H: Instructions for Batch Functionality. Explains how to run
multiple COBRA scenarios in batch mode.

Appendix I: References. Provides all of the sources referenced in the
Appendices or used in the model.
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CHAPTER 2. Quick-Start Tutorial

This tutorial will give you a quick introduction to how COBRA works, and how to work
through the steps of a simple analysis. As described in the text box below, COBRA 3.0
also includes more advanced options for users who want to change underlying
assumptions (e.g. population, emissions baseline). Subsequent chapters describe how to
use the more advanced features.

COBRA allows you to estimate the impact of a change in air pollution resulting from a
new policy or other type of change. In this example, you will consider changes in one
state (we have arbitrarily selected Pennsylvania) that result in a decrease in emissions
from electricity generating plants. If a statewide plan to switch 25 percent of electricity
generation to renewable sources were put into effect, what would be the difference in
ambient particulate matter levels and health effects, compared to business-as-usual? This
tutorial will show you how to use COBRA to examine this type of scenario through the
following steps:

Compared to previous versions, COBRA (3.0) offers
Step 1. Open the model. additional functionality and flexibility for advanced users,
while still being easy to operate for basic analyses. The
Step 2. Select the analysis year table below compares COBRA’s advanced options to the

d view the baseli .. simpler, quick-start options. More advanced options will
and view the baseline emissions | pe giscussed in subsequent chapters.

data. Quick-Start Options Advanced Options

Step 3. Select the geography Preloaded 2017 and 2025 | Custom emissions baseline

. _ emissions baseline
and tier category for emissions —
. Preloaded 2017 and 2025 | Custom incidence data

changes and define the

incidence data

emissions changes oot 2007 2 2075 | Cusom somuiaton
Step 4. Select a di nt rat population data

ep 4. Selecta ISC_IOU ate Preloaded health effect Custom health effect
and run the comparison. functions functions

Preloaded 2017 and 2025 | Custom valuation functions

Step 5. View the results. valuation functions

Step 6. Save your results Enter emissions scenario | Upload custom emissions
in user interface scenario

Additional examples for Run COBRA separately Run multiple emissions
for each emissions scenarios in batch mode

assessing the impacts of

scenario
renewable energy supply. ) View default map output Customize map appearance
standards and energy efficiency || in coBrA and export for further
programs can be found in manipulation or analysis in

other tools

Appendix G.
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Step 1. Open the model.

To open COBRA, click Start... All Programs... COBRA... COBRA The model will
open and COBRA will display the main screen. You will see five tabs at the very top:
Introduction, 1. Select Analysis Year, 2. Create Emissions Scenario, 3. Execute Run
and 4. View Health Effects and Valuation Results.

Step 2. Select the baseline data.

Click 1. Select Analysis Year and you will see two tabs: Basic Options and Advanced
Options. To do a basic screening analysis for analysis year 2025, select “2025” in the
drop down menu and click Apply selected analysis year in the Basic Options tab.

-
4 CoBRA

File  Help

Introduction | 1. Select Analysis Year |2. Create Emissions Scenario | 3. Bxecute Run I 4. \iew Health Effects and Valuation Resutts

Basic Options | Advanced Options

Choose an Analysis Year:

Select the year for which you would like to estimate health impacts of emissions changes. COBRA wil
automatically use the baseline emissions, population, heatth incidence, and health impact valuation datasets
comesponding to that year. After clicking “apply analysis year data” you can proceed to step 2 to enter your
emizssions changes.

|2D25 - | | Apply Analysis Year Data

To explore the preloaded baseline emissions data, go to the 2. Create Emissions
Scenario tab. On the top of this screen you will see three tabs: Emissions Scenario,
View Emissions Map, and View Detailed Emissions Changes. Click on the View
Emissions Map tab. At the top of this screen, you will see a drop-down menu labeled
‘Select the field that is to be mapped.” The first five options listed (Base NH3, Base
NO2, Base PM2.5, Base SO2, and Base VOC) correspond to the baseline emissions of
ammonia (NHs3), nitrogen oxides (NOx), fine particulate matter (PMz2s), sulfur dioxide
(SO2), and volatile organic compounds (VOCSs), respectively, from all sectors. Select any
of these emissions to view a map of county-level baseline emissions. See Chapter 6 for
more details on how to use COBRA’s mapping functionality.
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Step 3. Define the emissions changes and select the geography for
emissions changes.

Now that you have seen the baseline emissions, you can define the new (control) scenario
to compare to the baseline scenario. Click on the 2. Create Emissions Scenario tab. On
the top of this screen you will see three tabs: Emissions Scenario, View Emissions Map,
and View Detailed Emissions Changes. Click on the Emissions Scenario tab.
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In the top left panel you can select the geographic area to which you want to apply the

emissions changes. Note that once your comparison is run, you will be able to see results
(changes in ambient PM2s levels and health effects) for the entire country (although only
a subset of states usually experience the PM2s reductions and health benefits of a defined
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scenario). Since this example only analyzes changes statewide in Pennsylvania, check the
box next to ‘Pennsylvania’ in the list.

If you wanted to vary the emissions changes across counties, or only make changes in
some counties, you could click the ‘+’ button next to Pennsylvania and enter different
emissions changes for each county. For instance, if you know the counties in which
sources that are likely to be affected (such as power plants) are located, you can enter
emissions changes in those counties only. However, in this example you are looking at a
statewide change.

The next step is to define the categories of emissions affected. The middle panel contains
a directory tree with all the tier 1, 2, and 3 source categories (see Appendix A for a list of
source categories and their emissions). You can define emissions changes at any level,
but each level always includes all the levels indented underneath it. In this example, you
want to change all of the source categories that are electrical utilities, so click ‘FUEL
COMB. ELEC. UTIL.

The panel on the right-hand side of the screen lists each pollutant included in the model.
Since this scenario reduces all baseline emissions by 25 percent, type ‘25’ in the box next
to each pollutant. The default selections are ‘reduce by’ and ‘percent’; leave them as they
are. Chapter 4 describes how to create more sophisticated emissions scenarios, such as
scenarios that cover multiple geographies or involve different emissions changes for
different pollutants. Click Apply Changes to save your changes. The changes apply to all
the locations selected.

You can review your emissions scenario in table form by clicking the View Detailed
Emissions Changes tab or in map form by clicking the View Emissions Map tab.
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Step 4. Run the scenario.
Next, go to the 3. Execute Run tab. This tab asks you to choose a discount rate for the
COBRA session. The discount rate you select is used to express future economic values
in present terms. Not all health effects and associated economic values occur in the year
of analysis (as explained in Step 5 below). Therefore, COBRA accounts for this ‘time
value of money’ preference (i.e., a general preference for receiving benefits now rather
than later) by discounting benefits received later. Based on EPA’s Guidelines for
Preparing Economic Analyses (U.S. EPA, 2010a), it is recommended that COBRA users
calculate monetized health benefits using both 3% and 7% discount rates and then
evaluate whether the overall outcome of the analysis is affected by the choice of discount
rate. For more details on discount rates, see Appendix F.

In this scenario, you will use a 3% discount rate. Click Run using above options.
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File Help
Ftroduction | 1. Select Anehon Yew | 2 Craste Evessors Sceneso | 1. Execite Fn 4 Vigw Hesth Bllects and Vshuson Femds
Seiext Dacourt Rae

In ondier % run the COBRA model please seloct & Sacournt asle 13 Lse ) Pes COBRA sesnor

ersons rductions in the year 2025 Emiesion mducsons rmques invesiments and. e ol
own set and schedule of epected denefls To refioct the oppotunty costs of e nvedtnents
WA s must select 4 Gacourt mate

d deaths and inesses sapacied ba
W rvesnent over another. each w
futurw barwfts sw woth

Rather than using st & srge e, E pdehnes lor Prepamg Econome Anatyses avalable af |0 % T3 -+ 2 A ecormend that
sl e 8 boundng spprsech 10 decounting. devslopng an upper and lower bound for ther stmustes They achese waw of both

a 3% mte reflecing the mferesl rite consumens mght ean on Goverrmert backed secutes and
8 TLove mflactng the cpponunty cost of prvate captsl, based on extmates from the Office of Nenagemert and Budignt

NOTE: Arsgrer ducourt ride laven Dhose evestrments with ramedate Benelts and reduces the value of futise Benefts mom han & lomer dacourt rite, wiich places & praster value on luture benefis 1o socety

For mose informasion on dscourt rtee and how EPA uses tham in monetang heath banefts. see the User Manu

Fun waing sbave aptions

NOTE: COBRA may take 5 to 15 minutes to run, and COBRA may be “not responding” as it runs.
The run time depends on your computer.

Step 5. View the results.

Once your run is complete, COBRA will automatically navigate to the last tab, 4. View
Health Effects and Valuation Results. You will see a screen with two tabs at the top:
Table and Map.
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Click on the first tab, Table. This tab shows the changes in air quality and reductions in
health effects associated with your scenario. The air quality variables shown are ‘Base
PM 2.5, ‘Control PM 2.5,” and ‘Delta PM 2.5.” Delta PM2.5 is the difference in ambient
fine particulate matter (PM2s) between the baseline scenario and your new scenario (the
control scenario) in the year of your analysis (in this example, 2025). Note that positive
values indicate a reduction in PM2s in the control scenario.

To the right, this table also shows the reductions in health effects associated with changes
in air quality and the dollar values associated with those reductions. Note that positive
values indicate a decrease in impacts (that is, fewer cases of illness/premature mortality
or avoided economic loss).

The default view shows the whole country, but since the majority of the air quality
changes are expected to be in Pennsylvania, filter the state by clicking on the arrow next
to ‘State’ and clicking ‘Pennsylvania’ from the drop-down list.

& Rk .

Here, you see that the emissions scenario results in an estimated 36.6 to 82.8 adult
premature deaths avoided and 17.8 avoided emergency room visits for asthma. You can
also look at a specific county in Pennsylvania. To do this, filter the county level by
clicking on the arrow next to ‘County’ and selecting the county name. For this example,
you will select “‘Montgomery County’ from the drop-down list.
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You will see that in Montgomery County, the estimated ambient PM2.s concentration in
the control scenario is 8.079ug/m3, compared to the estimated baseline concentration of
8.117 ug/m3. The difference between the two estimated concentrations (Delta PMz2:s) is
0.038 pg/m?, which is the estimated change in air quality due to the 25% reduction in
emissions from fuel combustion electricity generating plants in the whole state (the
change in concentration is due to decreases in emissions from plants within the county
and in other counties). Note that positive changes indicate a lower concentration in the
control scenario. If the value in ‘Delta PM25’ were negative, it would indicate an increase
in concentration. In this county, the emissions reduction scenario results in an estimated
1.7 to 3.8 adult premature deaths avoided (over the next 20 years), an estimated 0.2 to 1.6
avoided non-fatal heart attacks, and an estimated 1.0 avoided emergency room visit for
asthma (in 2025).

The table includes low and high estimates for the changes in the number of cases and the
corresponding economic values for adult mortality and non-fatal heart attacks. The low
and high estimates are derived using two sets of assumptions about the sensitivity of adult
mortality and non-fatal heart attacks to changes in ambient PM2 s levels. Specifically, the
high estimates are based on studies that estimated a larger effect of changes in ambient
PM2: s levels on the incidence of these health effects. For further details on the calculation
of low and high estimates, see the description of the health effects table in Chapter 5 and
the detailed assumptions in Appendix C.

The three health effects below demonstrate the interpretation of the change in health
effects and their economic values for Montgomery County, Pennsylvania: respiratory
hospital admissions, adult mortality, and non-fatal heart attacks.

e Emergency Room Visits for Asthma. In COBRA, most health effects and their
economic values are expected to occur in the year of analysis. For instance, this
scenario results in less than one avoided emergency room visits for asthma in
Montgomery County. This fraction of an avoided case and its economic value
(approximately $410) would occur in 2025.

e Adult Mortality. In contrast to respiratory hospital admissions, all avoided cases
of adult mortality are not expected to occur in the year of analysis. Therefore,
COBRA uses the 3% discount rate you selected in Step 4 to calculate the value of

23 September 2017




all avoided cases of adult mortality in present terms (in Montgomery County, a
low estimate of 1.7 avoided cases of adult mortality are valued at a total of
approximately $15 million).

e Non-fatal Heart Attacks. Another special case is non-fatal heart attacks. All
avoided cases of non-fatal heart attacks are expected to occur in the year of
analysis, but the costs associated with this health effect would occur over multiple
years. Thus, while this scenario results in a range of 0.2 to 1.6 cases of non-fatal
heart attacks in 2025, all economic benefits associated with this change ($20,000
to $180,000) would not accrue in that same year.

The table below relates the timing of the expected health effects and economic costs or
benefits to the specific types of incidences in COBRA.

Type of Health Incidence All health effects occur in the All economic costs or benefits
year of analysis? occur in same year of analysis?
Adult mortality No No, the value is discounted to
present terms
Non-fatal heart attacks Yes No, the value is discounted to
present terms
All other health impacts Yes Yes

In addition, remember that although emissions were changed only in Pennsylvania,
COBRA calculates changes in PM2s for the whole country. If you would like to examine
the results for any of states bordering Pennsylvania, simply filter for different states.

As described earlier, it is also important to remember COBRA does not capture dynamic
effects of electricity markets — these markets determine electricity dispatch by EGUs and
associated emissions levels. For example, if you assume an emission reduction among
power plants in one area, it is possible that electricity generation and emissions may
increase in another location unless there is an underlying change in electricity demand.
Because COBRA does not capture potential electricity market effects, users should
exercise care when interpreting the impacts of an emissions change in a specific location.

The Map tab shows the results from the previous table on a map. When you click on the
tab you will see a map of the United States. To display a result, select an outcome from
the drop-down menu labeled “Select the field that is to be mapped.” Below, the map of
Delta PM25 shows the change in the particulate matter concentration between the
baseline and control scenarios. The darker the shade of blue, the greater the change in
concentration. As in the other results tables, a positive number indicates a decrease from
the baseline scenario. You can also view any of the other results on the map by selecting
them from the drop-down list under ‘Select the field that is to be mapped’. See Chapter 6
for more details on how to use COBRA’s mapping functionality.
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Step 6. Export and save your results.
You may want to look at and manipulate the results data outside of COBRA. You can
export data sets into a CSV format, which can be used with spreadsheet programs.

Emissions Scenario Definition in Table Form

To save the definition of your emissions changes scenario go to the 2. Create Emissions
Scenario tab. In the top right panel, click Save Scenario. In the following window,
browse to the file location where you want to save your data, and select ‘CSV files’ in the
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‘Save as type’ drop-down box. You can then enter a name for the file in the box above.
Click Save and COBRA will save the file.

Results in Table Form

To export the results table, go to the 4. View Health Effects and Valuation Results tab
and then to the Table tab. Click on the Export to CSV or Export to Excel button,
depending on your preferred format. In the following window, browse to the file location
where you want to save your data, enter a name for the file, and click Save.

Results in Map Form

To save a map for use in another mapping application, navigate to the map and right-click
on the ‘US counties’ data in the legend panel and then click Data... Export Data. In the
following window, browse to the file location where you want to save your data, enter a
file name, and select ‘.shp’ in the ‘Save as type:” drop-down menu. Click Save and
COBRA will save the file.

To save the map as an image, click the ‘Print’ button in the toolbar. In the following
window, click File... Save. Then browse to the file location where you want to save
your data and select ‘DotSpatial Layout File’ or ‘Portable Network Graphics’ in the
‘Save as type’ drop-down box. You can then enter a name for the file in the box above
(e.g., type ‘Penn Utility Reduction 2025 - 3%”). Click Save and COBRA will save the
file.
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CHAPTER 3. Baseline Data

Click on the 1. Select Analysis Year tab to select an analysis year.

Basic Options

The COBRA model contains detailed 2017 and 2025 baseline emissions data for every
county in the U.S., by state, county, tier category, and pollutant type (see Appendix A for
details on the baseline data). It is recommended that new COBRA users start by using
the default 2017 and 2025 baseline emissions database. To use the 2025 default
emissions, go to the Basic Options tab, select 2025 in the “Select analysis year” drop
down menu, and click Apply selected analysis year. COBRA will automatically use the
population, baseline health incidence, baseline emissions, and health impact valuation
datasets that correspond to the analysis year you select.

Advanced Options

Users can also import custom datasets for population, baseline health incidence, baseline
emissions, health effect functions, and health impact valuation.

Custom Baseline Emissions

There are two ways for users to import custom emissions: (1) load a file containing only
baseline emissions or (2) load a file containing emissions for both the baseline and your
control scenario. It is important for input files to correspond to the same year, so if you
choose to import custom baseline emissions data for a year that is not preloaded, you
would also want to modify population data and incidence data to represent that same
year. For example, running COBRA with a 2025 baseline emissions inventory, 2025
population data, and 2025 incidence data would result in COBRA estimating 2025 health
benefits. However, running COBRA with a 2010 baseline emissions inventory and 2025
population and incidence data would result in theoretical annual health benefits that do
not correspond to any calendar year. Alternatively, running COBRA with a projected
emissions inventory for 2030 and the default 2025 population and incidence data would
assume that population and incidence are constant from 2025 to 2030.

COBRA requires that imported baseline emission files be in a specific format. To create
a properly formatted custom baseline emissions file, create a CSV file with the column
headings shown in Exhibit 2. Each row of the file should correspond to a different source
in a different county.
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Exhibit 2. Format of Baseline Emissions File.

Column Heading

Description of Column Headings

typeindx?

Stack height associated with the emission

sourceindx?

Source index, which COBRA uses in its source receptor model

stid FIPS state ID (e.g., the state FIPS code for Pennsylvania is 42)
cyid FIPS county ID (e.g., the county FIPS code for Swarthmore, PA is 045)
TIER13 Emissions category to which emissions source corresponds, at tier 1 level
TIER2® Emissions category to which emissions source corresponds, at tier 2 level
TIER3? Emissions category to which emissions source corresponds, at tier 3 level
NO2 NOx emissions from each source in the baseline
S0O2 SO2 emissions from each source in the baseline
NH3 NH3 emissions from each source in the baseline
PM25 Primary PM2.5 emissions from each source in the baseline
VOC VOC emissions from each source in the baseline

Notes:

1 A table of typeindx and name is saved on your computer after installing COBRA in the default location,
in C:/Program FilessfCOBRA/input files/data dictionary/typeindx — stack heights.csv.

2 A table of sourceindx and FIPS is saved on your computer after installing COBRA in the default location,
in C:/Program FilessfCOBRA/input files/data dictionary/SOURCEINDX to FIPS crosswalk.csv.

3 A table of tier definitions and tier numbers is saved on your computer after installing COBRA in the
default location, in C:/Program FilessfCOBRA/input files/data dictionary/EmissionsTier Definitions.csv.

To see the template for a baseline emissions file, navigate to the folder where you
installed COBRA — the default location is C:/Program FilessfCOBRA/. From there,
navigate to input files/emissions/Emissions_2025.csv. This is the default COBRA 2025
emissions baseline, so do not make any changes directly to this file.
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To import custom baseline datasets, click on the Advanced Options tab at the top of the
1. Select Analysis Year screen. To import a properly formatted baseline emissions file
into COBRA, click Load a Baseline Emissions CSV File. In the pop-up window,
navigate to the location of your baseline emissions CSV file, click the file, and then click
Open. If you try to import a baseline emissions file that is incorrectly formatted,
COBRA will display an error message that an “unhandled exception has occurred in your
application.”

To create a properly formatted file with both custom baseline and control scenario
emissions, create a CSV file with the headings shown in Exhibit 3. Each row of the file
should correspond to a different source in a different county.

Exhibit 3. Format of Baseline and Scenario Emissions File

Column Heading Description of Column Headings
typeindx! Stack height associated with the emission
sourceindx? Source index, which COBRA uses in its source receptor model
stid FIPS state ID (e.g., the state FIPS code for Pennsylvania is 42)
cyid FIPS county ID (e.g., the county FIPS code for Swarthmore, PA is 045)
TIER13 Emissions category to which emissions source corresponds, at tier 1 level
TIER2® Emissions category to which emissions source corresponds, at tier 2 level
TIER3® Emissions category to which emissions source corresponds, at tier 3 level
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Column Heading Description of Column Headings

BASE_NO2 NOy emissions from each source in the baseline

BASE_SO2 SO, emissions from each source in the baseline

BASE_NH3 NH3 emissions from each source in the baseline

BASE_PM25 Primary PM_s emissions from each source in the baseline

BASE_VOC VOC emissions from each source in the baseline

CTRL_NO2 NOy emissions from each source in the control scenario

CTRL_SO2 SO, emissions from each source in the control scenario

CTRL_NH3 NH; emissions from each source in the control scenario

CTRL_PM25 Primary PM. s emissions from each source in the control scenario

CTRL_VOC VOC emissions from each source in the control scenario

TIERINAME Name of emissions category to which emissions source corresponds, at tier 1
level

TIER2NAME Name of emissions category to which emissions source corresponds, at tier 2
level

TIER3NAME Name of emissions category to which emissions source corresponds, at tier 3
level

FIPS FIPS state-county ID (e.g., the state FIPS code for Pennsylvania is 42 and the
county FIPS code for Swarthmore, PA is 045, so the state-county FIPS ID is
42045)

STATE State

COUNTY County

TYPE Type denotes the stack height associated with the emission

Notes:

L A table of typeindx, type, and name is saved on your computer after installing COBRA in the default
location, in C:/Program FilessfCOBRA/input files/data dictionary/typeindx — stack heights.csv.

2 A table of sourceindx and FIPS is saved on your computer after installing COBRA in the default location,
in C:/Program FilessfCOBRA/input files/data dictionary/SOURCEINDX to FIPS crosswalk.csv

3 A table of tier definitions and tier numbers is saved on your computer after installing COBRA in the
default location, in C:/Program Filessf COBRA/input files/data dictionary/EmissionsTier Definitions.csv

To see an example baseline and control scenario emissions file, navigate to the folder
where you installed COBRA — the default location is C:/Program FilessfCOBRA/. From
there, navigate to input files/emissionscenarios/

2025 _50PCTReduction_scenario_sample.csv.
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To import a properly formatted baseline and control emissions CSV file into COBRA,
click Load a Baseline Control Scenario Emissions CSV File. In the pop-up window,
navigate to the location of your baseline emissions CSV file, click the file, and then click
Open.

Custom Population, Incidence, and Valuation Datasets

The Advanced Options tab allows users to select customized input files for population
data, incidence data, and valuation functions. Note that baseline emissions, population,
incidence, and valuation functions vary over time. It is important for input files to
correspond to the same year. For example, running COBRA with a 2025 baseline
emissions inventory, 2025 population data, and 2025 incidence data would result in
COBRA estimating 2025 health benefits. However, running COBRA with a 2025
baseline emissions inventory and 2010 population data would result in theoretical annual
health benefits that do not correspond to any calendar year. Alternatively, running
COBRA with a projected emissions inventory for 2030 and the default 2025 population
and incidence data would assume that population and incidence are constant from 2025 to
2030.

COBRA requires that customized input files be in a specific format. To create a properly
formatted population dataset, create a CSV file where each row is a different county and
includes the columns listed in Exhibit 4.

Exhibit 4. Format of Population File

Column Heading Description of Column Headings

Year Year of population data
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Column Heading Description of Column Headings

Destination|D? DestinationID uses same pattern as SOURCEINDX to indicate destination
locations.

FIPS FIPS state-county ID (e.g., the state FIPS code for Pennsylvania is 42 and the
county FIPS code for Swarthmore, PA is 045, so the state-county FIPS ID is
42045)

Age0 Population at age 0

Population at each age

Age99 Population older than or equal to 99

! See data dictionary file that is saved on your computer after installing COBRA in the default location, in
C:/Program Files/COBRAVinput files/data dictionary/SOURCEINDX to FIPS crosswalk.csv

To create a properly formatted incidence dataset, create a CSV file where each row is a
different county and includes the columns listed in Exhibit 5.

Exhibit 5. Format of Incidence File

Column Heading Description of Column Headings
Year Year of population data
Destination|D? DestinationID uses same pattern as SOURCEINDX to indicate destination
locations.
FIPS FIPS state ID (e.g., the state FIPS code for Pennsylvania is 42 and the county

FIPS code for Swarthmore, PA is 045, so the state-county FIPS ID is 42045)

Endpoint Written descriptor indicating health endpoint associated with the recorded
incidence rate. (e.g., Acute Bronchitis)

Age0 Incidence of a specific endpoint for population at age 0

Incidence of a specific endpoint for population at each age

Age99 Incidence of a specific endpoint for population older than or equal to 99

To create a properly formatted valuation functions dataset, create a CSV file where each
row represents a concentration-response function from a single study for a specific age
group and includes the columns described in Exhibit 6.

Exhibit 6. Format of Valuation Functions File.

Column Heading Description of Column Headings
CRFunctionID ID for C-R functions (linked to the health effect function file)
Endpoint String descriptor indicating Endpoint for the Valuation function.
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Column Heading

Description of Column Headings

PoolingWeight

Functions are pooled accounting to Endpoint. PoolingWeight indicates the
relative weight given to this function.

Seasonal_Metric

Daily or Annual are allowable entries. Indicate if computed effect is for a day
or an entire year.

Study_Author Study Author

Study Year Study Year

Start_Age Beginning of age range to which health impact function applies

End Age End of age range to which health impact function applies

Function Functional form that is to be computed. (e.g., (1-(1/((1-
Incidence)*Exp(Beta*DELTAQ)+Incidence)))*Incidence*POP)

Beta Beta parameter supplied to functional form.

Adjusted Not used

Parameter 1 Beta

Parameter 1 Beta parameter supplied to functional form.

A

A parameter supplied to functional form.

Name A Description of A parameter.

B B parameter supplied to functional form.

Name B Description of B parameter.

C C parameter supplied to functional form.

Name C Description of C parameter.

Cases Not used

HealthEffect Use same as IncidenceEndpoint

ValuationMethod Note of valuation method used.

valat3pct Valuation of health endpoint using 3% discount rate
valat7pct Valuation of health endpoint using 7% discount rate

IncidenceEndpoint

Indicates Endpoint to use for lookup in Incidence data set.

Custom Health Effect Function Datasets

The Advanced Options tab allows users to select customized health effect function
datasets. The default health dataset in COBRA relies on an up-to-date assessment of the
published scientific literature to ascertain the relationship between particulate matter and
adverse human health effects, and can be used for all analysis years. Because of this,
most users will not want to modify this input. 1f you use custom datasets to describe
health effect functions, please list the sources of these datasets and any assumptions used
to generate them when reporting your results.
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If you do choose to import a custom health effect function dataset, COBRA requires that
this file be in a specific format. To create a properly formatted health effect functions
dataset, create a CSV file where each row represents a concentration-response function
from a single study for a specific age group and includes the columns listed in Exhibit 7.

Exhibit 7. Format of Health Effect Functions File.

Column Heading

Description of Column Headings

FunctionID

ID for C-R functions (linked to the valuation function file)

Endpoint

String descriptor indicating endpoint for the Health/Concentration-Response
function.

PoolingWeight

Functions are pooled accounting to Endpoint. PoolingWeight indicates the
relative weight given to this funcion.

Seasonal_Metric

Daily or Annual are allowed entries. Indicate if computed effect is for a day or
an entire year.

Study Author Study Author

Study Year Study Year

Start Age Beginning of age range to which health impact function applies

End_Age End of age range to which health impact function applies

Function Functional form that is to be computed. (e.g., (1-(1/((1-
Incidence)*Exp(Beta*DELTAQ)+Incidence)))*Incidence*POP)

Beta Beta parameter supplied to functional form.

Adjusted Not used

Parameter 1 Beta

Parameter_1 Beta parameter supplied to functional form.

A

A parameter supplied to functional form.

Name A Description of A parameter.

B B parameter supplied to functional form.
Name B Description of B parameter.

C C parameter supplied to functional form.
Name C Description of C parameter.

Cases Not used

IncidenceEndpoint

Indicates Endpoint to use for lookup in Incidence data set.

Exploring Baseline Emissions Data

You can explore the geographic distribution of pollutant concentrations in the baseline
scenario by clicking on the 2. Create Emissions Scenario tab and then clicking on the
View Emissions Map tab.
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At the top of this screen, you will see a drop-down menu labeled ‘Select the field that is
to be mapped.’ The first five options listed (Base NH3, Base NO2, Base PM2.5, Base
S02, and Base VOC) correspond to the baseline emissions of ammonia (NHs), nitrogen
oxides (NOx), fine particulate matter (PMzs), sulfur dioxide (SOz), and Volatile Organic
Compounds (VOCs), respectively, from all sectors. Select any of these emissions to view
a map of county-level baseline emissions. See Chapter 6 for more details on how to use
COBRA'’s mapping functionality.
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CHAPTER 4. Creating a New Emissions Scenario

COBRA allows users to define new emissions scenarios and investigate the related
changes in air quality and health effects. The scenario definition, results tables, and
results maps can be exported for future use or archiving purposes.

The steps to creating a new scenario are simple:

Step 1. Select the Geography. You can specify emissions changes at the national,
state, or county level.

Step 2. Select the Tier Level. You can specify emissions changes from fourteen
source categories.

Step 3. Enter Emissions Changes. Changes can be made for each state or county, or
the entire nation. You can group states and counties and make changes to them
together, or make different changes to different geographic areas.

Step 4. Run the Scenario. COBRA will calculate the changes in ambient PM2.s
between your selected baseline scenario and the new control scenario, and calculate
the associated changes in health effects and monetary impacts.

Step 5. Examine the results. See Chapter 5.

Selecting Scenario Geography
To define your scenario, click the 2. Create Emissions Scenario tab and then the
Emissions Scenario tab. In the top left panel you can select the geographic area(s) to
which you want to apply emissions changes. Note that once your comparison is run, you

will be able to see results (changes in . .
) The geographic areas you select determine

for the entire country. Click on the Your selection does not affect the geographic

: P area for which you can view results.
appropriate choice in the left panel. Regardless of the geographic area you select

for emissions changes, you can view results
for the entire country.

e US. If you wish to make emissions changes to the entire United States, select
‘US.’

e Individual State. If you wish to make emissions changes to just one state, click
that state.

e Individual County. If you wish to make emissions changes to just one county,
click that county.
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e Multiple Geographic Areas. If you wish to make the same emissions changes to
multiple geographic areas, click the check box next to each of those geographic
areas in the ‘Tier and Location Selection’ panel. It is possible to select multiple
states (e.g., all of California and Oregon), multiple counties (e.g., Dade County,
Florida and Broward County, Florida), and combinations of states and counties
(e.g., all of Massachusetts and Providence County, Rhode Island).

The ‘Pollutants’ panel in the top center of your screen will show the total baseline
emissions for all the selected geographic areas.

When you apply an emissions change to multiple geographic areas as a percentage, your
control scenario will consist of emissions in each county in the selected areas changing
by that same percentage. When you apply an emissions change to multiple geographic
areas in tons, your control scenario will consist of emissions in each county in the
selected areas changing by different amounts that add up to the input total emissions
change. COBRA divides the total emissions change across counties in proportion to the
baseline emissions. For example, if you input Florida Off-Highway SOz emissions
decrease by 50 tons, this would correspond to Alachua County Off-Highway SO-
emissions decreasing by 0.059 tons, Baker County Off-Highway emissions decreasing by
0.003 tons, etc. so that the sum of the SO2 emission reductions across all Florida counties
is 50 tons.

If you have decided to apply different changes to different geographic areas categories,
you will need to select the geographic area, select the tier level, and define the scenario
emissions separately for each geographic area.

Selecting Tier Level
Next, define the categories of emissions affected. The center panel contains a directory
tree with all the tier 1, 2, and 3 source categories (see Appendix A for a list of source
categories and their emissions). You can define emissions changes at any level, but each
level always includes all the levels indented underneath it. Click the tier at which you
would like to apply your emissions changes. A change entered for a tier category applies
to all of the branches under it, but you must enter changes individually for tier categories
on separate branches.

Defining Scenario Emissions
After you have selected your tier and geographic area, you can create a new emissions
scenario by defining changes to the baseline emissions scenario. Use the boxes in the
right panel to enter changes to the baseline emissions for each of the five pollutants
potentially emitted by sources in that category. You can enter emissions increases or
decreases by percent or by tons. To the right of the boxes you will see the total emissions
for your selected tier and geographic area for the baseline and control scenarios. If your
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emissions scenario attempts to reduce emissions by more than exists in the baseline
emissions inventory (e.g., if the SO2 emissions baseline for Fuel Comb. Elec. Util. in
California is 4,065 tons and you try to reduce those emissions by 4,100 tons), you will get
the error message “Please make sure you do not try to reduce emissions by more than
actually present in the baseline.” Click Apply Changes to save your changes.

Once your emissions changes are entered for a given tier and location, you can go back
and change them by selecting that tier and geographic location again in the directory
trees. The emissions baseline and your previously saved control scenario changes will be
displayed in the right panel. To overwrite your previously saved control scenario for that
tier and location, enter your new emissions changes and click Apply Changes.

If you have decided to apply different changes to different geographic areas categories,
click the Clear Selected States or Counties button and repeat the above steps for each
geographic area. For example, if you want to decrease all California Off-Highway SO2
emissions by 25% and all Oregon Off-Highway SO2 emissions by 15%, you would have
to enter the California emissions change, click Apply Changes, click Clear Selected
States or Counties, enter the Oregon emissions change, and click Apply Changes again.

It is also possible to enter a scenario definition into COBRA as a CSV. See the Advanced
Options section of Chapter 3 for further instructions on this scenario definition method.

Reviewing Scenario Definition

You can review your scenario definition by looking at the table in the View Detailed
Emissions Changes tab. This will display all of your changes by state, county, and tier
category. If the scenario is acceptable and you wish to save it for future reference, click
on the Emissions Scenario tab and then click the Save Scenario button in the top right
panel of the screen. This will export a comma-delimited file that contains the same
information as shown in the View Detailed Emissions Changes table. Exporting this file
is useful if you export any other tables from the results tabs; at a later date you will have
a reference for what the results tables and maps are based on.

Running Scenario

When you have made all of your desired changes, navigate to the 3. Execute Run tab.
This tab asks you to choose a discount rate for the COBRA session. The discount rate
you select is used to express future economic values in present terms. Not all health
effects and associated economic values occur in the year of analysis. Therefore, COBRA
accounts for the‘time value of money’ preference (i.e., a general preference for receiving
economic benefits now rather than later) by discounting benefits received later. Based on
EPA’s Guidelines for Preparing Economic Analyses (U.S. EPA, 2010a), it is
recommended that COBRA users calculate monetized health benefits using both 3 and 7
percent discount rates and then evaluate whether the overall outcome of the analysis is
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affected by the choice of discount rate. For more details on discount rates, see Appendix
F.

After selecting a discount rate, click Run using above options.

The time to generate your results will vary, depending on the speed of your computer.
COBRA may stop responding while it runs, and it may take 5 to 15 minutes to generate
results. Once the results are generated, COBRA will navigate to the 4. View Health
Effects and Valuation Results tab, where you can view the results of your run (see
Chapter 5).
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CHAPTER 5. Viewing Results

Viewing Results in Table Form
Once you have defined your new scenario (called the control scenario) and run the
comparison between the baseline and your scenario, you can view the results: changes in
air quality and health effects between the baseline and control scenarios. You can view
results in table form in the Table tab or in map form in the Map tab.

The Table tab describes the changes in air quality (i.e., particulate matter concentration)
between the baseline emissions scenario and your scenario (the control scenario), and the
corresponding changes in health effects (incidence and monetized values). Note that if
you have run a state-specific scenario, changes in air quality for other states will typically
decrease as the distance from the state increases, since the emissions changes were only
made there. You can navigate through the table data in several ways:

Scroll through the data using the scroll bar on the right and bottom of the
window.

Change the sort order by clicking on the heading of any column. Click once to
sort from smallest to largest and click twice to sort from largest to smallest.

Filter column variables by clicking on the filter button at the top of any column.
You can use this functionality to filter down to a specific state and county.

Change the column order by clicking on the column name and dragging it to a
new position. When you see a black line, you can drop the column there. Note
that the sort order of the table will not change.

Change the width of a column by moving your mouse to the column header and
pointing to the dividing line between two columns. The mouse cursor will change
to two arrows, indicating that you can drag the column line to condense or expand
the column.

View totals by navigating to the top or bottom of the table. If you filter the table,
the totals row will adjust in real time to display the totals for all values that are
currently visible. For example, if you have not filtered the table, the totals row
will show total health effects for the entire United States. If you have filtered the
table to only show results for a specific state, the totals row will show total health
effects for that state.

For each county, the table lists the annual average PM2.s concentration for the control
scenario and the baseline scenario, as well as the change between the two scenarios
(Delta PM2s5). The table also displays the change in the number of cases for each health
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effect between the baseline emissions scenario and your scenario. These changes are
derived using the health impact functions described in Appendix C. The table also
displays an estimate of the economic value of the change in the number of cases for each
health effect. For more information, see Appendix F. Exhibit 8 describes the health
endpoints and valuations that are included in the health effects tables in COBRA.

Exhibit 8. Description of Health Effects and their Economic Values

Health Effect Description

Low estimate of the number of deaths, based on Krewski et al.

Mortality (low estimate) (2009)

Low estimate of the economic value of the number of deaths, using

$ Mortality (low estimate) Krewski et al. (2009) and a discount rate of 3% or 7%

High estimate of the number of deaths, based on Lepeule et al.

Mortality (high estimate) (2012)

High estimate of the economic value of the number of deaths, using

$ Mortality (high estimate) Lepeule et al. (2012) and a discount rate of 3% or 7%

Infant Mortality Number of infant deaths

$ Infant Mortality Economic value of the number of infant deaths

Nonfatal Heart Attacks (low  Low estimate of the number of non-fatal heart attacks, based on four
estimate) acute myocardial infarction (AMI) studies

$ Nonfatal Heart Attacks Low estimate of the economic value of non-fatal heart attacks, based
(low estimate) on four AMI studies and a discount rate of 3% or 7%

Nonfatal Heart Attacks (high High estimate of the number of non-fatal heart attacks, based on
estimate) Peter et al. (2001)

$ Nonfatal Heart Attacks High estimate of the economic value of non-fatal heart attacks, using
(high estimate) Peter et al. (2001) and a discount rate of 3% or 7%

Hospital Admits, All

Respiratory Number of respiratory-related hospitalizations

Hospital Admits, Asthma Number of asthma-related hospitalizations

Hospital Admits, Chronic

. Number of hospitalizations related to chronic lung disease
Lung Disease

Economic value of respiratory-related hospitalizations (total across
respiratory-related, asthma-related, and chronic lung disease
hospitalizations)

$ Hospital Admits, All
Respiratory

Hospital Admits, Number of cardiovascular-related hospitalizations (ICD codes 390-
Cardiovascular (except heart 409, 411-429); ICD code 410 (nonfatal heart attacks) is counted only
attacks) in ‘Non-fatal Heart Attacks’

$ Hospital Admits,

! Economic value of cardiovascular-related hospitalizations
Cardiovascular

41 September 2017



Health Effect Description

Acute Bronchitis Cases of acute bronchitis

$ Acute Bronchitis Economic value of acute bronchitis cases

Upper Respiratory Episodes of upper respiratory symptoms (runny or stuffy nose; wet
Symptoms cough; and burning, aching, or red eyes)

$ Upper Respiratory Economic value of episodes of upper respiratory symptoms

Symptoms
Lower Respiratory Episodes of lower respiratory symptoms: cough, chest pain, phlegm,
Symptoms or wheeze

$ Lower Respiratory

Symptoms Economic value of episodes of lower respiratory symptoms

Emergency Room Visits,

Number of asthma-related emergency room visits
Asthma

$ Emergency Room Visits,

Economic value of asthma-related emergency room visits
Asthma

Number of minor restricted activity days (days on which activity is
reduced, but not severely restricted — e.g., missing work or being
confined to bed is too severe to be MRAD).

Minor Restricted Activity
Days

$ Minor Restricted Activity Economic value of minor restricted activity days

Days
Work Loss Days Number of work days lost due to illness
$ Work Loss Days Economic value of work days lost due to illness

Notes: * For adult mortality and nonfatal heart attacks, COBRA contains multiple health impact functions
that relate PM2 s and each health effect. Therefore, there are high and low estimates of the cases avoided
and their economic values for each of these health effects. More details on the underlying health impact
functions are available in Appendix C of the user manual. In addition, future costs are calculated using a
discount rate (3% or 7%) that you selected before running the scenario.

The health effects table includes low and high estimates for the changes in the number of
cases and the corresponding economic values for adult mortality and non-fatal heart
attacks. The low and high estimates are derived using two sets of assumptions about the
sensitivity of adult mortality and non-fatal heart attacks to changes in ambient PM2.s
levels. Specifically, the high estimates are based on studies that estimated a larger effect
of changes in ambient PMz 5 levels on the incidence of these health effects. The low and
high estimates for each of these values are derived as follows:

e Adult Mortality. EPA (2009) used two studies when analyzing proposed NO2
National Ambient Air Quality Standards; EPA presented the results separately for
each study. Following EPA, COBRA reports the results of two health impact
functions that relate PM2.s and mortality: Krewski et al. (2009) and Lepeule et al.
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(2012). In the health effects table, Adult Mortality (Low) and $ Adult Mortality
(Low) represent estimates of adult deaths avoided and their economic value,
respectively, based on Krewski et al. (2009). Adult Mortality (High) and $
Adult Mortality (High) represent estimates of adult deaths avoided and their
economic value, respectively, based on Lepeule et al. (2012). More details on
these two studies are available in Appendix C of the user manual.

e Nonfatal Heart Attacks. COBRA calculates two estimates of the non-fatal heart
attack cases avoided (Nonfatal Heart Attacks) and their economic value ($
Nonfatal Heart Attacks). The low estimate is based on Peter et al. (2001), while
the high estimate is based on pooling of the effect estimates of the following four
studies: Sullivan et al. (2005), Pope et al. (2006), Zanobetti et al. (2009), and
Zanobetti & Schwartz (2006). More details on the studies are available in
Appendix C of the user manual.

The value in each health effects column represents the total change in the number of
cases of each health endpoint in a county. A value of 3.00 in the Adult Mortality (low)
column, for instance, indicates that in your scenario there would be an estimated 3 fewer
cases of premature mortality compared to the baseline emissions scenario over the
following 20 years. Note, however, that a negative number signifies an increase in cases.
Therefore, - 3.00 in the Adult Mortality (low) column indicates that in your scenario there
would be 3 additional cases of premature mortality over the following 20 years
compared to the baseline emissions scenario.

Interpreting positive and negative results:

In the health effects table, positive numbers indicate reductions in the number of cases of
adverse health effects and the associated monetary benefits of your scenario. Negative numbers
signify increases in the number of cases of health effects and the resulting costs.

All health effects are monetized. However, to prevent double-counting, the calculation of
asthma exacerbations only includes asthma effects occurring in children aged 6 to18
years. This approach follows the recommendations of EPA’s Science Advisory Board
Health Effects Subcommittee (SAB-HES) for valuing asthma exacerbations, as described
in the benefits analysis for the 2006 Regulatory Impact Analysis for the revised PM2.s
National Ambient Air Quality Standard (U.S. EPA, 2006). Studies of the general
population include asthmatics, so estimates based solely on the adult asthmatic
population cannot be directly added to the general population numbers without double-
counting. Instead, asthma exacerbations occurring in adults were assumed to be
accounted for in health effects for the general population, such as WLDs and MRADs
(U.S. EPA, 2006). Since the health effects for the general population do not include
asthma effects in children, the analysis of asthma exacerbations for children does not lead
to double-counting (see Appendix C for details).
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Viewing Results in Maps Form
The Map tab displays the results of your scenario geographically. The left ‘Select the
field that is to be mapped:” drop-down menu allows you to change the values shown on
the map. You can display the change in PM2s between your scenario and the baseline
emissions (the same values shown as ‘Delta PM25’ in the Table tab), or any of the health
endpoints included in the model. The values displayed for each health endpoint are the
change in the number of cases (or deaths for ‘Adult Mortality (Low)’, ‘Adult Mortality
(High)’, and ‘Infant Mortality’) and the economic valuation of these cases from the
scenario, as displayed in the Table tab.

Saving Results
To save your results for use outside of the COBRA environment, you can export the
results tables by clicking Export to CSV in the Table tab. The maps can also be
customized within COBRA and then exported for use in documents and presentations
(see Chapter 6).
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CHAPTER 6. Using Mapping Functionality.

COBRA can create maps of baseline emissions and air quality, control scenario
emissions and air quality, changes in air quality, adverse health effects avoided, and the
economic value of adverse health effects avoided. To view maps of baseline or control
emissions, navigate to the 2. Create Emissions Scenario tab and click View Emissions
Map at the top of the page. To view maps of baseline and control air quality, changes in
air quality, adverse health effects avoided, and the economic value of adverse health
avoided, navigate to the 4. View Health Effects and Valuation Results tab and click on
Map tab at the top of the page. Maps of emissions can be viewed before running
COBRA, but maps of air quality and health effects can only be viewed after running
COBRA.

The mapping interface works the same way in both screens. Below, we describe the
major capabilities of the mapping tool and show how to use it for the Pennsylvania
example described in Chapter 2.

To create a map, select the variable you would like to map in the ‘Select the field that is
to be mapped’ drop-down menu. For this example, you will examine avoided work loss
days.

4* COERA

File

| Introduction | 1. Select Analysis Year I 2. Create Emissions Scenario | 3. Beecute Run | 4. View Health Effects and Valuation Results |_

Table | Maps

Use this page to explore the changes in air quality and health effects between the baseline and control scenarios in map form. Form
of the COBRA user manual. For more information on using COBRA’s mapping functionality, including how to change the ranges or hi
usermanual. Users can view the user manual by clicking “Help” then “Show Manual

To copy the map for use in other publications or presentations. click the 'Print” button in the toolbar. For more information on saving nf

Select the field that is to be mapped: |Work Loss Days -

Legend
= £ Map Layers
= US Counties - Work Loss Days
= Value

Customizing Map Appearance
To modify the color scheme of the map, right-click ‘US Counties’ in the Legend panel
and then click ‘Properties.’
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The menu that pops up has three panels. The top left panel allows you to select the overall color
scheme that will define the map. The top right panel summarizes the color classification scheme
(in this example, the shading that indicates larger numbers of avoided work loss days). The
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Defining Interval Breaks

You can adjust how color intervals are defined in the bottom right panel.

In the box to

the right of ‘Num Breaks’ (indicated in red below), enter the number of intervals you
would like your map to have.

=

ol Layer Properties
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If you select 1, all counties will be in the same interval and the map will be a single color.
If you select 10, there will be 10 intervals that can be 10 different colors. In this
example, you should select 5. Next, select how COBRA should define the intervals.
There are four possible methods, described below.

e Equal Frequency. This method takes the range of the values, and, using the
number of breaks you selected, splits the range into intervals where each interval
contains the same number of counties. Below is the map of avoided work loss
days where intervals are defined using the equal frequency option. This is
COBRA'’s default setting.
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e Equal Intervals. This method takes the range of the values for all counties in the
U.S., and, using the number of breaks you selected, splits the range into equal
intervals. Below is the map of avoided work loss days where intervals are defined
using the equal intervals option.
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e Natural Breaks. This method divides counties into groups where the values
(e.g., for avoided work loss days) are similar within groups and less similar to
counties in other groups (based on variance in the values). Below is the map of
avoided work loss days where intervals are defined using the natural breaks
option.
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Manual. This method allows you to manually enter the range of each interval.

To do so, click the Graph tab in the bottom right panel. This displays the
distribution of values across all counties in the United States in a histogram. The
x-axis is the value you are mapping (in this example, work loss days avoided) and
the y-axis is the number of counties. The height of each rectangle is the number
of counties with avoided work loss days within the range defined by the base of
that rectangle. The blue lines are the boundaries defining the intervals for your
color scheme. To change these boundaries, click on one of the blue lines and drag
it to the boundary you want.
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The method used to define a map’s interval boundaries affects the conclusions that
are likely to be drawn from the map, so it is important that users exercise care in
selecting interval definition schemes. In this example, you can choose to define
intervals using the Natural Breaks method.

Changing Color Scheme
Navigate to the top left panel to change the map’s color scheme. To create a simple spectrum
that fades from one color to another color, click the RGB tab. Click the ‘Start Color’ box and
select a color to represent the boxes with the smallest value. Then, click the ‘End Color’ box and
select another color to represent the color with the largest value. In this example, choose yellow
to represent counties with the smallest number of avoided work loss days and green to represent
counties with the largest number of work loss days avoided.
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After selecting interval breaks and deciding on a color scheme, you can review your selections in
the top right panel. The ‘Symbol’ column shows the color that will represent all counties within
each interval. The ‘Values’ column summarizes the definition of each interval. The ‘Count’
column lists the number of counties within each interval. The ‘Legend Text’ column displays the
text that will be displayed in the legend. You can modify the legend text by double-clicking on
the text.

After creating the desired color scheme, click Apply.

Modifying Map Scale

You can zoom in or out on the map by selecting Zoom In (&) or Zoom Out(&) in the top left
toolbar and then clicking anywhere on the map. You can also zoom in on a specific area by
clicking the Zoom In tool and then drawing a box with left mouse button depressed. To pan,
click the Pan button () and then click and drag the map to the portion you wish to view. You
can toggle between extents (i.e. map scales) by clicking Zoom to Previous Extent (*?) and
Zoom to Next Extent (®). To zoom out to the full U.S., click Zoom to Maximum Extents (-~
). To center the map at a specific location, click Zoom to Coordinates (£3) and input the
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relevant latitude and longitude coordinates. Because this scenario focused on emissions
reductions in Pennsylvania, in this example you will zoom in to the Northeast United States.
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Exploring Data

To get map information about a specific county, click the Identifier button (€) in the top left
toolbar and then click the county of interest. The selected county will be highlighted in teal and a
box will pop up that contains the name of the county, the estimate for the value you are mapping
for this county (e.g., avoided work loss days), and other identifying information for the county.
For example, if you select Berks county, Pennsylvania you will see that the emissions reduction
scenario will avoid about 134 work loss days in this county.
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To select all counties that have values in a given interval (as described in the “Defining Interval
Breaks” section above), right click on the interval in the Legend and then click ‘Select Features.’
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To find counties that match some criterion, right click the ‘US Counties’ drop-down, then click
Selection...Select by Attributes. You can fill the box with the criteria you are interested in. For
example, if you want to see which counties have more than 20 avoided work loss days and are
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also located in Pennsylvania (which has a state FIPS code of 42°), you can make selections from
the ‘Field Names’ list in the upper left of the pop up box. For this example, you would:

e First, double-click VValue from the ‘Field Names’ list, click the ‘>=" button, and then type
20. This sets the criterion for at least 20 avoided work loss days.

e You would then add the criterion for counties located in Pennsylvania as follows: click
the ‘And’ button, double-click STATEFP from the ‘Field Names’ list, click the ‘=’
button, and then type 42.

Alternatively, once you are familiar with this functionality, you could simply write this equation
in the box at the bottom of the window: “[Value]>=20 AND [STATEFP]=42".

Once you have described your selection, click Apply. COBRA will highlight the counties that
fit your criteria in teal.

mamc

Exporting Map

Printing or Exporting Map as Image
To print the map or export a map as an image, click the Print button (&) in the toolbar. To
modify how much space the map takes up on the page, click the map, then click the bottom right

% FIPS codes uniquely identify United States counties and states. Codes can be accessed at:
https://www.census.gov/geo/reference/codes/cou.html.
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corner of the map and drag the rectangle. You can also click the center of the map and move it
elsewhere on the page. You can zoom in and out and pan using the tools in the right hand side of
the screen. To change the orientation of the page, click File...Page Setup then click Landscape.
You can also add a compass, legend, scale bar, or text box from the toolbar. To edit the text box,
click the text box and then edit the “Text” row in the bottom right panel. For example, you can
add a title to the map “Avoided Work Loss Days” in a text box.

To save the map as an image, click File...Save As and then click Portable Network Graphics
(*.png) from the ‘Save as type:” drop-down menu. To print, click File...Print.

-

|E0

Exporting Map for Use in Other Mapping Software

To export the map as a shapefile, right click ‘US Counties’ in the Legend tab. Then click
Data...Export Data. Click the folder icon to navigate to the folder where you would like to
save the map, and select ‘DotSpatial.Shapefile — Shapefiles (*.shp)’ from the ‘Save as type:’
drop-down menu. Click Save.
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Chapter 6. Using Mapping Functionality
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Glossary
Baseline emissions scenario: The emissions estimates for a given year in absence of a
policy, ambient pollution levels and health impacts for that year. The baseline emissions
scenario is compared to the control scenario when running COBRA.

Control scenario: A hypothetical scenario that factors in user-specified emissions changes
(to ‘control’ emissions). In COBRA, the control scenario is compared to the baseline
scenario.

Cross-State Air Pollution Rule (CSAPR): An EPA regulation issued in September 2016 to
reduce summertime power plant NOx emissions in 22 states in the eastern United States. For
more information on the rule, see https://www.epa.gov/airmarkets/final-cross-state-air-
pollution-rule-update.

Delta PM2s: The difference in ambient concentrations of particulate matter that is less than
or equal to 2.5 microns in diameter.

Federal Information Processing Standards (FIPS) geographic codes: codes which
uniquely identify United States counties and states. Codes can be accessed at
https://www.census.gov/geo/reference/codes/cou.html.

Health impact function: An equation that calculates the change in adverse health effects
associated with a change in exposure to air population. A typical health impact function has
inputs specifying the change in the air pollutant, an effect coefficient (specifying the percent
change in an adverse health effect per unit change of a pollutant), the age of the population
affected, and the incidence rate of the adverse health effect.

Mercury and Air Toxics Standards (MATS) Final Rule: An EPA regulation issued in
December 2011 to limit mercury and other toxic air pollution from coal and oil-fired power
plants. For more information on the rule, see https://www.epa.gov/mats

Scenario definition: A table of all edits made to the baseline emissions when defining a
control scenario. The table can be viewed within COBRA or can be exported for future
reference.

Sensitivity analyses: Comparison of analyses performed with varied assumptions or
decisions to determine whether the assumptions/decisions have a major effect on the results
of the analysis.

Source-receptor matrix: An air quality model built into COBRA that calculates the change
in PMzs levels for any given change in emissions. Appendix A discusses this model in more
detail.

Tier category: Classification used by EPA for emission inventories.
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Appendix A: Dispersion Modeling in COBRA

COBRA estimates particulate matter levels using the Phase 11 Source-Receptor (S-R) Matrix.
The S-R Matrix consists of fixed transfer coefficients that reflect the relationship between annual
average PM2s concentration values at a single receptor in each county (a hypothetical monitor
located at the county centroid) and the contribution by PM2.s species to this concentration from
each emission source (E.H. Pechan & Associates Inc., 1994).

Levy et al. (2003) found that an earlier version of the S-R Matrix predicted public health benefits
that were similar to those predicted by CALPUFF, a comparatively more sophisticated model
often used in risk assessments. Using the emission impacts from seven power plants in northern
Georgia, Levy et al reported that the two models yielded generally similar results for sulfates or
primary PM2s, with somewhat greater differences for nitrates. However, they carefully noted
that this result may differ depending on the location of the emissions, as temperature and
humidity are important considerations in the formation of ambient particles.

Because of the limited validation studies of the S-R Matrix, it should be treated as a screening
tool that provides a crude estimate of the likely impact of a change in emissions on ambient
PMz25 levels. More sophisticated atmospheric dispersion models should be used to obtain
detailed estimates of ambient air quality changes.

The sections below summarize the development of the S-R matrix and the steps taken to apply
the matrix in COBRA in order to derive the changes in air quality resulting from changes in
emissions.

Development of the S-R Matrix

The S-R matrix is based on the Climatological Regional Dispersion Model (CRDM), which uses
assumptions similar to the Industrial Source Complex Short Term model (ISCST3), an EPA-
recommended short range Gaussian dispersion model (U.S. EPA, 1995). The CRDM
incorporates terms for wet and dry deposition of primary and secondary species that constitute
PMz2 and uses meteorological summaries (annual average mixing heights and joint frequency
distributions of wind speed and direction) from 100 upper air meteorological sites throughout
North America. This analysis employs meteorological data collected in 1990.

Relative to more sophisticated and resource-intensive three-dimensional modeling approaches,
the CRDM does not fully account for all the complex chemical interactions that take place in the
atmosphere in the secondary formation of PM2s. Instead it relies on more simplistic species
dispersion—transport mechanisms supplemented with chemical conversion at the receptor
location.

The CRDM uses Turner’s sector-average approach (Turner, 1970), a probabilistic method in
which relative frequencies of occurrence of combinations of wind and stability conditions at the
emissions source are used to calculate the relative frequencies of transport in various sectors.
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This method is recommended for the estimation of long-term average pollutant concentrations
(E.H. Pechan & Associates Inc., 1997).

The pollutant concentration in a destination sector is estimated as follows:

C, )20y ey - y( HJ @

ik U 0 z,
where:
C,(r) _ atmospheric concentration in destination sector j at distance r
Q(r) — pollutant mass flux at distance r
y _ sector width at distance r

joint frequency of wind speed class i, wind direction j, and stability
i = category k

o, — Vvertical diffusion coefficient for stability category k
u, — wind speed for wind class i
H _ effective stack height of emissions source (= 0 for ground-level sources)

The sector width is calculated as:

() ,
Y=|16 2)

Primary emissions from a county are assumed to always impact the county source county itself
and are evenly distributed over a square with the same area as the county. A simple box model is
used for each combination of wind speed and stability category. The vertical diffusion
coefficient, o, is then calculated at a downwind distance corresponding to the side of the
square.l® These assumptions are necessary since the spatial variation of emissions within a
county cannot be provided for a national scale model.*

Additional adjustments are made to ensure a consistent distribution of pollutant species among
areas in close proximity to the emissions source. Receptors at a distance less than the square root
of the source area are assumed to receive the same concentration of pollutants as the source area.

10 The vertical diffusion coefficient o; was calculated using a subroutine from EPA's ISC3 model. Atmospheric
stabilities were assumed to be C class (slightly unstable) during the day and E class (slightly stable) at night. However,
for wind speeds in excess of 6 m/s, stability was assumed to be neutral (class D).

11 Actual measured concentrations would be expected to be higher than those modeled with these assumptions for a
monitor located in, or generally downwind from, a portion of the county with emission densities much higher than the
county average. On the other hand, concentrations would be expected to be lower if a monitor is located at the prevailing
upwind edge of the county or in an area of relatively low emission density.
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In addition, the destination sector width is constrained to be at least equal to the square root of
the source area.

Equation (1) is applicable to both point and area sources, either ground-level or elevated, and
results in a Gaussian distribution of pollutant mass in the vertical dimension. However, for long-
range transport, emissions are distributed uniformly in the vertical between the top of the mixed
layer and the ground. This occurs when the vertical diffusion parameter, oz, is equal to the height
of the mixed layer, hm. For such long-range situations, the sector—average limited mixing model
of Turner (1970) estimates pollutant concentrations at a downward distance r from the source as:

_ Q0 5 T
C,0=5 Zk " @)

The mass flux of a directly emitted primary species at distance r from the source is a function of
the material initially emitted, the amount chemically converted to a secondary pollutant, and the
amount deposited by wet and dry processes during the period of transport (time t) from the
emission point to the receptor. This is calculated by solving the relevant differential equation
(Latimer, 1993):

—(ke+k
Q, () =Qpe ™ ()

where:
Q, (1) — primary pollutant mass flux at transport time t
Q, — Initial emission rate

pseudo-first-order rate constant for chemical conversion of the primary
Ke = species to the secondary species

pseudo-first-order rate constant for deposition of primary species, equal
K, = to the sum of the dry and wet deposition rate constants (kpd + kpw)
t _ transport time

The mass flux of secondary pollutants is dependent upon the fraction of the primary species that
is chemically converted in the atmosphere to the secondary species and the amount of the
secondary species that is deposited by wet and dry deposition processes during the transport time
t from the stack to the downwind receptor point at distance r. This is also calculated by solving
the relevant differential equation (Latimer, 1993):

k.Q kit (kg 4kt
t)=—"2L2 (e —e 7
Q.(M) kc+kp—ks( ) ®)
where:
Q. (t) = mass flux of the secondary species at transport time t
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Q, _ Initial emission rate

pseudo-first-order rate constant for chemical conversion of the primary

K = species to the secondary species
pseudo-first-order rate constant for deposition of primary species, equal
K, = to the sum of the dry and wet deposition rate constants (Kpd + kpw)
pseudo-first-order rate constant for deposition of secondary species,
s = equal to the sum of the dry and wet deposition rate constants (Ksd + Ksw)
t _ transport time

The model parameters used to estimate mass flux are detailed in Exhibit A-1. Note that the
pseudo-first-order rate constant for deposition, kp, is estimated from the dry and wet deposition
velocities by dividing them by the mixing height (hm).

Exhibit A-1. Pollutant-specific Model Parameters

PMzs, SOA™ SO, ™ NO, NHs
0.5ifRH<40
Chemical Conversion Rate, k. (%/hr) 0 15ifRH>70 2 0
[RH = relative humidity (%)] ((RH - 40)/30) + 0.5
Otherwise
Dry Deposition Velocity (cm/s) 0.1 0.5 1 1
Wet Deposition Velocity (cm/s)*** 0.01P 0.003 P 0.0003 P 0.0003 P

[P = annual precipitation rate (in.)]

* Secondary organic aerosols.

** The chemical conversion rate for SO, was parameterized as a function of relative humidity to account for greater
atmospheric conversion rates in areas of the country with higher humidity.

*** \Wet deposition velocities are from (Yamartino, 1985).
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Details of S-R Matrix Implementation in COBRA

In subsections below we provide the following implementation details on: (i) processing of the
EPA’s emissions data to create COBRA emissions baseline; (ii) meteorological data sources and
processing; (iii) generating S-R transfer coefficients; (iv) approach taken to model secondary
PMz2s formation (atmospheric chemistry); and (v) calibration of dispersion model outputs to the
monitored PMzs.

Emissions Data

We use emissions data from EPA’s 2011 Version 6.2 Air Emissions Modeling Platform
(2011v6.2 platform) to forecast ambient 2017 and 2025 PM25 levels in COBRA.*2 The emissions
modeling platform has been used by EPA for the Final 2015 National Ambient Air Quality
Standards (NAAQS) for Ozone, the 2011 National Air Toxics Assessment (NATA), and the
Proposed Cross-State Air Pollution Update Rule (CSAPR). The 2017 and 2025 emissions
inventories contain predicted emissions that reflect federal and state measures (promulgated or
under reconsideration) as of December 2014. The assumptions underlying the emission
inventories are detailed in the Technical Support Document for the Preparation of Emissions
Inventories for the Version 6.2, 2011 Emissions Modeling Platform (U.S. EPA, 2015). The 2017
and 2025 base cases include:

e electrical generating unit emissions (reflecting the implementation of both the Mercury
and Air Toxics Standards Rule and CSAPR),*

e mobile emissions (reflecting changes in activity data and the impacts of the Light Duty
Vehicle Greenhouse Gas Rule for Model-Year 2017-2025, the Tier 3 Motor Vehicle
Emission and Fuel Standards Rule, and local inspection and maintenance programs), and

e Dbase year-specific fire data for 2011.

In addition to the 2017 and 2025 base case emission inventories, we used a 2011 base case
emissions inventory to help develop calibration factors (discussed in more detail in a later
section). Exhibit A-2a, Exhibit A-2b, and Exhibit A-2c summarize the 2011, 2017, and 2025
emissions data for the continental U.S. that we used.

12 Note that 2011 county-level natural emissions (from plants and soil) were estimated using the county total annual
emissions by sector (available for download at ftp:/ftp.epa.gov/Emisinventory/2011v6/v2platform/reports/) for
EPA’s 2011 Version 6.2 Air Emissions Modeling Platform.

13 The 2025 base case does not reflect the Clean Power Plan.
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Exhibit A-2a. 2011 Emissions Inventory Summary, by Tier 1 (tons/year)

Tier 1 NO; SO, PM:s VOC NH;

Fuel Combustion Electric Utilities 1,940,336 4,550,202 195,422 38,626 24,241
Fuel Combustion Industrial 1,168,769 658,030 217,257 108,794 12,519
Fuel Combustion Other 585,250 225,557 416,976 475,281 65,435
Chemical & Allied Product Manuf. 51,268 126,230 17,007 83,000 23,087
Metals Processing 70,503 144,409 48,298 34,183 1,124
Petroleum & Related Industries 677,231 117,975 28,978 2,641,624 1,376
Other Industrial Processes 350,812 188,074 272,505 327,853 33,588
Solvent Utilization 1,090 141 3,868 2,768,209 617
Storage & Transport 19,546 9,276 20,584 1,026,393 6,003
Waste Disposal & Recycling 83,022 16,747 164,176 130,491 35,680
Highway Vehicles 5,719,979 29,665 194,690 2,709,470 120,805
Off-Highway Vehicles 2,949,483 115,688 204,256 2,107,501 3,206
Natural Sources 1,020,456 40,400,933

Miscellaneous 450,238 184,643 4,373,454 4,770,908 3,854,871
Total 15,087,984 6,366,636 6,157,472 57,623,265 4,182,553

Exhibit A-2b. 2017 Emissions Inventory Summary, by Tier 1 (tons/year)

Tier 1 NO; SO, NH; PM2s VOC

Fuel Combustion Electric Utilities 1,788,581 1,874,027 34,165 223,168 41,353
Fuel Combustion Industrial 455,286 669,180 11,754 84,980 15,527
Fuel Combustion Other 588,335 404,129 12,482 203,589 265,831
Chemical & Allied Product Manuf. 64,125 4,982 62 24 119,767
Metals Processing 85 45 5 85 464
Petroleum & Related Industries 445,567 492 3,241 1,162,367
Other Industrial Processes 11,796 2,944 59,797 217,227 107,299
Solvent Utilization 111 23 59 1,683 3,863,540
Storage & Transport 7,297 172 22 447 1,055,120
Waste Disposal & Recycling 66,711 10,795 22,673 253,677 346,884
Highway Vehicles 3,204,285 29,282 85,362 129,392 1,397,412
Off-Highway Vehicles 2,443,196 9,878 3,359 148,006 1,556,261
Natural Sources 1,060,915 31,695,823
Miscellaneous 255,686 70,645 3,565,464 1,830,393 2,188,495
Total 10,391,977 3,076,594 3,795,204 3,095,911 43,816,143
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Exhibit A-2c. 2025 Emissions Inventory Summary, by Tier 1 (tons/year)

Tier 1 NO, SO, NH; PM; 5 VOC
Fuel Combustion Electric Utilities 1,478,966 1,496,592 214,508 47,447 49,598
Fuel Combustion Industrial 1,062,280 343,147 241,020 135,765 10,556
Fuel Combustion Other 553,412 82,955 388,626 439,491 63,354
Chemical & Allied Product Manuf. 47,609 102,864 17,757 95,688 22,776
Metals Processing 64,488 102,004 47,745 34,568 1,142
Petroleum & Related Industries 744,384 131,340 35,092 3,563,768 1,314
Other Industrial Processes 360,765 177,002 278,998 330,202 33,792
Solvent Utilization 1,152 143 3,855 2,818,279 627
Storage & Transport 19,100 6,427 20,486 731,861 6,013
Waste Disposal & Recycling 61,245 14,368 165,097 131,896 35,541
Highway Vehicles 1,707,692 13,759 83,019 904,713 85,521
Off-Highway Vehicles 1,730,482 25,179 95,871 1,248,662 4,125
Natural Sources 1,020,456 40,400,933

Miscellaneous 435,873 184,109 4,654,847 4,769,534 3,949,954
Total 9,287,904 2,679,889 6,246,922 55,652,806 4,264,313

We estimate the formation of SOA using a fixed relationship between SOA and VVOC for each
Tier 3 emission category.'* EPA’s 2011v6.2 platform estimated VOC but did not estimate SOA,
so we developed a simple approach to estimate the conversion of VOC to SOA, though this
conversion actually depends upon a number of factors including climate and the type of VOC.
We used the 2010 base case inventory of SOA and VOC emissions generated for the Clear Skies
Act (CSA) of 2003 (U.S. EPA, 2003b). For each Tier 3 emission category in this inventory, we
calculated the ratio of SOA to VOC. We then used these Tier 3 category-specific ratios to
estimate SOA in the emissions inventory from the 2011v6.2 platform:

SOACSA, Tier 3 >

SOA2011v6.2, Tier3s = VOC2011v6.2, Tier3 * (W
CSA, Tier 3

When modeling emission sources, we categorized them into elevated point sources and
area/mobile sources. For each, we calculate an “effective stack” height, which takes into account
the actual stack height, gas temperature and velocity, stack diameter, and other factors. The
effective stack height is important as it is one of the greatest determinants*® of how far emissions

14 The emissions inventory in COBRA has fourteen broad Tier 1 categories (e.g., on-road motor vehicles), and
within each of these larger categories there are Tier 2 (e.g., diesels), and Tier 3 (e.g., heavy duty diesels) categories.
15 The other determinants include wind speed and direction as well as atmospheric chemistry.
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will disperse — generally the taller the effective stack the further the emissions might travel from
the source. In calculating effective stack height, we assume an average wind speed of 5 meters
per second using the plume rise algorithm from ISCST3 (U.S. EPA, 1995).

We group stationary point source emissions for each county into three groups based on effective
stack height: (1) less than 250 meters, (2) 250 to 500 meters, and (3) greater than 500 meters.
We assume that emissions from the two groups less than 500 meters originate from the center of
the county in which they are located. For point sources with effective stack heights greater than
500 meters, we use their true latitude and longitude coordinates when modeling the dispersion of
emissions.’

Emissions from both ground-level mobile and area sources in the contiguous U.S. are combined
at the county-level and modeled as emissions from stacks with an effective stack height of zero
located at the source county centroid. Exhibit A-3 summarizes these emission categories.

Exhibit A-3. Emissions Categories for the S-R Matrix

Emissions Category Effective Stack Height Modeled Location
U.S. area and mobile emissions Om County center
U.S. elevated point emissions 0-250 m County center
U.S. elevated point emissions 250-500 m County center
U.S. elevated point emissions >500 m True location

Meteorological Data

Meteorological variables were calculated from rawinsonde data on the NAMER-WINDTEMP
tapes'® obtained from the National Climatic Data Center. Winds for each of 100 sites throughout
North America were averaged for the following layers: the surface to 250 meters above ground
level (m AGL), 250-500 m AGL, 500-1000 m AGL, 1000-2000 m AGL, and 2000-4000 m
AGL. For each of these levels and for each of the 100 meteorological sites, a joint frequency
distribution of wind direction (16 cardinal directions) and wind speeds (11 speeds in 1 m/s
increments) was calculated for 1990.

These distributions were calculated separately for the twice-daily soundings. The early morning
soundings were assumed to be associated with the E stability category, and the late afternoon
soundings were assumed to be associated with the C stability category. Mixing heights were

16 In a very small number of cases (0.32% of records in the emissions baseline), there are point source emissions in
multiple stack height groups for the same Tier 3 emission category in the same county. When emissions changes are
entered in the COBRA model for these cases, the changes are apportioned to stack height groups in proportion to the
baseline scenario emissions.

17 For some counties, the emissions inventory contained more than one emission source with stack height greater
than 500m. These emission sources normally have different locations and stack heights. To create a composite
county-level emissions source with stack height greater than 500m, we used the latitude and longitude of the source
with the tallest stack, whereas the composite stack height was an emissions-weighted average.

18 Refers to North America wind and temperature. These are standard data tapes for upper-air (rawinsonde) data
collected twice daily throughout North America. Rawinsondes are radar-tracked wind balloons.
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determined from each sounding by calculating the virtual potential temperature. The annual
average afternoon mixing heights were calculated for each of the 100 meteorological sites and
were used to calculate the upper limit of vertical diffusion (hm). The appropriate wind layer for
concentration calculations was determined using the centroid of the diffusing plume: oz for a
ground-based plume that has not yet mixed uniformly in the vertical, H for an elevated source,
and hm/2 for a uniformly mixed plume (E.H. Pechan & Associates Inc., 1994).

S-R Transfer Coefficients

The S-R matrix used in COBRA estimated the transport of the following emissions species: (1)
directly emitted PM2s and secondary organic aerosols (SOA), (2) sulfur dioxide (SO2), (3)
nitrogen dioxide (NO2), and (4) ammonia (NHs3). These species were then used in the calculation
of ambient concentrations of PM2s.

A matrix of source-receptor coefficients (in units of s/m?) spanning the entire contiguous U.S.
was developed for each of the four pollutants using the CRDM. For a unique combination of
source and receptor sites, a S-R transfer coefficient represents the incremental ambient air quality
impact in pg/m? at the receptor resulting from a 1 pg/s unit emission from the source. The S-R
matrix therefore provides a link between emission reductions and resulting air quality
concentrations. Concentration reductions that occur in proportion to a decrease in emissions at a
source are determined by the S-R coefficients for a given source and all receptors.

The pollutant concentration at a destination county is given by:

D;'S = ZZ Ecs,iTcs,i,j F*Fu (6)
where:
DS _ Concentration of pollutant s at destination county j (ug/m®)

. Emission of pollutant s from emissions category c in source county i
Eic = (tons/year)

Transfer coefficient for pollutant s from source county i to destination

Ti,sj = county j for emissions category ¢ (sec/m?)
= — lonic conversion factor for pollutant s
F — Unit conversion factor (28,778 ug-year/ton-sec)

unit
The ionic conversion factors are molecular weight ratios used to adjust the transfer coefficients
to reflect the concentration of precursors to secondarily-formed particulate species. Standard
molecular weights along with the ionic conversion factors used in this analysis are given in
Exhibit A-4 and Exhibit A-5.
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Exhibit A-4. Standard Molecular Weights

Specie Symbol Standard molecular weight °
Nitrate ion NOs 62.0049

Sulfate ion S04” 96.0626

Bisulfate HSO4 97.07054

Sulfur Dioxide SO, 64.0638

Nitrogen Dioxide NO; 46.0055

Ammonia NHs 17.03052

Ammonium ion NH4* 18.03846

Ammonium Nitrate NH;NO3 80.04336
Ammonium Bisulfate NH4HSO, 115.109
Ammonium Sulfate (NH4)2SO,  132.13952

Exhibit A-5. lonic Conversion Factors

Species lonic conversion factor, F*
PMzs, SOA 1

SO, — SO+ 96.0626 / 64.0638
NO;— NOz  62.0049 /46.0055
NHsz — NH;*  18.03846/17.03052

Atmospheric Chemistry

This section describes how secondary reactions are modeled in COBRA, including formation of
ammonium bisulfate (NH4HSO4), ammonium sulfate ((NH4)2SO4), and ammonium nitrate
(NH4NOs). Note that the COBRA treats atmospheric chemistry involved in the formation of
these pollutants in a more simplified fashion than state-of-the-art air quality models® (e.g.,
CALPUFF, AERMOD, CMAQ). We try to address this problem by calibrating COBRA
modeling results to measured PM2.s concentrations as described in later in this Appendix.
Nevertheless uncertainty remains.

For the atmospheric chemistry in COBRA, in the presence of sulfate (S04%) and nitrate (NO3),
ammonium (NH4*) reacts preferentially with SO4? to form NHsHSO4 and (NH4)2SO4. NH4sNO3
is only formed under conditions of excess NH4" and low temperatures. In each destination
county, the relative amounts of each secondary particle are subject to the following assumptions:

e S04 is always assumed to be a particle;

e NOgs is assumed to be a gas, unless is combines with NH4";

19 Standard atomic weights from Coursey, et al. (2011).

20 See U.S. EPA (2012).
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e NHy* reacts first with SO42. The nature of the reaction depends on the relative amounts
of NH4* and SO4%:

o

o

If there is a little NH4*, then SO+ will be converted to NH4sHSO4 with potentially
some leftover SO4%;

If there is an intermediate amount of NH4*, then a combination of NH4HSO4 and
(NHa)2SO4 will be obtained;

If there is a lot of NH4*, then SO4% will be completely converted to (NH4)2SOs;

o After all reactions between NH4* and SO4? occur, any remaining NH4* reacts with NOs-
to form NH4NOs.

Below we lay out the specifics of our approach:

Step 1: Calculate the mole ratio of NH4* to SO4?".

R = (NH} /18.03846)/(S02~/96.0626):

a) If R < 1 then we assume that a portion of SO,% converts to NH;HSO,
(SO4% + NHs* — NH4HSO,), while the rest remains as SO4*

- Resulting concentration of NH4HSO, is
15.109 - min{(NH} /18.03846), (SO;/96.0626)}

- Resulting concentration of remaining SO is
96.0626 - ((Soi‘/96.0626) - (NH1/18.03846))

b) If 1 < R < 2 then we assume that all SO+ converts to NHsHSO4

(SO4% + NHs" — NH4HSO4) and a portion of NHsHSO, converts to (NH4)2SO4
(NHsHSO4 + NH4" — (NH4)2.S0O.). The second reaction will occur if there is
enough NH4* remaining after the first reaction.

- Resulting concentration of NH4sHSO, is
115.109 - (2(SO37/96.0626) — (NH{ /18.03846))

- Resulting concentration of (NH4)2SO4 is
132.13952 - ((NH /18.03846) — (SO} /96.0626) )

c) If R > 2 then we assume that all SO4> converts to (NH4)2S04
(8042' + 2NHs" — (N H4)2SO4).

- Resulting concentration of (NH4).SOu4 is
132.13952 - (S037/96.0626)
- Resulting concentration of NH4* (remaining) is

18.03846 - ((NH;/18.03846) - 2(50?;/96.0626))
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Step 2: If NHs*remains after Step 1 (c), then NH4NOs formation can take place. The
number moles of NO3™ neutralized in this reaction will be:

moles of NO3 (neutralized)= min{(NH (remaining)/18.03846), (NO3 /62.0049)}.

Step 3: Particulate NH4NOs is stable at relatively low temperatures. Following prior
usage of the S-R Matrix (e.g., NOx SIP Call), we assume that nitrate converts to
ammonium nitrate only a quarter of the time (i.e., the winter months). The annual average
concentration of NH4sNOs formed by the neutralization process is therefore:

80.04336 - 0.25 - moles of NO; (neutralized).

Step 4: The concentration of PM2s at the destination county is estimated as the sum of
concentrations of primary PMzs, SOA, remaining SO4? (if any) and secondary
NHsHSO4, (NH4)2SO04, and NHsNOs:

PM, ; (total) = PM, ¢ (primary) + SOA
+S0%~ (remaining)
+NH,HSO, + (NH,),S0, + NH,NO,

Calibration of S-R Matrix Outputs to Monitoring Data

We calibrated the S-R Matrix model estimates to actual monitoring data obtained from EPA. The
county-level calibration factors were estimated using the 2011 emissions inventory from EPA’s
2011v6.2 platform and 2011 data from EPA Federal Reference Method (FRM) monitor sites and
EPA/National Park Service Visibility Interagency Monitoring of Protected Visual Environments
(IMPROVE) program monitor sites.?*

First, we used the S-R Matrix with the 2011 emissions inventory to estimate PM2s levels at the
center of each county. Second, we spatially interpolated the PM2.5 monitor data to generate a
monitor-based estimate for each county center as follows:

1. We pre-processed EPA motoring data to ensure that it did not contain any values flagged
as invalid and that minimum number of daily measurements per quarter was 11;%

2. We calculated quarterly average PM25s concentrations for all monitoring sites with
sufficient data;

3. For each quarter, we used an automatic kriging routine from R project package ‘automap’
(Hiemstra, 2012) to interpolate quarterly average PMz2s values to county centroids;

21 2011 daily PM2.5 monitoring data from EPA were downloaded at
http://agsdrl.epa.gov/agsweb/agstmp/airdata/download_files.html (U.S. EPA, 2011d).

22 The choice of 11 as the minimum number of site-days per valid quarter corresponds to > 75% completeness for
monitors on a 1 in 6 day schedule. This is a minimum number of samples that is routinely used in calculations of
quarterly average concentrations by EPA.
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4. At each county centroid we then average over the interpolated quarterly average PM2.s
values to generate an annual average PM:.s value.

We calculated a “calibration factor” for each county by dividing our monitor estimate by the
model estimate. These county-level calibration factors ranged from 0.16 to 3.53 with a mean
value of 0.91. For each state, Exhibit A-6 gives the average of the county-level monitor and
model values as well as the ratio of the two (the ratio being the average of the calibration

factors).

When calculating future year PM2s levels in COBRA, we use the calibration factors to adjust our
model estimate for each county in the following way:

PM, < (calibrated model, 2025 or 2017)

= PM, (model, 2025 or 2017) - <

ambient PM2s levels.

PM, ¢ (interpolated monitor, 2011)
PM, < (model, 2011) >
To sum up, the steps involved in the calculation of 2017 or 2025 ambient PMzs levels in
COBRA are the following. We start the process by running the CRDM model, which generates
the S-R Matrix transfer coefficients. Emissions data for 2011 are run through the S-R Matrix and
atmospheric chemistry calculations applied to generate un-calibrated 2011 model estimates.
Monitoring data for 2011 were interpolated to the county-level, and were then compared with the
2011 model estimates to generate calibration factors. Estimates of 2017 or 2025 ambient PM2s
levels can then be generated by running the 2017 or 2025 emissions data through the S-R Matrix.
The resulting 2017 or 2025 model PMz2s levels are then multiplied with the previously generated
county-level calibration factors to calculate a best estimate of the 2017 or 2025 calibrated

Exhibit A-6. Monitor and Model Average PM;s Levels (ug/m3) in 2011 and Average of Monitor to Model
Ratios by State

State Monitor Model Ratio |State Monitor Model Ratio

AL 10.99 16.97 0.65| MT 6.74 457 1.47
AZ 7.24 7.53 0.96] NE 7.18 7.44 0.97
AR 11.26 15.38 0.73] NV 8.00 4.70 1.70
CA 8.79 6.79 1.29] NH 7.26 8.66 0.84
CO 5.76 7.30 0.79] NJ 9.61 13.79 0.70
CT 8.91 11.32 0.79] NM 6.59 8.54 0.77
DE 9.74 11.63 0.84] NY 8.31 10.18 0.82
DC 9.97 20.26 0.49] NC 9.77 12.49 0.78
FL 9.32 12.85 0.73] ND 6.04 5.01 1.20
GA 10.98 17.94 0.61} OH 11.05 15.89 0.70
ID 7.66 6.03 1.27} OK 990 12.49 0.79
IL 11.45 12.45 0.92 OR 8.01 6.09 1.32
IN 11.59 14.31 0.81] PA 10.22 12.06 0.85
1A 9.91 8.94 1.1 RI 8.53 9.90 0.86
KS 8.51 9.88 0.86] SC 10.49 14.39 0.73
KY 11.22 13.58 0.83] SD 6.31 5.68 111
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LA 10.32 15.56 0.66] TN 11.09 13.28 0.83
ME 6.55 5.96 1.10| TX 9.52 10.74 0.89
MD  10.05 13.39 0.75 UT 6.54  6.13 1.07
MA 831 11.24 0.74 VT 6.86 7.61 0.90
Ml 8.04 9.89 0.81] VA 9.74 13.22 0.74
MN 7.60 8.98 0.85| WA 7.95 4.54 1.75
MS 10.81 16.00 0.68f WV  10.61 13.28 0.80
MO  10.88 12.64 0.86] WI 854 952 0.90

WY 487 6.19 0.79
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Appendix B: Derivation of Health Impact Functions

This appendix reviews the steps we performed in taking models from the epidemiological study
and converting them into health impact functions, which we then use to quantify the change in
adverse health effects due to a change in air pollution exposure. The most common functional
forms the log-linear and logistic, with a linear model used in some cases. All three are discussed
below.

Note that the log-linear and logistic generally produce comparable results, so the fact that some
health impacts are estimated with a logistic function and others with a log-linear function is not a
cause for concern. Indeed, in some circumstances, such as for small changes in air pollution, the
logistic and log-linear produce essentially the same result.

The Linear Model

A linear model between the adverse health effect, y, and the pollutant concentration, x, is of the
form

y=a+ f-X

A linear model includes the factors that are believed to affect the incidence of the health effect,
of which the pollutant would be one. So, the variable “a” in the linear function consists of all the
other independent variables in the regression, typically evaluated at their mean values, times
their respective coefficients.

The function describing the relationship between a change in x and the corresponding change in
incidence (rate) of the health effect from the baseline level (yb) to the post-control level (yc) is
then:

A=Y, =Y, =B (X —X )= AX

If y denotes an incidence rate, then Ay denotes the change in the incidence rate. If y denotes an
incidence count, then the £ is first divided the baseline study population to generate an incidence
rate. AX is the difference between the baseline level of the pollutant concentration and the
control level of the pollutant concentration: xo — Xc. (Note that typically a control strategy is
intended to decrease the pollutant levels, so we expect AX to be positive.) The expected number
of cases avoided would then be calculated by multiplying Ay by the relevant population:

CasesAvoided= - Ax- population

The coefficient, 8, and standard error of  (op) are reported directly in studies presenting results
from linear regression models.
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The Log-linear Model

The most commonly used functional form for criteria air pollutant concentration-response
functions is the log-linear model. It defines the relationship between x and y to be of the form:

y=B-exp(B-x)
or, equivalently,

In(y)=a+pB-x,
where the parameter B is the incidence (rate) corresponding to the zero pollutant concentration (x
= 0); the coefficient £ is the effect of pollutant x on the natural logarithm of the incidence (rate) y
—In(y); and a = In(B).?

Estimating Avoided Cases
The relationship between AX and Ay is:

AY =Y, — Y. = B(exp (Bx,)-exp (5x.))
This may be rewritten as:

where Yo is the baseline incidence (rate) of the health effect — i.e., the incidence (rate) before the
change in x. Ify is incidence rate rather than incidence count, then the change in incidence rate,
Ay, must be multiplied by the relevant population to get the expected number of cases avoided.
For example, if y denotes the annual number of cases of the adverse health effect per 100,000
population then the expected number of cases avoided is calculated as:

CasesAvoided= . population- 1_;
100,000 exp(3- Ax)

Estimating the Coefficient (8)

Epidemiological studies that estimate log-linear concentration-response functions often report a
relative risk for a specific Ax, rather than the coefficient, g, in the function itself. The relative
risk (RR) is simply the ratio of two risks corresponding to two levels of pollutant concentration —
the “high” risk ynigh (corresponding to the higher pollutant level, x = xnigh) and the lower risk yiow
(corresponding to the lower pollutant level, x = Xiow):

RR= Yhign
ylow

23 Other covariates besides pollution clearly affect mortality. The parameter B might be thought of as containing these
other covariates, for example, evaluated at their means. That is, B = Boexp{f1x1 + ... + SnXn}, Where B, is the incidence of y
when all covariates in the model are zero, and Xy, ... , Xn are the other covariates evaluated at their mean values. The
parameter B drops out of the model, however, when changes in y are calculated, and is therefore not important.
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Using the original log-linear function above, it can be shown that the relative risk associated with
a specific change in pollutant concentration of AX* = Xnigh — Xiow Can be written as

o = Yrigh _ exp(3- Ax*)

low

RR

Taking the natural log of both sides, the coefficient in the function underlying the relative risk
can be derived as:
In(RR)

P

Once the pollutant coefficient, S, has been calculated, the change in incidence (rate), Ay,
corresponding to any change in pollutant concentration, AX, can be calculated, using the
relationship between Ax and Ay given above, the baseline incidence (rate) and assessment
population.

There are instances when epidemiological studies report percent increase in the relative risk,
rather than relative risk itself. Given a reported x percent increase in the relative risk, we back-
calculate the relative risk as RR = 1 + x/100. Then we proceed to calculating 5 as described
above. Note that some epidemiological studies (see, e.g., Moolgavkar [2003]) further define x to
be log(RR) x 100. In these cases, our approach to computing the RR is an approximation,
although the error introduced is small. This approximation is consistent with EPA’s PM2s health
benefits model implemented in EPA’s BenMAP-CE.

Estimating the Standard Error of B8 (0p)

The standard error of £ (op) is not often directly reported in studies presenting results from log-
linear regression models. Results are most commonly presented as a relative risk and 95%
confidence interval. The 95% confidence interval is defined as follows:

Clggy, =00 (8- Ax£1.96 - ,AX)
Based on this equation, the standard error of S (o) can be estimated from the relative risk (RR),
upper limit of the 95% confidence interval (UL), and lower limit of the 95% confidence interval
(LL), as follows:

_ Buigo =B _(In(UL)/Ax~In(RR)/Ax) _ B—=Bow _ (IN(RR)/Ax—In(LL)/Ax)

O ;pinh — = d o = =
phish =9 96 1.96 AN Tpiow =1 96 1.96
- ﬂhigh _ﬂlow
or O-ﬂ =
3.2

Some studies report only a central effect estimate and t-statistic. The t-statistic describes the
strength of the observed pollutant-health effect association. It is defined as the ratio of the
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coefficient, j, to the standard error of f (o). The standard error of S (o) can, therefore, be
estimated from the t-statistic as follows:

The Logistic Model

In some epidemiological studies, a logistic model is used to estimate the probability of an
occurrence of an adverse health effect. Given a pollutant level, x, and a vector of other
explanatory variables, Z, the logistic model assumes the probability of an occurrence is:

exp(S-x)exp(a-2Z)
1+exp(B-x)exp(a-Z)’

y= P(Occurrence|ﬂ X, z):

where £ is the coefficient of the pollutant concentration, X, and « is a vector of coefficients of the
variables in the vector Z.2

Estimating Avoided Cases

The change in the probability of an occurrence (Ay) corresponding to a change in the level of the
pollutant from x» to Xc (= Ax), all other covariates held constant, may be derived from the original
C-R function above:

AY=Yy =Y =Y [1— : j
’ ’ ’ (1_ Yo ) eXp(ﬂ'AX)"' Yo

Once again, to calculate the expected number of avoided cases of the adverse effect, it is
necessary to multiply by the population:3

CasesAvoided=y, - population

Ll_ (- yb)-expl(ﬁ -AX)+ Y, J

Estimating the Coefficient (B)

The estimated pollutant coefficient, 3, in the original function is typically not reported in studies
that use the logistic model. Instead, the odds ratio (OR) corresponding to a specific change in x
is reported.

2 Greene (1997, Chapter 19) presents models with discrete dependent variables; in particular, page 874 presents the logit
model. See also Judge et al. (1985, p. 763).

% Note that because Ay here is a change in probability of occurrence (rather than a change in the rate per 100,000
population), it is necessary to multiply by the population rather than by the population/100,000.
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The odds of an occurrence is defined as:

Odds =
1-y
It can be shown that:

Odds :%:exp( X)exp(a-2Z)

The odds ratio is just the ratio of the odds when the pollutant is at a specified higher level, Xnigh,
to the odds when the pollutant is at a specified lower level, Xiow:

eXp(ﬁ' Xpigh )exp(a : Z) eXp(ﬂ * Xhigh )
- = =exp(f- Ax)

eXp(,B “Kiow )exp(a ’ Z) eXp(ﬂ ’ Xlow)
Often the odds ratio corresponding to a specified change in x, call it Ax*, is the only measure of
the effect of x reported from a study using a logistic model (just as the relative risk
corresponding to a specified change in x is often the only measure of the effect of x reported
from a study using a log-linear model). However, it is easy to calculate the underlying pollutant
coefficient, B, from the odds ratio as follows:

OR

In(OR)

AX*
Given the pollutant coefficient, 5, and the baseline probability of occurrence, yn, the change in
the probability, Ay, associated with any change in pollutant concentration, AX, can be derived
using the equation for Ay above. The expected number of avoided cases of the adverse effect is
then obtained by multiplying by the population.

OR|AX* —exp(B-Ax*) - In(OR)= B-Ax* - B =

Estimating the Standard Error of 8 (0g)

The standard error of £ (op) is not often directly reported in studies presenting results from
logistic regression models. Results are most commonly presented as an odds ratio and 95%
confidence interval. The 95% confidence interval is defined as follows:

Clg,, =X (ﬂ -AX£1.96 -aﬂAx)
Based on this equation, the standard error of § (o5) can be estimated from the odds ratio (OR),
upper limit of the 95% confidence interval (UL), and lower limit of the 95% confidence interval
(LL), as follows:

Brign =B (In(UL)/Ax —In(OR)/Ax) _ B—PBeow _(IN(OR)/Ax—In(LL)/Ax)

. = = d = =
Tphiah =7 95 1.96 ane Tpion =1 96 1.96
-~ ﬂyﬂgﬁgh_ﬁ%,low
=" 302 or
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Some studies report only a central effect estimate and t-statistic. The t-statistic describes the
strength of the observed pollutant-health effect association. It is defined as the ratio of the
coefficient, S, to the standard error of f (o). The standard error of 5 (o) can, therefore, be
estimated from the t-statistic as follows:

I
t

O'ﬂ=
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Appendix C: Health Impact Functions

A reduction in ambient PM2s levels is associated with reductions in a number of adverse health
effects, or “endpoints.” This appendix discusses the calculation of avoided adverse health effects.
The health impact functions in the COBRA model were prepared by Abt Associates in close
consultation with EPA and rely on an up-to-date assessment of the published scientific literature
to ascertain the relationship between particulate matter and adverse human health effects. We
evaluated studies using a variety of selection criteria, including: study location and design, the
characteristics of the study population, and whether the study was peer-reviewed (Exhibit C-1).

Exhibit C-1. Summary of Considerations Used in Selecting Studies

Consideration

Comments

Peer reviewed research

Study type

Study period

Study size

Study location

Measure of PM

Economically valuable
health effects

Non-overlapping
endpoints

Peer reviewed research is preferred to research that has not undergone the peer review
process.

Among studies that consider chronic exposure (e.g., over a year or longer) prospective
cohort studies are preferred over cross-sectional studies because they control for important
individual-level confounding variables that cannot be controlled for in cross-sectional
studies.

Studies examining a relatively longer period of time (and therefore having more data) are
preferred, because they have greater statistical power to detect effects. More recent
studies are also preferred because of possible changes in pollution mixes, medical care,
and life style over time.

Studies examining a relatively large sample are preferred because they generally have
more statistical power to detect small magnitude effects. A large sample can be obtained
in several ways, either through a large population, or through repeated observations on a
smaller population, e.g. through a symptom diary recorded for a panel of asthmatic
children.

U.S. studies are more desirable than non-U.S. studies because of potential differences in
pollution characteristics, exposure patterns, medical care system, population behavior and
life style.

For this analysis, C-R functions based on PM; s are preferred to those based on PM1g
(particulate matter less than 10 microns in aerodynamic diameter) because reductions in
emissions from diesel engines are expected to reduce fine particles and not have much
impact on coarse particles.

Some health effects, such as changes in forced expiratory volume and other technical
measurements of lung function, are difficult to value in monetary terms. These health
effects are therefore not quantified in this analysis.

Although the benefits associated with each individual health endpoint may be analyzed
separately, care must be exercised in selecting health endpoints to include in the overall
benefits analysis because of the possibility of double counting of benefits. Including
emergency room visits in a benefits analysis that already considers hospital admissions,
for example, will result in double counting of some benefits if the category "hospital
admissions" includes emergency room visits.

Model Selection

In many epidemiological studies of air pollution and health, researchers estimate and present
numerous single pollutant and multi-pollutant models for the same pollutant and health endpoint.
These models may differ from each other in a number of characteristics, including: the functional
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form of the model, the covariates included in the model, the pollutant exposure metric, the lag
structure, and the study population.

For the purposes of estimating health benefits associated with pollutant changes, it is neither
realistic nor advantageous to include every model presented in each study. However, it is
important that a relatively objective process be used to select from among models. Described
below are the criteria that were used as guidance in the selection of a particular model from
among several models presented in a study. It is not possible in all cases to select a model using a
completely objective and mechanical process. In many cases, professional judgment and an
understanding of the study context are necessary as well to select the most appropriate models.
Exhibit C-2 summarizes the selection criteria that we used.

Exhibit C-2. Description of Selection Criteria

Selection Criteria Description

Goodness-of-fit statistics If an appropriate measure of goodness of fit (i.e., how well the model fit the data)
is reported for each of several models in a study, then this measure may be used
as the basis on which to select a model.

Best captures distributed lag Select the model that appears to best capture a distributed lag effect, as described
below. If multiple single-lag models and/or moving average models are specified,
select the model with the largest effect estimate, all else equal.

Best set of control variables Select the model which includes temporal variables (i.e. season, weather patterns,
day of the week) and other known non-pollutant confounders, all else equal.
Select the model which uses the most sophisticated methods of capturing the
relationship between these variables and the dependent variable (e.g., affords the
most flexibility in fitting possible nonlinear trends).

Useful for health effects The model must be in a form that is useful for health effects modeling (e.g., the

modeling pollutant variable should be a continuous variable rather than a categorical
variable).

Sample size Select the model estimated with the larger sample size, all else equal.

Distributed Lag Effect

The question of lags and the problems of correctly specifying the lag structure in a model has
been discussed extensively (U.S. EPA, 2002, Section 8.4.4). In many time-series studies, after
the basic model is fit (before considering the pollutant of interest), several different lags are
typically fit in separate single-lag models and the most significant lag is chosen. The 2002 draft
PM2s CD notes that “while this practice may bias the chance of finding a significant association,
without a firm biological reason to establish a fixed pre-determined lag, it appears reasonable”
(U.S. EPA, 2002, p. 8-237).

There is recent evidence (Schwartz, 2000) that the relationship between PM2s and health effects
may best be described by a distributed lag (i.e., the incidence of the health effect on day n is
influenced by PM2s concentrations on day n, day n-1, day n-2 and so on). If this is the case, a
model that includes only a single lag (e.g., a 0-day lag or a 1-day lag) is likely to understate the
total impact of PM2.s. The 2002 draft PM2.s CD makes this point, noting that “if one chooses the
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most significant single lag day only, and if more than one lag day shows positive (significant or
otherwise) associations with mortality, then reporting a RR [relative risk] for only one lag would
also underestimate the pollution effects” (U.S. EPA, 2002, p. 8-241). The same may hold true for
other pollutants that have been associated with various health effects.

Several studies report similar models with different lag structures. For example, Moolgavkar
(2000a) studied the relationship between air pollution and respiratory hospital admissions in
three U.S. metropolitan areas. The author reports models with PM2.s lagged from zero to five
days. Since the lagging of PM2s was the only difference in the models and the relationship is
probably best described using a distributed lag model, any of single-lag effect estimates are
likely to underestimate the full effect. Therefore, we selected the model with the largest effect
estimate.

Pooling

There is often more than one study that has estimated a health impact function for a given
pollutant-health endpoint combination. Each study provides an estimate of the pollutant
coefficient, B, along with a measure of the uncertainty of the estimate. Because uncertainty
decreases as sample size increases, combining data sets is expected to yield more reliable
estimates of f, and therefore more reliable estimates of the incidence change predicted using .
Combining data from several comparable studies in order to analyze them together is often
referred to as meta-analysis.

For a number of reasons, including data confidentiality, it is often impractical or impossible to
combine the original data sets. Combining the results of studies in order to produce better
estimates of S provides a second-best but still valuable way to synthesize information. This is
referred to as pooling. Pooling ’s requires that all of the studies contributing estimates of 5 use
the same functional form for the health impact function. That is, the 5’s must be measuring the
same thing.

To be consistent with the recent EPA benefits analyses, COBRA uses a random-/ fixed- effects
pooling procedure (see U.S. EPA, 2009, p. 5-18), which is a method for weighting estimates
involving using their variances. Variance takes into account both the consistency of data and the
sample size used to obtain the estimate, two key factors that influence the reliability of results.
The method is based on DerSimonian and Laird (1986).

Fixed Effect Weights

The fixed effects model assumes that there is a single true concentration-response relationship
and therefore a single true value for the parameter $ that applies everywhere. Differences among
[’s reported by different studies are therefore simply the result of sampling error. That is, each
reported £ is an estimate of the same underlying parameter. The certainty of an estimate is
reflected in its variance (the larger the variance, the less certain the estimate). Fixed effects
pooling therefore weights each estimate under consideration in proportion to the inverse of its
variance:
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Where
N — number of studies;
[n — estimate provided by study n;
vn — variance of the estimate provided by study n;

[re — pooled fixed effects estimate.

Random- / Fixed- Effect Weights

An alternative to the fixed effects model is the random effects model, which allows the
possibility that the estimates fn from the different studies may in fact be estimates of different
parameters, rather than just different estimates of a single underlying parameter. In studies of the
effects of PM2s on hospitalizations for COPD, for example, if the composition of PM2s varies
among study locations the underlying relationship between the frequency of hospitalizations for
COPD and PM2s may be different from one study location to another. This would violate the
assumption of the fixed effects model.

It is possible to test whether it is appropriate to base the pooling on the random effects model (vs.
the fixed effects model). A test statistic, Qw, the weighted sum of squared differences of the
separate study estimates from the pooled estimate based on the fixed effects model fre, is
calculated as:

$ (8, - B,

Q, =
n=1 Vn

Under the null hypothesis that there is a single underlying parameter, 3, of which all the fn’s are
estimates, Qw has a chi-squared distribution with N-1 degrees of freedom. (Recall that N is the
number of studies in the meta-analysis.) If Qw is greater than the critical value corresponding to
the desired confidence level, the null hypothesis is rejected. That is, in this case the evidence
does not support the fixed effects model, and the random effects model is assumed, allowing the
possibility that each study is estimating a different 5. We use a five percent one-tailed test.

The random effect model-based pooling must take into account not only the within-study
variances (used in a meta-analysis based on the fixed effects model) but the between-study
variance as well. The between-study variance, 72, is given by:

. Q,-(N-1)
Pyl
>, - S,

n
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(i.e., if Qw < N-1), then #? is a negative number, and it is not possible to calculate a random

effects estimate. In this case, however, the small value of Qw would presumably have led to
accepting the null hypothesis described above, and the meta-analysis would be based on the
fixed effects model. The remaining discussion therefore assumes that #? is positive.

Given a value for #?, the random effects estimate is calculated in almost the same way as the
fixed effects estimate. However, the pooled estimate now incorporates both the within-study
variance (vn) and the between-study variance (°):

ﬂre:i Zﬁn /i 1

2
- +Vv - +V,

Where
N — number of studies;
[n — estimate provided by study n;
vn — variance of the estimate provided by study n;
n? — within-study variance;
[re — pooled random effects estimate.

The weighting scheme used in a pooling based on the random effects model is basically the same
as that used if a fixed effects model is assumed, but the variances used in the calculations are
different. This is because a fixed effects model assumes that the variability among the estimates
from different studies is due only to sampling error (i.e., each study is thought of as representing
just another sample from the same underlying population), while the random effects model
assumes that there is not only sampling error associated with each study, but that there is also
between-study variability — each study is estimating a different underlying . Therefore, the sum
of the within-study variance and the between-study variance yields an overall variance estimate.

Thresholds

Health impact functions have been developed with and without explicit thresholds. A threshold
means that air pollution levels below the specified threshold have no adverse health effects. In
some prior regulatory impact assessments (e.g., U.S. EPA, 2006) assumed a threshold of 10
ug/m3 for PM2s. However, EPA’s most current understanding of the scientific literature is that
there is no threshold in the relationship between PM2.s and adverse health impacts. In its recent
analysis of proposed NO:2 national ambient air quality standards, U.S. EPA (2009) used a no—
threshold model to calculate PM2.s co-benefits down to the lowest modeled PM2 s air quality
levels.

Following EPA's updated methodology, we also assume there is no threshold for modeling

PM:s-related health effects. This is supported by the National Research Council (2002) in its
review of methods for estimating the public health benefits of air pollution regulations. They
concluded that there is no evidence for any departure from linearity in the observed range of
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exposure to PMio or PM2s, nor is there any indication of a threshold. They cite the weight of
evidence available from both short- and long-term exposure models and the similar effects found
in cities with low and high ambient concentrations of PM2s. More recently, Schwartz et al
(2008) reached the same conclusion, finding a linear relationship between PM2.s and premature
mortality with no evidence of a threshold.

In addition, U.S. EPA completed an “expert elicitation” analysis in which it elicited opinions
from 12 experts (in epidemiology, toxicology, and medicine) on the nature of this relationship
(see: Industrial Economics Incorporated (IEc), 2006). The experts were asked how likely they
thought it is that the relationship between PM2s and mortality is causal, and if it is causal, what is
the functional form of the C-R relationship, including whether there is a threshold. Eleven of the
twelve experts thought that, although each individual may have a threshold, there is insufficient
empirical evidence for a threshold for the population, which is the entity of interest in a C-R
function. Only one expert did include the possibility of a population threshold, assigning a
probability of 50 percent to there being a threshold and, if there is a threshold, an 80 percent
chance that it is less than or equal to 5 pg/m? (which is below the level of PM2s observed in
epidemiological studies), and a 20 percent chance that it is between 5 and 10 pg/m3.
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Summary of Health Impact Functions Used in COBRA
In this Appendix, we present the health impact functions used to estimate PM2.s-related adverse
health effects. Exhibit C-3 summarizes the epidemiological studies in COBRA used to estimate
adverse health impacts of PM2s. Each sub-section has an exhibit with a brief description of the
health impact function and the underlying parameters. Following each exhibit, we present a brief
summary of each study and any information that is unique to that study.

Exhibit C-3. Epidemiological Studies Used to Estimate Adverse Health Impacts of PM,s

Endpoint Author Age
Mortality, All Cause Krewski et al. (2009) 30-99
Mortality, All Cause Lepeule et al. (2012) 25-99
Mortality, All Cause Woodruff et al. (1997) Infant
Acute Myocardial Infarction, Nonfatal Peters et al. (2001) 18-99
Acute Myocardial Infarction, Nonfatal Pope et al. (2006) 18-99
Acute Myocardial Infarction, Nonfatal Sullivan et al. (2005) 18-99
Acute Myocardial Infarction, Nonfatal Zanobetti and Schwartz (2006) 18-99
Acute Myocardial Infarction, Nonfatal Zanobetti et al. (2009) 18-99
HA, All Cardiovascular (less Myocardial Infarctions) Bell et al. (2008) 65-99
HA, All Cardiovascular (less Myocardial Infarctions) Moolgavkar (2000b) 18-64
HA, All Cardiovascular (less Myocardial Infarctions) Peng et al. (2008) 65-99
HA, All Cardiovascular (less Myocardial Infarctions) Peng et al. (2009) 65-99
HA, All Cardiovascular (less Myocardial Infarctions) Zanobetti et al. (2009) 65-99
HA, All Respiratory Zanobetti et al. (2009) 65-99
HA, All Respiratory Kloog et al. (2012) 65-99
HA, Asthma Babin et al. (2007) 0-17
HA, Asthma Sheppard (2003) 0-17
HA, Chronic Lung Disease Moolgavkar (2000a) 18-64
Emergency Room Visits, Asthma Mar et al. (2010) 0-99
Emergency Room Visits, Asthma Slaughter et al. (2005) 0-99
Emergency Room Visits, Asthma Glad et al. (2012) 0-99
Acute Bronchitis Dockery et al. (1996) 8-12
Asthma Exacerbation, Cough Mar et al. (2004) 6-18
Asthma Exacerbation, Cough Ostro et al. (2001) 6-18
Asthma Exacerbation, Shortness of Breath Mar et al. (2004) 6-18
Asthma Exacerbation, Shortness of Breath Ostro et al. (2001) 6-18
Asthma Exacerbation, Wheeze Ostro et al. (2001) 6-18
Minor Restricted Activity Days Ostro and Rothschild (1989) 18-64
Lower Respiratory Symptoms Schwartz and Neas (2000) 7-14
Upper Respiratory Symptoms Pope et al. (1991) 9-11
Work Loss Days Ostro (1987) 18-64

Note that Appendix B mathematically derives the standard types of health impact functions that
we encountered in the epidemiological literature, such as, log-linear, logistic and linear, so we
simply note here the type of functional form. Appendix D presents a description of the sources
for the incidence and prevalence data used in these health impact functions.
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Mortality

Health researchers have consistently linked air pollution, especially PM2s, with excess mortality.
Although a number of uncertainties remain to be addressed, a substantial body of published
scientific literature recognizes a correlation between elevated PM2.s concentrations and increased
mortality rates. Based on the scientific evidence, EPA’s Integrated Science Assessment
determined a causal relationship between PM2s and premature mortality
(http://www.epa.gov/ncea/isa/).

Both long- and short-term exposures to ambient levels of particulate matter air pollution have
been associated with increased risk of premature mortality. It is clearly an important health
endpoint because of the size of the mortality risk estimates, the serious nature of the effect itself,
and the high monetary value ascribed to avoiding mortality risk. Because of the importance of
this endpoint and the considerable uncertainty among economists and policymakers as to the
appropriate way to estimate PM-related mortality risks, this section discusses some of the issues
surrounding the estimation of premature mortality associated with PMzs.

Particulate matter has been linked with premature mortality in adults in multiple studies
throughout the world (Jerrett et al., 2005; Katsouyanni et al., 2001; Laden et al., 2006; Pope et
al., 2002; Samet, Dominici, Curriero, Coursac, & Zeger, 2000) as well as infants (Bobak &

Leon, 1999; Conceicao, Miraglia, Kishi, Saldiva, & Singer, 2001; Loomis, Castillejos, Gold,
McDonnell, & Borja-Aburto, 1999; Woodruff, Darrow, & Parker, 2008; Woodruff et al., 1997).
To estimate premature mortality in adults, we use an epidemiological analysis of the American
Cancer Society cohort by Krewski et al. (2009) and analysis of the Six-City cohort by Lepeule et
al. (2012). To estimate premature mortality in infants, we used a study by Woodruff et al. (1997).

Exhibit C-4. Health Impact Functions for Particulate Matter and All-Cause Mortality

Author Year Location Age Metric Beta Std Err Functional
Form
Krewski et al. 2009 116 U.S. 30-99 Annual 0.005827 0.000963  Log-linear
cities
Lepeule et al. 2012 6 Eastern 25-99 Annual 0.013103 0.003347  Log-linear
cities
Woodruff et al. 1997 86 cities 0-0 Annual 0.003922 0.001221  Logistic

Note that COBRA does not pool Krewski et al. (2009) and Lepeule et al. (2012) to estimate
premature mortality in adults. In recent analysis of proposed NO2 national ambient air quality
standards, U.S. EPA (2009) used Pope et al. (2002)?* and Laden et al. (2006) to estimate the
PMz2.s mortality-related co-benefits and presented the results separately for each study:

“These are logical choices for anchor points in our presentation because, while both
studies are well designed and peer reviewed, there are strengths and weaknesses inherent

24 Krewski et al. (2009) is an extended and updated analysis of Pope et al. (2002).
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in each, which we believe argues for using both studies to generate benefits estimates.
Previously, EPA had calculated benefits based on these two empirical studies, but derived
the range of benefits, including the minimum and maximum results, from an expert
elicitation of the relationship between exposure to PM2s and premature mortality (Roman
et al., 2008). Within this assessment, we include the benefits estimates derived from the
concentration-response function provided by each of the twelve experts to better
characterize the uncertainty in the concentration-response function for mortality and the
degree of variability in the expert responses. Because the experts used these cohort
studies to inform their concentration-response functions, benefits estimates using these
functions generally fall between results using these epidemiology studies (see Figure
5.9). In general, the expert elicitation results support the conclusion that the benefits of
PM2s control are very likely to be substantial.” p. 5-25.

Mortality, All Cause (Krewski et al., 2009)

This cohort study consists of approximately 360,000 participants residing in areas of the country
that have adequate monitoring information on levels of PM2s for 1980 and about 500,000
participants in areas with adequate information for 2000. The causes of death that were analyzed
included all causes, cardiopulmonary disease (CPD), ischemic heart disease (IHD), lung cancer,
and all remaining causes. Data for 44 personal, individual-level covariates, based on participants’
answers to a 1982 enrollment questionnaire, were also used for the analyses. The authors also
collected data for seven ecologic (neighborhood-level) covariates, each of which represents local
factors known or suspected to influence mortality, such as poverty level, level of education, and
unemployment (at both zip code and city levels). Long-term average exposure variables were
constructed for PM2s from monitoring data for two periods: 1979-1983 and 1999-2000. Similar
variables were constructed for long-term exposure to other pollutants of interest from single-year
(1980) averages, including total suspended particles, ozone, nitrogen dioxide, and sulfur dioxide.
Exposure was averaged for all monitors within a metropolitan statistical area (MSA) and
assigned to participants according to their Zip Code area (ZCA) of residence.

The authors chose the standard Cox proportional-hazards model (and a variation to allow for
random effects) to calculate hazard ratios for various cause-of-death categories associated with
the levels of air pollution exposure in the cohort. They extended the random effects Cox model
to accommodate two levels of information for clustering and for ecologic covariates. Three main
analyses were conducted: a Nationwide Analysis, Intra-Urban Analyses in the New York City
(NYC) and Los Angeles (LA) regions, and an analysis designed to investigate whether critical
time windows of exposure to pollutants might have affected mortality in the cohort. Using a
multi-pollutant model (O3, SO4, SO2, TSP, and PM25s), the authors reported a relative risk (1.06)
for all-cause mortality and the corresponding 95% confidence interval (95% CI: 1.04-1.08) for a
10 pg/m3 increase in the average of PM2s exposure level for 1999-2000 (Krewski et al., 2009,
Commentary Table 4). The results were adjusted for the 44 individual-level covariates and the 7
ecologic covariates at the MSA & DIFF levels.
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Functional Form: Log-linear

Coefficient: 0.005827

Standard Error: 0.000963

Incidence Rate: county-specific annual all-cause mortality rate per person ages 30 and older
Population: population of ages 30 and older

Mortality, All Cause (Lepeule et al., 2012)

Lepeule et al. (2012) is an extended and updated analysis of Laden et al. (2006). The authors
performed an extended mortality follow-up from 1979-2009 using data from the Harvard Six
Cities adult cohort study. They used annual city-specific PM2s concentrations and assigned for
each participant until death or censoring. The authors replicated the previously applied Cox
regression (as used in Laden et al., 2006), and examined different time lags, the shape of the
concentration—response relationship using penalized splines, and changes in the slope of the
relation over time. Then they conducted Poisson survival analysis with time-varying effects for
smoking, sex, and education. The authors found a significant increase in the overall mean
mortality associated with a 10-ug/m? increase in PM2s.

The coefficient and standard error are estimated from the relative risk (1.14) and 95% confidence
interval (1.07-1.22) associated with a 10-ug/m3 increase in PM2s (Lepeule et al., 2012, Table 2).

Functional Form: Log-linear

Coefficient: 0.013103

Standard Error: 0.003347

Incidence Rate: county-specific annual all-cause mortality rate per person ages 25 and older
Population: population of ages 25 and older

Infant Mortality (Woodruff et al., 1997)

In a study of four million infants in 86 U.S. metropolitan areas conducted from 1989 to 1991,
Woodruff et al. (1997) found a significant link between PM1o exposure in the first two months of
an infant’s life with the probability of dying between the ages of 28 days and 364 days. PM1o
exposure was significant for all-cause mortality. PM1o was also significant for respiratory
mortality in average birth-weight infants, but not low birth-weight infants.

The coefficient and standard error are based on the odds ratio (1.04) and 95% confidence interval
(1.02-1.07) associated with a 10 pg/m® change in PM1o (Woodruff et al., 1997, Table 3).

Functional Form: Logistic

Coefficient: 0.003922

Standard Error: 0.001221

Incidence Rate: county-specific annual post-neonatal? infant deaths per infant under the age of
one

Population: population of infants under one year old

% post-neonatal refers to infants that are 28 days to 364 days old.
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Non-Fatal Heart Attack

Non-fatal heart attacks have been linked with short-term exposures to PMzs in the U.S. (Peters et
al., 2001) and other countries (Poloniecki, Atkinson, de Leon, & Anderson, 1997).26 We used the
C-R functions reported in five studies as shown in Exhibit C-5.

The finding of a specific impact on heart attacks is consistent with hospital admission and other
studies showing relationships between fine particles and cardiovascular effects both within and
outside the U.S. These studies provide a weight of evidence for this type of effect. Several
epidemiological studies (Gold et al., 2000; Liao et al., 1999; Magari et al., 2001) have shown that
heart rate variability (an indicator of how much the heart is able to speed up or slow down in
response to momentary stresses) is negatively related to PM2s levels. Lack of heart rate
variability is a risk factor for heart attacks and other coronary heart diseases (Dekker et al., 2000;
Liao et al., 1997; Tsuji et al., 1996). As such, the reduction in heart rate variability due to PMz2s
is consistent with an increased risk of heart attacks.

Exhibit C-5. Health Impact Functions for Particulate Matter and Non-fatal Heart Attack

Author Year Location Age Metric Beta  Std Error Fulrzwgtrlrc:]nal
Peters et al. 2001  Boston, MA 18-99  24-hravg 0.024121 0.009285 Logistic
Greater Salt Lake L
Pope et al. 2006 City, Utah All 24-hr avg 0.00481  0.001992 Logistic
Sullivanetal. 2005  King County, All 24-hr avg 0.001980 0.002241 Logistic
Washington
Greater Boston
Zanobetti and area (Middlesex, .
Schwartz 2006 Norfolk, Suffolk All 24-hr avg 0.005300 0.002213 Logistic
Counties)
. 26 U.S. .
Zanobetti et al. 2009 . All 24-hr avg 0.00225  0.000592 Log-linear
Communities

COBRA reports two sets of incidence results: (1) incidence results based on C-R function from
Peters et al. (2001); (2) pooled incidence based on other four studies using random/fixed effects
pooling method.

Acute Myocardial Infarction (Heart Attacks), Nonfatal (Peters et al., 2001)
Peters et al. (2001) studied the relationship between increased particulate air pollution and onset
of heart attacks in the Boston area from 1995 to 1996. The authors used air quality data for PM1o,
PM1o0-25, PM2s, “black carbon”, O3, CO, NO2, and SOz in a case-crossover analysis. For each
subject, the case period was matched to three control periods, each 24 hours apart. In univariate
analyses, the authors observed a positive association between heart attack occurrence and PM2s
levels hours before and days before onset. The authors estimated multivariate conditional logistic
models including two-hour and twenty-four hour pollutant concentrations for each pollutant.
They found significant and independent associations between heart attack occurrence and both
two-hour and twenty-four hour PM2s concentrations before onset. Significant associations were

% Non-fatal heart attacks are considered chronic illness although they are related to short-term exposure because the
impact is long-lasting and this is reflected in its valuation (discussed in Appendix F).
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observed for PM1o as well. None of the other particle measures or gaseous pollutants was
significantly associated with acute myocardial infarction for the two hour or twenty-four hour
period before onset.

The patient population for this study was selected from health centers across the United States.
The mean age of participants was 62 years old, with 21% of the study population under the age
of 50. In order to capture the full magnitude of heart attack occurrence potentially associated
with air pollution and because age was not listed as an inclusion criteria for sample selection, we
apply an age range of 18 and over in the C-R function. According to the National Hospital
Discharge Survey, there were no hospitalizations for heart attacks among children <15 years of
age in 1999 and only 5.5% of all hospitalizations occurred in 15-44 year olds (Popovic, 2001,
Table 10).

The coefficient and standard error are calculated from an odds ratio of 1.62 (95% CI 1.13-2.34)
for a 20 ug/m3 increase in twenty-four hour average PM2s (Peters et al., 2001, Table 4, p. 2813).

Functional Form: Logistic

Coefficient: 0.024121

Standard Error: 0.009285

Incidence Rate: We use the county-specific daily AMI hospitalization rate (ICD-9 code 410) for
the population of individuals aged 18 years and older as the estimate for the incidence rate of
nonfatal heart attack, assuming all heart attacks that are not instantly fatal will result in a
hospitalization. We did not adjust for fatal AMIs in the incidence rate estimation, due to the way
that the epidemiological studies are designed. Those studies consider total admissions for AMIs,
which includes individuals living at the time the studies were conducted. Therefore, we use the
definition of AMI that matches the definition in the epidemiological studies.

Population: population of ages 18 and older

Adjustment: As some fraction of the admitted individuals die in the hospital, we apply a
survival rate of 93% in calculating the avoided cases of AMI in order to avoid double counting
(once in the calculation of AMI cases and once in the calculation of PM-related mortality).

Acute Myocardial Infarction (Heart Attacks), Nonfatal (Pope et al., 2006)

Pope et al. (2006) evaluated the association between short-term exposure to PM2sand acute
ischemic heart disease events, including acute nonfatal myocardial infarction, all acute coronary
events, and subsequent myocardial infarctions in individuals living in greater Salt Lake City,
Utah. In a case-crossover study, these ischemic events were assessed in relation to a 10 pg/m3
increase in PMzs.

Using a single-pollutant model the coefficient and standard error were estimated from the
percent increase (4.81%) and 95% confidence interval (95% CI: 0.98-8.79) for a 10 pg/m3
increase in daily 24-hour mean PM2s (Pope et al., 2006, Table 3).

Functional Form: Logistic
Coefficient: 0.00481
Standard Error: 0.001992
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Incidence Rate: We use the county-specific daily AMI hospitalization rate (ICD-9 code 410) for
the population of individuals aged 18 years and older as the estimate for the incidence rate of
nonfatal heart attack, assuming all heart attacks that are not instantly fatal will result in a
hospitalization. We did not adjust for fatal AMIs in the incidence rate estimation, due to the way
that the epidemiological studies are designed. Those studies consider total admissions for AMIs,
which includes individuals living at the time the studies were conducted. Therefore, we use the
definition of AMI that matches the definition in the epidemiological studies.

Population: The study examined population of all ages. We apply the results to people ages 18
and older. We apply the results to people of ages 18 and older. Since the vast majority of AMI
occur among population 65-99, over-counting may not be an issue when applying the risk
coefficient to 18+.

Adjustment: As some fraction of the admitted individuals die in the hospital, we apply a
survival rate of 93% in calculating the avoided cases of AMI in order to avoid double counting
(once in the calculation of AMI cases and once in the calculation of PM-related mortality).

Acute Myocardial Infarction (Heart Attacks), Nonfatal (Sullivan et al., 2005)

Sullivan et al. (2005) studied the relationship between onset time of acute myocardial infarction
and the preceding hourly PM2s concentrations in 5,793 confirmed cased of myocardial infarction
through King County, Washington. In this case-crossover study from 1988-1994, air pollution
exposure levels averaged 1 hour, 2 hours, 4 hours, and 24 hours before onset of myocardial
infarction were compared to a set of time-stratified referent exposures from the same day of the
week in the month of the case event. The authors estimated that an associated risk of 1.01 (95%
ClI: 0.98-1.05) for myocardial infarction onset could be attributed to a 10 pg/m3 increase in
PMz2. the hour before MI onset. No increased risk was found in all cases with preexisting cardiac
diseases with an odds ratio of 1.05 (95% CI: 0.95-1.16). Furthermore, stratification for
hypertension, diabetes, and smoking status did not modify the association between PM2.s and
onset of myocardial infarction.

Using a single-pollutant model, the coefficient and standard error were estimated from the odds
ratio (1.02) and 95% confidence interval (95% CI: 0.98-1.07) for a 10 ug/m3 increase in daily
24-hour mean PM2s lagged 1 day (Sullivan et al., 2005, Table 3).

Functional Form: Logistic

Coefficient: 0.001980

Standard Error: 0.002241

Incidence Rate: We use the county-specific daily AMI hospitalization rate (ICD-9 code 410) for
the population of individuals aged 18 years and older as the estimate for the incidence rate of
nonfatal heart attack, assuming all heart attacks that are not instantly fatal will result in a
hospitalization. We did not adjust for fatal AMIs in the incidence rate estimation, due to the way
that the epidemiological studies are designed. Those studies consider total admissions for AMIs,
which includes individuals living at the time the studies were conducted. Therefore, we use the
definition of AMI that matches the definition in the epidemiological studies.

Population: The study examined population of all ages. We apply the results to people ages 18
and older. We apply the results to people of ages 18 and older. Since the vast majority of AMI
occur among population 65-99, over-counting may not be an issue when applying the risk
coefficient to 18+.
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Adjustment: As some fraction of the admitted individuals die in the hospital, we apply a
survival rate of 93% in calculating the avoided cases of AMI in order to avoid double counting
(once in the calculation of AMI cases and once in the calculation of PM-related mortality).

Acute Myocardial Infarction (Heart Attacks), Nonfatal (Zanobetti &
Schwartz, 2006)?’

Zanobetti and Schwartz (2006) analyzed hospital admissions through emergency department for
myocardial infarction (ICD-9 code 410) and pneumonia (ICD-9 codes 480-487) for associations
with fine particulate air pollution, ozone, black carbon, nitrogen dioxide, PM2s not from traffic,
and CO in the greater Boston area from 1995-1999. The authors used a case-crossover analysis
with control days matched on temperature. Significant associations were detected for NO2 with a
12.7% increase 95% CI: 5.8-18.0), PM2s with an 8.6% increase (95% CI: 1.2-15.4), and black
carbon with an 8.3% increase (95% ClI: 0.2-15.8) in emergency myocardial infarction
hospitalizations. Similarly, significant associations were identified for PMz2.s with a 6.5%
increase (95% ClI: 1.1-11.4) and CO with a 5.5% increase (95% CI: 1.1-9.5) in pneumonia
hospitalizations.

Using a single-pollutant model, the coefficient and standard error are estimated from the percent
change in risk (8.65%) and 95% confidence interval (95% ClI: 1.22-15.38%) for a 16.32 ug/m?
increase in daily 24-hour mean PMzs for an average of the 0- and 1-day lag (Zanobetti &
Schwartz, 2006, Table 4).

Functional Form: Logistic

Coefficient: 0.005300

Standard Error: 0.002213

Incidence Rate: We use the county-specific daily AMI hospitalization rate (ICD-9 code 410) for
the population of individuals aged 18 years and older as the estimate for the incidence rate of
nonfatal heart attack, assuming all heart attacks that are not instantly fatal will result in a
hospitalization. We did not adjust for fatal AMIs in the incidence rate estimation, due to the way
that the epidemiological studies are designed. Those studies consider total admissions for AMIs,
which includes individuals living at the time the studies were conducted. Therefore, we use the
definition of AMI that matches the definition in the epidemiological studies.

Population: The study examined population of ages 65 and older. We apply the results to people
of ages 18 and older. Since the vast majority of AMI occur among population 65-99, over-
counting may not be an issue when applying the risk coefficient to 18+.

Adjustment: As some fraction of the admitted individuals die in the hospital, we apply a
survival rate of 93% in calculating the avoided cases of AMI in order to avoid double counting
(once in the calculation of AMI cases and once in the calculation of PM-related mortality).

Acute Myocardial Infarction (Heart Attacks), Nonfatal (Zanobetti et al., 2009)
Zanobetti et al. (2009) examined the relationship between daily PMzs levels and emergency
hospital admissions for cardiovascular causes, myocardial infarction, congestive heart failure,

27 The study looked at hospital admissions of AMI through ER. Under the assumption that all heart attacks will end
in hospitalization, we consider the endpoint as heart attack events to be consistent with other studies.
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respiratory disease and diabetes among 26 U.S. communities from 2000-2003. The authors used
meta-regression to examine how this association was modified by season- and community-
specific PM2.s composition while controlling for seasonal temperature as a substitute for
ventilation. Overall, the authors found that PM2.s mass higher in Ni, As, and Cr as well as Br and
organic carbon significantly increased its effects on hospital admissions. For a 10 ug/m3 increase
in 2-day averaged PM2s, a 1.89% (95% CI: 1.34-2.45) increase in cardiovascular disease
admissions, a 2.25% (95% CI: 1.10-3.42) increase in myocardial infarction admissions, a 1.85%
(95% CI: 1.19-2.51) increase in congestive heart failure admissions, a 2.74% (95% CI: 1.30-
4.20) increase in diabetes admissions, and a 2.07% (95% CI: 1.20-2.95) increase in respiratory
admissions were observed. The relationship between PM2sand cardiovascular admissions was
significantly modified when the mass of PM2swas high in Br, Cr, Ni, and sodium ions, while
mass high in As, Cr, Mn, organic carbon, Ni and sodium ions modified the myocardial infarction
relationship and mass high in As, orgarnic carbon, and sulfate ions modified the diabetes
admission rates.

Using a single-pollutant model, the coefficient and standard error are estimated from the percent
change in risk (2.25%) and 95% confidence interval (95% CI: 1.10-3.42) for a 10 ug/m? increase
in 2-day averaged PM2s (Zanobetti et al., 2009, Table 3).

Functional Form: Log-linear

Coefficient: 0.00225

Standard Error: 0.000592

Incidence Rate: We use the county-specific daily AMI hospitalization rate (ICD-9 code 410) for
the population of individuals aged 18 years and older as the estimate for the incidence rate of
nonfatal heart attack, assuming all heart attacks that are not instantly fatal will result in a
hospitalization. We did not adjust for fatal AMIs in the incidence rate estimation, due to the way
that the epidemiological studies are designed. Those studies consider total admissions for AMIs,
which includes individuals living at the time the studies were conducted. Therefore, we use the
definition of AMI that matches the definition in the epidemiological studies.

Population: The study examined population of ages 65 and older. We apply the results to people
of ages 18 and older. Since the vast majority of AMI occur among population 65-99, over-
counting may not be an issue when applying the risk coefficient to 18+.

Adjustment: As some fraction of the admitted individuals die in the hospital, we apply a
survival rate of 93% in calculating the avoided cases of AMI in order to avoid double counting
(once in the calculation of AMI cases and once in the calculation of PM-related mortality).

Hospitalizations

We include two main types of hospital admissions — respiratory (all respiratory, COPD, and
asthma) and cardiovascular (all cardiovascular less myocardial infarctions).

Respiratory and cardiovascular hospital admissions are the two broad categories of hospital
admissions that have been related to PMz2.s exposure. Although the benefits associated with
respiratory and cardiovascular hospital admissions are estimated separately in the analysis, the
methods used to estimate changes in incidence and to value those changes are the same for both
broad categories of hospital admissions.
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Due to the availability of detailed hospital admission and discharge records, there is an extensive
body of literature examining the relationship between hospital admissions and air pollution.
Because of this, we pooled some of the hospital admission endpoints, using the results from a
number of studies. Specifically, we used the following pooling procedure.

> For respiratory hospital admissions (HA): Babin et al. (2007) and Sheppard (2003) were
used to estimate C-R functions for asthma hospitalizations (ICD-9 code: 493) for ages 0-
17 in Washington D.C and Seattle, WA, respectively. We pooled the C-R functions from
these two studies using the random/fixed effects method. We then pooled results from
Zanobetti et al. (2009) and Kloog et al. (2012) using subjective weights pooling method
(i.e., 0.5 for each study) to estimate incidence for all-respiratory admissions for the
elderly (age 65 and up). We then aggregated incidence estimates from the following three
non-overlapping categories: (1) pooled asthma hospitalization (ages 0-17) from above,
(2) pooled all-respiratory admissions for the elderly (age 65 and up) from above, and (3)
COPD less asthma admissions for ages 18-64 from Moolgavkar (2000a).

» For HA for cardiovascular diseases less myocardial infarctions (ICD-9 codes: 390-409,
411-429): Peng et al. (2008) and Peng et al. (2009) reported C-R functions for people age
65 years and older in 108 U.S. counties and 119 U.S. urban counties, respectively. We
assigned equal weights to the estimates from these two studies (i.e., 0.5 for each study)
and used the weighted average. We then assigned a weight of 0.33 to the results from
each of two other studies that look at population of 65 years and older — Zanobetti et al.
(2009) and Bell et al. (2008) — and pooled these results with the pooled results from Peng
et al. (2008) and Peng et al. (2009).
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Exhibit C-6. Health Impact Functions for Particulate Matter and Hospital Admissions

Endpoint Author  Year Location Age  Metric Beta it FUTEHIOTE

Error Form
All Zanobetti et 2009 26 U.S. 65+ 24-hravg 0.00189  0.00028 Log-linear
Cardiovascular al. communities
(less AMI) 2
All Pengetal. 2008 108 U.S.counties 65+ 24-hravg 0.00071  0.00013  Log-linear
Cardiovascular
(less AMI) 2
All Pengetal. 2009 119 U.S.urban 65+ 24-hravg 0.00068  0.00021  Log-linear
Cardiovascular counties
(less AMI) 2
All Bell et al. 2008 202 US Counties 65+ 24-hravg 0.0008 0.00011  Log-linear
Cardiovascular
(less AMI) 2
All Moolgavkar 2000b Los Angeles, CA  18-64 24-hravg 0.0014 0.00034  Log-linear
Cardiovascular
(less AMI) 2
HA, All Zanobetti et 2009 26 U.S. 65+ 24-hravg 0.00207  0.00045 Log-linear
Respiratory® al. communities
HA, All Kloog etal. 2012 New England area 65+ 24-hravg 0.0007 0.00096  Log-linear
Respiratory® (6 states)
HA, Asthma®  Babinetal. 2007 Washington, D.C. 0-17 24-hravg 0.002 0.00434  Log-linear
HA, Asthma®  Sheppard 2003  Seattle, WA 0-17  24-hravg 0.00332  0.00104 Log-linear

HA, COPD" Moolgavkar 2000a Los Angeles, CA  18-64 24-hravg 0.0022 0.00073  Log-linear

2 These studies were pooled to generate pooled incidence estimates for cardiovascular hospital admissions.
b These studies were pooled to generate pooled incidence estimates for respiratory hospital admissions.

Hospital Admissions for All Cardiovascular (Bell et al., 2008)

Bell et al. (2008) evaluated the association between short-term exposure to PMz.s and the risk of
cardiovascular (ICD-9 codes 410-414, 26-427, 428, 429, 430-438, and 440-449) hospital
admissions among Medicare enrollees >65 years old varied by season and geographic region in
202 U.S. counties with populations greater than 200,000 from 1999-2005. Three time-series
models were used to provide three key variables: consistent PM2 s effects across the year,
different PM2s effects by season, and smoothly varying PM2s effects throughout the year. A
two-stage Bayesian hierarchical model was used to estimate the association between PM2s and
hospitalization rates, with the first stage estimating the association within a single county and the
second stage combining county-specific estimates to obtain national estimates. The authors
found statistically significant evidence of seasonal and regional variation. The strongest
association was for the northeast.

We use the national estimate for the all-year reported in Table 2 of Bell et al. (2008). The single

pollutant coefficient and standard error are calculated from the estimated 0.8 percent increase in

risk and 95% confidence interval (0.59-1.01 percent) for a 10 pg/m? increase in same-day (lag 0)
daily 24-hour mean PM2s (Bell et al., 2008, Table 2).

Note that Bell et al. (2008) considered a broader range of ICD-9 codes and estimated the risk of
both cardiovascular events and cerebro- and peripheral vascular disease. For comparability to
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other studies, EPA decided to apply a baseline hospitalization rate for ICD-9 codes 390-409 and
411-429 when using this C-R function in quantifying impacts.

Functional Form: Log-linear

Coefficient: 0.0008

Standard Error: 0.00011

Incidence Rate: county-specific daily hospital admission rate for all cardiovascular admissions
less AMI per person ages 65+ (ICD-9 codes 390-409, 411-429)

Population: population of ages 65+

Hospital Admissions for All Cardiovascular (Peng et al., 2008)

Peng et al. (2008) examined the risk of hospital admissions for cardiovascular diseases (ICD-9
codes 426-427, 428, 430-438, 410-414, 429, 440-448) in relation to particulate matter (PM1o-2.5
and PMzs). To accomplish this, the authors utilized a database of 108 U.S. counties with daily
emergency hospital admission rates for cardiovascular diseases among Medicare enrollees living
9 miles from air, temperature, and dew-point temperature monitors. PM1o-2.5 and PMz2s
concentrations were calculated by using monitoring data from January 1, 1999 through
December 31, 2005. Overall, there were 3.7 million cardiovascular disease-related hospital
admissions for the time period assessed. The authors found significant associations of PM2sand
PMao-25 with cardiovascular disease admissions.

In a single-pollutant model, the coefficient and standard error are calculated from the estimated
percent change in daily admission (0.44%) and 95% posterior interval (95% PI: 0.06-0.82%) for
a 10 pg/m3 increase in daily 24-hour mean PM2s concentrations for the same day (Peng et al.,
2008, page 2175).

Note that Peng et al. (2008) considered a broader range of ICD-9 codes and estimated the risk of
both cardiovascular events and cerebro- and peripheral vascular disease. For comparability to
other studies, EPA decided to apply a baseline hospitalization rate for ICD-9 codes 390-409 and
411-429 when using this C-R function in quantifying impacts.

Functional Form: Log-linear

Coefficient: 0.00071

Standard Error: 0.00013

Incidence Rate: county-specific daily hospital admission rate for all cardiovascular admissions
less AMI per person ages 65+ (ICD-9 codes 390-409, 411-429)

Population: population of ages 65+

Hospital Admissions for All Cardiovascular (Peng et al., 2009)

Peng et al. (2009) investigated the relationship between hospital admissions for cardiovascular
and the chemical components of PM25 across 119 U.S. urban communities for 12 million
Medicare enrollees using log-linear Poisson regression models. This was achieved using a
national database with daily data from 2000-2006 on emergency hospital admissions of
cardiovascular outcomes, ambient levels of PM2s components and weather variables. Bayesian
hierarchical statistical models were used to estimate the associations. Three scenarios for PM2s
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exposure were assessed which were as follows: 1) for the period 2000-2006 and including only
days with available measurements for all 7 PM2s components from the Speciation Trends
network (STN); 2) PM2s measured by the STN for the period 2000-2006 and including only
days with available measurements for all 7 PM2s components from the STN and 3) PM2s
estimated as the sum of the 7 largest components of PM2s mass for the period 2000-2006.
Results of percent increases in emergency admissions associated with PMzs at lag 0 under these
scenarios were showed in Figure 2 and the results for the components of PM2s from both single
and multi-pollutant models were showed in Figure 3.

In a single-pollutant model, the coefficient and standard error are calculated from the estimated
percent change in daily admission (0.68%) and 95% posterior interval (95% PI: 0.26-1.10%) for
a 10 pg/m3 increase in daily 24-hour mean PM2s concentrations for the same day (Peng et al.,
2009, page 960).

Note that Peng et al. (2008) considered a broader range of ICD-9 codes and estimated the risk of
both cardiovascular events and cerebro- and peripheral vascular disease. For comparability to
other studies, EPA decided to apply a baseline hospitalization rate for ICD-9 codes 390-409 and
411-429 when using this C-R function in quantifying impacts.

Functional Form: Log-linear

Coefficient: 0.00068

Standard Error: 0.00021

Incidence Rate: county-specific daily hospital admission rate for all cardiovascular admissions
less AMI per person ages 65+ (ICD-9 codes 390-409, 411-429)

Population: population of ages 65+

Hospital Admissions for All Cardiovascular (Zanobetti et al., 2009)

Zanobetti et al. (2009) examined the relationship between daily PM2s levels and emergency
hospital admissions for cardiovascular causes, myocardial infarction, congestive heart failure,
respiratory disease and diabetes among 26 U.S. communities from 2000-2003. The authors used
meta-regression to examine how this association was modified by season- and community-
specific PM2s composition while controlling for seasonal temperature as a substitute for
ventilation. Overall, the authors found that PM2s mass higher in Ni, As, and Cr as well as Br and
organic carbon significantly increased its effects on hospital admissions. The relationship
between PM2s and cardiovascular admissions was significantly modified when the mass of PMz.s
was high in Br, Cr, Ni, and sodium ions, while mass high in As, Cr, Mn, organic carbon, Ni and
sodium ions modified the myocardial infarction relationship and mass high in As, orgarnic
carbon, and sulfate ions modified the diabetes admission rates.

The single-pollutant coefficient and standard error are calculated from the estimated percent
change in risk (1.89 percent) and 95% confidence interval (1.34-2.45) for a 10 pg/m? increase in
2-day averaged PM2s (Zanobetti et al., 2009, Table 3).

Note that Zanobetti et al. (2009) report results for ICD-9 codes 390-429. In the benefit analysis,
avoided nonfatal heart attacks are estimated separately. In order to avoid double counting heart
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attack hospitalizations, we have excluded ICD-9 code 410 from the baseline incidence rate used
in this function.

Functional Form: Log-linear

Coefficient: 0.00189

Standard Error: 0.00028

Incidence Rate: county-specific daily hospital admission rate for all cardiovascular admissions
less AMI per person ages 65+ (ICD-9 codes 390-409, 411-429)

Population: population of ages 65+

Hospital Admissions for All Cardiovascular (Moolgavkar, 2000b)

Moolgavkar (2000b) examined the association between air pollution and cardiovascular hospital
admissions (ICD-9 390-448) in the Chicago, Los Angeles, and Phoenix metropolitan areas. He
collected daily air pollution data for ozone, SO2, NO2, CO, and PMo in all three areas. PM25
data was available only in Los Angeles. The data were analyzed using a Poisson regression
model with generalized additive models to adjust for temporal trends. Separate models were run
for 0 to 5 day lags in each location. In a single pollutant model, PM2.s was statistically significant
for lag 0 and lag 1. In co-pollutant models with CO, the PM2s effect dropped out and CO
remained significant. For ages 20-64, SOz and CO exhibited the strongest effect and any PM2s
effect dropped out in co-pollutant models with CO. Among the 65+ age group, the gaseous
pollutants generally exhibited stronger effects than PM1o or PM2s. The strongest overall effects
were observed for SOz and CO.

The single pollutant coefficient and standard error are calculated from an estimated percent
change of 1.4 and t-statistic of 4.1 for a 10 pg/m® increase in PM2s in the zero lag model for ages
18-64 (Moolgavkar, 2000b, Table 4).

Note that Moolgavkar (2000b) reported results that include ICD-9 code 410 (heart attack). In the
benefits analysis, avoided nonfatal heart attacks are estimated separately. In order to avoid
double counting heart attack hospitalizations, we have excluded ICD-9 code 410 from the
baseline incidence rate used in this function.

Functional Form: Log-linear

Coefficient: 0.0014

Standard Error: 0.000341

Incidence Rate: county-specific daily hospital admission rate for all cardiovascular admissions
per person ages 18 to 64 (1CD-9 codes 390-409, 411-429)

Population: population of ages 18 to 64

Hospital Admissions for All Respiratory (Zanobetti et al., 2009)

Zanobetti et al. (2009) examined the relationship between daily PM2s levels and emergency
hospital admissions for cardiovascular causes, myocardial infarction, congestive heart failure,
respiratory disease and diabetes among 26 U.S. communities from 2000-2003. The authors used
meta-regression to examine how this association was modified by season- and community-
specific PM2s composition while controlling for seasonal temperature as a substitute for
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ventilation. Overall, the authors found that PM2s mass higher in Ni, As, and Cr as well as Br and
organic carbon significantly increased its effects on hospital admissions. The relationship
between PM2s and cardiovascular admissions was significantly modified when the mass of PM2.s
was high in Br, Cr, Ni, and sodium ions, while mass high in As, Cr, Mn, organic carbon, Ni and
sodium ions modified the myocardial infarction relationship and mass high in As, orgarnic
carbon, and sulfate ions modified the diabetes admission rates.

In a single-pollutant model, the coefficient and standard error are estimated from the percent
change in risk (2.07%) and 95% confidence interval (1.2% - 2.95%) for a 10 pg/m? increase in 2-
day averaged PM2.5 (Zanobetti et al., 2009, Table 3).

Functional Form: Log-linear

Coefficient: 0.00207

Standard Error: 0.00045

Incidence Rate: county-specific daily hospital admission rate for all respiratory admissions per
person ages 65+ (ICD-9 codes 460 - 519)

Population: population of ages 65+

Hospital Admissions for All Respiratory (Kloog et al., 2012)

Kloog et al. (2012) investigated both the long and short term effects of PM2.s exposure on
hospital admissions across New England for all residents aged 65 and older. The authors
performed separate Poisson regression analysis for each admission type: all respiratory,
cardiovascular disease (CVD), stroke and diabetes. Daily admission counts in each zip code were
regressed against long and short-term PM2.5 exposure, temperature, socio-economic data and a
spline of time to control for seasonal trends in baseline risk. They observed associations between
both short-term and long-term exposure to PM2s and hospitalization for all of the outcomes
examined.

In a single-pollutant model, the coefficient and standard error are estimated from the percent
change in risk (0.70%) and 95% confidence interval (0.35% - 0.52%) for a 10 pg/m? increase in
short-term (same day) PM2.s exposure (Kloog et al., 2012, Table 3).

Functional Form: Log-linear

Coefficient: 0.0007

Standard Error: 0.00096

Incidence Rate: county-specific daily hospital admission rate for all respiratory admissions per
person ages 65+ (ICD-9 codes 460 - 519)

Population: population of ages 65+

Hospital Admissions for Asthma (Sheppard, 2003)

Sheppard et al. (1999) studied the relation between air pollution in Seattle and nonelderly (<65)
hospital admissions for asthma from 1987 to 1994. They used air quality data for PM1o, PM2s5,
coarse PMio-25, SO2, 0zone, and CO in a Poisson regression model with control for time trends,
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seasonal variations, and temperature-related weather effects.?® They found asthma hospital
admissions associated with PMio, PM25s, PMio-2.5, CO, and ozone. They did not observe an
association for SO2. They found PM2.s and CO to be jointly associated with asthma admissions.
The best fitting co-pollutant models were found using ozone. However, ozone data was only
available April through October, so they did not consider ozone further. For the remaining
pollutants, the best fitting models included PM2s and CO. Results for other co-pollutant models
were not reported.

In response to concerns that the work by Sheppard et al. (1999) may be biased because of
concerns about the (S-plus) software used in the original analysis, Sheppard (2003) reanalyzed
some of this work; in particular Sheppard reanalyzed the original study’s PM2s single pollutant
model.

The coefficient and standard error are based on the relative risk (1.04) and 95% confidence
interval (1.01-1.06) for a 11.8 ug/m? increase in PM2s in the 1-day lag GAM stringent model
(Sheppard, 2003, pp 228-299).

Functional Form: Log-linear

Coefficient: 0.003324

Standard Error: 0.001045

Incidence Rate: county-specific daily hospital admission rate for asthma admissions per person
(ICD-9 code 493)

Population: population of ages 0 -172°

Hospital Admissions for Asthma (Babin et al., 2007)

Babin et al. (2007) examined pediatric asthma-related emergency room (ER) visits and hospital
admissions (ICD-9 code 493) in Washington, D.C. from 2001-2004 and their short-term
associations with ozone, particulate matter, socioeconomic status, and age group. Applying
Poisson regression analyses, the authors found significant associations between asthma ER visits
and outdoor ozone concentrations for the 5-12 year old age group. The association between
PMz25 and asthma hospitalization was found statistically insignificant.

The single pollutant coefficient and standard error are calculated from the estimated percent
increase in risk (0.2 percent) and 95% confidence interval (-0.6 — 0.1 percent) for a 1 ug/m?®
increase in same-day (lag 0) daily 24-hour mean PM2s based on single-pollutant models (Babin
et al., 2007, Table 2).

Functional Form: Log-linear

Coefficient: 0.002

Standard Error: 0.00434

Incidence Rate: county-specific daily hospital admission rate for asthma admissions per person
(1CD-9 code 493)

28 PM, 5 levels were estimated from light scattering data.
2 Although Sheppard (2003) reports results for the <65 year old age range, for comparability to other studies, we
apply the results to the population of ages 0 to 17.
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Population: population of ages 0 -17

Hospital Admissions for Chronic Lung Disease (Moolgavkar, 2000a)

Moolgavkar (2000a) examined the association between air pollution and COPD hospital
admissions (ICD-9 490-496) in the Chicago, Los Angeles, and Phoenix metropolitan areas. He
collected daily air pollution data for ozone, SO2, NO2, CO, and PMuo in all three areas. PM2s
data was available only in Los Angeles. The data were analyzed using a Poisson regression
model with generalized additive models to adjust for temporal trends. Separate models were run
for 0 to 5 day lags in each location. Among the 65+ age group in Chicago and Phoenix, weak
associations were observed between the gaseous pollutants and admissions. No consistent
associations were observed for PMao. In Los Angeles, marginally significant associations were
observed for PMz.s, which were generally lower than for the gases. In co-pollutant models with
CO, the PM2; effect was reduced. Similar results were observed in the 0-19 and 20-64 year old
age groups.

The PM25s C-R functions for the 20-64 age group are based on the single-pollutant model. Since
the true PM2 5 effect is most likely best represented by a distributed lag model, any single lag
model should underestimate the total PM2s effect. As a result, we selected the lag models with
the greatest effect estimates for use in the C-R functions.

The single pollutant coefficient and standard error are calculated from an estimated percent
change of 2.2 and t-statistic of 3.0 for a 10 pg/m? increase in PM2 in the two-day lag model
(Moolgavkar, 2000a, Table 4).

Functional Form: Log-linear

Coefficient: 0.0022

Standard Error: 0.000733

Incidence Rate: county-specific daily hospital admission rate for chronic lung disease
admissions per person 18-64 (ICD-9 codes 490-496)

Population: population of ages 18 to 64%

30 Although Moolgavkar (2000a) reports results for the 20-64 year old age range, for comparability to other studies,
we apply the results to the population of ages 18 to 64.
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Emergency Room Visits

To estimate the effects of PM2 air pollution reductions on asthma-related ER visits, we use the
C-R functions based on Mar et al. (2010), Slaughter et al. (2005) and Glad et al. (2012). COBRA
estimates the incidence results for ER visits by pooling these three studies using random/fixed
pooling method. Exhibit C-7 below summarizes the attributes of the C-R functions used in
COBRA.

Exhibit C-7. Health Impact Functions for Particulate Matter and Emergency Room Visits

Author Year Location Age Metric Beta Std Error Fulrzmgtrlr(:]nal
Mar et al. 2010  Greater Tacoma, 0-99 24-hravg 0.0056 0.0021 Log-linear
Washington
Slaughter et 2005  Spokane, Washington 0-99  24-hr avg 0.0029 0.0027 Log-linear
al.
Glad et al. 2012  Pittsburgh, PA 0-99  24-hravg 0.0039 0.0028 Logistic

Emergency Room Visits for Asthma (Mar et al., 2010)

Mar et al. (2010) assessed the effect of particulate matter air pollution, including emissions from
diesel generators, on emergency room visits for asthma in the greater Tacoma, Washington area
from January 3, 1998 to May 30, 2002 using Poisson regression models. Health data were
collected for individuals of all ages from 6 Tacoma hospitals. The authors also assessed the
impacts of diesel generator use on emergency room visits for asthma from January 24, 2001 to
June 2, 2001. Overall, the researchers found an association between daily PM2 levels and
emergency room visits for asthma at lag days 2 and 3, with a relative risk for lag day 2 of 1.04
(95% CI: 1.01-1.07) and a relative risk for lag day 3 of 1.03 (95% CI: 1.0-1.06). No significant
association between emergency room visits for asthma and increased use of the diesel generators
was observed.

In a single-pollutant model, the PM2s coefficient and standard error are estimated from the
relative risk (1.04) and 95% confidence interval (95% CI: 1.01-1.07) for a 7 ug/m3 increase in
daily 24-hour mean PM25 at lag day 2 (Mar et al., 2010, Table 4).

Functional Form: Log-linear

Coefficient: 0.0056

Standard Error: 0.0021

Incidence Rate: county-specific daily asthma emergency room rate per person (The study didn’t
report ICD-9 code but we assume ICD-9 code 493)

Population: population of all ages

Emergency Room Visits for Asthma (Slaughter et al., 2005)

Slaughter et al. (2005) examined the short-term association of particulate matter (PM1, PM2s,
PM1o, and PM1o-25) and carbon monoxide with hospital admissions and emergency room visits
for respiratory and cardiac outcomes and mortality in Spokane, Washington from January 1995
to June 2001 using a log-linear generalized linear model. The authors found no association
between respiratory emergency room visits and any size fraction of PM2.s, but there was a
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suggestive relationship between fine PM2s and respiratory effects when compared to coarse
PM2s. No association between cardiac hospital admissions or mortality and any size fraction of
PM2.5 or CO was observed at the 0- to 3-day lag. CO, on the other hand, was found to be
associated with all respiratory emergency room visits and visits for asthma at the 3-day lag.

In a single-pollutant model, the coefficient and standard error are estimated from the relative risk
(1.03) and 95% confidence interval (95% CI: 0.98-1.09) for a 10 pg/m3 increase in daily 24-hour
mean PM2s at 1-day lag (Slaughter et al., 2005, Table 4).

Functional Form: Log-linear

Coefficient: 0.0029

Standard Error: 0.0027

Incidence Rate: county-specific daily asthma emergency room rate per person (ICD-9 code 493)
Population: population of all ages

Emergency Room Visits for Asthma (Glad et al., 2012)

Glad et al. (2012) investigated the relationship between air pollution and emergency department
(ED) visits for asthma in the Pittsburgh, Pennsylvania area between 2002 and 2005 using a case-
crossover methodology with a logistical model. The authors found a 2.5% increase in asthma ED
visits for each 10 ppb increase in the 1-hour maximum ozone level on day 2 (odds ratio [OR] =
1.025, p <.05). Particulate matter with an aerodynamic diameter <2.5 pm (PM25) had an effect
both on the total population on day 1 after exposure (1.036, p < .05), and on African Americans
ondays 1, 2, and 3. PM2s had no significant effect on Caucasian Americans alone. The disparity
in risk estimates by race may reflect differences in residential characteristics, exposure to
ambient air pollution, or a differential effect of pollution by race.

In a single-pollutant model, the coefficient and standard error are estimated from the relative risk
(1.040) and 95% confidence interval (95% CI: 0.984-1.100) for a 10 pg/m? increase 6-day
average of daily PM25 (Glad et al., 2012, Table 3).

Functional Form: Logistic

Coefficient: 0.0039

Standard Error: 0.0028

Incidence Rate: county-specific daily asthma emergency room rate per person (ICD-9 code 493)
Population: population of all ages
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Minor Effects

We include functions to estimate acute bronchitis, lower respiratory symptoms, minor restricted
days, and work loss days.

Exhibit C-8. Health Impact Functions for Particulate Matter and Acute Effects

Std Functional

i i i Beta
Endpoint Name Author  Year Location Age  Metric S Form

Minor Restricted  Ostro & 1989 Nationwide 18-64 24-hravg 0.007410 0.000700 Log-linear
Activity Days Rothschild

Acute Bronchitis  Dockery et 1996 24 communities 8-12  Annual  0.027212 0.017096 Logistic
al.
Work Loss Days  Ostro 1987 Nationwide 18-64 24-hravg 0.004600 0.000360 Log-linear

Lower Respiratory Schwartz 2000 6 U.S. cities 7-14  24-hravg 0.019012 0.006005 Logistic
Symptoms and Neas

Acute Bronchitis (Dockery et al., 1996)

Dockery et al (1996) examined the relationship between PM2s and other pollutants on the
reported rates of asthma, persistent wheeze, chronic cough, and bronchitis, in a study of 13,369
children ages 8-12 living in 24 communities in U.S. and Canada. Health data were collected in
1988-1991, and single-pollutant models were used in the analysis to test a number of measures of
particulate air pollution. Dockery et al. found that annual level of sulfates and particle acidity
were significantly related to bronchitis, and PM2.1 and PM1o were marginally significantly related
to bronchitis.®* They also found nitrates were linked to asthma, and sulfates linked to chronic
phlegm. It is important to note that the study examined annual pollution exposures, and the
authors did not rule out that acute (daily) exposures could be related to asthma attacks and other
acute episodes. Earlier work, by Dockery et al. (1989), based on six U.S. cities, found acute
bronchitis and chronic cough significantly related to PM15. Because it is based on a larger
sample, the Dockery et al (1996) study is the better study to develop a C-R function linking
PMz2.s with bronchitis.

Bronchitis was counted in the study only if there were “reports of symptoms in the past 12
months” (Dockery et al., 1996, p. 501). It is unclear, however, if the cases of bronchitis are acute
and temporary, or if the bronchitis is a chronic condition. Dockery et al. found no relationship
between PM2s and chronic cough and chronic phlegm, which are important indicators of chronic
bronchitis. For this analysis, we assumed that the health impact function based on Dockery et al.
IS measuring acute bronchitis. The health impact function is based on results of the single
pollutant model reported in Table 1.

The estimated logistic coefficient and standard error are based on the odds ratio (1.50) and 95%
confidence interval (0.91-2.47) associated with being in the most polluted city (PM21 = 20.7

31 The original study measured PM21, however when using the study's results we use PM2s. This makes only a negligible
difference, assuming that the adverse effects of PM2.1 and PM2s are comparable.
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ug/m3) versus the least polluted city (PM21 = 5.8 ug/m®) (Dockery et al., 1996, Tables 1 and 4).
The original study used PM2.1, however, we use the PM2.1 coefficient and apply it to PM2s data.

Functional Form: Logistic

Coefficient: 0.027212

Standard Error: 0.017096

Incidence Rate: annual bronchitis incidence rate per person in 2010 = 0.043 (American Lung
Association, 2013, Table 11)

Population: population of ages 8-12

Lower Respiratory Symptoms (Schwartz & Neas, 2000)

Schwartz and Neas (2000) used logistic regression to link lower respiratory symptoms and cough
in children with coarse PM1o, PM2s, sulfate and H+ (hydrogen ion). Children were selected for
the study if they were exposed to indoor sources of air pollution: gas stoves and parental
smoking. The study enrolled 1,844 children into a year-long study that was conducted in
different years (1984 to 1988) in six cities. The students were in grades two through five at the
time of enrollment in 1984. By the completion of the final study, the cohort would then be in the
eighth grade (ages 13-14); this suggests an age range of 7 to 14.

The coefficient and standard error are calculated from the reported odds ratio (1.33) and 95%
confidence interval (1.11-1.58) associated with a 15 pg/m® change in PM2s (Schwartz & Neas,
2000, Table 2).

Functional Form: Logistic

Coefficient: 0.01901

Standard Error: 0.006005

Incidence Rate: daily lower respiratory symptom incidence rate per person = 0.0012 (Schwartz
etal., 1994, Table 2).

Population: population of ages 7 to 14

Minor Restricted Activity Days (Ostro and Rothschild, 1989)

Ostro and Rothschild (1989) estimated the impact of PM2.s and ozone on the incidence of minor
restricted activity days (MRADS) and respiratory-related restricted activity days (RRADS) in a
national sample of the adult working population, ages 18 to 65, living in metropolitan areas2
The annual national survey results used in this analysis were conducted in 1976-1981.
Controlling for PM2s, two-week average ozone has highly variable association with RRADs and
MRADs. Controlling for ozone, two-week average PM2.s was significantly linked to both health
endpoints in most years.3 The health impact function for PM2s is based on this co-pollutant
model.

32 The study population is based on the Health Interview Survey (HIS), conducted by the National Center for Health
Statistics. In publications from this ongoing survey, non-elderly adult populations are generally reported as ages 18-64.
From the study, it is not clear if the age range stops at 65 or includes 65 year olds. We apply the health impact function to
individuals ages 18-64 for consistency with other studies estimating impacts to non-elderly adult populations.

33 The study used a two-week average pollution concentration; the health impact function uses a daily average, which is
assumed to be a reasonable approximation.
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The study is based on a “convenience” sample of non-elderly individuals. Applying the health
impact function to this age group is likely a slight underestimate, as it seems likely that elderly
are at least as susceptible to PM2s as individuals under 65.

Using the results of the two-pollutant model (Os and PMz.s), we developed separate coefficients
for each year in the analysis, which were then combined for use in this analysis. The coefficient
is a weighted average of the coefficients in Ostro and Rothschild (1989, Table 4) using the
inverse of the variance as the weight:
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The standard error of the coefficient is calculated as follows, assuming that the estimated year-
specific coefficients are independent:
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This reduces down to:

o, =}y =0.00070

Functional Form: Log-linear

Coefficient: 0.00741

Standard Error: 0.00070

Incidence Rate: daily incidence rate for minor restricted activity days (MRAD) = 0.02137
(Ostro & Rothschild, 1989, p. 243).

Population: adult population ages 18 to 64

Work Loss Days (Ostro, 1987)

Ostro (1987) estimated the impact of PM2s on the incidence of work-loss days (WLDs),
restricted activity days (RADs), and respiratory-related RADs (RRADS) in a national sample of
the adult working population, ages 18 to 65, living in metropolitan areas.® The annual national
survey results used in this analysis were conducted in 1976-1981. Ostro reported that two-week
average PMzs levels®® were significantly linked to work-loss days, RADs, and RRADs, however
there was some year-to-year variability in the results. Separate coefficients were developed for

34 The study population is based on the Health Interview Survey (HIS), conducted by the National Center for Health
Statistics. In publications from this ongoing survey, non-elderly adult populations are generally reported as ages 18-64.
From the study, it is not clear if the age range stops at 65 or includes 65 year olds. We apply the health impact function to
individuals ages 18-64 for consistency with other studies estimating impacts to non-elderly adult populations.

35 The study used a two-week average pollution concentration; the health impact function uses a daily average, which is
assumed to be a reasonable approximation.
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each year in the analysis (1976-1981); these coefficients were pooled. The coefficient used in the
concentration-response function presented here is a weighted average of the coefficients in Ostro
(1987, Table 3) using the inverse of the variance as the weight.

The study is based on a “convenience” sample of non-elderly individuals. Applying the health
impact function to this age group is likely a slight underestimate, as it seems likely that elderly
are at least as susceptible to PM2s as individuals under 65. On the other hand, the number of
workers over the age of 65 is relatively small; it was approximately 3% of the total workforce in
2001 (U.S. Bureau of the Census, 2002).

The coefficient used in the health impact function is a weighted average of the coefficients in
Ostro (1987, Table 3) using the inverse of the variance as the weight:
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The standard error of the coefficient is calculated as follows, assuming that the estimated year-
specific coefficients are independent:
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This eventually reduces down to:

o, =Yy =0.00036
Functional Form: Log-linear
Coefficient: 0.0046
Standard Error: 0.00036
Incidence Rate: daily work-loss-day incidence rate per person ages 18 to 64 = 0.00595 (Adams,
Hendershot, & Marano, 1999, Table 41; U.S. Bureau of the Census, 1997, No. 22)
Population: adult population ages 18 to 64
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Asthma-Related Effects

We pool the results of studies by Ostro et al. (2001) and Mar et al. (2004) to get an estimate of
asthma exacerbation in asthmatics. In addition to the lower respiratory estimate, we include an
upper respiratory estimate based on a study by Pope et al. (1991).

Exhibit C-9. Health Impact Functions for Particulate Matter and Asthma-Related Effects

Endpoint Name Author Year Location Age  Metric Beta Std Functiona
Error | Form

Asthma Exacerbation, Ostro 2001 Los 6-18  24-hravg 0.000985 0.000747 Logistic
Cough et al. Angeles,

CA
Asthma Exacerbation, Ostro 2001 Los 6-18  24-hravg 0.002565 0.001335 Logistic
Shortness of Breath et al. Angeles,

CA
Asthma Exacerbation, Ostro 2001 Los 6-18  24-hravg 0.001942 0.000803 Logistic
Wheeze et al. Angeles,

CA
Asthma Exacerbation, Maret 2004  Vancouver, 6-18  24-hravg 0.01906 0.009828 Logistic
Cough al. CAN
Asthma Exacerbation, Maret 2004  Vancouver, 6-18  24-hravg 0.01222 0.013849 Logistic
Shortness of Breath al. CAN
Upper Respiratory Popeet 1991  Utah 9-11  24-hravg 0.0036 0.0015  Logistic
Symptoms al. Valley

Pooling Ostro et al. (2001) and Mar et al. (2004)

To characterize asthma exacerbations in children, we use two studies that followed panels of
asthmatic children. Ostro et al. (2001) followed a group of 138 African-American children in Los
Angeles for 13 weeks, recording daily occurrences of respiratory symptoms associated with
asthma exacerbations (e.g., shortness of breath, wheeze, and cough). This study found a
statistically significant association between PM2s, measured as a 12-hour average, and the daily
prevalence of shortness of breath and wheeze endpoints. Although the association was not
statistically significant for cough, the results were still positive and close to significance;
consequently, we decided to include this endpoint, along with shortness of breath and wheeze, in
generating incidence estimates.

Mar et al. (2004) followed nine asthmatic children for over eight months in Spokane,
Washington. Data on respiratory symptoms and medication use were recorded daily by the
study’s subjects, while air pollution data was collected by the local air agency and Washington
State University. The authors found a strong association between cough symptoms and several
metrics of particulate matter, including PMzs.

We employed the following pooling approach in combining effect estimates from the two studies
to produce a single asthma exacerbation incidence estimate. First, we pooled (with a
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fixed/random effects approach) the incidence estimates based on the two studies for “cough” and
“shortness of breath” separately. We then assigned an equal weight (i.e., 0.33) to the pooled
results for cough, the pooled results for shortness of breath, and the (un-pooled) results for
wheeze (from Ostro et al., 2001).

To prevent double-counting, we followed U.S. EPA (2005, p. 4-38) and focused the estimation
on asthma exacerbations occurring in children and excluded adults from the calculation. Asthma
exacerbations occurring in adults are assumed to be captured in the general population endpoints
such as work loss days and MRADs. Consequently, if we had included an adult-specific asthma
exacerbation estimate, this would likely have double-counted incidence for this endpoint.
However, because the general population endpoints do not cover children (with regard to
asthmatic effects), an analysis focused specifically on asthma exacerbations for children (6 to 18
years of age) could be conducted without concern for double-counting.

Asthma Exacerbation: Cough, Wheeze, and Shortness of Breath (Ostro et
al., 2001)

Ostro et al. (2001) studied the relation between air pollution in Los Angeles and asthma
exacerbation in African-American children (8 to 13 years old) from August to November 1993.
They used air quality data for PM1o, PM2.5, NOz2, and Os in a logistic regression model with
control for age, income, time trends, and temperature-related weather effects.3 Asthma symptom
endpoints were defined in two ways: “probability of a day with symptoms” and “onset of
symptom episodes”. New onset of a symptom episode was defined as a day with Ssymptoms
followed by a symptom-free day. The authors found cough prevalence associated with PM1o and
PM2s and cough incidence associated with PMz2s, PMio, and NO2. Ozone was not significantly
associated with cough among asthmatics.

Note that the study focused on African-American children ages 8 to 13 years old. We apply the
function based on this study to the general population ages 6 to 18 years old.

Asthma Exacerbation, Cough

The coefficient and standard error are based on an odds ratio of 1.03 (95% CI 0.98-1.07) for a 30
ug/m? increase in 12-hour average PM2s concentration (Ostro et al., 2001, Table 4, p. 204).

Functional Form: Logistic

Coefficient: 0.000985

Standard Error: 0.000747

Incidence Rate: daily cough rate per person (Ostro et al., 2001, p. 202) = 0.145
Population: Asthmatic population ages 6 to 17 = 10.70%; asthmatic population age 18 =
7.19%.%

36 The authors note that there were 26 days in which PM.s concentrations were reported higher than PM1o concentrations.
The majority of results the authors reported were based on the full dataset. These results were used for the basis for the C-
R functions.

37 The American Lung Association (2010, Table 7) estimates asthma prevalence for children ages 5-17 at 10.70% and for
adults ages 18-44 at 7.19% (based on data from the 2008 National Health Interview Survey).
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Asthma Exacerbation, Shortness of Breath

The coefficient and standard error are based on an odds ratio of 1.08 (95% CI1 1.00-1.17) for a 30
ug/m?3 increase in 12-hour average PM2s concentration (Ostro et al., 2001, Table 4, p. 204).

Functional Form: Logistic

Coefficient: 0.002565

Standard Error: 0.001335

Incidence Rate: daily shortness of breath rate per person (Ostro et al., 2001, p. 202) = 0.074
Population: Asthmatic population ages 6 to 17 = 10.70%; asthmatic population age 18 = 7.19%.

Asthma Exacerbation, Wheeze

The coefficient and standard error are based on an odds ratio of 1.06 (95% CI1 1.01-1.11) for a 30
ug/m?3 increase in 12-hour average PM2s concentration (Ostro et al., 2001, Table 4, p. 204).

Functional Form: Logistic

Coefficient: 0.001942

Standard Error: 0.000803

Incidence Rate: daily wheeze rate per person (Ostro et al., 2001, p. 202) =0.173

Population: Asthmatic population ages 6 to 17 = 10.70%; asthmatic population age 18 = 7.19%.

Asthma Exacerbation, Cough and Shortness of Breath (Mar et al., 2004)

Mar et al. (2004) studied the effects of various size fractions of particulate matter on respiratory
symptoms of adults and children with asthma, monitored over many months. The study was
conducted in Spokane, Washington, a semiarid city with diverse sources of particulate matter.
Data on respiratory symptoms and medication use were recorded daily by the study’s subjects,
while air pollution data was collected by the local air agency and Washington State University.
Subjects in the study consisted of 16 adults — the majority of whom participated for over a year —
and nine children, all of whom were studied for over eight months. Among the children, the
authors found a strong association between cough symptoms and several metrics of particulate
matter, including PMz.s. However, the authors found no association between respiratory
symptoms and PM2s of any metric in adults. Mar et al. therefore concluded that the discrepancy
in results between children and adults was due either to the way in which air quality was
monitored, or a greater sensitivity of children than adults to increased levels of PMzs air
pollution.

Asthma Exacerbation, Cough
In a single-pollutant model, the coefficient and standard error are estimated from the odds ratio

(1.21) and 95% confidence interval (1.00-1.47) for a 10.0 pg/m3 increase in 1-day lagged
concentration of PMz.s (Mar et al., 2004, Table 7).
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Functional Form: Logistic

Coefficient: 0.019062

Standard Error: 0.009828

Incidence Rate: daily cough rate per person (Ostro et al., 2001) =14.5%

Population: The study reported results for population ages 7-12. For comparability to other
studies, we apply the results to the population of ages 6 to 18. Asthmatic population ages 6 to 17
= 10.70%; asthmatic population age 18 = 7.19%.

Asthma Exacerbation, Shortness of Breath

In a single-pollutant model, the coefficient and standard error are estimated from the odds ratio
(1.13) and 95% confidence interval (0.86-1.48) for a 10.0 pg/m3 increase in current-day
concentration of PM2.5 (Mar et al., 2004, Table 7).

Functional Form: Logistic

Coefficient: 0.012222

Standard Error: 0.013849

Incidence Rate: daily shortness of breath rate per person (Ostro et al., 2001, p.202) =7.4%
Population: The study reported results for population ages 7-12. For comparability to other
studies, we apply the results to the population of ages 6 to 18. Asthmatic population ages 6 to 17
= 10.70%; asthmatic population age 18 = 7.19%.

Upper Respiratory Symptoms (Pope, 1991)

Using logistic regression, Pope et al. (1991) estimated the impact of PM1o on the incidence of a
variety of minor symptoms in 55 subjects (34 “school-based” and 21 “patient-based”) living in
the Utah Valley from December 1989 through March 1990. The children in the Pope et al. study
were asked to record respiratory symptoms in a daily diary. With this information, the daily
occurrences of upper respiratory symptoms (URS) and lower respiratory symptoms (LRS) were
related to daily PMao concentrations. Pope et al. describe URS as consisting of one or more of
the following symptoms: runny or stuffy nose; wet cough; and burning, aching, or red eyes.

Levels of ozone, NOz2, and SO2 were reported low during this period, and were not included in
the analysis. The sample in this study is relatively small and is most representative of the
asthmatic population, rather than the general population. The school-based subjects (ranging in
age from 9 to 11) were chosen based on ““a positive response to one or more of three questions:
ever wheezed without a cold, wheezed for 3 days or more out of the week for a month or longer,
and/or had a doctor say the ‘child has asthma’ (Pope, 1991, p. 669).” The patient-based subjects
(ranging in age from 8 to 72) were receiving treatment for asthma and were referred by local
physicians. Regression results for the school-based sample (Pope, 1991, Table 5) show PM1o
significantly associated with both upper and lower respiratory symptoms. The patient-based
sample did not find a significant PM1o effect. The results from the school-based sample are used
here.

The coefficient and standard error for a one ug/m? change in PMuo is reported in Table 5.
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Functional Form: Logistic

Coefficient: 0.0036

Standard Error: 0.0015

Incidence Rate: daily upper respiratory symptom incidence rate per person = 0.3419 (Pope,
1991, Table 2)

Population: Asthmatic population ages 6 to 17 = 10.70% 3 of population ages 9 to 11.

38 The American Lung Association (2010, Table 7) estimates asthma prevalence for children 5-17 at 10.70% (based on
data from the 2008 National Health Interview Survey).
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Appendix D: Baseline Incidence Rates for Adverse Health
Effects

Health impact functions developed from log-linear or logistic models estimate the percent
change in an adverse health effect associated with a given pollutant change. In order to estimate
the absolute change in incidence using these functions, we need the baseline incidence rate of the
adverse health effect. For certain health effects, such as asthma exacerbation, we need a
prevalence rate, which estimates the percentage of the general population with a given ailment
like asthma. This appendix describes the data used to estimate baseline incidence rates and
prevalence rates for the health effects considered in this analysis.

Mortality

This section describes the development of county mortality rates for years 2020 and 2025 for use
in COBRA.* First, we describe the source of 2004-2006 individual-level mortality data and the
calculation of county-level mortality rates. Then we describe how we use national-level Census
mortality rate projections to develop county-level mortality rate projections for years 2020 and
2025.

Mortality Data for 2004-2006

We obtained individual-level mortality data from 2004-2006 for the whole United States from
the Centers for Disease Control (CDC), National Center for Health Statistics (NCHS). The data
were compressed into a CD-ROM, which contains death information for each decedent,
including residence county FIPS, age at death, month of death, and underlying causes (ICD-10
codes).

Using the detailed mortality data combined with county-level inter-censal population estimates,*°
we generated age-, cause-, and county-specific mortality rates using the following formula:
_ D;;x(2004) + D, ; (2005) + D; ; , (2006)
hk P, (2004) + P,, (2005) + P,, (2006)

where Rijk is the mortality rate for age group i, cause j, and county k; D is the death count; and P
is the population.

Following CDC Wonder (http://wonder.cdc.gov), we treated mortality rates as “unreliable” when
the death count is less than 20. 4* For each combination of age group and mortality cause, we
used the following procedure to deal with the problem of “unreliable” rates:

39 We use projected 2020 mortality rates for analysis year 2017 in COBRA because the Census Bureau national
mortality rates are projected only every 5 years and are not available for 2017.

40 The detailed mortality data obtained from CDC do not include population. The county-level inter-censal
population estimates are based on US Census of Population and Housing 2010 and forecasts developed by Woods &
Poole (2011).

41 Among all the calculated age-, cause-, and county-specific mortality rates, there were about 67% “unreliable”
rates.
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e For agiven state, we grouped the counties where the death count (i.e., the numerator on
the right-hand side of the above equation) was less than 20 and summed those death
counts across those counties. If the sum of deaths was greater than or equal to 20, we then
summed the populations in those counties, and calculated a single rate for the “state
collection of counties” by dividing the sum of deaths by the sum of populations in those
counties. This rate was then applied to each of those counties.*?

e If the sum of deaths calculated in the above step was still less than 20, the counties in the
“state collection of counties” were not assigned the single rate from the above step.
Instead, we proceeded to the regional level (see Exhibit D-1 for region definition). In
each region, we identified all counties whose death counts were less than 20 (excluding
any such counties that were assigned a rate in the previous step). We summed the death
counts in those counties. If the sum of deaths was greater than or equal to 20, we then
summed the populations in those counties, and calculated a single rate for the “regional
collection of counties” by dividing the sum of deaths by the sum of populations in those
counties. This rate was then applied to each of those counties in the “regional collection

of counties.”*3

Exhibit D-1. Regional Definitions from U.S. Census

Region States Included

Maine, New Hampshire, Vermont, Massachusetts,
Northeast Rhode Island, Connecticut, New York, New Jersey,

Pennsylvania

Ohio, Indiana, Illinois, Michigan, Wisconsin, Minnesota,

Midwest lowa, Missouri, North Dakota, South Dakota, Nebraska,
Kansas
Delaware, Maryland, District of Columbia, Virginia,
South West Virginia, North Carolina, South Carolina, Georgia,

Florida, Kentucky, Tennessee, Alabama, Mississippi,

Arkansas, Louisiana, Oklahoma, Texas

Montana, ldaho, Wyoming, Colorado, New Mexico,
West Arizona, Utah, Nevada, Washington, Oregon, California,

Alaska, Hawaii

e If the sum of deaths calculated in the previous (regional) step was still less than 20, the
counties in the “regional collection of counties” were not assigned the single rate from
the above step. Instead, we proceeded to the national level, identifying all counties in the
nation whose death counts were less than 20 (excluding any such counties that were
assigned a rate in the previous steps). We summed the death counts in those counties and
divided by the sum of the populations in those counties to derive a single rate for the

42 After this adjustment, there were 17% unreliable rates left.
43 After this regional adjustment, there were 7% unreliable rates left.
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“national collection of counties.” This rate was then applied to each of those counties in
the “national collection of counties.”**

Exhibit D-2 shows the resulting national average all-cause mortality rates.

Exhibit D-2. National All-Cause Mortality Rates (per 100 people per year) by Age Group

Mortality Category Inffmt 1--17 154 23?4 3454 4554 5654 6754 7854 85+

Mortality, All Cause  0.241  0.028 0.089 0.106 0.194 0430 0.902 2126 5.234 14.654

* We estimate post-neonatal mortality (deaths after the first month) for infants because the health impact
function (see Appendix F) estimates post-neonatal mortality.

Mortality Rate Projections to 2020 and 2025

To estimate age- and county-specific mortality rates in years 2020 and 2025, we
calculated adjustment factors, based on a series of Census Bureau projected national
mortality rates (for all-cause mortality), to adjust the age- and county-specific mortality
rates calculated using 2004-2006 data as described above. We used the following procedure:

e For each age group, we obtained the series of projected national mortality rates from
2005 to 2050 (see the 2005 rate in Exhibit D-3) based on Census Bureau projected life
tables.*

e We then calculated, separately for each age group, the ratio of Census Bureau national
mortality rate in years 2020 and 2025 to the 2005 rate. These ratios are shown in Exhibit
D-4.

e Finally, to estimate mortality rates in years 2020 and 2025 that are both age group-
specific and county-specific, we multiplied the county- and age-group-specific mortality
rates for 2004-2006 by the appropriate ratio calculated in the previous step. For example,
to estimate the projected mortality rate in 2020 and 2025 among ages 18-24 in Wayne
County, MI, we multiplied the mortality rate for ages 18-24 in Wayne County in 2004-
2006 by the ratio of Census Bureau projected national mortality rate in 2020 and 2025 for
ages 18-24 to Census Bureau national mortality rate in 2005 for ages 18-24.

44 Even after this national adjustment, there were about 1% unreliable rates left. In these cases, we simply calculated
a single rate for the “national collection of counties”, even though it was “unreliable,” and assigned it to those
counties in the “national collection of counties.”

45 For a detailed description of the model, the assumptions, and the data used to create Census Bureau projections,
see the working paper, "Methodology and Assumptions for the Population Projections of the United States: 1999 to
2100, Working Paper #38.", which is available on
http://www.census.gov/population/www/documentation/twps0038/twps0038.html (Hollman, et al. 2000) .
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Exhibit D-3. All-Cause Mortality Rate (per 100 people per year), by Source, Year, and Age Group

Source & 18- 25—  35- 45— 55—  65-  75-
Year Infant* 117 "oy 34 44 54 64 74 84 OO
Calculated
CDC 2004-
2006 0.684/0241 0028 0089 0106 0194 0430 0902 2126 5234 14.654
Census
Bureau 2005 0654 0029 0088 0102 0183 0387 0930 2292 5409 13.091

* The Census Bureau estimate is for all deaths in the first year of life. COBRA uses post-neonatal mortality (deaths
after the first month, i.e., 0.23 per 100 people) because the health impact function (see Appendix F) estimates
postneonatal mortality. For comparison purpose, we also calculated the rate for all deaths in the first year, which is
0.684 per 100 people).

Exhibit D-4. Ratio of 2025 and 2020 All-Cause Mortality Rate to 2005 Estimated All-Cause Mortality Rate,

by Age Group
Year Infant 1--17  18--24  25--34  35--44  45--54  55--64  65--74  75--84 85+
2025 0.78 0.76 0.81 0.85 0.79 0.79 0.82 0.81 0.78 0.87
2020 0.85 0.81 0.86 0.90 0.83 0.85 0.87 0.85 0.83 0.91

Hospitalizations

Hospitalization rates were calculated using data from the Healthcare Cost and Utilization Project
(HCUP). HCUP is a family of health care databases developed through a Federal-State-Industry
partnership and sponsored by the Agency for Healthcare Research and Quality (AHRQ).*6
HCUP products include the State Inpatient Databases (SID), the State Emergency Department
Databases (SEDD), the Nationwide Inpatient Sample (NIS), and the Nationwide Emergency
Department Sample (NEDS). HCUP databases can be obtained from the following data services:

e The HCUP Central Distributor: Many of the HCUP databases are available for purchase
through the HCUP Central Distributor. The databases include detailed information for
individual discharges, such as primary diagnosis (in ICD-9 codes), patient’s age and
residence county.

e HCUP State Partners: Some HCUP participating states do not release their data to the
Central Distributor; however, the data may be obtained through contacting the State
Partners. Some State Partners (e.g., CA, TX, and NY) provided discharge-level data;
others (e.g., OH) provided summarized data.

e HCUPnet: This is a free, on-line query system based on data from HCUP. It provides
access to summary statistics at the state, regional and national levels.

Exhibit D-5 shows the level of hospitalization data (e.g, discharge-level or state-level) for each
state. Note that for some states neither discharge-level nor state-level data were available. In such
cases we used regional statistics from HCUPnet to estimate hospitalization rates for those states.

46 More information about HCUP can be found at http://www.hcup-us.ahrg.gov/.
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Exhibit D-5. Hospitalization Data from HCUP

Legend

B ciscreroe e Date
|:| County-level Data
[ ] state-tevel Data
|:| Regonal-level Data

The procedures for calculating hospitalization rates are summarized as follows:*
e For states with discharge-level data:

o We calculated age-, health endpoint-, and county-specific hospitalization
counts.48

o The above calculation excluded hospitalizations with missing patient age or
county FIPS, which may lead to underestimation of rates. Therefore we scaled up
the previously calculated age-, endpoint-, and county-specific counts using an
adjustment factor obtained as follows:

= We first counted the number of discharges for a specific endpoint in the
state including those discharges with missing age or county FIPS.

= We then counted the number of discharges for the endpoint in the state
excluding those records with missing age or county FIPS.

= The adjustment factor is the ratio of the two counts.

47 The data year for most states is 2007; the exception is MA, for which the data year is 2006. We assume
hospitalization rates are reasonably constant from 2006-2007 and consider all as 2007 rates.

48 Ohio was the only state that, while not providing discharge-level data, did provide county-level data for each age
group-endpoint combination.
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o We calculated hospitalization rates for each county by dividing the adjusted
county-level hospitalization counts by the Census estimated county-level
population for the corresponding year (2006 or 2007). Following CDC Wonder,
we treated rates as “unreliable” when the hospitalization count was less than 20,
using the same procedure we used for mortality rates above.

For states with summarized state statistics (from HCUPnet) we calculated the state-, age-,
endpoint- specific hospitalization rates and applied them to each county in the state. We
used the previously described procedure to adjust the “unreliable” rates.

For states without discharge-level or state-level data:

o We obtained the endpoint-specific hospitalization counts in each region from
HCUPNet/NIS (we refer to this count for the ith endpoint in the jth region as
“TOTALY)”).

o For those states in the jth region that do have discharge-level or state-level data,
we summed the hospital admissions by endpoint (we refer to this count for the ith
endpoint in the jth region as “SUB ij”).

o We then estimated the hospitalization count for states without discharge or state
data for the ith endpoint in the jth region as TOTALIj — SUB ij. Note that while
this count is endpoint- and region- specific, it is not age-specific. We obtained the
distribution of hospital admission counts across age groups based on the National
Hospital Discharge Survey (NHDS) and assumed the same distribution for the
HCUP hospitalizations. We then applied this distribution to the estimated hospital
counts (i.e., TOTALIj — SUB ij) to obtain endpoint-, region-, and age-specific
counts.

o Using the corresponding age- and region-specific populations, we calculated age-
specific hospitalization rates for the ith endpoint in the jth region and applied
them to those counties in the region that didn’t have discharge-level or state-level
data.

Exhibit D-6 shows the resulting average national hospitalization rates by health endpoint and age

group.
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Exhibit D-6. National Hospitalization Rates, by Health Endpoint and Age Group

Hospitalization Rate by Age Group

Hospitalization 1CD-9 (admissions per 100 people per year)
Category Codes
0-17 18-44 45-64 65-84 85+
Respiratory
all respiratory 460-519 0.700 0.288 0.995 3.73 8.352
asthma 493 0.173 0.068 0.145 0.216 0.325
chronic lung disease  490-496 0.178 0.089 0.381 1.21 1.598
Cardiovascular
all cardiovascular 390-
(less AMI) 409, 0.019 0.234 1.356 4974 10.051
411-430

Emergency Room Visits for Asthma
The data source for emergency department/room (ED or ER) visits is also HCUP, i.e., SID,
SEDD, and NEDS. The types of data providers are also the same as those described above for
hospitalizations. Exhibit D-7 shows the emergency department data in each state.

Exhibit D- 7. Emergency Department Data from HCUP

Legend

- Discharge-level Data
[ ] county-level Data
l:l State-leved Data
| Regonakevel Data

The calculation of ER visit rates is also similar to the calculation of hospitalization rates, except

for the following differences:
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e The SEDD databases include only those ER visits that ended with discharge. To identify
the ER visits that ended in hospitalization, we used a variable called “admission source”
in the SID databases. Admission source identified as “emergency room” indicates that the
hospital admission came from the ER — i.e., the ER visit ended in hospitalization. For
each combination of age group, endpoint and county, we summed the ER visits that
ended with discharge and those that resulted in hospitalization.

e The data year varies across the states from 2005 to 2007 (see Exhibit D-7); we assumed
that ER visit rates are reasonably constant across these three years and consider them as
2006 rates.

e Instead of using HCUPnet/NIS and NHDS in the last step as described for
hospitalizations, we used HCUPnet/NEDS and the National Ambulatory Medical Care
Survey (NAMCS) to calculate ER visit rates for states without discharge level or state
level data.

Exhibit D-8 shows the resulting average national rates of asthma emergency room visits by age
group.
Exhibit D-8. National Emergency Room Visit Rates for Asthma, by Age Group

ICD-9 - ER Visit Rate
ER Category Codes (visits per 100 people per year)
0-17 18-44 45-64 65-84 85+
asthma 493 0.860 0.573 0.393 0.248 0.308

Nonfatal Heart Attacks

The relationship between short-term particulate matter exposure and heart attacks was quantified
in case-crossover analyses by Peters et al (2001), Pope et al. (2006), and Sullivan et al. (2005).
The study population was selected from heart attack survivors in a medical clinic. Therefore, the
applicable population to apply to the C-R function is all individuals surviving a heart attack in a
given year. Several data sources are available to estimate the number of heart attacks per year.
For example, several cohort studies have reported estimates of heart attack incidence rates in the
specific populations under study. However, these rates depend on the specific characteristics of
the populations under study and may not be the best data to extrapolate nationally.

An alternative approach to the estimation of heart attack rates is to use data from the HCUP,
assuming that all heart attacks that are not instantly fatal will result in a hospitalization.
According to the HCUPnet, in 2009 there were approximately 633,356 hospitalizations due to
heart attacks (acute myocardial infarction: ICD-9 code of 410, primary diagnosis).*® We used

49 Source: Online query on HCUPnet website (AHRQ 2012), accessed 1-13-2012
http://hcupnet.ahrg.gov/HCUPnet.app/HCUPnet.jsp?1d=53F290DC050F1296&Form=Sel LAY &GoTo=MAINSEL

&JIS=Y
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county-level hospitalization rates over estimates extrapolated from cohort studies because the
former is part of a nationally representative survey with a larger sample size, which is intended
to provide reliable national estimates. The hospitalization section above describes the detailed
procedure for developing the incidence rates for hospitalization of AMI. As additional
information is provided regarding the American Heart Association methodology, we will
evaluate the usefulness of this estimate of heart attack incidence.

Rosamond et al. (1999) reported that approximately six percent of male and eight percent of
female hospitalized heart attack patients die within 28 days (either in or outside of the hospital).
We, therefore, applied a factor of 0.93 to the count of hospitalizations to estimate the number of
nonfatal heart attacks per year. Note that we did not adjust for fatal AMIs in the incidence rate
estimation, due to the way that the epidemiological studies are designed. Those studies consider
total admissions for AMIs, which includes individuals living at the time the studies were
conducted. Therefore, we use the definition of AMI that matches the definition in the
epidemiological studies.

Exhibit D-9 presents the national nonfatal heart attack incidence rates around year 2007 by age
group (Note: county-level rates around year 2007 are used in COBRA).

Exhibit D-9. Nonfatal Heart Attack Rates by Age Group

Nonfatal Heart Rate by Age Group

Endpoint (admissions per 100 people per year)*
0-17 18-44 45-64 65-84 85+
Nonfatal heart attack 0.000 0.033 0.259 0.767 1.78

" Rates are based on data from the 2007 HCUP/SID.

Other Acute Effects

For many of the minor effect studies, baseline rates from a single study are often the only source
of information, and we assume that these rates hold for locations in the U.S. The use of study-
specific estimates is likely to increase the uncertainty around the estimate because they are often
estimated from a single location using a relatively small sample. These endpoints include: acute
bronchitis, upper respiratory symptoms, and lower respiratory symptoms. Exhibit D-10 presents
a summary of these baseline rates.
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Exhibit D-10. Selected Acute Effects Rates

Endpoint Age Parameter Rate Source
Acute Bronchitis 8-12 Incidence 4.300 (American Lung Association, 2002,
Table 11)
Lower Respiratory i .
Symptoms (LRS) 7-14 Incidence 43.8 (Schwartz et al., 1994, Table 2)
Minor Restricted Activity 15 ¢, Incidence 780.0  (Ostro & Rothschild, 1989, p. 243)

Days (MRAD)

(Adams, Hendershot, & Marano,
Work Loss Day (WLD) 18-64 Incidence 217.2 1999, Table 41; U.S. Bureau of the
Census, 1997)

Acute Bronchitis

The annual rate of acute bronchitis for children ages 5 to 17 was obtained from the American
Lung Association (2002). The authors reported an annual incidence rate per person of 0.043,
derived from the 1996 National Health Interview Survey.

Lower Respiratory Symptoms

Lower respiratory symptoms (LRS) are defined as two or more of the following: cough, chest
pain, phlegm, and wheeze. The proposed yearly incidence rate for 100 people, 43.8, is based on
the percentiles in Schwartz et al (1994, Table 2). The authors did not report the mean incidence
rate, but rather reported various percentiles from the incidence rate distribution. The percentiles
and associated per person per day values are 10th = 0 percent, 25th = 0 percent, 50th = 0 percent,
75th = 0.29 percent, and 90th = 0.34 percent. The most conservative estimate consistent with the
data are to assume the incidence per person per day is zero up to the 75th percentile, a constant
0.29 percent between the 75th and 90th percentiles, and a constant 0.34 percent between the 90th
and 100th percentiles. Alternatively, assuming a linear slope between the 50th and 75th, 75th and
90th, and 90th to 100th percentiles, the estimated mean incidence rate per person per day is 0.12
percent.® We used the latter approach in this analysis, and then multiplied by 100 and by 365 to
calculate the incidence rate per 100 people per year.

Minor Restricted Activity Days (MRAD)

Ostro and Rothschild (1989, p. 243) provide an estimate of the annual incidence rate of MRADs
(7.8). We multiplied this estimate by 100 to get an annual rate per 100 people.

Work Loss Days

The yearly work-loss-day incidence rate per 100 people is based on estimates from the 1996
National Health Interview Survey (Adams et al., 1999, Table 41). They reported a total annual
work loss days of 352 million for individuals ages 18 to 65. The total population of individuals
of this age group in 1996 (162 million) was obtained from (U.S. Bureau of the Census, 1997).

50 For example, the 62.5™ percentile would have an estimated incidence rate per person per day of 0.145 percent.
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The average annual rate of work loss days per individual (2.17) was multiplied by 100 to obtain
the average yearly work-loss-day rate of 217 per 100 people.

Asthma-Related Health Effects

Several studies have examined the impact of air pollution on asthma development or
exacerbation in the asthmatic population. Many of the baseline incidence rates used in the C-R
functions are based on study-specific estimates. The baseline rates for the various endpoints are
described below and summarized in Exhibit D-11.

Exhibit D-11. Asthma-Related Health Effects Rates

Endpoint Age Parameter ? Rate Source
Asthma Exacerbation, Cough 6-18 Incidence 24.46
Prevalence 14.50%
g\rségma Exacerbation, Shortness of 6-18  Incidence 1351 Eg(?\s/:/rrc:ltlggzzti l:)/!a;gz,)%raxton—OWens,
Prevalence 7.40%
Asthma Exacerbation, Wheeze 6-18 Incidence 27.74

Prevalence 17.3%

Asthma 6-17 Prevalence  10.70%  (American Lung Association, 2010,
18  Prevalence  7.19% Table 7)€

(Pope, Dockery, Spengler, & Raizenne,

Upper Respiratory Symptoms (URS)  9-11 Incidence 124.79 1991, Table 2)

2 The incidence rate is the number of cases per person per year. Prevalence refers to the fraction of people that
have a particular illness during a particular time period.

b the rates in the study were for African American children of ages 8-13. We apply it to children aged 6-18 to
match what was used in the selected epidemiological studies.

¢ The American Lung Association (2010, Table 7) estimates asthma prevalence for children 5-17 at 10.70% and for
adults ages 18-44 at 7.19% (based on data from the 2008 National Health Interview Survey).
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Appendix E: Population Forecasts

To estimate the change in population exposure to air pollution, we use projections based on US
Census of Population and Housing 2010 and forecasting models developed by Woods & Poole
(2011). The Woods and Poole (WP) database contains county-level projections of population by
age, sex, ethnicity, and race out to 2040. Projections in each county are determined
simultaneously with every other county in the United States to take into account patterns of
economic growth and migration. The sum of growth in county-level populations is constrained to
equal a previously determined national population growth, based on Bureau of Census estimates.
The projection years used for COBRA are 2017 and 2025.

According to WP, linking county-level growth projections together and constraining to a
national-level total growth avoids potential errors introduced by forecasting each county
independently. County projections are developed in a four-stage process. First, national-level
variables such as income, employment, and populations are forecasted. Second, employment
projections are made for 172 economic areas defined by the Bureau of Economic Analysis, using
an “export-base” approach, which relies on linking industrial sector production of non-locally
consumed production items, such as outputs from mining, agriculture, and manufacturing with
the national economy. The export-based approach requires estimation of demand equations or
calculation of historical growth rates for output and employment by sector. Third, population is
projected for each economic area based on net migration rates derived from employment
opportunities and following a cohort component method based on fertility and mortality in each
area. Fourth, employment and population projections are repeated for counties, using the
economic region totals as bounds. The age, sex, ethnicity, and race distributions for each region
or county are determined by aging the population by single year of age by sex and race for each
year through 2040 based on historical rates of mortality, fertility, and migration.
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Appendix F: Economic Value of Health Effects

This appendix presents the mean estimate of the unit values used in this analysis. Exhibit F-1

lists these unit values for 2025 and Exhibit F-2 lists these unit values for 2017.

Exhibit F-1. Unit Values for Economic Valuation of Health Endpoints in 2025 (2010 $)

Unit Value (2025 Income Level)

Health Endpoint Age Range 3% DR 7% DR
Mortality? 25-99 $8,863,205 $7,894,316
Infant Mortality® 0-0 $9,879,048 $9,879,048
Acute Myocardial Infarction, Nonfatal® 0-24 $33,259 $31,446
Acute Myocardial Infarction, Nonfatal® 25-44 $45,085 $42,033
Acute Myocardial Infarction, Nonfatal® 45 -54 $50,689 $47,050
Acute Myocardial Infarction, Nonfatal® 55 - 64 $134,003 $121,641
Acute Myocardial Infarction, Nonfatal® 65 - 99 $33,259 $31,446
Acute Myocardial Infarction, Nonfatal® 0-24 $163,051 $163,051
Acute Myocardial Infarction, Nonfatal® 25-44 $174,876 $173,638
Acute Myocardial Infarction, Nonfatal? 45 - 54 $180,480 $178,655
Acute Myocardial Infarction, Nonfatal 55 - 64 $263,795 $253,247
Acute Myocardial Infarction, Nonfatal 65-99 $163,051 $163,051
HA, All Cardiovascular (less AMI) 18- 64 $40,358 $40,358
HA, All Cardiovascular (less AMI) 65 - 99 $37,856 $37,856
HA, All Respiratory 65-99 $31,750 $31,750
HA, Asthma 0-17 $14,961 $14,961
HA, Chronic Lung Disease 18-64 $19,741 $19,741
Asthma ER Visits (Smith et al. (1997) 0-99 $464 $464
Asthma ER Visits (Stanford et al. (1999) 0-99 $388 $388
Acute Bronchitis 8-12 $485 $485
Lower Resp. Symptoms 7-14 $21 $21
Upper Resp. Symptoms 9-11 $34 $34
MRAD 18-64 $69 $69
Work Loss Days 18 - 64 $160 $160
Asthma Exacerbation (Cough, Shortness of

Breath, or Wheeze) 6-18 $58 $58

NOTE: @ Mortality value after adjustment for 20-year lag.
® Infant mortality value is not adjusted for 20-year lag.

¢ Based on Russell (1998)

4 Based on Wittels (1990)

September 2017



Exhibit F-2. Unit Values for Economic Valuation of Health Endpoints in 2017 (2010 $)

Unit Value (2017 Income Level)

Health Endpoint Age Range 3% DR 7% DR
Mortality? 25 - 99 $8,434,924 $7,512,853
Infant Mortality® 0-0 $9,401,680 $9,401,680
Acute Myocardial Infarction, Nonfatal® 0-24 $33,259 $31,446
Acute Myocardial Infarction, Nonfatal® 25-44 $45,085 $42,033
Acute Myocardial Infarction, Nonfatal® 45-54 $50,689 $47,050
Acute Myocardial Infarction, Nonfatal® 55 - 64 $134,003 $121,641
Acute Myocardial Infarction, Nonfatal® 65 - 99 $33,259 $31,446
Acute Myocardial Infarction, Nonfatal 0-24 $163,051 $163,051
Acute Myocardial Infarction, Nonfatal® 25 - 44 $174,876 $173,638
Acute Myocardial Infarction, Nonfatal® 45 - 54 $180,480 $178,655
Acute Myocardial Infarction, Nonfatal® 55 - 64 $263,795 $253,247
Acute Myocardial Infarction, Nonfatal® 65 - 99 $163,051 $163,051
HA, All Cardiovascular (less AMI) 18- 64 $41,002 $41,002
HA, All Cardiovascular (less AMI) 65 - 99 $38,618 $38,618
HA, All Respiratory 65 - 99 $32,697 $32,697
HA, Asthma 0-17 $15,430 $15,430
HA, Chronic Lung Disease 18-64 $20,349 $20,349
Asthma ER Visits (Smith et al. (1997) 0-99 $464 $464
Asthma ER Visits (Stanford et al. (1999) 0-99 $388 $388
Acute Bronchitis 8-12 $477 $477
Lower Resp. Symptoms 7-14 $21 $21
Upper Resp. Symptoms 9-11 $33 $33
MRAD 18 - 64 $68 $68
Work Loss Days 18 - 64 $160 $160
Asthma Exacerbation (Cough, Shortness of $57 $57
Breath, or Wheeze) 6-18

NOTE: # Mortality value after adjustment for 20-year lag.
b Infant mortality value is not adjusted for 20-year lag.

¢ Based on Russell (1998)

4 Based on Wittels (1990)

Selecting Unit Values for Monetizing Health Endpoints

The appropriate economic value for a change in a health effect depends on whether the health
effect is viewed ex ante (before the effect has occurred) or ex post (after the effect has occurred).
Reductions in ambient concentrations of air pollution generally lower the risk of future adverse
health effects by a small amount for a large population. The appropriate economic measure is
therefore ex ante WTP for changes in risk. However, epidemiological studies generally provide
estimates of the relative risks of a particular health effect avoided due to a reduction in air
pollution. A convenient way to use this data in a consistent framework is to convert probabilities
to units of avoided statistical incidences. This measure is calculated by dividing individual WTP

for a risk reduction by the related observed change in risk.

For example, suppose a measure is able to reduce the risk of premature mortality from 2 in
10,000 to 1 in 10,000 (a reduction of 1 in 10,000). If individual WTP for this risk reduction is

F-2
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$100, then the WTP for an avoided statistical premature mortality amounts to $1 million
($100/0.0001 change in risk). Using this approach, the size of the affected population is
automatically taken into account by the number of incidences predicted by epidemiological
studies applied to the relevant population. The same type of calculation can produce values for
statistical incidences of other health endpoints.

For some health effects, such as hospital admissions, WTP estimates are generally not available.
In these cases, we use the cost of treating or mitigating the effect. For example, for the valuation
of hospital admissions EPA used the avoided medical costs as an estimate of the value of
avoiding the health effects causing the admission. These COI estimates generally understate the
true value of reductions in risk of a health effect, because, while they reflect the direct
expenditures related to treatment, they omit the value of avoiding the pain and suffering from the
health effect itself.

Updating Values for Inflation

The studies based on which the unit values were developed report estimates for a range for years
prior to 2010. To allow for the effect of inflation, we have adjusted these values to reflect prices
in 2010%. Because some functions are based on willingness to pay to avoid illness, while others
are based on cost of illness and/or lost wages, three different inflation indices are used. These are
the All Goods Index, the Medical Cost Index, and the Wage Index, respectively. Exhibit F-3
summarizes the types of inflation indices and their sources used to adjust different types of unit
values in COBRA.

Exhibit F-3. Type of Inflation Index Used for Adjust Unit Values for Health Effects Endpoints

Index Source Health Effects Endpoints
All Goods Index Bureau of Labor Statistics’ Acute Bronchitis
(BLS) Consumer Price Index Asthma Exacerbation
(CPD) Lower Respiratory Symptoms
Mortality

Minor Restricted Activity Days
Upper Respiratory Symptoms

Medical Cost Index BLS/CPI Acute Myocardial Infarction
Emergency Room Visits
Hospital Admissions

Wage Index BLS Employment Cost Index for ~ Acute Myocardial Infarction
private industry workers, 2001- Hospital Admissions
2010

Growth in Unit Values Reflecting Growth in National Income

The unit value estimates reflect expected growth in real income over time. This is consistent with
economic theory, which argues that WTP for most goods (such as health risk reductions) will
increase if real incomes increase. There is substantial empirical evidence that the income
elasticity of WTP for health risk reductions is positive, although there is uncertainty about its
exact value (and it may vary by health effect). Although one might assume that the income
elasticity of WTP is unit elastic (e.g., a 10 percent higher real income level implies a 10 percent
higher WTP to reduce health risks), empirical evidence suggests that income elasticity is
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substantially less than one and thus relatively inelastic. As real income rises, the WTP value also
rises but at a slower rate than real income.

The effects of real income changes on WTP estimates can influence benefits estimates in two
ways: through real income growth between the year a WTP study was conducted and the year for
which benefits are estimated, and through differences in income between study populations and
the affected populations at a particular time. Following the analysis in the 2006 PM2s NAAQS
regulatory impact assessment (U.S. EPA, 2006), we have focused on the former.

The income adjustment in COBRA follows the approach used by EPA (2005, p. 4-17), who
adjusted the valuation of human health benefits upward to account for projected growth in real
U.S. income. Faced with a dearth of estimates of income elasticities derived from time-series
studies, EPA applied estimates derived from cross-sectional studies.>! The available income
elasticities suggest that the severity of a health effect is a primary determinant of the strength of
the relationship between changes in real income and changes in WTP. As a result, EPA (2005, p.
4-18) used different elasticity estimates to adjust the WTP for minor health effects, severe and
chronic health effects, and premature mortality (see Exhibit F-4).

Exhibit F-4. Elasticity Values Used to Account for National Income Growth

Central Elasticity

Benefit Category

Minor Health Effect 0.14
Severe & Chronic Health Effects 0.45
Premature Mortality 0.40

In addition to elasticity estimates, projections of populations and real gross domestic product
(GDP) are needed to adjust benefits to reflect real per capita income growth. COBRA uses
population and GDP projections developed by EPA, which are described in EPA (2005, p. 4-17).
To estimate national population growth rates for the years between 1990 and 1999, EPA used
national population estimates U.S. Census Bureau (Hollman, Mulder, & Kallan, 2000). These
population estimates are based on an application of a cohort-component model to 1990 U.S.
Census data projections (U.S. Bureau of the Census, 2000). For the years between 2000 and
2010, EPA applied growth rates based on the U.S. Census Bureau projections to the U.S. Census
estimate of national population in 2000. EPA used projections of real GDP provided in Kleckner
and Neumann (1999) for the years 1990 to 2010, and projections of real GDP (in chained 1996
dollars) provided by Standard and Poor’s (2000) for the years 2010 to 2025.

Using the method outlined in Kleckner and Neumann (1999) and the population and income data
described above, EPA (2005, p. 4-18) calculated WTP adjustment factors for each of the
elasticity estimates. Benefits for each of the categories (minor health effects, severe and chronic
health effects, premature mortality, and visibility) are adjusted by multiplying the unadjusted
benefits by the appropriate adjustment factor.

°1 Details of the procedure can be found in Kleckner and Neumann 1999.
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Note that because of a lack of data on the dependence of COI on income, and a lack of data on
projected growth in average wages, no adjustments are made to benefits estimates based on the
COl approach or to work loss days benefits estimates. This lack of adjustment would tend to
result in an under-prediction of benefits in future years, because it is likely that increases in real
U.S. income would also result in increased COI (due, for example, to increases in wages paid to
medical workers) and increased cost of work loss days and lost worker productivity (reflecting
that if worker incomes are higher, the losses resulting from reduced worker production would
also be higher).

Valuation Pooling

In some cases there are multiple valuations available for a health effect, with no one valuation
clearly superior to another. In such cases we pooled valuations in COBRA.

» Smith et al. (1997) and Stanford et al. (1999) both evaluate asthma ER visits using COl.
We assign equal weight to each study (i.e., 0.5) and COBRA will then use the weighted
average to value ER visit.

» To value Acute Myocardial Infarction, we pool Russell (1998) and Wittels (1990) by
assigning equal weight (i.e., 0.5) to each.

» To value respiratory hospitalization, we sum across non-overlapping respiratory
hospitalization effects, i.e., Asthma HA (age 0-17), Chronic Lung Disease HA (age 18-
64), All Respiratory HA (age 65-99).

» Similarly, we sum across non-overlapping cardiovascular hospitalization effects, i.e., we
sum the value for cardiovascular less AMI hospitalization for ages 18-64 and that for
ages 65+.

Valuing Premature Mortality

To estimate the monetary value of risk change in premature death, we used the “value of
statistical lives” saved (VSL) approach, which is a summary measure for the value of small
changes in mortality risk for a large number of people. The VSL approach applies information
from several published value-of-life studies to determine a reasonable monetary value of
preventing premature mortality. Based on 26 published studies,> the mean value of avoiding
one statistical death is estimated to be roughly $9.9 million in 2025 (2010$ at 2025 income level)
and $9.4 million in 2017 (2010$ at 2017 income level).

There are a number of uncertainties in this estimate. The health science literature on air pollution
indicates that several human characteristics affect the degree to which mortality risk affects an
individual. For example, some age groups appear to be more susceptible to air pollution than
others (e.g., the elderly and children). Health status prior to exposure also affects susceptibility.

52 These 26 studies have been identified in the Section 812 Reports to Congress as “applicable to policy analysis.”
This represents an intermediate value from a variety of estimates, and it is a value EPA has frequently used in
Regulatory Impact Analyses (RIAs) as well as in the Section 812 Retrospective and Prospective Analyses of the
Clean Air Act.
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An ideal benefits estimate of mortality risk reduction would reflect these human characteristics,
in addition to an individual’s WTP to improve one’s own chances of survival plus WTP to
improve other individuals’ survival rates.

The ideal measure would also take into account the specific nature of the risk reduction
commodity that is provided to individuals, as well as the context in which risk is reduced. To
measure this value, it is important to assess how reductions in air pollution reduce the risk of
dying from the time that reductions take effect onward and how individuals value these changes.
Each individual’s survival curve, or the probability of surviving beyond a given age, should shift
as a result of an environmental quality improvement. For example, changing the current
probability of survival for an individual also shifts future probabilities of that individual’s
survival. This probability shift will differ across individuals because survival curves depend on
such characteristics as age, health state, and the current age to which the individual is likely to
survive.

There are other potentially important factors that go beyond the scope of this discussion. For
additional details, EPA (2005, p. 4-57) has an in-depth discussion of the uncertainties underlying
mortality valuation.

Present Discounted Value of Avoiding Future Mortality

The delay, or lag, between changes in PM2s exposures and changes in mortality rates is not
precisely known. The current scientific literature on adverse health effects, such as those
associated with PM2s (e.g., smoking-related disease), and the difference in the effect size
estimated in chronic exposure studies versus daily mortality studies, suggests that it is likely that
not all cases of avoided premature mortality associated with a given incremental reduction in
PMz2s exposure would occur in the same year as the exposure reduction.

Current EPA benefits analyses (U.S. EPA, 2006, p. 5-21) assume a 20-year lag structure, with 30
percent of premature deaths occurring in the first year, 50 percent occurring evenly over years 2
to 5 after the reduction in PMzs, and 20 percent occurring evenly over years 6 to 20 after the
reduction in PM2s. It should be noted that the selection of a 20-year lag structure is not directly
supported by any PM2s-specific literature. Rather, it is intended to be a best guess at the
appropriate time distribution of avoided cases of PMz2s-related mortality. As noted by EPA, the
distribution of deaths over the latency period is intended to reflect the contribution of short-term
exposures in the first year, cardiopulmonary deaths in the 2- to 5-year period, and long-term lung
disease and lung cancer in the 6- to 20-year period. Finally, it is important to keep in mind that
changes in the lag assumptions do not change the total number of estimated deaths but rather the
timing of those deaths.

Specifying the lag is important because people are generally willing to pay more for something
now than for the same thing later. They would, for example, be willing to pay more for a
reduction in the risk of premature death in the same year as exposure is reduced than for that
same risk reduction to be received the following year. This time preference for receiving benefits
now rather than later is expressed by discounting benefits received later. There is an ongoing
discussion within the federal government about the choice of a discount rate in this context: a 3%
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discount rate is recommended by EPA, while a 7% is recommended by OMB. Therefore, the
users now have the ability to specify the discount rate—3% or 7%—for a COBRA session.
Following EPA’s Guidelines for Preparing Economic Analyses (U.S. EPA, 2010a), COBRA
users are recommended to calculate monetized health benefits using both discount rates and to
evaluate whether (and to what extent) the overall outcome of their analysis is affected by the
choice of discount rate.

Following EPA (2006, p. 5-21), COBRA assumes that some of the incidences of premature
mortality related to PM2.s exposures occur in a distributed fashion over the 20 years following
exposure. To take this into account in the valuation of reductions in premature mortality, we
applied an annual 3 percent discount rate to the value of premature mortality occurring in future
years. Note that this lag adjustment does not apply to infant mortality, because Woodruff et al.
(1997) estimate the number of infant deaths occurring in the same year as the emissions change.

Valuing Non-Fatal Myocardial Infarction

We are not able to identify a suitable WTP value for reductions in the risk of non-fatal heart
attacks. Instead, we have used a cost-of-illness unit value with two components: the direct
medical costs and the opportunity cost (lost earnings) associated with the illness event. Because
the costs associated with a heart attack extend beyond the initial event itself, we considered costs
incurred over several years. For opportunity costs, we used values derived from Cropper and
Krupnick (Cropper & Sussman, 1990), originally used in the 812 Retrospective Analysis of the
Clean Air Act (U.S. EPA, 1997). For the direct medical costs, we found three possible sources in
the literature.

Wittels et al. (1990) estimated expected total medical costs of myocardial infarction over five
years to be $51,211 (in 1986$) for people who were admitted to the hospital and survived
hospitalization. (There does not appear to be any discounting used.) Using the CPI-U for medical
care, the Wittels et al. estimate is $163,050 in year 2010$. This estimated cost is based on a
medical cost model, which incorporated therapeutic options, projected outcomes and prices
(using “knowledgeable cardiologists™ as consultants).

The model used medical data and medical decision algorithms to estimate the probabilities of
certain events and/or medical procedures being used. The authors noted that the average length
of hospitalization for acute myocardial infarction has decreased over time (from an average of
12.9 days in 1980 to an average of 11 days in 1983). Wittels et al. used 10 days as the average in
their study. It is unclear how much further the length of stay may have decreased from 1983 to
the present. The average length of stay for ICD code 410 (myocardial infarction) in 2009 is 4.9
days (Agency for Healthcare Research and Quality, 2010). However, this may include patients
who died in the hospital (not included among our non-fatal cases), whose length of stay was
therefore substantially shorter than it would be if they hadn’t died.

Eisenstein et al. (2001) estimated 10-year costs of $44,663, in 1997$, or $73,950 in 2010$ for
myocardial infarction patients, using statistical prediction (regression) models to estimate
inpatient costs. Only inpatient costs (physician fees and hospital costs) were included.
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Russell et al. (1998) estimated first-year direct medical costs of treating nonfatal myocardial
infarction of $15,540 (in 1995%), and $1,051 annually thereafter. Converting to year 2010$, that
would be $33,260 (3% discount rate) and $31,446 (7% discount rate) for a 5-year period.

As seen in Exhibit F-5, the three different studies provided significantly different values. We
have not adequately resolved the sources of differences in the estimates. Because the wage-
related opportunity cost estimates from Cropper and Krupnick (1990) cover a 5-year period, we
used a simple average of the two estimates for medical costs that similarly cover a 5-year period
(i.e., assign a subjective weight of 0.5 to each estimate). We added this to the 5-year opportunity
cost estimate. Exhibit F-6 gives the resulting estimates.

Exhibit F-5. Summary of Studies Valuing Reduced Incidences of Myocardial Infarction

Study Direct Medical Costs Direct Medical Costs Over an x-year period, for
(2010 $, 3% DR) (2010 $, 7% DR) X=
Wittels et al., 19902 $163,050 $163,050 5
Russell et al., 1998 $33,260 $31,446 5
Eisenstein et al., 2001 $73,950 $73,950 10

2 Wittels et al. did not appear to discount costs incurred in future years.

Exhibit F-6. Estimated Costs Over a 5-Year Period of a Non-Fatal Myocardial Infarction

Opportunity ~ Opportunity ~ Medical Cost Medical Cost ~ Total Cost Total Cost
Age Group  Cost (20108, Cost (20108, (2010$ 3%  (2010$,7%  (2010$,3%  (2010$, 7%

3% DR) @ 7% DR) * DR) P DR) P DR) DR)
0-24 $0 $0 $98,155 $97,248 $98,155 $97,248
25-44 $11,825 $10,587 $98,155 $97,248 $109,980 $107,835
45 - 54 $17,429 $15,605 $98,155 $97,248 $115,584 $112,853
55 - 65 $100,744 $90,196 $98,155 $97,248 $198,899 $187,444
> 65 $0 $0 $98,155 $97,248 $98,155 $97,248

aFrom Cropper and Krupnick (1990). Present discounted value of 5 years of lost earnings, adjusted from 1977$ to 2010$
using CPI-U “all items”.

b An average of the 5-year costs estimated by Wittels et al. (1990) and Russell et al.(1998). Note that Wittels et al. appears
not to have used discounting in deriving a 5-year cost; Russell et al. estimated first-year direct medical costs and annual
costs thereafter. Medical costs were inflated to 2010$ using CPI-U for medical care.

Valuing Hospital Admissions

Society’s WTP to avoid a hospital admission includes medical expenses, lost work productivity,
the non-market costs of treating illness (i.e., air, water and solid waste pollution from hospitals
and the pharmaceutical industry), as well as WTP of the affected individual, as well as of that of
relatives, friends, and associated caregivers, to avoid the pain and suffering.5

53 Some people take action to avert the negative impacts of pollution. While the costs of successful averting behavior
should be added to the sum of the health-endpoint-specific costs when estimating the total costs of pollution, these
costs are not associated with any single health endpoint. It is possible that in some cases the averting action was not
successful, in which case it might be argued that the cost of the averting behavior should be added to the other costs
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Because medical expenditures are to a significant extent shared by society, via medical
insurance, Medicare, etc., the medical expenditures actually incurred by the individual are likely
to be less than the total medical cost to society. The total value to society of an individual’s
avoidance of hospital admission, then, might be thought of as having two components: (1) the
cost of illness (COI) to society, including the total medical costs plus the value of the lost
productivity, as well as (2) the WTP of the individual, as well as that of others, to avoid the pain
and suffering resulting from the illness.

In the absence of estimates of social WTP to avoid hospital admissions for specific illnesses
(components 1 plus 2 above), estimates of total COI (component 1) are typically used as
conservative (lower bound) estimates. Because these estimates do not include the value of
avoiding the pain and suffering resulting from the iliness (component 2), they are biased
downward. Some analyses adjust COI estimates upward by multiplying by an estimate of the
ratio of WTP to COl, to better approximate total WTP. Other analyses have avoided making this
adjustment because of the possibility of over-adjusting — that is, possibly replacing a known
downward bias with an upward bias. The COI values used in this benefits analysis will not be
adjusted to better reflect the total WTP.

Following the method used in the 8812 analysis (U.S. EPA, 1999), ICD-code-specific COI
estimates used in our analysis consist of two components: estimated hospital charges and the
estimated opportunity cost of time spent in the hospital (based on the average length of a hospital
stay for the illness). The opportunity cost of a day spent in the hospital is estimated as the value
of the lost daily wage, regardless of whether or not the individual is in the workforce. The
median annual wages for 2010 were obtained from the U.S. Census Bureau, 2010 American
Community Survey, 1-year estimates, Table B20017: “Median earnings in the past 12 months (in
2010 inflation-adjusted dollars) by sex by work experience in the past 12 months for the
population 16 years and over with earnings in the past 12 months”. The median daily wage was
calculated as the simple average of full-time male earnings ($46,500) and full-time female
earnings ($36,551), divided by 52 x 5, resulting in an estimate of $159.7.

For all hospital admissions endpoints available in this analysis, estimates of hospital charges and
lengths of hospital stays were based on discharge statistics provided by the Agency for
Healthcare Research and Quality’s Healthcare Utilization Project National Inpatient Sample
(NI1S) database (2007). The NIS is the largest inpatient care database in the United States, and it
is the only national hospital database containing charge information on all patients. It contains
data from a very large nationally representative sample of about eight million hospital
discharges, and therefore provides the best estimates of mean hospital charges and mean lengths
of stay available, with negligible standard errors. The sampling frame for the 2007 NIS is a
sample of hospitals that comprises approximately 90 percent of all hospital discharges in the

listed (for example, it might be the case that an individual incurs the costs of averting behavior and in addition incurs
the costs of the illness that the averting behavior was intended to avoid). Because averting behavior is generally not
taken to avoid a particular health problem (such as a hospital admission for respiratory illness), but instead is taken
to avoid the entire collection of adverse effects of pollution, it does not seem reasonable to ascribe the entire costs of
averting behavior to any single health endpoint. However, omission of these averting behavior costs will tend to bias
the estimates downward.
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United States. Since the NIS is based on discharge samples, the discharge-level weight was used
to weight discharges in order to produce national estimates. The principle diagnoses (based on
ICD-9 codes) were used to define the health endpoints.

Since most pollution-related hospital admissions are likely unscheduled, the unit values of
avoided hospital admissions used in COBRA are based solely on unscheduled hospitalizations.
The total COI for an ICD-code-specific hospital stay lasting n days is estimated as the mean
hospital charge plus n times the daily lost wage. The hospital admissions for which unit values
are available in COBRA are given in Exhibit F-1.

Because of distortions in the market for medical services, the hospital charge may exceed “the
cost of a hospital stay.” We use the example of a hospital visit to illustrate the problem. Suppose
a patient is admitted to the hospital to be treated for an asthma episode. The patient’s stay in the
hospital (including the treatments received) costs the hospital a certain amount. This is the
hospital cost — i.e., the short-term expenditures of the hospital to provide the medical services
that were provided to the patient during his hospital stay. The hospital then charges the payer a
certain amount — the hospital charge. If the hospital wants to make a profit, is trying to cover
costs that are not associated with any one particular patient admission (e.g., uninsured patient
services), and/or has capital expenses (building expansion or renovation) or other long term
costs, it may charge an amount that exceeds the patient-specific short term costs of providing
services. The payer (e.g., the health maintenance organization or other health insurer) pays the
hospital a certain amount — the payment — for the services provided to the patient. The less
incentive the payer has to keep costs down, the closer the payment will be to the charge. If,
however, the payer has an incentive to keep costs down, the payment may be substantially less
than the charge; it may still, however, exceed the short-term cost for services to the individual
patient.

Although the hospital charge may exceed the short-term cost to the hospital of providing the
medical services required during a patient’s hospital stay, cost of illness estimates based on
hospital charges are still likely to understate the total social WTP to avoid the hospitalization in
the first place, because the omitted WTP to avoid the pain and suffering is likely to be quite
large.

Valuing Emergency Room Visits for Asthma

To value asthma emergency room (ER) visits, we used a simple average of two estimates from
the literature. The first estimate comes from Smith et al.(1997), who reported that there were
approximately 1.2 million asthma-related ER visits made in 1987, at a total cost of $186.5
million, in 1987$. The average cost per visit was therefore $155 in 1987$, or $464 in 2010 $
(using the CPI-U for medical care to adjust to 2010 $). The second is from Stanford et al. (1999),
who examined data from asthmatics from 1996-1997, and reported an average cost of $388
(2010 $). We use a simple average of the two estimates, which yields a unit value of about $426
(2010 $).

In comparing their study to Smith et al. (1997), Stanford et al. (1999) noted that the data used by
Smith et al., “may not reflect changes in treatment patterns during the 1990s.” In addition, its
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costs are the costs to the hospital (or ER) for treating asthma rather than charges or payments by
the patient and/or third party payer. Costs to the ER are probably a better measure of the value of
the medical resources used up on an asthma ER visit.

Valuing Acute Symptoms and lliness Not Requiring Hospitalization
Several acute symptoms and illnesses have been associated with air pollution, including acute
bronchitis in children, upper and lower respiratory symptoms, and exacerbation of asthma (as
indicated by one of several symptoms whose occurrence in an asthmatic generally suggests the
onset of an asthma episode). In addition, several more general health endpoints which are
associated with one or more of these acute symptoms and illnesses, such as minor restricted
activity days and work loss days, have also been associated with air pollution.

Valuing Acute Bronchitis in Children

Estimating WTP to avoid a case of acute bronchitis is difficult for several reasons. First, WTP to
avoid acute bronchitis itself has not been estimated. Estimation of WTP to avoid this health
endpoint therefore must be based on estimates of WTP to avoid symptoms that occur with this
illness. Second, a case of acute bronchitis may last more than one day, whereas it is a day of
avoided symptoms that is typically valued. Finally, the C-R function used in the benefit analysis
for acute bronchitis was estimated for children, whereas WTP estimates for those symptoms
associated with acute bronchitis were obtained from adults.

In previous benefits analyses, such as in the 8812 Prospective analysis (U.S. EPA, 1999), acute
bronchitis was valued at $59.31 (in 2000 $ and at 1990 income level). This is the midpoint
between a low estimate and a high estimate. The low estimate is the sum of the midrange values
recommended by IEc (1994) for two symptoms believed to be associated with acute bronchitis:
coughing and chest tightness. The high estimate was taken to be twice the value of a minor
respiratory restricted activity day. For a more complete description of the derivation of this
estimate, see Abt Associates (2000, p. 4-30).

A unit value of $59.31 assumes that an episode of acute bronchitis lasts only one day. However,
this is generally not the case. More typically, it can last for 6 or 7 days. We therefore made a
simple adjustment, multiplying the original unit value of $59.31 by 6. The unit value thus
derived and used was $356 in 2000 $ and at 1990 income level (=$59.31 x 6), $477 in 2010 $
and at 2017 income level , or $485 in 2010 $ and at 2025 income level.

Valuing Upper Respiratory Symptoms (URS) in Children

Willingness to pay to avoid a day of upper respiratory symptoms is based on symptom-specific
WTPs to avoid those symptoms identified by Pope et al. (1991) as part of the complex of upper
respiratory symptoms. Three contingent valuation studies have estimated WTP to avoid various
morbidity symptoms that are either within the complex defined by Pope et al. (1991), or are
similar to those symptoms. In each CV study, participants were asked their WTP to avoid a day
of each of several symptoms. The WTP estimates corresponding to the morbidity symptoms
valued in each study are presented in Exhibit F-7 for 2025 and in F-9 for 2017.
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The three individual symptoms listed in Exhibit F-7 and Exhibit F-9 that were identified as most
closely matching those listed by Pope, et al. (1991) for upper respiratory symptoms are cough,
head/sinus congestion, and eye irritation, corresponding to “wet cough,” “runny or stuffy nose,”
and “burning, aching or red eyes,” respectively. A day of upper respiratory symptoms could
consist of any one of the seven possible “symptom complexes” consisting of at least one of these
three symptoms. These seven possible symptom complexes are presented in Exhibit F-8 for 2025
and Exhibit F-10 for 2017. We assumed that each of these seven complexes is equally likely.>*
The point estimate of WTP is just an average of the seven estimates of WTP for the different
complexes.

A unit value of $33.57 in 2025 (at 2025 income level and in 2010 $) and $32.99 in 2017 (at 2017
income level and in 2010 $) assumes that an episode of the symptoms lasts only one day.

Exhibit F-7. Median WTP Estimates and Derived Midrange Estimates (2025 income level, 2010 $)@

Symptom b Dickie et al. Tolley et al. Loehman et al. Mid-.Range
(1987) (1986) (1979) Estimate
Throat congestion 6.78 29.35 - 17.96
Head/sinus congestion 7.91 31.61 14.71 17.96
Coughing 2.26 24.86 8.94 12.58
Eye irritation - 28.20 - 28.20
Headache 2.26 45.17 - 17.96
Shortness of breath 0.00 - 18.96 8.96
(P;li;I)LJpon deep inhalation 793 ) i 793
Wheeze 4.53 - - 4.53
Coughing up phlegm 4.94°¢ - - 4.94
Chest tightness 11.31 - - 11.31

2Values were inflated to 2010 $ using CPI-U for “all items” and adjusted to 2025 income level.
b All estimates are WTP to avoid one day of symptom. Midrange estimates were derived by IEc (1993).

b 10% trimmed mean.

54 With empirical evidence, we could presumably improve the accuracy of the probabilities of occurrence of each
type of URS. Lacking empirical evidence, however, a uniform distribution seems the most reasonable “default”
assumption.
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Exhibit F-8. Estimates of WTP to Avoid Upper Respiratory Symptoms (2025 income level, 2010 $)?

Symptom Combinations Identified as URS by Pope et al. WTP to Avoid
(1991) Symptom(s)
Coughing $12.58
Head/Sinus Congestion $17.96
Eye Irritation $28.20
Coughing, Head/Sinus Congestion $30.53
Coughing, Eye Irritation $40.78
Head/Sinus Congestion, Eye Irritation $46.16
Coughing, Head/Sinus Congestion, Eye Irritation $58.73

Average: $33.57

2Values were inflated to 2010 $ and adjusted to 2025 income level.

Exhibit F-9. Median WTP Estimates and Derived Midrange Estimates (2017 income level, 2010 $)?

Symptom ® Dickie et al. Tolley et al. Loehman et al. Mid—_Range
(1987) (1986) (1979) Estimate

Throat congestion 6.66 28.85 - 17.65
Head/sinus congestion 7.77 31.07 14.46 17.65
Coughing 2.22 24.43 8.79 12.36
Eye irritation - 27.72 - 271.72
Headache 2.22 44.40 - 17.65
Shortness of breath 0.00 - 18.64 8.81
Pain upon deep inhalation 7.79 - - 7.79
(PDI)

Wheeze 4.45 - - 4.45
Coughing up phlegm 4.86° - - 4.86
Chest tightness 11.12 - - 11.12

2Values were inflated to 2010 $ using CPI-U for “all items” and adjusted to 2017 income level.

b All estimates are WTP to avoid one day of symptom. Midrange estimates were derived by IEc (1993).

b 10% trimmed mean.
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Exhibit F-10. Estimates of WTP to Avoid Upper Respiratory Symptoms (2017 income level, 2010 $)?

Symptom Combinations Identified as URS by Pope et al. WTP to Avoid
(1991) Symptom(s)
Coughing $12.36
Head/Sinus Congestion $17.65
Eye Irritation $27.72
Coughing, Head/Sinus Congestion $30.01
Coughing, Eye Irritation $40.08
Head/Sinus Congestion, Eye Irritation $45.37
Coughing, Head/Sinus Congestion, Eye Irritation $57.73

Average: $32.99

2Values were inflated to 2010 $ and adjusted to 2017 income level.

Valuing Lower Respiratory Symptoms (LRS) in Children

Schwartz et al. (1994, p. 1235) defined lower respiratory symptoms as at least two of the
following symptoms: cough, chest pain, phlegm, and wheeze. To value this combination of
symptoms, we used the same method as we did for upper respiratory symptoms. We chose those
individual health effects that seem most consistent with lower respiratory symptoms, we derived
all of the possible combinations of these symptoms, and then we valued these combinations.

The symptoms for which WTP estimates are available that reasonably match lower respiratory
symptoms are: cough (C), chest tightness (CT), coughing up phlegm (CP), and wheeze (W). A
day of lower respiratory symptoms could consist of any one of the 11 combinations of at least
two of these four symptoms.>® We assumed that each of the eleven types of lower respiratory
symptoms is equally likely,% and the mean WTP is the average of the WTPs over all
combinations. Exhibit F-11 presents resulting estimates in 2025 and Exhibit F-12 presents
resulting estimates in 2017.

%5 Because cough is a symptom in some of the upper respiratory symptom clusters as well as some of the lower
respiratory symptom clusters, there is the possibility of a very small amount of double counting — if the same
individual were to have an occurrence of upper respiratory symptoms which included cough and an occurrence of
lower respiratory symptoms which included cough both on exactly the same day. Because this is probably a very
small probability occurrence, the degree of double counting is likely to be very minor. Moreover, because upper
respiratory symptoms is applied only to asthmatics ages 9-11 (a very small population), the amount of potential
double counting should be truly negligible.

% As with URS, if we had empirical evidence we could improve the accuracy of the probabilities of occurrence of
each type of LRS. Lacking empirical evidence, however, a uniform distribution seems the most reasonable “default”
assumption.
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Exhibit F-11. Estimates of WTP to Avoid Lower Respiratory Symptoms (2025 income level and 2010 $)

Symptom Combinations Identified as LRS by Schwartz et al. WTP to Avoid
(1994, p. 1235) Symptoms
Coughing, Chest Tightness $23.87
Coughing, Coughing Up Phlegm $17.50
Coughing, Wheeze $17.08
Chest Tightness, Coughing Up Phlegm $16.24
Chest Tightness, Wheeze $15.83
Coughing Up Phlegm, Wheeze $9.47
Coughing, Chest Tightness, Coughing Up Phlegm $28.82
Coughing, Chest Tightness, Wheeze $28.41
Coughing, Coughing Up Phlegm, Wheeze $22.04
Chest Tightness, Coughing Up Phlegm, Wheeze $20.78
Coughing, Chest Tightness, Coughing Up Phlegm, Wheeze $33.34

Average: $21.22

Exhibit F-12. Estimates of WTP to Avoid Lower Respiratory Symptoms (2017 income level and 2010 $)

Symptom Combinations Identified as LRS by Schwartz et al. WTP to Avoid
(1994, p. 1235) Symptoms
Coughing, Chest Tightness $23.46
Coughing, Coughing Up Phlegm $17.20
Coughing, Wheeze $16.79
Chest Tightness, Coughing Up Phlegm $15.96
Chest Tightness, Wheeze $15.56
Coughing Up Phlegm, Wheeze $9.31
Coughing, Chest Tightness, Coughing Up Phlegm $28.33
Coughing, Chest Tightness, Wheeze $27.92
Coughing, Coughing Up Phlegm, Wheeze $21.66
Chest Tightness, Coughing Up Phlegm, Wheeze $20.42
Coughing, Chest Tightness, Coughing Up Phlegm, Wheeze $32.77

Average: $20.85
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Valuing Work Loss Days (WLDs)

Willingness to pay to avoid the loss of one day of work was estimated by dividing median annual
earnings ($41,525.5 in 2010$) by (52 x 5), which resulted a unit value of $160 (2010$). The
median annual earnings for males and females were obtained from U.S. Census Bureau, 2010
American Community Survey, Table B20017: “Median earnings in the past 12 months (in 2010
inflation-adjusted dollars) by sex by work experience in the past 12 months for the population 16
years and over with earnings in the past 12 months.” Overall earnings were calculated as the
simple average of full-time male earnings and full-time female earnings. Valuing the loss of a
day’s work at the wages lost is consistent with economic theory, which assumes that an
individual is paid exactly the value of his labor.

The use of the median rather than the mean, however, requires some comment. If all individuals
in society were equally likely to be affected by air pollution to the extent that they lose a day of
work because of it, then the appropriate measure of the value of a work loss day would be the
mean daily wage. It is highly likely, however, that the loss of work days due to pollution
exposure does not occur with equal probability among all individuals, but instead is more likely
to occur among lower income individuals than among high income individuals. It is probable, for
example, that individuals who are vulnerable enough to the negative effects of air pollution to
lose a day of work as a result of exposure tend to be those with generally poorer health care.
Individuals with poorer health care have, on average, lower incomes.

To estimate the average lost wages of individuals who lose a day of work because of exposure to
PMz2: pollution, then, would require a weighted average of all daily wages, with higher weights
on the low end of the wage scale and lower weights on the high end of the wage scale. Because
the appropriate weights are not known, however, the median wage was used rather than the mean
wage. The median is more likely to approximate the correct value than the mean because means
are highly susceptible to the influence of large values in the tail of a distribution (in this case, the
small percentage of very large incomes in the United States), whereas the median is not
susceptible to these large values.

Valuing Minor Restricted Activity Days (MRADS)

No studies are reported to have estimated WTP to avoid a minor restricted activity day (MRAD).
However, IEc (1993) has derived an estimate of WTP to avoid a minor respiratory restricted
activity day (MRRAD), using WTP estimates from Tolley et al. (1986) for avoiding a three-
symptom combination of coughing, throat congestion, and sinusitis. This estimate of WTP to
avoid a MRRAD, so defined, is $38.37 (1990 $), or after adjusting for inflation and income
growth $69 in 2025 (2025 income level and 2010 $) and $68 in 2017 (2017 income level and
2010 $). Although Ostro and Rothschild (1989) estimated the relationship between PM2.s and
MRADs, rather than MRRADs (a component of MRADs), it is likely that most of the MRADs
associated with exposure to PMzs are in fact MRRADSs. For the purpose of valuing this health
endpoint, then, we assumed that MRADSs associated with PM2.s exposure may be more
specifically defined as MRRADs, and therefore used the estimate of mean WTP to avoid a
MRRAD.
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Any estimate of mean WTP to avoid a MRRAD (or any other type of restricted activity day other
than WLD) will be somewhat arbitrary because the endpoint itself is not precisely defined. Many
different combinations of symptoms could presumably result in some minor or less minor
restriction in activity. Krupnick and Kopp (1988) argued that mild symptoms will not be
sufficient to result in a MRRAD, so that WTP to avoid a MRRAD should exceed WTP to avoid
any single mild symptom. A single severe symptom or a combination of symptoms could,
however, be sufficient to restrict activity. Therefore WTP to avoid a MRRAD should, these
authors argue, not necessarily exceed WTP to avoid a single severe symptom or a combination of
symptoms. The “severity” of a symptom, however, is similarly not precisely defined; moreover,
one level of severity of a symptom could induce restriction of activity for one individual while
not doing so for another. The same is true for any particular combination of symptoms.

Valuing Asthma Exacerbations

Rowe and Chestnut (1986) surveyed asthmatics to estimate WTP for avoidance of a “bad asthma
day,” as defined by the subjects. For purposes of valuation, an asthma attack is assumed to be
equivalent to a day in which asthma is moderate or worse as reported in the Rowe and Chestnut
study. Using the mean of average WTP estimates for the four severity definitions of a “bad
asthma day,” the asthma exacerbation could be valued at $58.31 (2025 income level and 2010 $)
and $57.5 (2017 income level and 2010 $) per incidence in 2025 and 2017, respectively.
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Appendix G: Additional Quick Start Tutorials on Sample

COBRA Scenarios

You can use COBRA to estimate the impacts of a new policy or program that results in a
change in air pollution. This appendix provides two case studies to give you a quick
introduction on how to work through the steps of a simple analysis for a few types of
policies: renewable energy supply goals or standards and energy efficiency programs.

Estimating the Benefits of Clean

Energy Policies

Quickstart Tutorial: How To Use The Co-

Benefits Risk Assessment (COBRA) Health

Impacts Screening and Mapping Tool

Analytical Steps and Case Studies

Q’ COBRA

Health Impacts Screening and Mapping Tool

iR

State and Local
Enrgy e Enviranment Program

Co-Benefits Risk Assessment
S EPA S5 rowe

septemiber 2017
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SEPA Qverview of Presentation %.

* How to conduct an analysis with COBRA
NS v

— Summarizes six key analytical steps

* Two case studies illustrate how to apply these
steps in two clean energy scenarios:

1. Renewable Portfolio Standard

2. Wind Energy Program

How to Conduct an Analysis with MM%E

Co B RA Enoigy ..S‘f?:;::iabx: Program

Analytical Steps and Relevant Resources

&» COBRA

Co-Benefits Risk Assessment
e 4.  Mealth Impacts Screening and Mapping Tool

United States
vmtnvﬁmml Protection
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SEPA Stepsin COBRA Analysis %‘1’!

Selectthe analysisyear

Estimate where [e.g., in one or more counties or states,
regionally, nationally) and what emission changes will

take place

Enterthe location, types, and quantity of emission
changes expected from the policy or activity in COBRA

Select a discountrate in COBRAto

appropriately discount the value of

future benefits
Run the model

Review the results

This presentation will:

*Walk you through these
steps,and

*Lead you toother tools
and resources that can
help you developyour
inputs.

COBRA uses your inputs to estimate the air quality,
health, and related economic impacts of the scenario

SEPA Step 1: Select analysis year %!

Chemical and Allied Product
Manufacturing

Fuel Combustion - Electric Utility
Fuel Combustion - Industry

Fuel Combustion - Cther
Highway Vehicles

fMetal Processing

Mizcellaneous

Matural Sources [Biogenics |

i

* COBRA contains detailed 2017 and 2025 baseline
emissions data for each county

* The emissions inventory in COBRA includes the 14
major emissions source categories (i.e., “tiers”) of
criteria pollutants included in the National Emissions
Inventory (NEI):*

— Off-Highway

— ther Industrial Processes

— Petroleum & Related Industries
— Solvent Utilization

— 5Storage & Transport

— '‘Waste Disposal & Recycling

“For mone information abowt the NI, see:

hittps:Swwwepe mowfeir- emissions-

inventories national-emissions-inwentory-nei
3
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Step 2: Estimate where and what
emissions changes will take place

Decide on the geographic area
where emissions are expected to
change

COBRA can assess actionsthat
affect emissions in:
— asingle county or state,

— groups of counties and states
[contiguous or otherwise), or

— theentire nation
COBRA allows you tovary the types
and amounts of emissions changes
expected to occcurindifferent
locations

. Step 2: Estimate where and what emissions
SEPA Step 2 Est | ‘
changes will take place (cont’d)

= Saimplifying assumptions can be made
when wsing DOERA buta highly
sophisticated enenzy  analysis of the
impacts of a clean enernzy policy ona
location will menerate more neicble
results
= For more information abouwt the
oomplexity of the enenzy system, ses
Chapters 3 and 4 of Assessing the Multipke
Banafits of Cleacn Energy: A Resource for
Stotes, available at

" fsites) ol
2 coouments/eoe esessine penetiros

a2

%‘l_

In COBRA, you can enter the emission changes as a

percentage or in absolute terms

— A percentage can be used when a policy is expected to
reduce emissions or use of an energy source by a specific

proportion

* For example, ifthe use of renewahble electricity
generation increases from 0% to 20% of total generation,
you could assume that the use of existing fuels for
electricity generation would be reduced by 20%

— 4n absolute number can be used for policies that do not lend
themselves easily to percentage reductions or when you want
to enter more specific emission changes

* For example, 5,000 tons of sulfur dioxide
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u " " |
o EPA Resourcesfc:rCalcul;.at.ngmlssmns. | "1 )
Changes from Electricity-related Policies *___

If you do not have absolute emission reduction estimates,
Yyou can use:

— A basicapproachor tool, such as:

»  Applying an emission factor obtained from EP&'s Emissions &
Generation Resource Integrated Datahase (eGrid)

htt = o enere v smissions-men sration-r scource-int ser ated-dat abas =
werid, OF

=  EPA's AVoided Emissions and geneRation Tool (AVERT)
hittps: s mowistateloc aben o ey favoided- smissions-and-men oration-tool-
avert

— More sophisticated approaches, such asthose described in ERPA
guides:

* Assessing the Muitiple Benefits of Clean Energy: A Resource for

States, Chapter 4 mttpsfwwwepa sowfsites production Files 2015~
DB docums s msoeEnoine bensfio pof

* Roodmap for incorporating Energy Efficiency/Renewabie Energy
Policies and Programs into State and Tribal Implementation Plans,

Appendi | httes: 5.5 roduction Files,2016-
05 documes = rediii QLpdf

Step 3: Select and enter the types,
SEPA location and quantity of emission w
changes expected -
m . ?qu willneedtaknnwwhe_ltsnurce categories of emissions
will be affected by the policy

= (Often, clean energy investments, such asthose that
increase the use of renewable energy or energy efficiency,
will affectthe “fuel combustion from electric utilities™
category

=  Within each category, there are fuel choices, such as coal,
gas, and oil

— Ifyou know the specific fuel will be affected, you may
choose it

— Ifnot, you can use the broader category

* Enterthe estimated emission changes by the appropriate
typesand locations, ensuring that you save your inputs
once you are finished
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WEPA Step 4: Select a discount rate %‘,

m * A discount rate is used to appropriately discount the

. value of future benefits
o

Not all benefits occur in the year of analysis, and
people are generally willing to pay more for
something now than for the same thing later

COBRA accounts for this time preference by
discounting benefits received later

SEPA Step 4: Select a discount rate (cont’d) %‘,

m = EPA's Guidelines for Economic Analysis recommend using
- both 3% and 7% discountratesto see how the conclusions
H_\}-‘—j of youranalysis change. Both rates are available in COBRA
£

The discount rate will affect the value of the benefits

— &4 higher discount rate favors investments with immediate
benefits and reduces the value of future benefits

— A lower discount rate places a greater value on benefits
which occurinthe future

* You can run your scenario with both rates and
then evaluate the effect of the change in
discount rate on the results
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SEPA Step 5: Run the model %‘.

m * Once you have completed these four steps, you are

ready to run the model

'\‘l.____..-—
iy ﬂ * The model will take at least five minutes to run and
may take longer, depending on the speed of your

r computer

‘:ﬁ * The model may appear non-responsive while it is
ﬁ processing

SEPA Step 6: View Results %‘.

i

m * You can view the results for the changes in air

quality, health effects, and related economic value in

‘x..;‘—j table and map forms

* You can export results as tables and copy/paste

r screenshots into reports and presentations
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Key Considerationswhen

<EPA _
Interpreting Results

L7

m * COBRA isintended as a screening tool

used to obtain ballpark health benefits estimates

Nx:}.— — COBRA does not predict the future but can be
=

F

3 _j

and to compare or rank options

— When more detailed analyses are required,
consider using more sophisticated modeling

approaches
SEPA Key Cons!deratlonswhen dy)
Interpreting Results (cont’d) #

i

m * There is uncertainty surrounding the values of

N\ key assumptions embedded in COBRA (i.e.,
- ;‘:j emissions inventory, health impact functions,

and economic values)

r — You should review the limitations and assumptions

ﬁtﬁ described in the COBRA User Manual

[
[E]
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Key Considerations when 1)
Interpreting Results (cont’d) #

S—

SEPA

* COBRA does not account for changes in emissions that
can result from changes in electricity market responses

to policy.

— For example, emissions in some states and regions are
“capped” by laws or regulations

= Emission allowances canthen be traded across entities
within a capped region

* Inthese regions, a reduction inemissions inone location
may resultinan increase (rebound) inemissionsin
anaother area subjectto the cap

* COBRA does not automatically capture these types of
potential effects inelectricity market dispatch

* Care should be exercised when interpreting COBRA
results to analyze the net impacts of a change in policy

15

Case Study 1: MMEIEH

State and Local

Renewable PorthIiO Standard Enorgy sad Envircament Program

This case study illustrates how to conduct an analysis of 3 clean energy poac

”””” nz 3 renewable portfolio standard

with CODRA using s : o a™s 35 SN gmpe

Co-Benefits Risk Assessment
o .  Health Impacts Screening and Mapping Tool

& COBRA

~ United States
T EPA iz roecton
Agency
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EPA

NW

Analyzing the Health Benefits of a dy)

Renewable Portfolio Standard *’

i

A renewable portfolio standard (RPS) requires
electric utilities to switch a particular
percentage of electricity generation to
renewable sources

* |f electricity had previously been generated
with fossil fuels, the RPS will result in criteria air
pollutant reductions and health benefits

Analyzing the Health Benefits of a dy)

Renewable Portfolio Standard {cant’d)t

* The next slides describe how to estimate
the health and related economic benefits of
a state or local RPS

— Specifically, we assume a state (Michigan) has
established an RPS requirement that 10% of
electricity generation must be from renewahble
sources by 2025

* We also could have looked at a county with a
renewable target or requirement
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SEPA

Step 1: Select the analysis year 1‘*'

ot

rtrockicion | 1 Select trabyms Ves | ] Comat Emssors Soananc: | 1 Emecuts P | 4 Vi Feath Bipcis andl Viskation Fesuts
Choons an Snaves Year

Sabact By bor which g svould lop §o selmaty haalh mpaciy of smasions changss COIIL wll
auforale oy U e banchre | Fealth vl bl 1
comwaponcing ta that yee AR chckong “sppde aradpea pear date” o can praossd 9 Beg 19 S0 o
et Gy

[ - Aoy brwiysn Taar Daln

Step 2: Estimate where and what

emissions changes will take place x

* Select what geographiclocations you expect
to be affected by the emissions change

— You can enter emissions changes at the national,
regional, state or county levels

— If you know that specific plants will be affected,
you can enter emissions changes only in those
counties

— Or you could use more sophisticated energy
modeling approaches or tools to identify any and
all plants that may be affected by a state or local
RPS and manually enter those changes for the
counties with affected plants

[
-
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Step 2: Estimate where and what emissions

., ﬂl )
SEPA changes will take place (cont’d)

-

m * Forthe Michigan RPS, we assume that all
N\ emission changes will occur statewide

5 fj * |n COBRA, we create a scenario for an
individual state and select Michigan

SEPA Step 2: Est!mate where and what emissions "ﬂl
changes will take place (cont'd) *

m * To determine the emissions reduced, you can:

- generation from fossil fuels to renewable sources

that do not generate air pollution will reduce 10%

r of all pollutants, or

H_\}.-‘—j — Assume that a switch of 10% of electricity
=

]

ﬁtﬁ — Estimate absolute emission reductions using:
= g * An emission factor approach as described earlier
* A more sophisticated modeling approach, if

available
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Step 2: Estimate where and what emissions ‘1 »
changes will take place (cont’d) t

EPA

* For this example, we use emissions factors from EPA's
Emissions & Generation Resource Integrated Database
(eGrid)* to develop an absolute estimate

— Using "eGRID2014 Summary Tables (PDF),” we found:
» Net electric generation in Michigan: 107 million MWh
* Non-baseload output emissions rates for Michigan:
502 4.1 Ibs. per MWh
MO, 1.5 lbs. per MWh

» Percentage of electric generation that already comes from
renewable sources in Michigan: 7.0%

* &GRID iz available at https: =i mon T miissions-menear ation-rscource-ints =rated-
database—s=rid

L . . . “[.
SEPA Step 2: Estimate where and what emissions *,

changes will take place (cont'd) -

f“ * Since 7.0% of electric generation already comes from
l' renewable sources, we assume our scenario will reduce

Sy emissions by:
ii 10.0% - 7.0% = 3.0%

* We calculate the reduction in MWh:

r 3.0% x 107 million MWh = 3.2 million MWh
<

'~ * Assuming the renewable energy used does not emit any
air pollution, we calculate the emission reductions as:

) l! 50;: 3.2 million MWh x 4.1 per MWh = 13 million lbs.
= @,600 tons

MNO,: 3.2 million MWh x 1.5 per MWh = 4.8 million lbs.
= 2,400 tons

23
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SEPA Step 3: Set up scenario in COBRA "‘ﬂl
d ﬂ*__

(a) Location of emission changes expecte

] rm
e

U IR |

SEPA Step 3: Set up scenario in COBRA "‘ﬂl
(b) Types of emission changes expected X

A RPS affects the fuel combustion from electricity
generation category

— You can select specific fuel choices that are expected to
be affected if known orassume all fuel choices are

affected

For the Michigan RPS example, we assume that all fuel
sources would be affected by the RPS (i.e., not just

natural gas or just coal) and select the “fuel combustion
from electricity generation” category
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SEPA

SEPA

Step 3: Set up scenario in COBRA

(b) Types of emission changes expected

v

Step 3: Set up scenario in COBRA

(c) Quantity of emission changes expected

Y
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SEPA Step 4: Select a discount rate -'**-

N
e
\--;

+ A discountrate is used to appropriately
discount the value of future benefits

* |Inthis case study, we use a 3% discountrate

* This discountrate provides an upper bound
for the estimated benefits and places a
greater value on future benefits to society,
compared to higher discount rates

o AR
= (cont’d) y

Wi | 1 S Aty T | 3 ot bt S | (b N S . (e k. St P
Tt Dmonst S

0 Pe TR e e s § St e b P OO —
AL st $u e rern vam o rwt @ Lhss sl bt @l B v tad han] . w—t wha v ¢ Pu my I | — sty wmpan sovarare ot b &
Pt o i b A Ay e R e e WS S D D o wd Wl w It o il e | ] T s dy ot & P S
LR Dy PG S BTSN NG B D P LA L) e e i (OB e b SRS -
Pt Par g ot o g o 1 As Gautvtran bo Foparry bnmere Neayons el @ S50 T S0 S0 BT T A R AN R I IR weee— b
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SEPA Step 5: Run the model %

N‘ |
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Step 6: Review the results
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- Step 6: Review the results
(b) View in map form

o ]
We clculated absolute ODERA |1} converted amissions
Michizan’s renewable improvements, and | 2] estimated

portfolio standard of 1086 annual adverse heslth impacts avoided.

v

COERA monetoed the valus
or benefits of the svoided
adverse heglth effects.

Bnnual Adverse Hesith impacts Avoided [ Annusl Benefits g, 31000)
Dolkar Viahse

Redscticnes ot tom) o Nosmit
. Pollutant Amoaant mﬁ‘t‘[ T

-. Sumtur Dicuice [504) 5500 Astrama Exaosrations s
it ATt 22-310

2400 Hosprtal Admnsicees 174

Aoute Bromichitis =3

FRespiratory Symptoms 1027

Asthena ER Visits 120

‘Wiork Duvgs Lost 2200

* Don't fonget to consider the covests from shides 14 through 16
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Case Study 2: MMEIEB

State and Local

Wi nd Energy Progfa m Enorgy sad Envireament Program

& COBRA

Co-Benefits Risk Assessment
o .  Health Impacts Screening and Mapping Tool

United States
vm&wmnmlm

Using COBRA to Evaluate the Benefits of

dy)
Wind Energy Production __*-

SEPA

* Wind energy is used across the country,

L
"*:\;\\? whether it is produced in-state or purchased
\q

from other states
* |fthe electricity had previously been generated
“--.
ﬁ

with fossil fuels, wind energy production can
lead to criteria air pollutant reductions and
health benefits

For mone detzils, see: the American Wind Enensy Acsnciation™ “The Clean Air Benefits of Wind Enenzy™

report, available at hitp:ffewes files oms-
lus.oo ibs Dl AWEA Clean Air Benefits White Paper?t2 OFinal pdf.
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Using COBRA to Evaluate the Benefits of
Wind Energy Production (cont’d)

v

e %

* The next slides describe how to estimate the
health and related economic benefits of
increasing a state’s wind energy capacity

— Specifically, we assume Texas has decided to explore
the benefits associated with a new wind energy
program
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SEPA Step 2 Estimate whe_re and what 4yl
emissions changes will take place *__..

m » Select what geographiclocations you expect to
be affected by the emissions change

e
. . .
- — You can enter emissions changes at the national,
regional, state or county levels

— If you know that specific plants will be affected, you
can enter emissions changes only in those counties

— Or you could use more sophisticated energy
modeling approaches or tools to identify any and all
plants that may be affected by a state or local wind
energy program and enter those changes in
manually

Step 2: Estimate where and what emissior"’ »
changes will take place (cont’d) #

-

» For this example, we assume that the wind
energy impacts will take place throughout Texas

» Due to the interconnectedness of the grid,
these impacts will affect electricity providers
and emissions beyond this state
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Step 2: Estimate where and what emissions ‘F |J I

changes will take place (cont’d)

W * Toestimate the electricity changes expected from the
L program, you can either:

— Estimate how many MW you expect to save from your
program, or

— Find a similar program to use as a proxy

In this hypothetical example, we estimate emissions
reductions due to a 7,000 MW wind energy program
in Texas

— The American Wind Energy Association (8WEA) reported
installed wind power capacity by state, with a total of 12,355
MW for Texas™®

— Another 7,000 MW of wind energy projects are currently
under construction in Texas®

=Sowros: AWELS “AWEL U5, Wind Industry Fourth Ousrter 2003 Market Raport”, availabls ot
bttt fenwneanwes or= 4o 201 3.

SEPA Step 2: Estimate where and what emissions%‘_

changes will take place (cont’d) -

m * To estimate the annual emissions reduced from
N"\}’ 7,000 MW of installed wind capacity, you can
p ij use:

— A basic tool that estimates emissions changes from
renewable energy programs

— A more sophisticated modeling approach, if available
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SEPA

Step 2: Estimate where and what emissions h]ll b

changes will take place (cont’d) F_ N

* For this example, we use EPA’s AVoided Emissions and
geneRation Tool (AVERT)* to:

— Applya 7,000 MW increase in installed wind capacity in
Texas

— Calculate the county-level emission reductions (in Ibs)
— Sum the emission reductions to state level

— Convert emissions reductions totons

For more details, EPAs AVERT tool snd documenttion are available ot
httpe: ‘wtatelocabsner, ided-=missions-a ne=ration-too-avert .

S EPA SteF: 2 Estimate whe.re and what ’ "‘ﬂl
emissions changes will take place (cont’d) __*__-

m * Annual emission reductions (in tons) from
W 7,000 MW wind energy program using AVERT:

Swc/Comy |50 | WO, |

Texas 31,7386 127229
Oklahoma*® 0.75 B4.75

*Note that Oklahoma also experiences emissions reductionsfromthewind program.
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S EPA Step 3: Set up scenario in COBRA ﬂll
e (a) Location of emission changes expected t

m + Emission reductions in all affected states are input
' at the state level

\ \H [
| =l -
: 1 5’ i | [ s o ¢ R S S ] e R | e Sl i e i Sl
—
‘o ol T
rey—jrtd

[[IIIH[H!:

TeCEfi i
[l iy

Step 3: Set up scenario in COBRA hl.

WEPA (b)Types of emission changes expected #
(cont’d) -

m * Since renewable energy programs affect

: electricity generation, the affected emissions

category is “fuel combustion from electricity

generation”

» This category includes fuel choices (e.g., gas,
coal)

* Since all fuel sources could be affected by the
renewable energy program, select the “fuel
combustion from electricity generation”
category
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Step 3: Set up scenario in COBRA m
&EPA (b)Types of emission changes expected -*-

(cont'd)
m Select emissions category for each affected state or
county

i
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Step 3: Set up Scenario in COBRA m

SEPA (c) Quantity of emission changes expected *—

{cc-nt’d} -
Enter emission changes for each affected state or county

[we= == "
i § i ey ¢ R PR SR g e by . e Sl e -l
= “'" e | =
- o — TSP e
E"‘ LI — = = rm mmewm
= — -
L om— S T L I T T
e e
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——— D t forget t t
P et T S— O NOL TOrg O enter
B N T R — and click Apply Changes
a B mainin T T —— foreach state/ county
S )
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Step 3: Set up scenario in COBRA &
SEPA Repeatforall affected states/counties #
(cont’d) -
* Enter emission changes for each affected state or county
Nl |
* Do not forget to enter and click Apply Changes for each

N\H_\}-— state/ county
5 fj * In this example, after entering changes for Texas:
Click Apply Changes
Unselect Texas
Select Oklahoma
Enter Oklahoma emissions changes in Fuel. Comb. Elec. Util. tier
Click Apply Changes

Proceed to step 4

i}

€

SEPA Step 4: Select a discount rate

m » A discountrate is used to appropriately
3 discount the value of future benefits

e
N E . .
N _j * Inthis case study, we use a 3% discount rate

r » This discount rate provides an upper bound for

" the estimated benefits and places a greater
value on future benefits to society, compared to
higher discountrates
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SEPA Step 4: Select a discount rate (cont’d) y‘..
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Step 6: Review the results
(a) View in table form

<EPA

I\

¥

R
S EPA Step 6: Review the results
N# : .
(b) View in map form
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SEPA Step 6: Review the results

[ ] » »
We used AVERT to caboulate ODERA |1} converted amissions CDERA monetized the value
dhee to an inoreased wind improvements, and | 2] estimated adverse health effects.
capacity of 1,000 MM, annual adverse heslth impacts avoided.
Anniwusl Emission Reductions Bnnnssl Adverse Heslth impacts Secdded @ Snnusl Benefits (oo, $2,0005)
tubod fom|
. Durboome Numiber Dodiar Value

4-122 F4E0,7E5 - 21,055,550

170 ]

T-EL EEOL - 2T ATL

36 2174

=0 44

2738 =

ﬂtﬂdxmallm AstFema R Visits - 217
Wik Darys Lost 7o LT

tots 3457034 - 51,102,457

* Don't fonget to consider the covests from shides 14 through 16

&EPA How Can | Learn More?

l Visit Our Website:
o

f\_\ https://www.epa.gov/statelocalenergy/co-benefits-
"';‘ risk-assessment-cobra-screening-model

Contact Us:
Denise Mulholland
EPA State and Local Energy and Environment Program

(202) 343-9274
Mulholland.Denise@epa.gov

éh COBRA WiVl

Co-Benehts Risk Assessment State and Local
e . WRUNP WMpECLS SCreening snd Mappieeg To-d Energy and Envirenment Program

)
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Appendix H: Instructions for Running COBRA Using Batch
Files

Batch files can be used to submit emissions data representing multiple years or scenarios, so that
the scenarios will run in succession without additional input from the user. This feature enables
analysis of multiple years or scenarios in a single modeling step.

Running COBRA using batch files requires that users have some baseline understanding of what
batch files are and how they function. Below, we describe how to (1) format emissions files for
use in COBRA, (2) write a Windows command to conduct a single COBRA run, and (3) create
and run a batch script for multiple COBRA runs.

(1) Formatting emissions files for use in COBRA

COBRA requires that imported baseline emission files be in a specific format. To create
properly formatted custom baseline and scenario emissions files, create a CSV file with the
headings shown in Exhibit H-1. Each row of the file should correspond to a different source in a
different county.

Exhibit H-1. Format of Baseline and Scenario Emissions Files

Column Heading Description of Column Headings
typeindx* Stack height associated with the emission
sourceindx? Source index, which COBRA uses in its source receptor model
stid FIPS state ID (e.g., the state FIPS code for Pennsylvania is 42)
cyid FIPS county ID (e.g., the county FIPS code for Swarthmore, PA is 045)
TIER1® Emissions category to which emissions source corresponds, at tier 1 level
TIER2® Emissions category to which emissions source corresponds, at tier 2 level
TIER3® Emissions category to which emissions source corresponds, at tier 3 level
NO2 NOy emissions from each source in the baseline
SO2 SO, emissions from each source in the baseline
NH3 NH3 emissions from each source in the baseline
PM25 Primary PM, s emissions from each source in the baseline
VOC VOC emissions from each source in the baseline

Notes:

L A table of typeindx and name is saved on your computer after installing COBRA in the default location,
C:/Program Files/COBRA/input files/data dictionary/typeindx — stack heights.csv.

2 A table of sourceindx and FIPS is saved on your computer after installing COBRA in the default location,
C:/Program FilessfCOBRA/input files/data dictionary/SOURCEINDX to FIPS crosswalk.csv

3 A table of tier definitions and tier numbers is saved on your computer after installing COBRA in the
default location, C:/Program Files/ COBRA/input files/data dictionary/EmissionsTier Definitions.csv

(2) Writing a Windows COBRA command to conduct a single COBRA run
After formatting the baseline emission and scenario emission files, advanced users can run
COBRA from the Windows command prompt using the following syntax:
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"C:\Program Files\COBRA\cobra_console.exe"
"C:\Program Files\COBRA\data\cobra.db" A B C D

where:
A is the file path for the emissions baseline in a CSV file
B is the file path for the emissions control scenario in a CSV file, formatted
in the same way as the emissions baseline
C is the file path for where you would like the results CSV to be saved
D IS YES or NO, where YES runs COBRA with a 3% discount rate and NO

runs COBRA with a 7% discount rate

Below, we illustrate how one could use this syntax to run COBRA for a single scenario, named
Test 1, where A = "C:\Program Files\COBRA\cobra_console.exe", B ="C:\Program
Files\COBRA\COBRA Tests\Test 1\Testl_Scenario.csv", C = "C:\Program
Files\COBRA\COBRA Tests\Test 1\Testl_Results3pct.csv", and the user wants to run COBRA
with a 7% discount rate.

"C:\Program Files\COBRA\cobra_console.exe"
"C:\Program Files\COBRA\data\cobra.db" "C:\Program
F11es\COBRA\COBRA Tests\Test 1\Testl_Baseline.csv"
"C:\Program Files\COBRA\COBRA Tests\Test
1\Testl_Scenario.csv" "C:\Program Files\COBRA\COBRA
Tests\Test 1\Testl_Results3pct.csv" YES

BEM Command Prompt = | B |

C:slUsers>"CisProgram Files~COBRA“cobra_conszole.exe' "C:sProgram Files“~COBRA-data
~cobra.dh" "C:“Program Files“~COBRASNGOBRA Tests“Test 1-Testl_Baseline.csv"™ "C:\Pr
ogram Files“\COBRA~COBRA Tests-Test 1-Testl_Scenario.csv" "C:“Program Files=“COBRA
~COBRA Tests»Test 1-Testl_Result=3pct._csu' YES

b

(3) Creating a batch script for multiple COBRA runs

Users can run multiple scenarios in succession without any additional input from the user by
creating batch files that contain Windows commands for multiple COBRA runs. Below, we
demonstrate how a user could use a batch file to run COBRA four times (1) “Test 1” with a 3%
discount rate, (2) “Test 1”” with a 7% discount rate, (3) “Test 2” with a 3% discount rate, and (4)
“Test 2”” with a 7% discount rate. First, the user would create the properly formatted baseline
and scenario emissions files, as described above. For this example, we assume that the following
file paths are used:

e "C:\Program Files\COBRA\COBRA Tests\Test
1\Testl_Baseline.csv" = file path for the emissions baseline for Test 1
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http:Files\COBRA\data\cobra.db
http:Files\COBRA\data\cobra.db

e "C:\Program Files\COBRA\COBRA Tests\Test

1\Testl_Scenario.csv'" = file path for the emissions scenario for Test 1
e "C:\Program Files\COBRA\COBRA Tests\Test

1\Test2_Baseline.csv" = file path for the emissions baseline for Test 2
e "C:\Program Files\COBRA\COBRA Tests\Test

1\Test2_Scenario.csv'" = file path for the emissions scenario for Test 2

Then, the user would open a simple text editor (e.g. Notepad) and write the series of Windows
COBRA commands that describe which baseline emissions, scenario emissions, and discount
rate to use for each run, using the syntax described in (2).

1

mj Batch Run Example - Notepad = | = P

File Edit Format VYiew Help

"C:“Program Files\COBRA'cobra_console.exe" "C:“Program Files“COBRA‘data'cobra.db"
"C:WProgram Files“COBRA\COBRA Tests'\Test 1\ Testl_Baseline.csv’ "C:“PFrogram Files
“WCOBRAWCOBRA Tests\Test 1'%.Testl_Scenario.csv’ "C:“Program FiWESKCGBRAQCOBRA
Tests'Test 1%Testl _Results3pct.csv’ YES

"C:%Program Files“COBRA'cobra_console.exe" "C:“Program Files‘COBRA‘data'cobra.db"
"C:WProgram Files“COBRA“COBRA Tests'Test 1\ Testl_Baseline.csv’ "C:“Program Files
“WCOBRAWCOBRA Tests\Test 1% Testl_Scenario.csv'” "C:“Program Files'COBRA\COBRA
Tests'Test 1%Testl Results7pct.csv’ NO

"C:WProgram Files“COBRA'cobra_console.exe" "C:\Program Files‘\COBRA\data'cobra.db"
"C:WProgram Files“COBRA\COBRA Tests'\Test 2\ Test2_Baseline.csv’ "C:“Program Files
“WCOBRAWCOBRA Tests\Test 2. Test2_scenario.csv’ "C:“Program Files"COBRA\COBRA
Tests'Test 2%Test2_Results3pct.csv" YES

"C:WProgram Files“COBRA'‘cobra_console.exe" "C:\Program Files‘\COBRA\data'cobra.db"
"C:WProgram Files“COBRA\COBRA Tests'\Test 2\ Test2_Baseline.csv’ "C:“Program Files
“WCOBRAWCOBRA Tests\Test 2. Test2_scenario.csv’ "C:“Program FilesCOBRA\COBRA
Tests'Test 2% Test2_Resultsipct.csv’ NO

Then, the user would save this file a batch file (.bat). To run the batch file, the user would double
click the appropriate “.bat” file and the COBRA commands will run automatically in the
command prompt.
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