# Reducing Emissions from Compressor Rod Packing

**Lessons Learned from Natural Gas STAR** 



**Producers Technology Transfer Workshop** 

Devon Energy Corporation and EPA's Natural Gas STAR Program

**April 20, 2005** 

### **Agenda**

- ★ Methane Losses
- ★ Methane Recovery
- ★ Is Recovery Profitable?
- ★ Industry Experience
- \* Discussion Questions



#### **Methane Losses from Production**

\* Production responsible for 42% of methane emissions



# Methane Losses from Compressor Rod Packing

- Reciprocating compressors account for 2% of production sector emissions
  - ◆ Gas lost from rod packing is estimated to be over 350 MMcf/yr costing over \$1 million (gas price of \$3/Mcf)



### Compressor Rod Packing What is the Problem?

- Rod packing accounts for 12% of reciprocating compressor emissions in production sector
  - ♦ Over 44,000 reciprocating compressors in natural gas industry
  - ♦Over 31,000 compressors in gas production sector





# Methane Losses from Rod Packing

- Reciprocating compressor rod packing leaks some gas by design
  - ♦ Newly installed packing may leak 11 cubic feet per hour (cf/h)
  - ♦ Worn packing has been reported to leak up to 900 cf/h



# Reciprocating Compressor Rod Packing

- ★ A series of flexible rings fit around the shaft to prevent leakage
- \* Rings held in place by springs and packing cups



### Methane Loss Sources from Rod Packing

- ★ Leakage occurs
  - Around packing case through nose gasket
  - ◆ Between packing cups
  - ◆ Around rings due to movement of the piston rod
  - Between rings and piston rod
- Leaking gases escape either through vents on the packing flange or into the distance piece
- Leakage gradually increases from normal wear of rings and rod



# Methane Recovery with Economic Rod Packing Replacement

- Leak rates from rod packing eventually increase to a level that economically justifies packing replacement
  - ◆ Frequency of economic replacement depends on lubrication, rod alignment, rod wear, rod material and economic hurdle-rate
- \* Benefits of economic packing replacement
  - **♦** Reduced methane emissions
  - **♦** Gas savings with lower leakage rates
  - **♦** Extended service life of compressor rods



### Rod Packing Replacement Decision Process

Monitor and record baseline packing leakage and piston rod wear

Compare current leak rate to initial leak rate to determine leak reduction expected

**Assess costs of replacements** 

**Determine economic replacement threshold** 

Replace packing and rods where cost-effective



#### **Establish Baseline Leaks**

- Step 1: Monitor and record baseline leakage and rod wear
  - ◆ Measure leaks immediately after installing new seals (or new rods and seals)
  - ◆ Monitor rods periodically for shaft dimensions and surface roughness when replacing rings
    - "Out-of-round" rod seals poorly causing uneven wear and allowing more leakage
    - It also causes uneven wear on the seals shortening the life of both seal and rod



### **Establish Leak Reduction Expected**

- Step 2: Compare current leak rate to initial leak rate to determine leak reduction expected
  - ◆ Leak Reduction Expected (LRE) = Current Leak Rate (CL) – Initial Leak Rate at the last ring/ rod replacement (IL)
  - ◆ Example: The current leak rate is measured as 50 cf/h, the same component leaked 10 cf/h when first installed

LRE = 50 cf/h - 10 cf/hLRE = 40 cf/h



# Assess Costs for Economic Rod Packing Replacement

- ★ Step 3: Assess cost of replacements
  - ◆ Packing ring replacement costs depend on the number of cylinders and the type of ring

Cost of a set of rings: \$ 500 to \$ 800 (with cups and case) \$1500 to \$2500

- Rod replacement costs vary with rod dimension and rod type
  - Cost of Piston Rod: \$1800 to \$3500
- ◆ Installation costs roughly equal equipment costs



# Replacement Threshold for Economic Rod Packing Replacement

- ★ Step 4: Determine economic replacement threshold
  - ◆ Economic replacement threshold defines the specific point at which it is cost effective to replace rings and rods
  - Discounted cash flow method
    - Economic replacement threshold (cfh)

```
= (CR*DF*1,000) / (H*GP)
```

where, CR = cost of replacement (\$)

H = hours of compressor operation per year

**GP** = gas price (\$/Mcf)

DF = discount factor =  $i*(1+i)^n / (1+i)^n - 1$ 

i = discount rate or company hurdle rate

n = payback period selected



### Is Recovery Profitable?

Step 5: Replace packing and rods when cost effective

#### **◆Example:**

| Rings Only |              | Rod and Rings |             |
|------------|--------------|---------------|-------------|
| Rings:     | \$1,200      | Rings:        | \$1,200     |
| Rod:       | \$0          | Rod:          | \$7,000     |
| Gas:       | \$3/Mcf      | Gas:          | \$3/Mcf     |
| Operating: | 8,500 hrs/yr | Operating:    | 8,500 hrs/y |

| Leak Reduction Expected | Payback Period |
|-------------------------|----------------|
| (cfh)                   | (years)        |
| 52                      | 1              |
| 27                      | 2              |
| 19                      | 3              |
| 15                      | 4              |
| 12                      | 5              |

| Payback Period |
|----------------|
| (years)        |
| 1              |
| 2              |
| 3              |
| 4              |
| 5              |
|                |



Based on 10% interest rate
Mcf = thousand cubic feet, cfh = cubic feet per hour

# Industry Experience on New Rod Packing Material and Coatings

- New packing materials can improve the life and performance of equipment
  - ◆ Carbon impregnated Teflon® rings cost almost the same as bronze rings but last about one year longer
    - Other factors like proper installation, cooling and lubrication play an important role
  - ◆ Piston rods coated with tungsten carbide or chromium increase service life of rods
  - ◆ Axially loaded packing installed in one of the last two cups reduces emissions



### **Axially Loaded Three Ring Rod Packing**



FEP STYLE PACKING

Source: Compressor Engineering Corporation



#### **Discussion Questions**

- \* What is your practice on replaced rod packing in reciprocating compressors?
- \* How can the Lessons Learned study be improved upon or altered for use in your operation(s)?
- \* What are the barriers (technological, economic, lack of information, regulatory, etc.) that are preventing you from implementing this technology?

