

In business to deliver

Methane Emissions Management at TransCanada PipeLines

by Hasan Imran

(2004 Natural Gas STAR Technology Transfer Workshop,
Houston, Texas. Sept. 2004)

TransCanada

AGENDA

- TransCanada PipeLines Ltd.
 - Introduction & Background
- TransCanada Climate Change Strategy
- Greenhouse Gas Emissions
- Emissions Management Strategy
- TransCanada's Experience
 - Control Methodologies
 - Research & Development
- Conclusion

TransCanada PipeLines at a Glance

Corporate GHG Emitters

Climate Change Policy

- Climate Change issue is not going away.
- Greenhouse Gas Emissions is potential liability for TransCanada.
- We have a plan in place to manage climate change.
- TransCanada believes in promoting global solutions to this global challenge.
- TransCanada believes prudent action is required.
- TransCanada believes in a strong commitment to technological innovation.

Climate Change Strategy

Greenhouse Gas Emissions from Pipeline Operations

Methane Emissions Distribution

TCPL Emissions Management System

Fugitive Emissions Management

(LDAR vs Measurement)

- High Flow Sampler Measurement
 - Accuracy; <u>+</u> 25%
 - identification of most "cost effective fixes"

•Bacharach HFS - NEW

2003 Methane Emissions from system by Faciltiy Type

High Flow Sampler Data (1999-2003)

Sample Field Measurement Data

Analysis

Benefit - Cost Effective Repairs

LDAR Program Achievements

TransCanada's Contribution to Environment Emissions saved in no. of Tree Equivalents

Blowdown Emissions Management

(Control Methods and Technologies Used)

- Scheduling Practices
- Operational Adjustments
- •Transfer (Pull-down) Compressors
- Buttered Stubs
- Hot Tapping
- Sleeves
- Stopples
- Hot line lowering

Reducing Emissions by using Transfer Compressor

Outcome from Reduction Programs

2003 Summary of Savings from Methane Emission Reduction Programs

Minimizing Blowdown Emissions	1,132 tonnes of CO2E				
Transfer Compression	626,966				
Valve Sealing	61,678				
Buttering & Hot Tapping	154,632				
Repair Sleeves	164,949				
Reducing Fugitive Emissions	223,270				

Savings Outcome

Methane Emissions and Savings

(million tonnes of carbon dioxide equivalent - Mt CO2E)

	1995	1996	1997	1998	1999	2000	2001	2002	2003
Methane Emissions	3.29	2.82	2.55	2.45	2.37	2.15	1.06	0.82	0.81
Savings	0.15	0.23	1.74	1.26	1.20	2.10	1.59	1.24	1.13

Research & Development

- ➢Incineration of Blowdown Gas using new Technology
- ➢ Biofilter for Meter station methane emissions oxidation
- > Dry Gas Seal Emissions capture technology
- ➤Incineration Methane emissions by the use of CH4Reactor
- >Fuel Cells

Technology R&D at TCPL

(use of incinerator for blowdowns)

- •Incineration of blowdown gas instead of venting (after transfer compression)
- •At Caron Compressor Station, Moose Jaw, November 2002

Emission savings of 1,100 t CO2E

Biofilter Pilot Plant for Methane Emissions & D Reduction

Biofilter Pilot Plant for Methane Emissions Reduction

R&D

Compressor Dry Gas Seal Emissions Mitigation Research Project

- •Use of gas-gas ejector to recompress seal gas emissions
- Re-injecting to high pressure system
- Application to TransCanada Compressors would save
 - 538 MMSCF/yr. of natural gas
 - 227,000 tCO2E/yr. of greenhouse gas emissions
- Negligible operating cost

Compressor Dry Gas Seal Emissions Mitigation Research Project

653 t CO₂ E/yr.

1 seal

Emissions Value = \$ 0.68 M

Market value of gas = \$ 3.70M

@ \$6.84/1000 ft3

CONCLUSION - Cost Curve

