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Abstract 
 

This paper examines the impact of environmental regulation on industry employment, using a 
structural model based on data from the Census Bureau’s Pollution Abatement Costs and 
Expenditures Survey.  This model was developed in an earlier paper (Morgenstern, Pizer, and 
Shih (2002) - MPS).  We extend MPS by examining additional industries and additional years.  
We find widely varying estimates across industries, including many implausibly large positive 
employment effects.  We explore several possible explanations for these results, without 
reaching a satisfactory conclusion.  Our results call into question the frequent use of the average 
impacts estimated by MPS as a basis for calculating the quantitative impacts of new 
environmental regulations on employment. 
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1 INTRODUCTION 

The “jobs vs. environment” debate has been raging in the United States and elsewhere since 
the 1970s, although interest has clearly intensified during the recent economic downturn. At the same 
time, conclusive evidence on the employment impacts of such regulation is quite limited, largely 
because the effects of environmental regulation on labor markets are so difficult to disentangle from 
other economic changes over time and across industries.  

The policy debate has spawned alternative definitions of regulation-induced job loss. While an 
individual separated from an existing job because of an environmental regulation has clearly suffered a 
loss, pollution abatement activities themselves require labor input. Thus, environmental regulations 
may also create jobs – sometimes in the same industry, the same firm, or even the same plant. 
Although headlines rarely make the linkage, job loss in one area may be accompanied by job creation 
in another (e.g., when environmental regulation causes firms to shift production from counties not 
attaining one or more federal air quality standards to those in compliance). Henderson (1996), Becker 
and Henderson (2000), and Greenstone (2002) have found such job shifts using linear regression 
models based on these spatial, pollutant-specific differences in regulation. However, the number of 
jobs moving from non-attainment to attainment areas may overstate the effects on industry or 
economy-wide employment. 

Labor unions and trade groups often focus on gross job changes and the cost of rearranging 
workers within an industry. However, net job loss within an industry – which recognizes all intra-
industry employment changes associated with environmental regulation – is also an important metric. 
This definition recognizes that many regulated firms relocate employees in other units of the same 
company, and that plants remaining in the industry often expand output to make up for the reduced 
production due to exiting or shrinking plants in the same industry, thereby offsetting at least some of 
the initial job losses.  

Morgenstern, Pizer, and Shih (2002) (hereinafter MPS) measured regulatory burden or 
stringency via a widely used proxy, pollution abatement operating costs (PAOC), reported in the 
Pollution Abatement Costs and Expenditures (PACE) Survey.1 MPS developed a structural model to link 
PAOC and employment, and decomposed the employment consequences of PAOC into a cost effect, a 
factor shift, and a demand effect.2 Standard theory predicts a positive cost effect and a negative 
demand effect, while the sign of the factor shift could go either way, making the direction of the net 
impacts indeterminate ex ante.  

Using plant-level Census data from 1979–91 for four pollution-intensive industries, MPS 
estimated a cost function that allowed assessment of the first two components and then combined the 
results with estimates of industry-wide demand elasticities to calculate the third component. They 

1As Gallaher, Morgan and Shadbegian (2008) noted, the PACE is “the only comprehensive source of 
pollution abatement costs and expenditures related to environmental protection in the manufacturing sector of 
the United States” (p 309). They also cited the now considerable literature examining the reasons why the PACE 
survey may either under- or overstate the true costs of pollution abatement. See also Becker and Shadbegian 
(2007). 

2 For a somewhat similar approach, see Berman and Bui (2001). 
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combined the components to estimate the net change in employment associated with changes in 
reported PAOC. Aggregating over four industries, they found a small, statistically insignificant, gain of 
jobs associated with PAOC. The positive value was driven by the results from the plastics and 
petroleum industries, which had significantly positive factor shifts coupled with relatively small 
demand effects. 

Because of the importance of MPS in this debate, we used a similar methodology and 
addressed two key questions: (1) does the effect of environmental regulation vary across industries; 
and (2) has the nature or magnitude of the effect changed over time? Like MPS, we did not find any 
evidence of large negative effects. However, for some industries and time periods, we obtained very 
large positive effects. The magnitudes of these effects seem to imply that nearly all of the regulatory 
expenditure is used to hire workers. This is implausible because of the capital intensity of pollution 
abatement in these industries.  

After reporting the main results, we describe extensive additional analysis trying to explain 
these results. One possibility is that the MPS methodology was sensitive to the sample, but in some 
cases we also obtained implausible results using a linear regression model rather than the model in 
MPS. Alternatively, there may have been an omitted variables problem that was apparent in our 
samples but less severe in the MPS samples. We were not able to identify suitable instruments or 
alternative strategies to address this possibility. 

A key limitation of the MPS approach was the exclusive focus on continuing plants. Relying on 
a balanced panel, the approach excluded those facilities that exited the industry during the study 
period, thereby precluding analysis of the potential impact of regulation on exit. During our project we 
began to examine this issue by developing a preliminary analysis of the exit decision by plants in these 
industries. Perhaps unsurprisingly, we found a quite limited impact of regulation on exit probabilities, 
with mostly small and insignificant effects, including decreases as well as increases in exit associated 
with higher PAOC across the industries.3  

The paper is organized as follows. The next section briefly lays out the framework for 
decomposing industry-level employment effects. Section 3 describes the methodology and data for 
estimating employment effects. Section 4 presents the results for these plants. Section 5 discusses 
possible explanations for the implausible results. Section 6 provides conclusions.  

2 FRAMEWORK FOR DECOMPOSING INDUSTRY-LEVEL EMPLOYMENT EFFECTS 

This section first provides an overview of the MPS approach and then discusses the extensions 
developed herein. 

2.1 Overview of MPS Methodology 

Recognizing that when environmental regulations change, both a rearrangement of production 
activities and a potential output contraction affect employment, MPS developed a structural model to 
estimate the relationship between regulatory costs and output. An advantage of the structural 
approach was that it enabled a decomposition of the employment effects into the cost, factor shift, 

3 Exit analysis results are available at 
http://yosemite.epa.gov/ee/epa/eerm.nsf/vwAN/EE-0572-07.pdf/$file/EE-0572-07.pdf  
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and demand components (further described below). As MPS emphasized, the public debate has 
focused mostly on the demand effect. However, this focus ignores the fact that employment could rise 
if demand is less than unit elastic or if production becomes more labor intensive. Thus, disentangling 
the three effects can help clarify the relationship between regulation and employment.  

MPS defined their disaggregation as follows:  

a) Cost effect: As production costs increase from added pollution abatement activities, plants 
use more of all inputs (including labor) to produce the same level of output.  
 

b) Factor shift: Post-regulation production technologies may be more or less labor intensive 
(i.e., more or less labor may be required per dollar of output). 
 

c) Demand effect: Higher production costs raise market prices. Higher prices reduce 
consumption (and production), thereby reducing demand for labor within the regulated 
industry.  

The cost effect depends on the relationship between regulatory costs and total costs. The 
stronger the relationship is, the greater the effect. Theoretically, the cost effect is positive, meaning 
that an increase in regulatory stringency causes employment to increase via the cost effect. In contrast, 
the factor shift depends on whether regulatory costs induce substitution toward or away from labor 
while holding total costs constant. In principle, the factor shift could be either positive or negative.  

MPS estimated these two effects by estimating a plant-level cost function that included 
regulatory costs as well as the costs of four productive inputs: capital, labor, energy, and materials. 
MPS showed that the cost effect and factor shift depend on the cost function parameters and input 
cost shares. We used the same functional form to estimate plant-level cost functions. 

Assuming monopolistic competition among plants in an industry, MPS showed that the 
demand effect depends on the elasticity of total industry output demand with respect to the output 
price. The more elastic industry output demand is, the more an increase in costs reduces total industry 
output and thus employment. MPS estimated the demand elasticity using aggregate industry-level 
data. As the next section discusses, we made the same monopolistic competition assumption, but the 
estimation of demand elasticities differed in several important ways.  

After estimating cost function parameters and demand elasticities, MPS estimated the 
employment effects of a hypothetical increase in regulatory costs. MPS made the not unreasonable 
assumption that the plant’s share of regulatory costs was proportional to its share of total industry 
output – an assumption that we continued to employ. 

2.2 Expanding the Time Period and Set of Industries Analyzed 

We next discuss the extensions to MPS. MPS used plant observations from 1979–1981, 1985, 
1989, and 1991. The MPS analytical datasets were assembled from several surveys, but two of them 
were not conducted continuously: the PACE survey, which collects information on expenditures related 
to environmental regulation, and the Manufacturing Energy Consumption Survey (MECS), which 
collects information on energy costs. MPS did not include all years in the 1979–1991 time period 
because they restricted the analysis to years in which both the PACE and MECS were conducted. 
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However, by performing some simple extrapolations (see Section 3 for more details), we were able to 
extend the analysis to all years from 1976 to 1991, with the exception of the two years the PACE survey 
was unavailable due to quality concerns (1983) or was not conducted (1987). Beyond the addition of 
years from the 1970s and 1980s, we extended the analysis forward to include the years 1992–1994, 
1999, and 2005. This extension allowed us to examine whether the employment effects of PAOC have 
changed over time. 

MPS chose their original four industries because their reported regulatory costs per value of 
output were among the highest in the manufacturing sector. However, plants in other industries also 
face stringent environmental regulation. Because of differences in production structure, industry 
organization, and location, the employment effects of environmental regulation are likely to vary 
across industries. Consequently, we generated the estimates for six additional industries as described 
in Section 3. These industries are also heavily regulated; have some of the highest ratios of reported 
regulatory costs to value of output; and, at least in some cases, are likely to be the focus of additional 
EPA regulations in the future. 

3 METHODOLOGY AND DATA FOR ESTIMATING EMPLOYMENT EFFECTS  

This section describes the details of the methodology for estimating employment. Our 
methodology made use of the same assumptions as MPS and introduced the extensions noted above. 
The section first defines the industries analyzed and then describes the demand elasticity and cost 
function estimation and data. 

3.1 Industry Selection 

To update MPS, we started with the original four industries: petroleum, plastics, pulp and 
paper, and iron and steel. The industry definitions for plastics and petroleum remained the same, while 
we dropped coke ovens from the steel industry (consistent with the industry definition in the North 
American Industry Classification System (NAICS)) and included pulp-only mills in the paper industry 
(because they face regulatory pressures similar to paper mills that produce their own pulp). We chose 
additional industries for analysis based on potential sample sizes of Census data and on informal 
consultation with technical experts to assess the likely degree of homogeneity of production functions 
within the selected industries.  

The final set of 10 industries included the 4 from MPS plus 6 others. Table 1 lists these 
industries and their corresponding industry codes. One issue in dealing with these data was the switch 
of industry definitions from Standard Industrial Classification (SIC) to NAICS codes in 1997. This was less 
of a problem when dealing with the individual plant-level data, since we could identify the same plant 
over time even when it changed industries. However, some of our variables were based on industry-
level information, so care was needed if industry definitions changed dramatically in 1997. As it turns 
out, of the four MPS industries, two (petroleum and plastics) were exact one-to-one matches between 
SIC and NAICS, one (steel) was near-exact (93–96 percent of SIC shipments were from a single NAICS 
industry), and the other (pulp and paper) had a somewhat weaker match (in the 82–88 percent range), 
largely because of the shifting in/out of paperboard/box plants. 
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3.2 Analysis 

3.2.1 Estimation of Industry Demand Elasticities 

The own-price elasticity of industry demand, reflecting the change in total industry output 
given a change in the average price of output, was an important parameter in the MPS model used to 
simulate the effect of PAOC on industry-level employment. The larger the elasticity (in absolute value), 
the more industry output falls when PAOC increases, and the larger the demand effect. Our estimation 
strategy used the same industry definitions as the cost function analysis. We estimated a simple 
demand equation and instrument for output price.4 

3.2.1.1 Empirical Strategy 

The industry demand elasticity is distinct from a plant’s demand elasticity. The latter is much 
more commonly estimated in the literature. It is typically estimated using variation in output prices and 
output across plants, and the elasticity therefore reflects the change in demand for a plant’s output 
given a change in its price relative to the prices of all other plants in the industry. For example, Foster, 
Haltiwanger, and Syverson (2008, henceforth FHS) estimated plant-level elasticities using the Census 
plant-level microdata from the Longitudinal Research Database (LRD). The industry demand elasticity 
should be smaller in magnitude (less elastic) than the plant-level demand elasticity because it 
corresponds to the reduction in total industry output if all plant input prices increase by the same 
amount. 

We estimated the industry demand elasticity using industry-level variables. We began with the 
following equation for each industry: 

  (1) 

where  is the output of industry  in year ,  is the price of the output,  is an error 
term, and  and  are industry-specific coefficients to be estimated. The coefficient  is the 
elasticity of output with respect to the price of output, and represents the percentage change in 
quantity demanded given a 1 percent price increase. That is, the elasticity captures movement along 
the aggregate industry demand curve caused by a price change.  

Estimating equation (1) by ordinary least squares (OLS) using equilibrium prices and quantities 
is likely to yield an estimate of  that is upward biased. The reason is the same as for a plant-level 
analysis: at least some of the variation in equilibrium prices is driven by shifting demand curves. For 
example, consider the petroleum refining industry. If a recession causes a decrease in demand for 
petroleum products, refineries are likely to cut their prices. Because the error term includes all 
determinants of equilibrium quantity besides the price, the error term is therefore positively correlated 
with the price, and the coefficient on the log output price is upward biased. 

4 By comparison, MPS used the Jorgenson KLEM dataset, which contains similar, although not identical 
industry definitions for the four MPS industries. (The details on the Jorgenson KLEM dataset are available in 
Appendix B.) Furthermore, MPS do not explicitly estimate a demand equation; instead, the main independent 
variable is the difference between the output price and an aggregate input price index.  
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One approach to reducing this bias is to control for demand shocks. When estimating plant-
level demand elasticities, it is common to include year fixed effects or measures of total industry 
output, for example, as in FHS. However, we defined equation (1) at the industry level, and it would 
not have been possible to estimate industry-specific demand elasticities if we included year fixed 
effects.5  

Instead, we constructed a measure of aggregate industry demand: 

     (2) 

where  is the share of output from industry  in industry ’s total materials use and  is 
the output of industry  in year . The summation is taken over all industries other than industry  as 
well as final consumers, so that  is an estimate of the demand for industry ’s output from all other 
industries and consumers.6  

We added aggregate demand to equation (1) to obtain: 

   (3) 

Importantly, we constructed the aggregate demand measure using cost shares computed in a 
base year and changes in industry-level output over time. Using time-invariant shares alleviated 
concerns that the shares could be correlated with the error term. At the same time, because cost 
shares were fixed,  proxies for aggregate demand and measurement error for aggregate demand 
could bias other coefficients. 

Given this concern, we also used an instrument for the output price. Appropriate instruments 
are correlated with the price but are uncorrelated with demand for industry output. Supply-side 
variables (i.e., cost-shifters) are commonly used in the literature on demand curve estimation. FHS 
estimated plant-level demand elasticities and used the plant’s total factor productivity (TFP) as an 
instrument.  

We could use the industry-level analog of plant-level TFP:  

     (4) 

where inputs, indexed by , include capital ( ), labor ( ), energy ( ), and materials ( );   is 
the cost share of input  computed over all years; and  is the consumption of input . Note that the 
cost shares needed to be multiplied by the returns to scale of the industry that was estimated as part 
of the cost function estimation. 

5 We could have pooled industries and include year fixed effects, which would have controlled for 
aggregate shocks that affect all industries proportionally. This would not have controlled for industry-specific 
demand shocks, however, and would have likely yielded biased estimates using OLS. 

6 Input-output tables from the U.S. Department of Commerce’s Bureau of Economic Analysis (BEA) 
indicate that manufacturing plants often consume output from other plants in the same industry. If we included 
output from industry j when computing demand for industry j, however, there would have been a mechanical 
relationship between the dependent variable and aggregate demand. 
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One concern with the instrument is that we computed it using the industry’s output, which we 
also used to compute the dependent variable in equation (3). Measurement error in the input prices 
would therefore have biased the estimated coefficients. 

Below we report results using a second set of instruments, which are the factor prices for 
industry  in year . These instruments are also potentially problematic in that macro shocks may be 
correlated with factor prices. Because of the limitations of both types of instruments (industry TFP and 
factor prices), we compare results using one or the other. 

3.2.1.2 Data  

We performed the demand elasticity estimation using publicly available industry-level data 
from the National Bureau of Economic Research and U.S. Census Bureau’s Center for Economic Studies 
(NBER-CES) Manufacturing Productivity Database (MPD), BEA input-output tables, and BEA gross 
output by industry.7  The estimation sample included the years 1972–2005. For each six-digit NAICS 
industry, the MPD includes output; the output price; TFP; and prices of labor, energy, and materials. In 
cases where we estimated cost functions by aggregated six-digit NAICS industries, we aggregated the 
MPD variables by computing shipment-weighted averages.  

We combined MPD and BEA data to construct aggregate demand. From the BEA input-output 
table, we computed the cost shares ( ) in a base year for each manufacturing industry, for each non-
manufacturing sector, and for end-use consumers. For each year from 1972 to 2005, we obtained 
output for each manufacturing industry from the MPD. We obtained output for non-manufacturing 
sectors and end-use consumers from the BEA gross output tables. We used a SIC-NAICS concordance to 
convert post-1997 output, which is on a NAICS basis, to a SIC basis. For each industry and sector, we 
computed annual growth rates as the difference in log output. We computed output in each year using 
the growth rates and the output in the base year. Finally, aggregate demand was the inner product of 
the cost shares and output. 

3.2.2 Estimation of Cost Functions 

3.2.2.1 Empirical Strategy 

MPS built on the cost function-based model in Morgenstern, Pizer, and Shih (2001), which 
explored the relationship between PAOC and actual factor costs by explicitly distinguishing between 
environmental and non-environmental expenditures. Unlike some other papers that found reported 
PAOC understated true economic costs (e.g., Gray and Shadbegian, 1994; Joshi, Lave, Shih, and 
McMichael, 1997), Morgenstern, Pizer, and Shih (2001) found that, despite considerable variation at 
the industry level, the aggregate cost estimates did not appear to be under- or overstated on average, 
relative to reported PAOC. Importantly, their results hinged on the use of a fixed effects estimator that 
allowed for unspecified plant-level differences in productivity and factor intensities. This approach, 
they argued, corrected for an upward bias caused by plant-level omitted variables. See Appendix A for 
a description of the MPS cost function model. 

7 The NBER data are found at http://www.nber.org/data/nberces5809.html. BEA input-output data are 
available at http://www.bea.gov/industry/io_benchmark.htm. 
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An important consideration is whether sample selection affects the cost function estimates. 
For example, plants experiencing a negative shock to expected profitability are more likely to exit than 
other plants. Such exit could bias the cost function parameter estimates if unobserved and time-
varying profitability shocks are correlated with other inputs; that is, the plant fixed effects control only 
for time-invariant shocks and not time-varying profitability shocks. Olley and Pakes (1996) used a 
model that allowed for time-varying profitability shocks and yielded unbiased estimates of production 
function parameters. Using the Olley-Pakes production function methodology to estimate the MPS cost 
function was outside the scope of this project, however.8 Instead, we estimated a production function 
that was the dual of the MPS cost function in two ways: OLS with plant fixed effects and the Olley-
Pakes model (available as a packaged Stata routine). Then, we compared the production function 
parameter estimates between the two estimations and assessed whether the estimated TFP from the 
Olley-Pakes model was stable over time, which would support the validity of using plant fixed effects to 
control for plant TFP when estimating the cost functions. 

3.2.2.2 Data 

Unfortunately, we did not have access to the original MPS data and code.9 Using our data, we 
attempted to follow the data generation process as described in MPS in order to estimate the 
comparable cost model. This included re-estimation of the model using the MPS years and industries, 
as well as extending the data sample to include additional years and industries. Appendix B contains a 
description of the data generation process and a table with summary statistics for MPS industries and 
years as well as for all industries and years. Appendix C compares our process with the MPS process. 

3.3 Estimation of Aggregate Effects on Employment 

We used the empirical results to simulate the effect of a $1 million increase in PAOC on total 
industry employment. These simulations were modeled after those in MPS, in which the PAOC increase 
was apportioned to each plant and year in the sample. MPS apportioned the increase in proportion to 
the share in total costs for the entire sample. As MPS showed, the aggregate industry effect depended 
on the measured cost shares and other variables as well as on the estimated parameters from the cost 
function and from equation (3); see Appendix A for further details. 

4 RESULTS  

This section presents results, comparing with MPS and comparing across years and industries. 
For many industries we found small aggregate employment effects, but in several cases we found 
positive and implausibly large effects. We discuss possible explanations for these findings in Section 5. 

4.1 Demand Elasticity Estimation 

Tables 2–4 report the estimates of equation (3). Each panel contains a different industry; 
Table 2 contains the four MPS industries, and the other tables show the remaining six industries. For 

8 Petrin and Warzynski (2012) developed a methodology that allows for plant-specific and time-varying 
unobserved shocks to a Cobb-Douglas cost function. Applying the approach to the MPS cost function, in which one 
of the outputs is not observed, is not straightforward. 

9 The original datasets and data management code used by MPS in the Census Research Data Center were 
not available to us because of the failure of the backup drive at the Census on which they had been archived. 
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each industry, the estimation sample includes observations from the years 1972–2005. The dependent 
variable is the log of industry output, and Table 2 reports the coefficients on the log output price and 
log aggregate demand. Column 1 includes a linear time trend, and column 2 estimates equation (3) in 
first differences (omitting the time trend) to account for the strong persistence of the price and output 
variables.  

In the first two columns in the tables, the estimates of the own-price elasticity are usually 
statistically significant at the 5 percent level and are almost always less than one in magnitude. The 
small magnitude implies that a 1 percent PAOC increase reduces industry output by less than 
1 percent, so the demand effect is likely to be small. The small magnitude is also consistent with the 
interpretation of the coefficient as the own-price elasticity of industry output; plant-level elasticities 
(e.g., those reported in FHS) are typically much larger in magnitude. We observed that the coefficient 
on aggregate demand was positive and statistically significant in nearly all cases, as expected.  

Estimating equation (3) by OLS, whether in levels or first differences, is likely to yield upward-
biased (less negative) estimates for the reasons discussed above. This bias suggests that we would have 
underestimated the magnitude of the demand effect if we had relied on OLS estimates of the industry 
demand elasticity. Consequently, columns 3 and 4 report estimates using industry TFP (column 3) and 
input prices (column 4) as instruments. The equation was estimated in first differences, and the results 
should be compared to column 2. We observed that the estimates using the TFP instrument tended to 
be larger in magnitude than the corresponding OLS estimates, but the standard errors were also quite 
large. This was the case because the first stage was fairly weak for many of the industries. By 
comparison, the first stage using input prices was much stronger, and the standard errors were much 
smaller in column 4. Consequently, these estimates constituted our preferred estimates. For all 
industries, the instrumental variables estimates were quite close to the OLS estimates. 

4.2 Cost Function Estimation 

We briefly discussed the parameter estimates before focusing on the estimated employment 
effects. Appendix D, Table D1, reports the parameter estimates for the cost function along with the 
original MPS estimates. The current and MPS estimates differed considerably. A key parameter in the 
employment effects estimates is , which is the degree of interaction between environmental and 
non-environmental activities. The more positive the estimate is, the larger the cost effect. Therefore, a 
more positive (or less negative) estimate implies a more positive (or less negative) total employment 
effect. A negative  implies a decrease in production costs whenever the PAOC-to-production cost 
ratio increases. Our estimates of  were much larger in magnitude (and of opposite sign in two cases), 
compared to those originally estimated by MPS. For the paper industry, the coefficient changed from 
-0.62 to 1.19; for the petroleum industry from 0.59 to 1.18; for the plastics industry from 0.38 to 4.78; 
and for the steel industry from -0.07 to 3.27. 

Appendix D, Table D2, reports the cost function estimates for all 10 industries using all 
available years of data. Estimates of  were greater than one for all MPS industries except paper 
(where  was negative and smaller than one in absolute value). Our estimate of  was negative for 
other electrical equipment, but for all other industries our estimate was positive.  
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4.3 Aggregate Employment Effects 

4.3.1 MPS Industries and Years 

Table 5 presents the estimated employment effects for MPS industries and MPS years. Panel A, 
columns (4)–(7), shows the original MPS estimates. MPS reported the employment effects of a 
$1 million PAOC increase measured in 1987 dollars. For consistency with the current estimates, we 
adjusted the MPS estimates to 1997 dollars using industry-level deflators. Panel B, columns (4)–(7), 
shows the estimates we obtained in our current analysis. Recall that our industry definitions for paper 
and steel are slightly different from those in MPS. However, we also estimated the model using the 
original MPS industry definitions, and the results were not materially different from the estimates 
reported here. The estimated cost effects and factor shifts in columns (5) and (6) do not depend on 
industry definition. 

The total employment effect, in column (4), is positive in all four industries for the current 
estimates (Panel B). For plastics and steel, given average annual wages for production workers, the 
estimates suggested that most of the additional regulatory costs would be used for workers. This is 
implausible because of the capital intensity of pollution abatement expenditures in these industries.  

Table 5 decomposes the total effects into the three components to further characterize the 
estimates. Looking first at the cost effects in column (5), it is evident that, except for the petroleum 
industry, the current estimates are substantially larger than the MPS estimates, particularly for plastics 
and steel. The differences between the current and MPS estimates for the factor shift and demand 
effects are smaller than those for the cost effect, except for the plastics industry, where we observed a 
large difference in the factor shift. Overall, the large cost effect explains much of the considerably 
larger total employment effect estimates reported in column (4).  

For comparison with the structural estimates, we also reported estimated total employment 
effects using a reduced-form regression of log employment on PAOC and other variables included in 
the cost function estimation. The employment effects we estimated using the reduced-form equations, 
reported in column (3) of Panel B, are roughly similar to the estimates from the structural model, and 
are similarly implausibly large for the plastics and steel industries. This qualitative similarity between 
the structural and reduced-form estimates suggests that the implausibly large structural estimates are 
not simply an artifact of the complexities of the structural model; Section 5 further discusses potential 
explanations for these results. 

Figure 1 provides additional insights into the drivers of the differences between the MPS and 
current estimates. Along with the current estimates (in red, labeled as #1) and MPS central estimates 
(in blue, labeled as #4), it plots estimates that we derived using the current cost function estimates and 
MPS demand elasticities (in green, labeled as #2) and estimates that we derived using available MPS 
cost function coefficients and MPS demand elasticities (in orange, labeled as #3). Note that the 
estimates in orange (#3) are an approximation using sample average cost shares from the current 
estimation sample rather than the MPS sample averages because MPS did not report all of the average 
cost shares. 

Using MPS demand elasticities substantially changed the total effect estimate for the paper 
industry and steel industry. In Table 5, the demand effect in column (7) is fairly similar between the 
MPS and current estimations. The similarity is perhaps surprising because of the large differences in 

12 



demand elasticities reported in column (8). However, the demand effect depends on the demand 
elasticities, the cost shares, and . In this case, the differences happened to roughly cancel out, 
yielding similar demand effects. Therefore, differences in the MPS cost function estimates explain 
much of the difference in the employment effects (compare the red (#1) and the orange (#3) columns 
for the cost effect in each panel). Except for the steel industry, the differences in the total effect 
estimates that are due to differences in the sample average cost shares are also substantial. 

4.3.2 Additional Years and Industries 

Table 6 reports estimated employment effects based on all available years of data for the four 
MPS industries and an additional six industries. The table is structured similarly to Table 5. The large 
positive effects for the plastics and steel industries in the structural model are similar to those 
observed in Table 5, though the reduced-form estimate for the plastics industry is much smaller. 
Several of the additional industries exhibit large and positive estimated total employment effects in the 
structural model: rolling and drawing, pipe fitting, miscellaneous wood, and other electrical 
equipment. However, the effect is statistically significant only for the rolling and drawing industry. In 
addition, we observed sizable differences between the reduced-form and structural estimates for the 
six new industries. Three of the six reduced-form estimates are large and negative, while their 
structural estimates are large and positive, although neither is statistically significant. The results of the 
reduced-form regressions were stable across several alternative model definitions10 for most industries 
and in all cases where we found statistically significant effects. 

5 DISCUSSION 

As reported in Section 4, we obtained different results when we estimated the employment 
effect of PAOC for the MPS industries, even when using the same years as MPS. Furthermore, for some 
industries and years we obtained implausibly large and positive estimates. We catalog a number of 
possible explanations for these results, although we are not able to provide a definitive explanation. 

5.1 Variable Construction 

Differences in variable construction could explain the differences between the current and 
MPS estimates in Table 5. We derived many variables from reported Census costs and values, and we 
had to construct appropriate price deflators from various sources. As Appendix B describes, we 
constructed variables somewhat differently from the MPS method because (1) after 1994, the MECS 
and PACE data were no longer collected in the same year (MPS relied on concurrent data), and (2) in 
recent years the Census Bureau has collected much less detailed data on materials. Consequently, the 
information needed to construct material price deflators was not fully available even for the original 
MPS industries, and for some of the additional industries such materials detail was never available. To 
test whether the new methodology affected the results, we constructed an alternative dataset that 
more closely followed the MPS methodology (see Appendix C). We re-estimated the models using 
these datasets, but still obtained results similar to those reported in Table 5, Panel B. We have 
concluded that the differences in variable construction are unlikely to explain much of the observed 
differences in Table 5. 

10 Along with the baseline reduced-form models, we estimated six other models that included leads and 
lags of PAOC-to-production cost ratio as well as leads and lags of log output. 
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5.2 Estimation Model 

The MPS estimation model included multiple equations, cross- and within-equation parameter 
restrictions, and was estimated by maximum likelihood. MPS estimated the model in Time Series 
Processor (TSP) software, but because TSP is no longer available to Census researchers, we 
implemented our current estimation in Stata. The original TSP programs were lost along with the 
archived data, but we were able to find a printout of one of the original TSP programs that covered 
some parts of the estimation. Using a set of synthetic data outside the Census, we compared the 
results obtained by the new Stata procedure and the original TSP program. We obtained similar, 
though not identical, coefficient estimates using the original TSP code and our code. Specifically, out of 
45 estimated coefficients, 20 differed by at most 10 percent, and 32 differed by at most 30 percent. Of 
the remaining coefficients, 7 were time fixed effects, and nearly all of the rest were not statistically 
significant. We have concluded that our estimation model is similar, if not identical, to that used by 
MPS. 

5.3 Estimation Samples 

Table 7 compares our sample with the MPS sample in terms of sample sizes as well as labor 
cost and PAOC shares (the only summary statistics provided by MPS). We observe several differences. 
As noted earlier, the MPS paper industry definition excluded pulp mills while we included them, and 
the MPS steel industry included coke ovens while we excluded them, explaining some of the 
differences in sample size.11 Though labor shares for the petroleum and plastics industries were 
comparable for the two samples, labor shares for the paper and steel industries in our samples were 
about 50 percent and 30 percent lower than MPS. Finally, the PAOC share in our data was more than 
50 percent smaller than the MPS PAOC share. 

Differences in sample composition could arise for a variety of reasons, including data editing 
procedures that dropped some plants for missing or imputed values as well as changes in industry 
definitions. As discussed above, adopting the MPS SIC-based industry definitions did not substantially 
affect the results. There is no particular reason why differences in data editing or other aspects of 
sample construction would necessarily have resulted in substantial differences in the estimated results. 
Still, there are several possible reasons for different results for the two samples—they are not mutually 
exclusive, and their importance may differ across industries.  

5.3.1 Heterogeneous Cost Function 

If all plants had the same cost function parameters, changing the estimation sample would not 
be expected to result in substantially different coefficients. However, if the true parameters differed 
across plants, we could get different estimated parameters because the coefficient estimates would 
represent weighted averages of the plant-level parameters.  

In fact, there is some indication that parameters may vary across plants. Plant age (as 
measured by a pre-1963 vintage dummy) significantly modifies the PAOC effect. We observed this 
modification for the petroleum and steel industries in the analyses using MPS years, and for all 
industries (except other electrical) in the analyses using the full range of years. While not conclusive, 

11 The summary statistics for the original MPS industry definitions are not available due to disclosure 
concerns. 
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this modification suggested some heterogeneity in cost function parameters across plants that could 
have contributed to different estimates for the two samples. 

5.3.2 Sensitivity of Translog Cost Function to the Estimation Sample 

The model estimated here includes a nonlinear cost function with many parameter restrictions. 
In such cases, substantial differences in coefficient estimates can result from small changes in the 
estimation sample. This potential sensitivity motivated the reduced-form approach reported in Tables 
5 and 6, which yielded the same qualitative results for the MPS industries and years. Reduced-form 
models designed to minimize the impact of outliers also yielded similar results. These tests suggest that 
sensitivity of the cost function to sample composition may not be an important factor in explaining the 
differences in Table 5. 

5.3.3 Endogeneity of PAOC and Other Variables 

Because plants choose PAOC simultaneously with other variables, PAOC may be correlated 
with unobserved and time-varying plant-specific variables. This might help explain the large positive 
effects that we often observed in our results. Because the same could be true for the MPS analysis, 
such endogeneity by itself cannot explain the differences between the MPS and current results. 
However, it is possible that endogeneity caused greater problems in our sample than it did for MPS, 
although there is no specific reason to expect this to happen.  

As noted above, it is not feasible within the confines of this research to adapt the Olley-Pakes 
production function estimation approach to the MPS cost function model. Instead, we used the Olley-
Pakes production function model to investigate whether PAOC endogeneity was likely to explain the 
implausible results and the differences between the current and MPS estimates. If endogeneity were a 
concern, we would have expected to observe large within-plant variation in plant TFP, as estimated by 
the Olley-Pakes model. We compared the results of production function estimation with and without 
Olley-Pakes controls for endogeneity, without finding substantial differences. Table 8 shows the 
between- and within-plant variation on log-TFP that we generated using the Olley-Pakes model 
estimates (for samples including all available years of data). The within-plant variation was very close 
to the between-plant variation, which suggests that the plant fixed effects in the cost functions may 
not have fully controlled for plant-specific TFP. Table 8 also shows that the average estimated log-TFP 
declined over time for all industries. 

In addition, we tried several instrumental variable (IV) versions of the reduced-form regression. 
We instrumented for PAOC using county-level dummy variables for non-attainment of National 
Ambient Air Quality Standards (NAAQS) and the League of Conservation Voters scorecard, which 
measures pro-environmental voting by the state’s Congressional delegation. Unfortunately, neither of 
these instruments provided much explanatory power in the first stage, rendering the IV results 
effectively unusable (Bound, Jaeger, and Baker, 1995).12 

12 The first stage F-tests showed that dummy variables for county-level NAAQS non-attainment and the 
League of Conservation Voters scorecard were not statistically significant predictors of PAOC-to-production cost 
ratio for all industries and samples except the steel industry (all years sample) and the other electrical industry (all 
years sample). In both of these cases, the R2 values were less than 1 percent, and the magnitude of the 
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It is also possible that multi-plant firms try to retain their labor by moving the employees around 
whenever there is a plant closure. Because we restricted the structural model estimation to plants that 
were continuing, these cross-plant spillovers might have confounded the PAOC effects if PAOC were 
correlated with the exit of other plants owned by the same firm. To examine this possibility, we created 
a variable that measured the potential spillover effects. The spillovers can occur only at plants belonging 
to multi-plant firms, and are related to the number of employees released by closing plants. We 
measured the magnitude of potential spillover to a plant in year  as the fraction of the firm’s 
employment in year  at plants that are no longer in operation by year . This number was zero if 
none of the firm’s plants closed between year  and year  (no spillovers possible) and approached 
one if nearly all of the firm’s plants closed during these five years.  

We included the spillover measure as a regressor in the reduced-form regressions. We 
observed reductions in the magnitudes of the estimated PAOC effects for the paper, plastics, steel, 
pipe fitting, Portland cement industries, miscellaneous wood products (with a change in sign), and 
other electrical industry, but the effects of PAOC in the petroleum, pharmaceuticals, and rolling and 
drawing industries were similar to the baseline estimates. The spillover measure itself was not 
significant, but the results suggested that in many industries some employment was reallocated from 
exiting plants to continuing plants, possibly helping to explain the estimated positive employment 
effects from the structural model. 

In sum, we examined a multitude of possibilities for the large estimated employment effects 
and the differences relative to MPS. Only two explanations were not rejected: heterogeneity of the 
cost function and endogeneity of PAOC.  

6 CONCLUSION 

Research on the link between environmental regulation and jobs is particularly challenging 
because of the difficulty of disentangling the effects of regulation from other key determinants of 
employment. Similar to other recent papers, the present analysis used plant-level information based 
on confidential Census data. The principal emphasis here was on a structural, as opposed to a reduced-
form, model for continuing (non-exiting) plants, which allowed a decomposition of total employment 
effects into the cost, factor, and demand effects. We focused on net, as opposed to gross, job impacts 
within an industry. The metric of regulation, PAOC, is derived from the PACE survey, the most 
comprehensive source of pollution abatement costs and expenditures available. The data span more 
than 30 years, including the most recent information collected (2005), and cover 10 industries that 
have high levels of pollution abatement costs.  

In many cases, we found implausibly large positive employment effects of abatement 
expenditures. For 6 of our 10 industries the structural model indicated total effects of 10–30 additional 
employees hired for each $1 million in additional abatement expenditures. This would imply that 
nearly all abatement spending is on labor, which is inconsistent with the observed capital intensity of 
abatement technologies. Using both reduced-form and structural models, we saw relatively similar 
results for the four MPS industries. In contrast, the other six industries showed considerable 
differences between the two modeling approaches, with some large positive structural estimates 
paired with large negative reduced-form estimates. Our results also tended to be substantially larger 

instrumented PAOC impact was similar to that of the un-instrumented PAOC (for the steel industry this effect 
turned insignificant in the IV runs).  
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than the original MPS results. We explored several possible explanations for this difference without 
reaching a satisfactory conclusion. The surprisingly large positive effects overall might be due to 
endogeneity of PAOC, but our attempts to test for endogeneity with an instrumental variables 
approach failed due to a lack of valid instruments. Given these concerns, even the effects that are 
plausible in themselves should probably not be taken too seriously. 

Finally, we address the issue of applying modeling results such as these to Regulatory Impact 
Analyses (RIAs) for new environmental rules. The application of analytical results from one situation to 
other, less studied areas is fairly routine, such as the use of benefits transfer in valuing environmental 
damages. However, the wide range of estimated values across industries observed here makes such an 
approach questionable. We emphasize the importance of making appropriate comparisons in RIAs, 
where the industry from which the estimates are derived is comparable to the one covered by the new 
rule and the impact of the new regulation on the production process is roughly comparable to the 
historical pattern of regulatory costs imposed on that industry. Even the smaller effects in the original 
MPS paper, which covered only the period 1979–91, showed considerable variability. Thus, using their 
average value to generate quantitative estimates of the employment effects of new rules in different 
industries is problematic. Specifically, even beyond the variability among the four principal industries, 
MPS found even larger differences between those four and a group of six additional industries for 
which the authors were unable to develop credible cost function estimates. For the four principal 
industries, MPS developed confidence intervals that included both positive and negative results in two 
cases. Thus, even without the additional results we report herein, the use of the original MPS results in 
RIAs would be questionable, especially without adequate qualification capturing the inherent 
uncertainty of the results. Now, with the added uncertainty introduced by the present results, the use 
of the work in RIAs is even more questionable. 
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Appendix A: The Production Cost Model 

MPS developed an expression for the entire employment effect, 

 (A1) 

where  is aggregate industry employment,  is the aggregate dollar measure of 
regulatory burden (PAOC) in the industry,  is the total industry-wide cost (including both 
conventional production and regulatory costs),  is the labor cost share and  is the wage at plant , 
and  is the industry-level demand elasticity. Unlike equations in studies that focus solely on 
negative demand effects, equation (A1) explicitly allows for supply-side labor effects that may offset 
any industry-wide contraction. Equation (A1) also allows one to consider each piece of the 
employment effect separately, assess its economic and statistical significance, and potentially design 
policy to properly address labor and industry concerns. Evaluation of this expression requires estimates 
of a structural model of production costs along with an industry-level demand elasticity. 

The cost model is based on the assumption that the production of non-environmental outputs 
and environmental activities are distinct and are described by separate cost functions. Specifically, 

 describes the cost ( ) of producing non-environmental output  based on input 
price vector  at plant  at time . Similarly, let  describe the cost ( ) of producing 
environmental “output”  similarly based on input price vector  at plant  at time . Inputs include 
capital, labor, energy, and materials.  

MPS allowed for the possibility that these two activities are not, in fact, distinct by rewriting 
 where  is an increasing function of regulatory expenditure. The 

parameter  describes the degree of interaction. A zero value indicates no significant interaction, 
negative values indicate cost savings, and positive values indicate additional burden.  

MPS chose the following translog parameterization for  and : 

  

 (A2) 

 (A3) 

where  is a vector of input prices (capital, labor, energy, and materials),  are costs related 
to non-environmental output ,  are costs related to environmental output , and  is time. The 
parameters have the following interpretations:  are plant-specific, Hicks-neutral productivity effects; 

 are time dummies, capturing aggregate Hicks-neutral productivity trends;  are vectors of plant-
specific cost-share parameters;  is a matrix of share elasticities;  and  capture scale 
economies;  are year-specific productivity biases;  reflects biases of scale; and  captures any 
aggregate time trend in scale economies. All of these parameters refer to non-environmental 
production. The environmental production parameters have the following interpretations:  is a 
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vector of aggregate cost share parameters;  is a matrix of share elasticities;  describes the Hicks-
neutral productivity trend; and  captures factor trends. Finally,  describes any interaction 
between environmental and non-environmental activities. 

The standard approach to estimate models such as those described in equations (A2) and (A3) 
is to specify a system of cost shares based on the first derivatives with respect to log prices. Stochastic 
disturbances are appended to each equation, and the system is estimated simultaneously (with cross-
equation restrictions) in order to improve efficiency. The problem with this approach in the current 
context is that factor inputs used for environmental activities cannot be distinguished from those used 
for conventional production; and we have no direct measure of , environmental output. Since factor 
inputs cannot be disaggregated in the data, the cost shares associated with equations (A2) and (A3) are 
not observed. Further, since there is no direct measure of , equation (A3) cannot be estimated. 

MPS circumvented these problems by assuming homothetic environmental costs . 
Environmental cost shares were solely a function of input prices and time (and not ): 

 

 

 

 

(A4) 

Coupled with non-environmental cost shares derived from equation (A2),  

 

 

 

 

(A5) 

the observed total cost shares can be written as 

 

 

(A6) 
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These aggregate cost shares (over both non-environmental and environmental expenditures) 
are observable themselves and depend on other observable variables (prices, output, time, and 
regulation as a share of total costs). The equations in (A6) can therefore be estimated alongside the 
production cost function (A2) by treating each as a stochastic relation and adding random 
disturbances. 

Because the endogenous variable  appears on the right-hand side of the production cost 
function and aggregate share equations, MPS used a two-step approach. They first estimated the 
system of equations, setting  (which eliminates  on the right-hand side as well as the 
regulatory cost share parameters  and ). MPS used these parameter estimates to construct 
exogenous predicted values of  to replace the actual values of  on the right-hand side of 
equations (A2) and (A6). MPS then used these predicted values to re-estimate the system without the 
endogeneity problem. At both estimation stages, MPS imposed symmetry (  and ) and 
homogeneity of degree one in prices (which allowed us to arbitrarily drop a share equation). MPS used 
a maximum likelihood estimator that iterated on the covariance matrix estimate until it converged.  
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Appendix B: Census Microdata and Summary Statistics 

We used the Longitudinal Business Database (LBD), as described in Jarmin and Miranda 2002)13 
to link data from the Annual Survey of Manufactures (ASM) and the Census of Manufactures (CM) to 
form a panel of plant-level data that includes costs, outputs, and inputs.  More than 50,000 
establishments are included each year, with a census of all plants occurring every 5 years. We obtained 
data on energy prices and quantities from the Manufacturing Energy Consumption Survey (MECS), 
collected by the Census Bureau for the Department of Energy every three years, beginning in 1985. Our 
measure of regulatory pressure came from the Pollution Abatement Costs and Expenditures (PACE) 
survey, collected annually by the Census Bureau from 1973 to 1994 (with two exceptions) but 
conducted only twice since then (1999 and 2005). We linked these plant-level data with other data 
(described below) to create the dataset we used in our analysis. 

Because our work expanded that of MPS, our data construction process was similar to theirs. 
However, our expansion of the data to cover additional industries and additional years forced some 
modifications to the MPS process. First, MPS restricted their sample to years in which both the MECS 
and PACE surveys were collected, but none of the recent PACE years coincided with a MECS survey. We 
modified the construction of plant-level energy prices to allow us to work with non-MECS years, which 
greatly expanded our sample years – although most of those additional years fall in the 1974–1994 
period. Second, MPS relied on material-specific quantity data collected by the Census to calculate their 
materials price deflators. Below we describe our approach for constructing materials prices. Our 
measure of plant output came from the value of shipments as reported in the Longitudinal Research 
Database, adjusted for inventory changes. The LRD also provided a breakdown of the total value of 
shipments into the values produced of each specific product, which we combined with the 
corresponding producer price indices (PPIs) from the Bureau of Labor Statistics (BLS) to form a plant-
specific divisia index of output prices. We were able to get BLS PPI records to match the product 
categories almost perfectly. Labor input also came from the LRD, measured as the number of 
production workers and with the corresponding price index defined as labor cost (production worker 
wages plus their share of supplemental labor cost) per production worker. The “share” of 
supplemental labor cost is calculated from the share of production worker wages in total wages. 

The LRD provided data on the plant’s energy spending, distinguishing between electricity and 
fuels and including the quantity of electricity purchased. In a few years (1979–1981) the LRD also 
provided separate cost and quantity data for several different fuel types, while more recently those 
data have been provided by the MECS. We first calculated plant-specific deflators for fuel prices and 
their cost shares for the MECS years. Then we used state-specific fuel prices from the SEDS (State 
Energy Data System from the Department of Energy) database to interpolate the changes in a plant’s 
fuel prices between the MECS years.14 The plant-specific price of energy is a divisia index of the prices 
of these fuels and electricity (for which we have plant- and year-specific information). 

The LRD provided expenditure data on total materials spending, as well as a breakdown of 
expenditures on specific materials every five years, at the time of Economic Census. For some 
materials, these data included the quantity of the material used, which MPS used to calculate a plant-
specific materials price deflator. Unfortunately, in recent years the Census has dramatically reduced 

13 MPS used the manufacturing-only Longitudinal Research Database (LRD), the precursor to the LBD. 
14 The SEDS data are available at http://www.eia.gov/state/seds/. 
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the number of materials for which the quantity data are collected, even for the MPS industries. There 
are also some differences in the definitions of materials reported before and after 1997. Furthermore, 
the quantity data are not available for some of the additional industries in our sample for any of the 
years. These factors forced us to modify the construction of plant-specific materials price deflators. We 
used the Census material expenditure data to calculate plant-specific average cost shares for each 
reported material over the 1977–1997 period (up to five Census years of data) and used the cost 
shares to weight the corresponding producer prices from BLS. For those materials where BLS producer 
prices were not available, we used the industry-specific materials cost deflator from the Manufacturing 
Productivity Database as a substitute. To maintain consistency across industries and years, we used the 
modified deflators for all our analyses (for the MPS years and industries, the results were similar using 
the MPS methodology and the current methodology). 

For capital input, the LRD provided annual data on new capital expenditures and some data on 
the (nominal) gross book value of a plant’s capital stock, but these needed to be combined with other 
data to generate a measure of real capital stocks and capital services prices. We used the LRD-linked 
database created by John Haltiwanger for the real capital stock for each plant. Like the data in MPS, 
our capital services price data are not plant-specific. We took the corresponding capital services price 
series from the 35-KLEM sectoral input-output database for 1960–2005, developed by Dale Jorgenson 
and described in Jorgenson and Stiroh (2000), Jorgenson (1990), and Jorgenson, Gollop and Fraumeni 
(1987). We then calculated the plant’s annual capital expenditures as the product of the capital 
services price and the plant’s real capital stock. 

The PACE survey provided our plant-specific measure of annual pollution abatement operating 
costs. These costs included costs for depreciation of the plant’s stock of pollution abatement capital, 
and provided a relatively comprehensive measure of abatement costs. Since these were nominal data, 
we deflated them by the GDP deflator to generate a measure of real regulatory expenditure. The 
expansion of the MPS data to more recent years was limited by the availability of the PACE survey. We 
are aware that the 1999 PACE survey questionnaire was significantly different from the questionnaire 
in other years, as discussed in Becker and Shadbegian (2005). Some categories of abatement costs 
(e.g., depreciation) were not included in the 1999 PACE, while other previously separate categories 
(e.g., pollution prevention operating costs and capital expenditures) were combined, leading to 
potential difficulties in comparing costs across years. However, ignoring the 1999 PACE would create a 
decade-long gap in plant-level abatement cost data. We made plant-specific imputations (based on 
values reported in other PACE years) to fill in the missing categories of abatement costs. We also 
tested whether excluding 1999 from the analysis affected the overall results; doing so did not have a 
large impact.  
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Appendix Table B1. Summary Statistics 

Industry: Paper Petroleum Plastics Steel Paper Petroleum Plastics Steel Portland 
Cement 

Rolling and 
Drawing Pipe Fitting Misc. Wood 

Products 
Pharmaceut

icals 

Other 
Electrical 

Equipment 

Years: MPS years (1979, 1980, 1981, 1985, 1988, 1991) All years (1976-1982, 1984-1986, 1988-1994 1999, and 2005) 
N 824 697 548 486 2928 2263 2515 1639 1032 1388 868 922 1579 1805 

Variable Units Sample average (Sample Standard Deviation) 

Output Thous. 1997$ 
/ year 

210,373 953,256 232,197 524,634 210,875 1,111,850 222,236 552,207 56,714 139,213 80,820 64,043 595,818 106,867 
(145,441) (958,534) (253,175) (673,167) (157,888) (1,157,384) (265,527) (724,773) (32,710) (147,954) (426,528) (133,523) (796,132) (113,211) 

Capital stock Thous. 1997$ 
147,846 306,495 135,611 347,967 167,801 348,817 127,884 370,950 58,416 37,622 19,964 10,976 136,194 28,446 

(151,894) (352,024) (156,741) (544,262) (195,945) (438,581) (162,508) (556,506) (71,532) (55,047) (19,278) (27,827) (232,829) (49,340) 

Energy Thous. 1997$ 
/ year 

18,019 32,507 10,624 45,806 16,630 33,162 9,404 43,049 10,023 2,492 917 422 4,459 1,409 
(15,418) (60,796) (10,803) (70,110) (14,532) (63,856) (13,377) (68,880) (7,663) (2,757) (1,186) (698) (7,851) (1,301) 

Employment Production 
workers 

580 373 557 1,985 543 360 414 1,803 140 376 349 340 512 414 
(406) (364) (627) (2,696) (402) (350) (539) (2,453) (84) (361) (296) (502) (592) (422) 

Materials Thous. 1997$ 
/ year 

66,036 756,845 108,559 210,829 67,618 764,532 103,095 213,142 7,492 62,263 17,035 24,828 72,145 35,882 
(40,250) (741,082) (85,988) (273,243) (47,334) (739,283) (103,653) (266,020) (4,981) (70,741) (16,314) (50,265) (152,755) (38,306) 

Capital price 
index Base=1997 

0.66 0.97 0.52 0.53 0.72 0.96 0.64 0.60 0.77 0.58 0.53 0.76 0.62 0.56 
(0.18) (0.14) (0.16) (0.10) (0.20) (0.61) (0.20) (0.30) (0.29) (0.29) (0.17) (0.26) (0.22) (0.17) 

Energy price 
index Base=1997 

0.91 0.95 0.94 0.99 0.96 0.96 0.96 0.98 1.03 0.90 0.91 0.96 0.93 0.93 
(0.44) (0.64) (0.44) (0.63) (0.55) (0.61) (0.41) (0.56) (0.48) (0.36) (0.28) (0.31) (0.41) (0.37) 

Production 
labor cost 

Thous. 1997$ 
/ worker 

35.98 39.66 33.94 39.26 40.22 44.02 40.88 42.07 39.31 27.92 26.85 21.94 33.59 26.82 
(10.48) (10.79) (11.39) (10.01) (16.30) (22.28) (19.00) (16.24) (12.46) (11.93) (10.94) (9.92) (17.99) (12.59) 

Materials 
price index Base=1997 

0.94 1.17 0.99 0.96 0.97 1.10 1.00 0.95 1.00 0.98 0.94 0.96 0.94 0.98 
(0.12) (0.29) (0.12) (0.10) (0.19) (0.40) (0.21) (0.17) (0.20) (0.23) (0.20) (0.22) (0.22) (0.21) 

PAOC Thous. 1997$ 
/ year 

3,469 11,524 2,103 7,900 3,532 13,236 2,387 8,421 1,227 374 136 140 1,458 244 
(3,886) (19,394) (2,806) (13,644) (4,051) (22,139) (4,117) (14,326) (1,162) (786) (243) (342) (2,927) (414) 

Production 
costs 

Thous. 1997$ 
/ year 

204,087 1,049,567 205,750 515,123 227,022 1,122,095 208,478 558,457 67,408 97,225 38,693 43,085 185,658 64,241 
(163,180) (1,013,677) (180,301) (674,298) (211,919) (1,154,157) (219,856) (722,426) (73,005) (98,833) (33,525) (86,961) (306,156) (70,541) 

Total costs Thous. 1997$ 
/ year 

207,556 1,061,091 207,853 523,023 230,555 1,135,332 210,865 566,878 68,635 97,599 38,829 43,225 187,116 64,485 
(165,287) (1,027,564) (182,165) (686,588) (214,029) (1,168,775) (222,615) (734,342) (73,178) (99,173) (33,623) (87,237) (307,612) (70,684) 

PAOC-to-
Prod. cost 

ratio 
% 

1.79 0.88 1.10 1.22 1.81 0.95 1.19 1.28 2.26 0.40 0.32 0.37 0.87 0.48 

(1.79) (0.95) (1.03) (0.89) (4.46) (1.06) (1.28) (1.04) (2.22) (0.72) (0.43) (0.52) (1.76) (1.16) 

PAOC share in 
total costs % 

1.73 0.87 1.07 1.20 1.69 0.93 1.16 1.25 2.17 0.40 0.31 0.37 0.84 0.46 
(1.63) (0.91) (0.99) (0.86) (2.37) (1.01) (1.19) (0.99) (1.93) (0.68) (0.43) (0.51) (1.46) (0.97) 

Labor cost 
share % 

11.66 1.58 8.25 17.25 11.16 1.75 7.22 15.95 9.91 12.58 25.13 19.83 12.60 18.85 
(4.33) (1.22) (4.71) (7.12) (4.49) (1.27) (4.47) (7.58) (4.96) (6.37) (7.98) (8.21) (6.56) (9.48) 

Capital cost 
share % 

42.93 23.63 29.72 31.60 46.30 25.04 33.80 35.28 60.77 22.25 28.95 18.11 44.26 23.13 
(15.15) (11.29) (13.24) (12.93) (15.75) (12.85) (15.17) (14.59) (14.88) (13.58) (12.33) (13.56) (18.44) (12.54) 

Energy cost 
share % 

8.05 2.07 4.36 8.10 7.17 2.20 3.79 7.36 15.64 2.40 2.17 1.19 2.30 2.24 
(3.75) (1.83) (2.52) (4.41) (3.63) (1.78) (2.63) (4.30) (7.11) (1.77) (1.55) (1.29) (1.89) (1.45) 
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Appendix C: Differences between Current and MPS Dataset Construction 
 
We started with the same Census datasets as MPS (i.e., LBD/ASM/CM data, MECS, and PACE) and tried 
to follow the same data construction process as much as possible, but some differences arose due to 
changes in data availability. The differences between our approaches are described below: 
 
1. Output - No differences. 
 
2. Labor - No differences. 
 
3. Materials - Materials spending came from the cost of materials in the LRD in both MPS and our 
analysis. MPS derived the price of materials from the Census-year data on the cost and quantity for 
individual materials, allowing them to calculate a plant-specific price for each material. They then 
aggregated those individual materials prices into an aggregated divisia price index. This price index was 
linearly interpolated between the Census years. As noted earlier, Census cutbacks in collection of 
materials quantity data forced us to depend on BLS PPI data for specific materials. 
 
4. Energy - MPS limited their analysis to years with plant-specific data on cost and quantity for several 
fuel types, either from the LRD itself (1979–1981) or the MECS data. These were used to calculate plant-
specific fuel prices in each year, aggregated up to a divisia price index. After 1994 there were no years 
when both the energy and PACE data were collected, so we switched to an approach that interpolated 
energy prices between MECS years. 
 
5. Capital - For capital input, the LRD provided annual data on new capital expenditures and some data 
on the (nominal) gross book value of a plant’s capital stock, but these needed to be combined with 
other data to generate a measure of real capital stocks and capital service prices. MPS used their own 
perpetual inventory calculation to derive plant-specific real capital stocks. We relied on an LRD-linked 
database created by John Haltiwanger using a similar calculation for the real capital stock for each plant. 
MPS used industry-level capital service prices, taken from the KLEM sectoral input-output database for 
1947–1991 (same vintage as used by MPS), developed by Dale Jorgenson and described in Jorgenson 
and Stiroh (2000), Jorgenson (1990), and Jorgenson, Gollop and Fraumeni (1987). Since we needed post-
1991 prices, we used an updated version (also from Jorgenson). In both approaches, the plant’s annual 
capital expenditures were calculated as the product of the service price and the plant’s real capital 
stock. 
 
6. Regulation - No differences.
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Appendix D: Estimates of the Cost Function Coefficients 
Appendix Table D1 

Comparison between MPSa and Currently Estimated Cost Function Coefficients (MPS Industries and Yearsb) 

Industry: Paper Petroleum Plastics Steel 
Analysis: MPS Current MPS Current MPS Current MPS Current 

Parameterc Point Estimate (Standard Error in Parentheses) 

αr 
-0.6221 1.1914 0.5900 1.1814 0.3774 4.7784 -0.0726 3.2705 
(0.2746) (0.4847) (0.5905) (0.8338) (0.6958) (1.0848) (0.4671) (0.9480) 

αy 
0.7161 0.5355 0.7433 0.5944 0.8314 0.4190 0.7136 0.5675 

(0.0273) (0.0302) (0.0281) (0.0252) (0.0362) (0.0341) (0.0304) (0.0215) 

βee 
0.0579 -0.0083 0.0128 -0.0014 -0.0027 -0.0096 0.0211 0.0029 

(0.0090) (0.0037) (0.0018) (0.0018) (0.0163) (0.0039) (0.0209) (0.0064) 

βkk 
0.1095 -0.2610 0.0070 0.0085 0.0029 0.0051 0.0664 -1.0383 

(0.0379) (0.0460) (0.0019) (0.2174) (0.0190) (0.0639) (0.0172) (0.4306) 

βll 
0.1120 0.0633 0.0133 0.0060 0.0668 0.0410 0.0491 0.0835 

(0.0114) (0.0061) (0.0016) (0.0015) (0.0094) (0.0075) (0.0201) (0.0215) 

βke 
-0.0116 -0.0012 0.0005 -0.0028 0.0103 0.0052 -0.0264 0.0273 
(0.0112) (0.0084) (0.0012) (0.0071) (0.0086) (0.0100) (0.0073) (0.0099) 

βle 
-0.0114 -0.0026 0.0003 0.0005 -0.0016 -0.0019 0.0156 -0.0131 
(0.0065) (0.0026) (0.0010) (0.0007) (0.0068) (0.0038) (0.0138) (0.0073) 

βkl 
-0.0347 0.0009 0.0017 0.0411 -0.0030 0.0106 -0.0035 0.0194 
(0.0128) (0.0110) (0.0008) (0.0117) (0.0092) (0.0152) (0.0088) (0.0217) 

βey 
-0.0041 0.0062 -0.0104 -0.0024 0.0085 -0.0055 -0.0177 0.0124 
(0.0053) (0.0037) (0.0015) (0.0017) (0.0092) (0.0020) (0.0087) (0.0034) 

βky 
0.0100 -0.0550 -0.0132 -0.1019 -0.0365 -0.0863 -0.0383 -0.1446 

(0.0071) (0.0114) (0.0021) (0.0087) (0.0049) (0.0088) (0.0031) (0.0053) 

βly 
-0.0446 -0.0154 -0.0078 -0.0052 -0.0302 -0.0034 0.0066 0.0234 
(0.0052) (0.0032) (0.0010) (0.0007) (0.0041) (0.0027) (0.0072) (0.0049) 

βyt 
0.0041 0.0027 -0.0028 -0.0021 0.0110 0.0032 -0.0004 -0.0017 

(0.0014) (0.0013) (0.0013) (0.0009) (0.0020) (0.0017) (0.0014) (0.0014) 

βy 
-0.0336 -0.1090 0.0039 -0.0160 -0.0408 -0.1742 0.0389 -0.0110 
(0.0316) (0.0243) (0.0184) (0.0097) (0.0328) (0.0303) (0.0191) (0.0147) 

γe 
0.1967 0.0102 -0.0225 -0.1019 0.2930 0.4974 -0.7126 0.0618 

(0.0846) (0.0772) (0.0387) (0.0696) (0.2028) (0.0845) (0.1952) (0.1981) 

γk 
0.1276 0.7920 0.0532 0.9472 -0.0510 0.7190 0.1460 -0.8591 

(0.1085) (0.2311) (0.0545) (0.3456) (0.1053) (0.3553) (0.0715) (0.3078) 

γl 
0.1531 0.1564 0.0748 0.0371 0.3621 0.4326 0.1565 0.3914 

(0.0770) (0.0651) (0.0292) (0.0300) (0.0914) (0.1100) (0.1610) (0.2828) 

δee 
0.4141 0.6028 -0.1483 0.2817 -0.3730 0.6348 -0.1428 -0.5693 

(0.1679) (0.1333) (0.0690) (0.1077) (0.5119) (0.2972) (0.5534) (0.2428) 

δkk 
0.9811 2.0289 0.3400 0.2085 0.4311 1.5856 0.5153 -2.1443 

(0.4718) (0.7747) (0.0964) (0.6933) (0.4545) (1.2929) (0.2243) (1.7474) 

δll 
-0.3011 -0.0454 -0.2801 -0.3105 -1.1840 0.0236 1.4959 1.1337 
(0.3037) (0.2165) (0.0986) (0.1111) (0.3458) (0.3391) (0.5676) (1.2513) 

δke 
-0.1040 -0.1923 0.1260 -0.1519 0.1902 -1.2811 0.4567 -0.9256 
(0.1996) (0.2321) (0.0554) (0.1399) (0.2624) (0.3223) (0.1942) (0.3668) 

δle 
-0.2485 -0.1664 0.0026 -0.0096 0.1503 0.1565 -0.8998 0.2076 
(0.1375) (0.0951) (0.0398) (0.0421) (0.2211) (0.2213) (0.3833) (0.3067) 

δkl 
-0.0764 -0.0822 0.0078 0.0918 0.0251 0.0717 -0.1398 -3.6834 
(0.2554) (0.2177) (0.0394) (0.0776) (0.2843) (0.4044) (0.2375) (1.0493) 

δet 
-0.0232 -0.0203 -0.0115 -0.0135 -0.0426 -0.0258 0.0501 -0.0723 
(0.0107) (0.0108) (0.0076) (0.0138) (0.0290) (0.0163) (0.0346) (0.0332) 

δkt 
0.0013 -0.0541 -0.0043 0.0419 0.0627 -0.0358 -0.0122 0.2428 

(0.0171) (0.0295) (0.0110) (0.0554) (0.0186) (0.0709) (0.0160) (0.0713) 

δlt 
-0.0154 -0.0082 0.0097 0.0207 0.0516 -0.0312 -0.0935 0.0381 
(0.0126) (0.0093) (0.0067) (0.0082) (0.0181) (0.0213) (0.0355) (0.0585) 

Notes: (a) We derived MPS estimates from MPS Table V, pp. 432–433. (b) The years included are: 1979, 1980, 1981, 1985, 1988, 1991. 
(c) We could not disclose time and plant dummies. 
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Appendix Table D2 
Estimated Cost Function Coefficients for 10 Industries (using all available yearsa) 

Industry: Paper Petroleum Plastics Steel Portland 
Cement 

Rolling and 
Drawing Pipe Fitting 

Misc. 
Wood 

Products 

Pharmaceu
-ticals 

Other 
Electrical 

Equipment 
Parameterb Point Estimate (Standard Error in Parentheses) 

αr 
-0.6136 3.3653 2.7525 3.5439 1.5405 3.1672 4.6354 2.2143 0.6368 -1.6668 
(0.1678) (0.5269) (0.4992) (0.5723) (0.6325) (0.9613) (2.3346) (1.5843) (0.6356) (0.7265) 

αy 
0.5397 0.5609 0.4512 0.5235 0.3031 0.6826 0.3159 0.6822 0.2663 0.4819 

(0.0157) (0.0166) (0.0152) (0.0143) (0.0377) (0.0152) (0.0189) (0.0201) (0.0171) (0.0143) 

βee 
-0.0021 -0.0001 -0.0070 0.0009 -0.0506 0.0059 0.0055 -0.0009 -0.0012 0.0059 
(0.0018) (0.0010) (0.0017) (0.0037) (0.0079) (0.0022) (0.0017) (0.0008) (0.0015) (0.0017) 

βkk 
-0.2560 -0.1421 0.0893 -0.7138 -0.3185 0.1451 0.0951 0.0999 0.1205 0.1637 
(0.0276) (0.1218) (0.0332) (0.2260) (0.1494) (0.0294) (0.0691) (0.0564) (0.0607) (0.0352) 

βll 
0.0487 0.0083 0.0365 0.0401 0.0535 0.0401 0.0880 0.0599 0.0577 0.0638 

(0.0031) (0.0008) (0.0028) (0.0083) (0.0061) (0.0055) (0.0116) (0.0080) (0.0046) (0.0073) 

βke 
0.0103 0.0021 -0.0053 0.0002 0.0499 0.0109 0.0146 0.0045 -0.0014 0.0140 

(0.0048) (0.0049) (0.0048) (0.0076) (0.0136) (0.0053) (0.0058) (0.0038) (0.0060) (0.0050) 

βle 
-0.0041 0.0000 -0.0026 -0.0152 -0.0257 -0.0028 -0.0042 0.0004 -0.0018 -0.0035 
(0.0015) (0.0004) (0.0016) (0.0038) (0.0046) (0.0021) (0.0015) (0.0009) (0.0013) (0.0017) 

βkl 
-0.0049 0.0176 -0.0168 -0.0128 0.0136 0.0029 -0.0133 -0.0009 -0.0183 -0.0341 
(0.0068) (0.0067) (0.0060) (0.0125) (0.0142) (0.0093) (0.0153) (0.0120) (0.0108) (0.0105) 

βey 
0.0018 -0.0014 -0.0021 0.0103 0.0368 -0.0044 -0.0027 -0.0018 -0.0022 -0.0019 

(0.0015) (0.0010) (0.0008) (0.0016) (0.0044) (0.0008) (0.0005) (0.0003) (0.0005) (0.0006) 

βky 
-0.0396 -0.0861 -0.0885 -0.1177 -0.0989 -0.1058 -0.0515 -0.0947 -0.0594 -0.0619 
(0.0054) (0.0058) (0.0039) (0.0035) (0.0092) (0.0043) (0.0057) (0.0048) (0.0042) (0.0036) 

βly 
-0.0052 -0.0046 -0.0008 0.0164 0.0084 -0.0021 0.0008 0.0027 -0.0002 -0.0016 
(0.0016) (0.0005) (0.0010) (0.0022) (0.0030) (0.0020) (0.0039) (0.0031) (0.0016) (0.0024) 

βyt 
0.0026 -0.0016 0.0006 -0.0024 -0.0174 -0.0028 -0.0037 0.0005 0.0046 -0.0021 

(0.0006) (0.0005) (0.0007) (0.0007) (0.0028) (0.0009) (0.0011) (0.0009) (0.0009) (0.0008) 

βy 
0.0023 -0.0152 0.0160 0.0469 -0.2097 0.0087 -0.0422 -0.0012 -0.0533 0.0311 

(0.0083) (0.0057) (0.0090) (0.0063) (0.0481) (0.0107) (0.0102) (0.0109) (0.0120) (0.0115) 

γe 
0.1829 0.0149 0.2222 0.1056 0.3672 0.1268 0.1432 -0.0962 0.2086 0.1021 

(0.0289) (0.0363) (0.0363) (0.1054) (0.1005) (0.0700) (0.0757) (0.0544) (0.0402) (0.0509) 

γk 
0.3194 1.5044 0.7258 0.3372 0.2946 0.8218 0.8822 0.7295 0.9830 0.5352 

(0.0938) (0.2159) (0.1881) (0.2384) (0.1979) (0.3616) (0.7904) (0.7831) (0.3030) (0.3059) 

γl 
0.1944 0.0519 0.2367 0.7044 0.3089 0.5286 0.1994 0.2142 0.3048 0.5465 

(0.0297) (0.0175) (0.0482) (0.1459) (0.0692) (0.1653) (0.5614) (0.4891) (0.1243) (0.2095) 

δee 
0.2657 0.0735 0.2855 -0.4400 0.3926 0.1517 -0.0733 0.9780 -0.1574 0.1375 

(0.0589) (0.0531) (0.1007) (0.1325) (0.1884) (0.1776) (0.1936) (0.1568) (0.0721) (0.0972) 

δkk 
0.2239 1.2674 0.3395 3.3141 1.7878 1.8314 5.7744 2.5047 0.6905 -2.3857 

(0.4621) (0.3927) (0.6820) (0.7470) (0.5604) (1.9302) (3.6306) (2.4042) (1.2071) (1.3553) 

δll 
0.2452 -0.1131 -0.3605 1.5972 0.1248 2.3706 2.2388 0.1637 0.5635 0.1086 

(0.0555) (0.0435) (0.0864) (0.4070) (0.1896) (0.4835) (2.0431) (0.9073) (0.2396) (0.4925) 

δke 
-0.0420 -0.1424 -0.4973 -0.1726 -0.3827 -0.5113 -0.8661 -0.2312 -0.5034 -0.2806 
(0.1185) (0.0636) (0.1252) (0.2231) (0.2394) (0.3271) (0.3152) (0.1856) (0.1332) (0.2069) 

δle 
-0.0631 -0.0237 0.0265 0.3017 0.0880 0.3655 -0.4817 -0.0824 0.4039 0.1248 
(0.0419) (0.0234) (0.0581) (0.1526) (0.1123) (0.2162) (0.2566) (0.1001) (0.0717) (0.1215) 

δkl 
0.0146 -0.0061 0.1966 -0.1681 -0.4937 -0.4784 -4.2189 1.1246 0.2312 1.0419 

(0.1184) (0.0328) (0.1541) (0.3707) (0.1825) (0.6649) (1.9225) (1.0459) (0.3701) (0.5902) 

δet 
-0.0088 0.0020 -0.0038 -0.0402 -0.0253 -0.0172 -0.0102 0.0105 -0.0582 -0.0106 
(0.0037) (0.0042) (0.0046) (0.0138) (0.0098) (0.0135) (0.0076) (0.0058) (0.0053) (0.0093) 

δkt 
-0.0178 0.0506 0.0325 0.0528 0.0341 0.0893 -0.3364 0.0411 0.0300 -0.1267 
(0.0118) (0.0248) (0.0237) (0.0354) (0.0192) (0.0711) (0.0846) (0.0771) (0.0413) (0.0548) 

δlt 
-0.0084 0.0042 0.0140 -0.0436 -0.0304 -0.0728 0.0560 -0.0061 -0.0887 -0.0077 
(0.0037) (0.0024) (0.0061) (0.0217) (0.0066) (0.0306) (0.0584) (0.0480) (0.0161) (0.0372) 

Notes: (a) The years included are: 1976–1982, 1984–1986, 1988–1994, 1999, and 2005. (b) We could not disclose time and plant dummies. 
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Table 1 
Industries in the Study 

Industry Name NAICS code 
Original Industries 

1. Paper Mills 
  

322110, 322121, 322130 
2. Petroleum Refineries 324110 
3. Plastics  3252 
4. Iron and Steel Mills 331111 

  Additional Industries 
5. Portland Cement  327310 
6. Rolling and Drawing 331421; 331422; 331491 
7. Pipe Fitting 332911; 332912; 332919 
8. Misc. Wood Products 321911, 321912, 321918, 321920, 321991, 321992, 321999 
9. Pharmaceuticals 3254 
10. Other Electrical Equipment 3359 
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Table 2  

(1) (2) (3) (4)

Specification Levels First differences
Instrument using 

TFP, first 
differences

Instrument using 
input prices, first 

differences

-0.290 -0.456 -1.185 -0.270
(0.136) (0.192) (0.264) (0.244)

0.609 0.887 1.749 0.667
(0.100) (0.323) (0.382) (0.399)

R squared 0.96 0.32 0.28

-0.260 -0.335 -0.945 -0.427
(0.114) (0.141) (0.474) (0.161)

0.595 1.010 1.213 1.041
(0.078) (0.159) (0.159) (0.158)

R squared 0.97 0.57 0.29 0.57

0.121 -0.002 -0.050 -0.029
(0.040) (0.063) (0.121) (0.065)

-0.473 0.424 0.538 0.488
(0.152) (0.287) (0.335) (0.267)

R squared 0.80 0.06 0.03 0.05

-1.012 -0.499 -4.455 -0.440
(0.272) (0.492) (3.746) (0.454)

0.724 1.545 4.324 1.504
(0.557) (0.651) (2.905) (0.665)

R squared 0.56 0.35 0.32

Panel B: Plastic (SIC 2821-2824)

Elasticity Estimates for MPS Industries

Panel A: Paper (SIC 2611, 2621)

Log output 
price

Log agg 
demand

Log output 
price

Log agg 
demand

Notes: The table reports coefficient estimates with standard errors in parentheses, robust to 
heteroskedasticity. Each panel includes results for the indicated industry. Besides the reported 
coefficients, column 1 also includes a linear time trend. Columns 1 and 2 are estimated by Ordinary 
Least Squares. Columns 3 and 4 are estimated by two-stage least squares. The instrument in column 3 
is the 4-digit TFP growth rate from the MPD. The instruments in column 4 include the log capital 
price, log average payroll per employee, log energy price, and log materials price for the 
corresponding industry.

Log output 
price

Log agg 
demand

Panel C: Petroleum (SIC 2911)

Log output 
price

Log agg 
demand

Panel D: Steel (SIC 3312)
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Table 3  

(1) (2) (3) (4)

Specification Levels First differences
Instrument using 

TFP, first 
differences

Instrument using 
input prices, first 

differences

-0.749 -0.684 -1.658 -0.737
(0.124) (0.147) (0.588) (0.193)

0.850 0.825 1.049 0.837
(0.264) (0.137) (0.239) (0.144)

R squared 0.53 0.57 0.10 0.57

-0.503 -0.313 -1.097 -0.192
(0.131) (0.177) (0.346) (0.203)

0.263 0.867 1.377 0.788
(0.172) (0.273) (0.368) (0.294)

R squared 0.45 0.29 0.28

-0.403 -0.565 -1.209 -0.572
(0.146) (0.128) (0.439) (0.184)

0.706 0.700 0.970 0.703
(0.115) (0.204) (0.224) (0.233)

R squared 0.92 0.36 0.11 0.36

Panel A: Portland cement (SIC 3241)

Elasticity Estimates for Industries 5-7

Log output 
price

Log agg 
demand

Notes: The table reports analogous specifications to Table 2 for the industries indicated in the panel 
titles.

Log output 
price

Log agg 
demand

Panel B: Rolling and drawing (SIC 3351, 3356, 3357)

Panel C: Pipe fitting (SIC 3429, 3432, 3491, 3492, 3494, 3499, 3728)

Log output 
price

Log agg 
demand
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Table 4 

(1) (2) (3) (4)

Specification Levels First differences
Instrument using 

TFP, first 
differences

Instrument using 
input prices, first 

differences

-0.465 -0.100 -2.025 -0.057
(0.152) (0.107) (1.295) (0.100)

0.356 0.823 1.793 0.801
(0.181) (0.149) (0.939) (0.156)

R squared 0.81 0.36 0.35

-0.172 -0.585 -2.657 -0.646
(0.158) (0.153) (1.473) (0.310)

0.097 0.290 1.687 0.332
(0.113) (0.225) (1.083) (0.307)

R squared 1.00 0.24 0.24

-0.297 -0.255 -4.132 -0.335
(0.196) (0.146) (3.337) (0.168)

0.472 1.036 2.512 1.066
(0.184) (0.334) (1.371) (0.362)

R squared 0.86 0.29 0.28

Panel A: Misc. wood (SIC 2421, 2426, 2429, 2431, 2441, 2448, 2449, 2451, 2452, 2499, 3131)

Elasticity Estimates for Industries 8-10

Notes: The table reports analogous specifications to Table 2 for the industries indicated in the panel 
titles.

Log output 
price

Log agg 
demand

Panel B: Pharmaceuticals (SIC 2833, 2834, 2835, 2836)

Log output 
price

Log agg 
demand

Panel C: Other electrical (SIC 3357, 3624, 3629, 3643, 3644, 3691, 3692, 3699)

Log output 
price

Log agg 
demand
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Table 5 

Change in Full-Time Jobs per Industry-Wide One Million Dollara Increase in Environmental Expenditure: 
MPS Industries and MPS Yearsb 

Industry Sample 
Size 

Total 
Effect 

(reduced 
form)c 

Total 
Effect 

Cost 
Effect 

Factor 
Shift 

Demand 
Effect 

Demand 
Elasticityd 

(1) (2) (3) (4) (5) (6) (7) (8) 
Panel A: MPS Estimatese (standard errors in parentheses) 

1 Paper 615 -- 
-0.89 1.73 -0.29 -2.33 1.34 
(2.15) (1.25) (1.63) (1.99) (0.17) 

2 Petroleum 717 -- 
1.65 0.49 1.35 -0.2 0.40 

(0.67) (0.18) (0.62) (0.17) (0.19) 

3 Plastics 404 -- 
4.61 2.16 3.51 -1.06 0.49 

(2.14) (1.09) (1.64) (1.16) (0.29) 

4 Steel 536 -- 
0.30 3.14 3.01 -5.85 1.86 

(4.38) (1.58) (2.51) (4.04) (0.35) 
Panel B: Current Estimates (standard errors in parentheses) 

1 Paper 824 
1.58 6.43* 6.12* 2.72 -2.41 0.27 

(1.82) (2.02) (1.35) (1.62) (1.53) (0.24) 

2 Petroleum 697 
0.43 1.11 0.77 0.37 -0.03 0.03 

(0.89) (0.91) (0.29) (0.96) (0.05) (0.07) 

3 Plastics 548 
10.39 19.99* 15.48* 12.26* -7.75 0.43 
(5.06) (4.3) (2.89) (3.36) (2.8) (0.16) 

4 Steel 486 
38.57* 14.99 16.21* 7.58 -8.80 0.44 
(11.96) (9.82) (3.65) (7.18) (7.68) (0.45) 

Notes: (a) The $1M increase is in 1997$. (b) The years included are 1979, 1980, 1981, 1985, 1988, and 1991. (c) The dependent 
variable in the reduced-form model is the log of plant-level employment, and the independent variables include the plant-level 
ratio of PAOC to production costs, the logs of prices (energy, labor, capital) normalized with respect to price of materials, log 
capital stock, year fixed effects, and plant fixed effects. The equation is estimated by OLS, and heterogeneity-robust standard 
errors are reported. (d) MPS demand elasticities are from MPS Table II, p. 425; Current demand elasticities are negatives of 
“Log output price” coefficient from Table 2, column (4) of this document. Standard errors are reported in parentheses. (e) MPS 
estimates are derived from MPS Table III, p. 427. The original estimates were expressed per $1M increase in 1987$. For 
consistency with the rest of the results, the original MPS estimates were adjusted to represent changes in employment per $1M 
increase in 1997$, using industry-specific deflators. (*) Denotes a statistically significant estimate at 5% joint significance level. 
The Type I error was controlled using the Holm-Bonferroni procedure (Holm, 1979). The family of tests included all tests of 
employment effect significance in this table (36 tests) and in Table 6 (50 tests) to enable joint conclusions (Bender and Lange, 
2001). 
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Table 6 

Change in Full-Time Jobs per Industry-Wide One Million Dollara Increase in Environmental Expenditure: 
All Industries and All Yearsb 

Industry Sample 
Size 

Total 
Effect 

(reduced 
form)c 

Total 
Effect 

Cost 
Effect 

Factor 
Shift 

Demand 
Effect 

Demand 
Elasticityd 

(1) (2) (3) (4) (5) (6) (7) (8) 

Panel A: MPS Industries (standard errors in parentheses) 

1 Paper 2928 
0.78*  2.68* 0.91  2.02 -0.25  0.27 
(0.19) (0.64) (0.4) (0.65) (0.27) (0.24) 

2 Petroleum 2263 
0.61  2.66* 1.38* 1.31 -0.04  0.03 

(0.36) (0.42) (0.16) (0.43) (0.09) (0.07) 

3 Plastics 2515 
1.08  31.21* 7.36* 27.01* -3.17  0.43 

(1.38) (5.19) (0.97) (5.05) (1.25) (0.16) 

4 Steel 1639 
28.55* 21.69 14.45* 13.59* -6.36  0.44 
(5.29) (7.2) (1.78) (3.25) (6.6) (0.45) 

Panel B: Additional Industries (standard errors in parentheses) 

5. Portland Cement 1032 
2.29 3.48  5.17* 2.14  -3.82  0.74 
(1.6) (1.73) (1.26) (1.53) (1.38) (0.19) 

6. Rolling and 
Drawing 1388 -3.88  22.68* 16.07* 9.66  -3.05  0.19 

(9.41) (6.57) (3.72) (5.98) (3.35) (0.20) 

7. Pipe Fitting 868 
-54.35  16.14  50.65  -5.65  -28.87  0.57 
(25.11) (21.55) (21.63) (18.78) (16.25) (0 .18) 

8. Misc. Wood 
Products 922 -66.85  13.66  25.32  -0.52  -11.14  0.44 

(35.68) (19.02) (12.25) (14.88) (13.26) (0.45) 

9. Pharmaceuticals 1579 
0.14  -1.66  4.48  -3.23  -2.91  0.65 

(1.69) (3.29) (1.73) (3.11) (1.86) (0.31) 
10. Other Electrical 
Equipment 1805 

-11.32 10.17 -4.28 12.99 1.45 0.34 
(5.21) (6.52) (4.67) (6.68) (1.90) (0.17) 

Notes: (a) The $1M increase is in 1997$. (b) The years included are: 1976-1982, 1984-1986, 1988-1994, 1999, and 2005. (c) The 
dependent variable in the reduced-form model is the log of plant-level employment and the independent variables include the 
plant-level ratio of PAOC to production costs, the logs of prices (energy, labor, capital) normalized with respect to price of 
materials, log capital stock, year fixed effects and plant fixed effects. The equation is estimated by OLS and heterogeneity-
robust standard errors are reported. (d) Demand elasticities are negatives of “Log output price” coefficient from Tables 3 and 4, 
column (4) of this document. Standard errors are reported in parentheses. (*) Denotes a statistically significant estimate at 5% 
joint significance level. The Type I error was controlled using the Holm-Bonferroni procedure (Holm, 1979). The family of tests 
included all tests of employment effect significance in Table 5 (36 tests) and in this table (50 tests) to enable joint conclusions 
(Bender and Lange, 2001). 
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Table 7 

Characteristics of the Current Sample for MPS Industries and Years vs. MPS Samplea 

Characteristic: Sample Size Labor as a Share of 
Total Costs 

PAOC as a Share of 
Total Costs 

Analysis: MPS Current MPS Current MPS Current 
1 Paperb 615 824 0.201 0.117 0.028 0.017 
2 Petroleum 717 697 0.019 0.016 0.011 0.009 
3 Plastics 404 548 0.085 0.082 0.020 0.011 
4 Steelc 536 486 0.230 0.173 0.022 0.012 

Notes: (a) MPS sample statistics is are from MPS Table I, p. 422. (b) Paper industry definition in MPS excluded pulp mills. (c) 
Steel industry definition in MPS included coke ovens. 
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Table 8 

Estimated Total Factor Productivitya by Industry for All Available Yearsb 

Industry 

Standard Deviation Mean Mean by time period 

ov
er

al
l 

be
tw

ee
n 

w
ith

in
 

ov
er

al
l 

19
74

-1
97

7 

19
78

-1
98

2 

19
83

-1
98

7 

19
88

-1
99

2 

19
93

-1
99

7 

19
98

-2
00

2 

20
03

-2
00

5 

1 Paper 0.29 0.24 0.19 2.17 2.19 2.19 2.17 2.15 2.14 2.15 2.14 

2 Petroleum 0.42 0.44 0.31 1.42 1.43 1.42 1.46 1.42 1.37 1.38 1.35 

3 Plastics 0.49 0.44 0.28 0.83 0.97 0.90 0.83 0.82 0.72 0.71 0.64 

4 Steel 0.29 0.21 0.22 2.40 2.40 2.40 2.39 2.40 2.39 2.39 2.39 

5 Portland cement 0.31 0.24 0.22 4.49 4.45 4.47 4.49 4.51 4.51 4.52 4.52 

6 Rolling and drawing 0.31 0.23 0.22 1.49 1.50 1.50 1.49 1.48 1.47 1.46 1.44 

7 Pipe fitting 0.68 0.52 0.32 2.74 2.79 2.79 2.74 2.70 2.66 2.60 2.41 

8 Misc. Wood Products 0.32 0.26 0.19 0.65 0.76 0.72 0.68 0.61 0.59 0.49 0.50 

9 Pharmaceuticals 0.98 0.87 0.52 -1.98 -1.79 -1.84 -1.90 -2.04 -2.26 -2.40 -2.36 

10 Other electrical 
equipment 0.44 0.34 0.30 3.48 3.47 3.48 3.47 3.49 3.50 3.50 3.39 

Notes: (a) Plant-specific TFPs were computed based on the production function estimates obtained from the Olley-Pakes 
model. The summary statistics reported are natural logs of TFP. (b) The years included are: 1976-1982, 1984-1986, 1988-1994 
1999, and 2005. 
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Figure 1 

Sources of Difference between Current and MPS Estimates of Employment Effects (MPS years) 

Panel A: Paper 

 

Panel B: Petroleum 

 
Panel C: Plastics 

 

Panel D: Steel 

 
 

 
 

Notes:  
- The difference between (1) and (2) is that the MPS demand elasticity was used in combination with the current cost function 

estimate to derive the demand effect and the total effect. (There is no change in the cost effect and the factor effect.) 
- The difference between (2) and (3) is that, in addition to MPS demand elasticities, MPS cost function estimates were used to 

decompose the employment impacts.  
- The difference between (3) and (4) is that the current sample averages were used for the decomposition for (3), while (4) is the 

published MPS estimate, using the MPS data. 
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