Installing Vapor Recovery Units to Reduce Methane Losses

Lessons Learned from Natural Gas STAR

Processors Technology Transfer Workshop

Pioneer Natural Resources, Inc., Gas Processors Association and EPA's Natural Gas STAR Program

September 23, 2004

Vapor Recovery Units: Agenda

- Methane Losses
- Methane Recovery
- Is Recovery Profitable?
- Industry Experience
- Discussion Questions

Sources of Methane Losses

- Estimate 373 MMcf/yr methane lost from atmospheric condensate storage tanks in gathering stations
- EPA/GTI study estimates the methane emissions from storage tanks in the processing sector to be 311 MMcf/yr

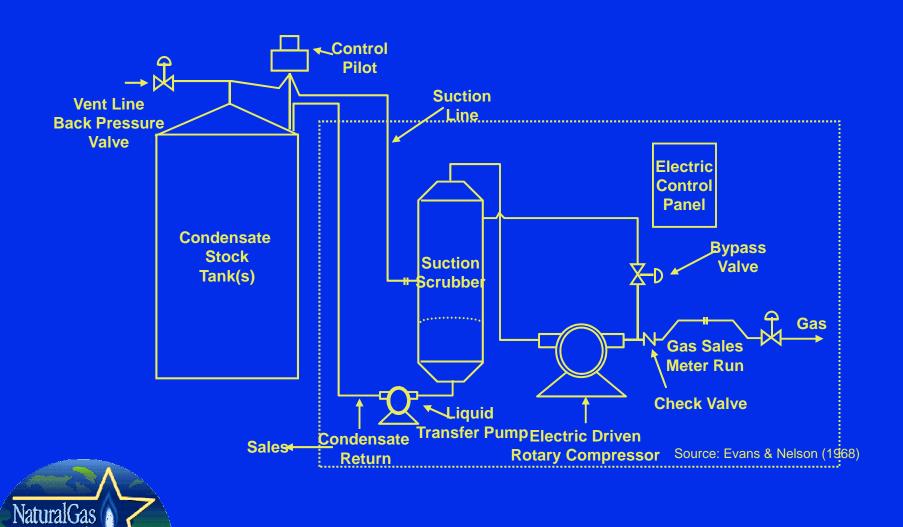
EF from Inventory of U.S. Greenhouse Gas Emissions and Sinks 1990 - 2002, AF from EIA financial reporting system (FRS)

Types of Methane Losses

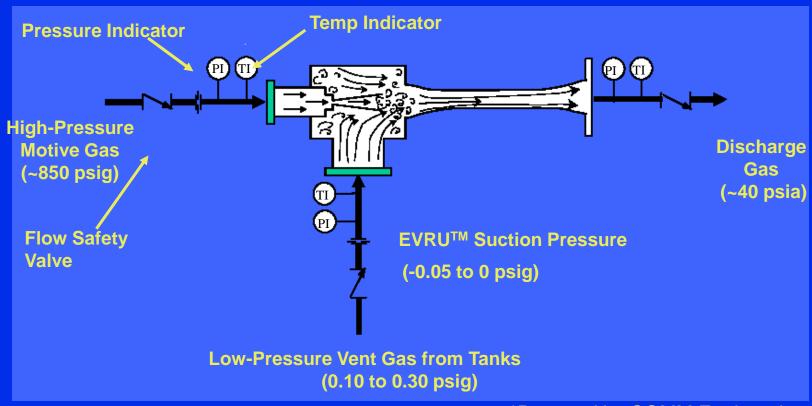
- □ Flash losses occur when condensate in pipeline systems enters tanks at atmospheric pressure
- Working losses occur when condensate levels in tanks change
- Standing losses occur with daily and seasonal temperature and barometric pressure variations

Methane Recovery

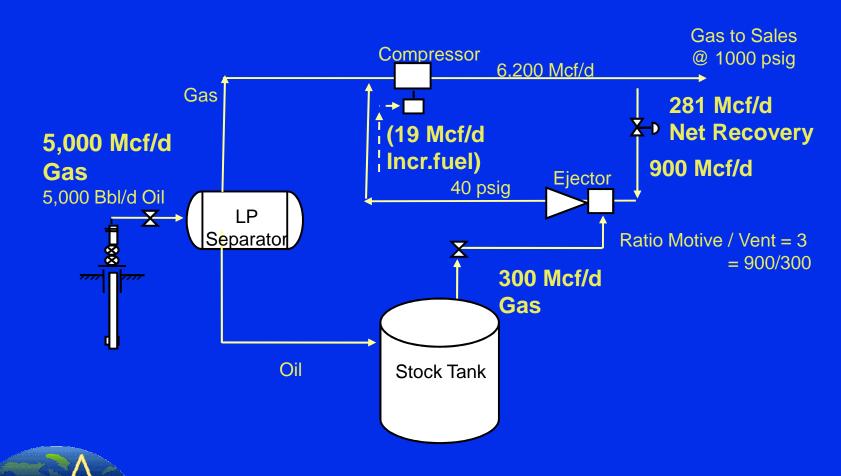
- □ Vapor recovery units capture up to 95% of hydrocarbon vapors vented from tanks
- Recovered vapors have higher Btu content than pipeline quality gas
- Recovered vapors are more valuable than natural gas and have multiple uses
 - **♦** Re-injected into pipeline to recover NGLs
 - ◆ Used as on-site fuel



Types of Vapor Recovery Units


- □ Conventional vapor recovery units (VRU)
 - ◆ Use rotary compressor to extract vapors out of atmospheric pressure storage tanks
 - **♦** Require electrical power or engine
- □ Venturi ejector vapor recovery units (EVRU™)
 - Use Venturi jet ejector in place of rotary compressor
 - ◆ Do not contain any moving parts
 - Require source of high pressure gas and intermediate pressure system

Conventional Vapor Recovery Unit


Venturi Jet Ejector*

*Patented by COMM Engineering

Vapor Recovery with Ejector

NaturalGas 🖍

Note: Production application example.

Example Facility for EVRUTM

□ Oil production: 5,000 Bbl/d, 30 Deg API

☐ Gas production: 5,000 Mcf/d, 1060 Btu/cf

■ Separator: 50 psig, 100°F

□ Storage tanks: 4 - 1500 Bbls @1.5oz relief

☐ Gas compressor: Wauk7042GSI/3stgAriel

■ Suction pressure: 40 psig

□ Discharge pressure: 1000 psig

■ Measured tank vent: 300 Mcf/d @ 1,850 Btu/cf

Emissions Before EVRUTM CO₂ Equivalents

□ Engine exhaust: 3,950 Tons/yr @ 790 Hp load

□ Tank vents: 14,543 Tons/yr

□ Total CO2 equivalents: 18,493 Tons/yr

□ Fuel consumption @ 9000 Btu/Hp-hr = 171 MMBtu/d

☐ Gas sales: 5,129 MMBtu/d

□ Gas value: \$25,645/d @ \$5/MMBtu

Emissions After EVRUTM CO₂ Equivalents

■ Motive gas required: 900 Mcf/d

■ Engine exhaust: 4,897 Tons/yr @ 980 Hp load

☐ Tank vents: 0 Tons/yr

Fuel consumption @ 9000 Btu/Hp-hr: 190 MMBtu/d

■ Total CO₂ equivalents: 4,897 Tons/yr

■ Reduction: 13,596 Tons/yr (73.5%)

☐ Total CO₂ equivalents: 4,897 Tons/yr

Reduction: 13,596 Tons/yr (73.5%)

☐ Gas sales: 5,643 MMBtu/d

☐ Gas value: \$28,215/d @ \$5/MMBtu

☐ Income increase: \$2,570/d = \$77,100/mo

■ EVRU cost installed: \$75,000

■ Installed cost per recovered unit of gas: \$0.68/Mcf/yr

■ Payout: <1 month

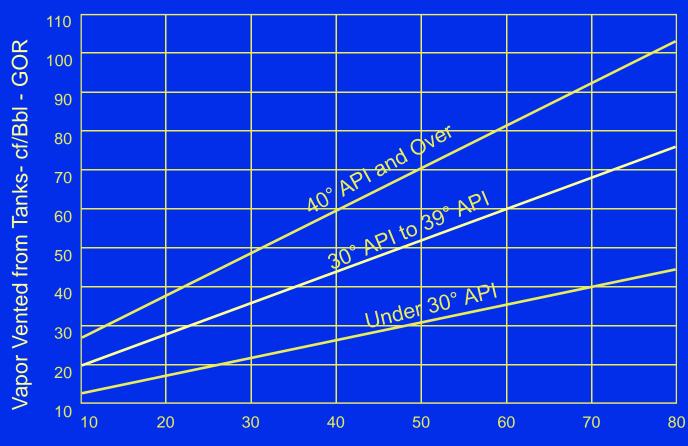
Vapor Recovery Unit Decision Process

IDENTIFY possible locations for VRUs **QUANTIFY** the volume of losses **DETERMINE** the value of recoverable losses **DETERMINE** the cost of a VRU project

EVALUATE VRU project economics

Criteria for Vapor Recovery Unit Locations

- Steady source and sufficient quantity of losses
 - ◆ Condensate tanks at gathering/ boosting stations
 - ◆ Pig trap liquids tanks
- Outlet for recovered gas
 - ◆ Access to pipeline or on-site fuel
- □ Tank batteries not subject to air regulations



Quantify Volume of Losses

- Estimate losses from chart based on oil characteristics, pressure and temperature at each location (± 50%)
- □ Estimate emissions using the E&P Tank Model (± 20%)
- Measure losses using ultrasonic meter (± 5%)
- Measure losses using recording manometer and orifice well tester (± 100%)

Estimated Volume of Tank Vapors

Source: Natural Gas Star, Lessons Learned – Installing Vapor Recovery Units on Crude Oil Storage Tanks

Quantify Volume of Losses

■ E&P Tank Model

- **♦** Computer software developed by API and GRI
- ♦ Estimates flash, working and standing losses
- Calculates losses using specific operating conditions for each tank
- ◆ Provides composition of hydrocarbon losses

What is the Recovered Gas Worth?

- Value depends on Btu content of gas
- □ Value depends on how gas is used
 - ◆ On-site fuel valued in terms of fuel that is replaced
 - ◆ Natural gas pipeline measured by the higher price for rich (higher Btu) gas
 - ◆ Gas processing plant measured by value of NGLs and methane, which can be separated

Value of Recovered Gas

Gross revenue per year = (Q x P x 365) + NGL

Q = Rate of vapor recovery (Mcfd)

P = Price of recovered natural gas

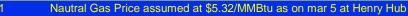
NGL = Value of natural gas liquids

Cost of a VRU

- Major cost items:
 - ◆ Capital equipment costs
 - **♦ Installation costs**
 - **♦** Operating costs

Cost of a Conventional VRU

Vapor Recovery Unit Sizes and Costs						
Capacity (Mcfd)	Compressor Horsepower	Captial Costs (\$)	Installation Costs (\$)	O&M Costs (\$/year)		
25	5-10	15,125	7,560 - 15,125	5,250		
50	10-15	19,500	9,750 - 19,500	6,000		
100	15 - 25	23,500	11,750 - 23,500	7,200		
200	30 - 50	31,500	15,750 - 31,500	8,400		
500	60 - 80	44,000	22,000 - 44,000	12,000		


Note: Cost information provided by Partners and VRU manufacturers.

Value of Recovered NGLs

	1	2	3	4
	Btu/gal	MMBtu/gal	\$/gal	\$/MMBtu ¹ ,
				(=3/2)
Methane	59,755	0.06	0.32	5.32
Ethane	74,010	0.07	0.42	5.64
Propane	91,740	0.09	0.59	6.43
n Butane	103,787	0.10	0.73	7.06
iso Butane	100,176	0.10	0.78	7.81
Pentanes+	105,000	0.11	0.85	8.05
Total				

	5	6	7	8	9	10 Mixture		11
	Btu/cf	MMBtu/Mcf	\$/Mcf	\$/MMBtu	Vapor Compostion	(MMbtu/Mcf	(\$	/alue 5/Mcf) 8*10)/1
			(=4*6)					000) [°]
Methane	1,012	1.01	\$ 5.37	5.32	82%	0.83	\$	4.41
Ethane	1,773	1.77	\$ 9.98	5.64	8%	0.14	\$	0.80
Propane	2,524	2.52	\$ 16.21	6.43	4%	0.10	\$	0.65
n Butane	3,271	3.27	\$ 23.08	7.06	3%	0.10	\$	0.69
iso Butane	3,261	3.26	\$ 25.46	7.81	1%	0.03	\$	0.25
Pentanes+	4,380	4.38	\$ 35.25	8.05	2%	0.09	\$	0.70
Total						1.289	\$	7.51

² Prices of Indvidual NGL components are from Platts Oilgram for Mont Belvieu, TX, March 05,2004

³ Other NGI information obtained from Oil and Gas Journal, refining Report, March 19, 2001, p-83

Is Recovery Profitable?

□ Economics for various sized conventional VRUs

Financial Analysis for a conventional VRU Project												
Peak Capacity (Mcfd)	Installation & Capital Costs ¹	O & M Costs (\$/year)	Value of Gas ² (\$/vear)				Value of Gas ² (\$/year)			Annual Savings	Payback period ³ (months)	Return on Investment ⁴
25	26,470	5,250	\$:	34,242	\$	28,992	11	107%				
50	34,125	6,000	\$	68,484	\$	62,484	7	182%				
100	41,125	7,200	\$ 13	36,967	\$	129,767	4	315%				
200	55,125	8,400	\$ 2	73,935	\$	265,535	2	482%				
500	77,000	12,000	\$ 68	84,836	\$	672,836	1	874%				

¹ Unit Cost plus esimated installation at 75% of unit cost

² \$7.51 x 1/2 capacity x 365, Assumed price includes Btu enriched gas (1.289 MMBtu/Mcf)

³ Based on 10% Discount rate for future savings. Excludes value of recovered NGLs

Calculated for 5 years

Trade Offs

	Conventional VRU	Ejector
Fuel for electricity (Mcf/yr)	2,281	_
Fuel (Mcf/yr)	_	6,935
Operating factor	70%	100%
Maintenance	High	Low
Installed cost per recovered unit of gas (\$/Mcf/yr)	\$1.00	\$0.68
Payback (excl. maintenance)	3 to 27 months	<1 month

Technology Comparison

- Mechanical VRU advantages
 - ♦ Gas recovery
 - ◆ Readily available
- Mechanical VRU disadvantages
 - ◆ Maintenance costs
 - **♦** Operation costs
 - **♦** Lube oil contamination
 - → ~ 70% runtime
 - **♦ Sizing/turndown**

- EVRU advantages
 - ◆ Gas recovery
 - ◆ Readily available
 - **♦** Simple technology
 - ◆ 100% runtime
 - Low maintenance/ operation /install costs
 - ◆ Sizing/turndown (100%)
 - Minimal space required (mount in pipe rack)
- EVRU disadvantages
 - ◆ Need HP Motive Gas
 - Recompression of motive gas

Lessons Learned

- Vapor recovery can yield generous returns when there are market outlets for recovered gas
 - Recovered high Btu gas or liquids have extra value
 - ♦ VRU technology can be highly cost-effective
 - ◆ EVRU™ technology has extra O&M savings, higher operating factor
- □ Potential for reduced compliance costs can be considered when evaluating economics of VRU/EVRUTM

Lessons Learned (cont'd)

- □ VRU should be sized for maximum volume expected from storage tanks (rule-of-thumb is to double daily average volume)
- □ Rotary vane or screw type compressors recommended for VRUs where there is no source of high-pressure gas and/or no intermediate pressure system
- □ EVRUsTM recommended where there is gas compressor with excess capacity

Case Study – Pioneer

- □ Pioneer Natural Resources USA, Inc. recycled vapors from 3 phase separators to the plant inlet
 - ♦ Methane emissions reduction = 3796 Mcf
 - **♦** Estimated cost incurred = \$5,000
 - ◆ Total value of gas saved = \$11,388

Vapor Recovery Units

- □ Profitable technology to reduce gas losses
- □ Can help reduce regulatory requirements and costs
- □ Additional value of NGLs further improves cost-effectiveness
- Exemplifies profitable conservation

Discussion Questions

- ☐ To what extent are you implementing this BMP?
- □ How can this BMP be improved upon or altered for use in your operation(s)?
- What is stopping you from implementing this technology (technological, economic, lack of information, focus, manpower, etc.)?

