Wortman, Eric

From:	Wortman, Eric
Sent:	Friday, September 22, 2017 9:56 AM
То:	'timothy_hermann@xtoenergy.com'
Cc:	'Allison, Craig'; minnieg@utetribe.com; 'Bruce Pargeets'; Fallon, Gail; Okubo, Noreen
Subject:	Final Part 71 Permits for River Bend Dehydration Site and Tap 5 Compressor Station
Attachments:	XTO River Bend Dehy FINAL Initial Part 71 Permit V-UO-000026-2011.00.pdf; XTO Tap 5
	CS FINAL Initial Part 71 Permit V-UO-000018-2007.00.pdf

Mr. Hermann,

I have attached the final requested permits for XTO Energy, Inc.'s Tap 5 Compressor Station and River Bend Dehydration Site issued pursuant to the Title V Operating Permit Program at 40 CFR Part 71 (Part 71). We will also be posting each of the final Part 71 permits in PDF format on our website at: <u>https://www.epa.gov/caa-permitting/caa-permits-issued-epa-region-8</u>.

In accordance with the regulations at §71.11(i), both permits are effective immediately upon issuance, on September 22, 2017. Please review each condition carefully and note any restrictions placed on these sources. Procedures for appealing these permits can be found in 40 CFR 71.11(I). A petition to the Environmental Appeals Board (EAB) must be filed within 30 days of receipt of the corresponding final permit action.

If you have any questions or concerns regarding these final permit actions, please contact me.

Thank you,

Eric Wortman

Eric Wortman | Environmental Scientist U.S. Environmental Protection Agency Telephone: (617) 918-1624 | Email: wortman.eric@epa.gov

Wortman, Eric

From:	Wortman, Eric
Sent:	Friday, September 22, 2017 9:58 AM
То:	Wortman, Eric
Subject:	Notice of Issuance of Title V Operating Permits on the Uintah and Ouray Indian
	Reservation

This is to notify you that the EPA has issued two (2) final Clean Air Act (CAA) Title V operating permits for XTO Energy Inc.'s Tap 5 Compressor Station and the River Bend Dehydration Site pursuant to the Title V Operating Permit Program at 40 CFR Part 71 (Part 71). The final Part 71 permits will be available in PDF format on our website at: https://www.epa.gov/caa-permitting/caa-permits-issued-epa-region-8.

In accordance with the regulations at §71.11(i), the permits are effective immediately upon issuance, on September 22, 2017. Any person who failed to file comments on the draft permit may petition for administrative review only to the extent of the changes from the draft to the final permit decision or other new grounds that were not reasonably foreseeable during the public comment period on the draft permit. The 30-day period within which a person may request review under this section begins when we have fulfilled the notice requirements for these final permit decisions. Motions to reconsider a final order by the Environmental Appeals Board (EAB) must be filed within 10 days after service of the final order. A petition to the EAB is under Section 307(b) of the CAA, a prerequisite to seeking judicial review of the final agency action. For purposes of judicial review, final agency action occurs when we issue or deny a final permit and agency review procedures are exhausted.

Thank you,

Eric Wortman

Eric Wortman | Environmental Scientist U.S. Environmental Protection Agency Telephone: (617) 918-1624 | Email: <u>wortman.eric@epa.gov</u>

Public Notice: Request For Comments

Draft Air Quality Permit to Operate for Federal Clean Air Act Title V to Control Air Pollutant Emissions from Multiple Facilities on the Uintah and Ouray Indian Reservation

Public notice issued:

August 18, 2017

Written comments due:

5 p.m., September 18, 2017

What is being proposed?

The EPA proposes to issue a Clean Air Act (CAA), Title V Permit to Operate in accordance with 40 Code of Federal Register, Part 71, for the following facilities owned and operated by XTO Energy, Inc. on Indian country lands within the Uintah and Ouray Indian Reservation: Tap 5 Compressor Station and River Bend Dehydration Site.

EPA issues CAA Title V operating permits in Indian country where EPA has not approved a tribe to implement the Title V operating permit program. The Ute Indian Tribe does not have an approved Title V operating permit program.

Air pollutant emissions come from equipment operating at the facilities. The draft operating permit includes all CAA control requirements that apply to the facilities and associated equipment emitting air pollutants.

Where are the facilities located?

Tap 5 Compressor Station: Uintah and Ouray Indian Reservation Uintah County, Utah Latitude: 39.9750760N Longitude: 109.6360850W

<u>River Bend Dehydration Site</u>: Uintah and Ouray Indian Reservation Uintah County, Utah Latitude: 39.94851N Longitude: 109.77057W

Permit number:

Tap 5 CS: V-UO-000018-2007.00 River Bend Dehy: V-UO-000026-2011.00

How can I review documents? What happens next?

You can review the draft CAA Title V Operating Permit, the application, and Statement of Basis at:

Uintah County Clerk's Office 147 East Main St #6 Vernal, Utah 84078

Ute Indian Tribe Energy and Minerals Department Office 988 South 7500 East, Annex Building Fort Duchesne, Utah 84026

U.S. EPA Region 8 Air Program Office (8P-AR) 1595 Wynkoop St. Denver, CO 80202 Phone: 303-312-6649

All documents will be available for review at the U.S. EPA Region 8 office Monday through Friday from 8:00 am to 4:00 pm (excluding Federal holidays).

Electronic copies of the draft Title V permits, Statement of Basis and all supporting materials may also be viewed at: <u>http://www.epa.gov/caa-</u> <u>permitting/caa-permit-public-</u> comment-opportunities-region-8

What are EPA's responsibilities?

The U.S. EPA Region 8 Air Program is the regulatory agency that helps protect and preserve air quality on the Ute Indian Reservation.

One way the EPA does this is by issuing CAA Title V operating permits for major air emission sources that require air pollutant emissions control and monitoring. The purpose of this notice is to invite you to submit written comments on this proposed permit through the process detailed in this notice. The EPA will review and consider all comments received during the comment period.

Following this review, the EPA may issue the permit as drafted, issue the permits with revisions, or deny the permit.

Public Comment Period:

The EPA will accept written comments on the draft Title V Operating Permits beginning:

August 18, 2017 Through 5 p.m., September 18, 2017.

Where can I send written comments?

The EPA accepts comments by mail and e-mail.

How can I make comments by e-mail?

To make comments via email, click on the name of the contact person at the website below.

U.S. EPA Region 8 Air Program Mail Code 8P-AR Tribal Permit Program 1595 Wynkoop Street Denver CO 80202 Phone: 800.227.8917

http://www.epa.gov/caapermitting/caa-permit-publiccomment-opportunities-

Smith, Claudia

From:	Wortman, Eric
Sent:	Friday, August 18, 2017 5:12 AM
То:	Wortman, Eric
Subject:	Notice of Public Comment Period – Draft Title V Operating Permits on the Uintah and
	Ouray Indian Reservation

In accordance with 40 CFR 71.8 and 71.11(d)(2), the U.S. Environmental Protection Agency Region 8 is hereby providing notification to all affected states, tribes, and members of the public of the issuance of the draft title V federal operating permit for the following sources located on Indian country lands within the Uintah and Ouray Indian Reservation:

XTO Energy Inc. – Tap 5 Compressor Station XTO Energy Inc. – River Bend Dehydration Site

Part 71 Permit Contact - Eric Wortman, (617) 918-1624

A copy of the draft permits and Statement of Bases may be obtained by contacting the Part 71 Permit Contact. The permit applications and other supporting information pertinent to the permit decisions are available for review at the following locations:

U.S. EPA Region 8	Uintah & Ouray Indian Tribe	Uintah County Clerk
Air Program (8P-AR)	Energy and Minerals Department Office	147 E. Main St., #6
1595 Wynkoop St.	988 South 7500 East, Annex Building	Vernal, UT 84078
Denver, CO 80202	Fort Duchesne, UT 84026	

Electronic copies of the draft permits, Statement of Bases, permit applications, and additional supporting information may also be viewed online at: <u>http://www.epa.gov/caa-permitting/caa-permit-public-comment-opportunities-region-8</u>.

In accordance with §71.11(d)(2), EPA Region 8 is providing a 30-day period from August 18, 2017 to September 18, 2017, for public comment on this draft permit. Comments must be received by 5 p.m. on September 18, 2017, to be considered in the issuance of the final permit. If a public hearing is held regarding this permit, you will be sent a copy of the public hearing notice at least 30 days in advance of the hearing date.

Please submit any written recommendations you may have concerning the terms and conditions of this permit to me by email or to the address listed above.

Sincerely,

Eric Wortman

Eric Wortman | Environmental Scientist U.S. Environmental Protection Agency

Telephone: (617) 918-1624 | Email: wortman.eric@epa.gov

UNITED STATES ENVIRONMENTAL PROTECTION AGENCY

REGION 8 1595 Wynkoop Street Denver, CO 80202-1129 Phone 800-227-8917 http://www.epa.gov/region8

AUG 1 4 2017

Ref: 8P-AR

Ms. Minnie Grant Air Coordinator Ute Indian Tribe, Energy and Minerals Department P.O. Box 70 Ft. Duchesne, Utah 84026

<u>CERTIFIED MAIL</u> <u>RETURN RECEIPT REQUESTED</u>

Re: Transmittal of Draft Title V Permits to Operate on the Uintah and Ouray Indian Reservation

Dear Ms. Grant: .

In accordance with 40 CFR 71.8 and 71.11(d)(2), the U.S. Environmental Protection Agency (EPA) Region 8 is hereby providing notification to all affected states and tribes of the issuance of the draft Clean Air Act Title V Permit to Operate for the following sources located on Indian country lands within the Uintah and Ouray Indian Reservation:

XTO Energy Inc. – Tap 5 Compressor Station XTO Energy Inc. – River Bend Dehydration Site

Region 8 is providing a 30-day period, from August 18, 2017 to September 18, 2017 for comment. Please make the enclosed draft permits, Statement of Bases, permit applications, and additional supporting information for each permit action available for public inspection until the end of the public comment period.

Electronic copies of the draft permits and Statement of Bases may also be viewed online at: http://www.epa.gov/caa-permitting/caa-permit-public-comment-opportunities-region-8.

We have also enclosed copies of a public notice bulletin. Please post this bulletin in locations that you see fit to broadly advertise this public comment period.

In addition to maintaining the docket in your tribal office, please submit any written recommendations you may have concerning the terms and conditions of the draft permits to me at the following address:

Eric Wortman US EPA Region 8 Air Program, 8P-AR 1595 Wynkoop Street Denver, CO 80202 (617) 918-1624 wortman.eric@epa.gov Should EPA not accept any or all of these recommendations, you will be notified in writing and will be provided with the reasons for not accepting them. Comments must be received by 5 p.m. on September 18, 2017, to be considered in the issuance of the final permits for these facilities. If a public hearing is held regarding these permits, you will be sent a copy of the public hearing notice at least 30 days in advance of the hearing date.

Sincerely,

Grie Wart

Eric Wortman, Environmental Scientist Air Permitting, Monitoring, and Modeling Unit

Enclosures

Cc: Bruce Pargeets, Acting Director of Energy & Minerals Department, Ute Indian Tribe (without enclosures)

UNITED STATES ENVIRONMENTAL PROTECTION AGENCY REGION 8 1595 Wynkoop Street Denver, CO 80202-1129 Phone 800-227-8917 http://www.epa.gov/region8

Ref: 8P-AR

AUG 1 4 2017

Timothy Herman Manager of Mid Stream Operations XTO Energy, Inc. 810 Houston Street Fort Worth, Texas 76102

CERTIFIED MAIL RETURN RECEIPT REQUESTED

Re: Draft Part 71 Operating Permits for XTO Energy, Inc.'s Tap 5 Compressor Station (Permit #V-UO-000018-2007.00) and River Bend Dehydration Site (Permit #V-UO-000026-2011.00)

Dear Mr. Herman:

The U.S. Environmental Protection Agency Region 8 has completed its review of XTO Energy, Inc.'s applications for the Tap 5 Compressor Station and River Bend Dehydration Site to obtain initial Clean Air Act Title V operating permits pursuant to the Title V Operating Permit Program at 40 CFR part 71 (Part 71).

Enclosed you will find the draft Part 71 operating permits and the corresponding Statement of Basis for each permit. The regulations at 40 CFR 71.11(d) require that an applicant, the public and affected states (as defined in 40 CFR 71.2) have the opportunity to submit written comments on any draft Part 71 operating permit. All written comments submitted within 30 calendar days after the public notice is published will be considered by the agency in making its final permit decision. Enclosed is a copy of the public notice which will be published on the EPA's website located at: <u>https://www.epa.gov/caa-permitting/caa-permit-public-comment-opportunities-region-8</u>, on August 18, 2017. The public comment period will end at 5:00 p.m. MDT on September 18, 2017.

The conditions contained in the permits will become effective and enforceable by the agency if the permits are issued final. If you are unable to accept any term or condition of the draft permits, please submit your written comments, along with the reason(s) for non-acceptance to:

Part 71 Permitting Lead U.S. EPA, Region 8 Air Program (8P-AR) 1595 Wynkoop Street Denver, Colorado 80202 If you have any questions concerning the enclosed draft permits or the respective Statement of Basis, please contact Eric Wortman of my staff at (617) 918-1624.

Sincerely,

Monica & Suorales

Monica S. Morales Director, Air Program Office of Partnerships and Regulatory Assistance

Enclosures (5)

cc: Minnie Grant, Air Coordinator, Ute Indian Tribe Bruce Pargeets, Acting Director, Energy, Minerals and Air, Ute Indian Tribe (w/out enclosures) Craig Allison, Environmental Health & Safety Advisor, XTO Energy, Inc.

Air Pollution Control Federal Clean Air Act (CAA) Title V Permit to Operate Statement of Basis for Draft Permit No. V-UO-000026-2011.00

XTO Energy, Inc. River Bend Dehydration Site Uintah and Ouray Reservation Uintah County, Utah

I. <u>Facility Information</u>

A. Location

The River Bend Dehydration Site (River Bend), owned and operated by XTO Energy, Inc. (XTO), is located on Indian country lands within the Uintah and Ouray Indian Reservation in northeastern Utah. The exact locations are the following:

- River Bend: Latitude 39.94851N, Longitude 109.77057W
- Tap 1 Compressor Station: Latitude 39.95027N, Longitude 109.77465W
- RBU 6-15E Wellsite: Latitude 39.94851N, Longitude 109.77057W
- RBU 7-15E Wellsite: Latitude 39.95026N, Longitude 109.76701W
- RBU 11-15E Wellsite: Latitude 39.94478N, Longitude 109.76979W

The mailing address is:

XTO Energy, Inc. 810 Houston Street Fort Worth, Texas 76102

B. Contacts

Facility Contact:

Craig Allison XTO Energy, Inc. 810 Houston Street Fort Worth, Texas 76102 (817) 885-2672 craig_allison@xtoenergy.com

Responsible Official:

Timothy Herman, Manager of Midstream Operations XTO Energy 810 Houston Street Fort Worth, Texas 76102 (817) 885-2584 timothy herman@xtoenergy.com **Tribal Contact:** Minnie Grant, Air Coordinator, Energy, Minerals, and Air Ute Indian Tribe P.O. Box 70 Fort Duchesne, UT 84026 (435) 725-4950 minnie g@ utetribe.com

C. Description of Operations

Natural gas produced from area wells is compressed at existing offsite locations up to a line pressure of 850 to 1,000 pounds per square inch gauge (psig) and then sent to the River Bend natural gas dehydrator site through 6" and 10" gathering flowlines. Once the gas enters the site, it flows through two (2) two-phase separators in order to reduce water and condensable liquids content in the gas stream, prior to entry into the triethylene glycol (TEG) dehydration system. The liquid produced from the inlet separators is then sent to a 30,000-gallon pressurized flash separator. The purpose of the flash separator is to flash the high-pressured liquids and route the flash gas back to the high-pressure gathering system, thereby eliminating the flash emissions from being vented to the atmosphere. The pressurized flash separator is then set to discharge the separated liquids at a pressure of approximately 50 psig into either of the onsite 400-barrel (bbl) atmospheric liquid storage tanks. The 400-bbl liquid storage tanks are used for temporary storage prior to the liquids being hauled offsite by tanker truck.

Following the inlet separation, the gas is discharged into the TEG natural gas dehydration system for further water removal from the natural gas stream. The TEG natural gas dehydration system consists of a 45 million standard cubic feet per day (MMscfd)-capacity natural gas TEG dehydration process still vent, a 1.5 million British thermal units per hour (MMBTU/hr) natural gas-fired process heater, and a TEG regenerator. The TEG natural gas dehydration system emissions are controlled by a thermal oxidizer. The TEG natural gas dehydration system utilizes a benzene, toluene, ethylbenzene and xylene (BTEX) emissions control system that captures vapors from the still vent and the flash tank and sends the vapors to the thermal oxidizer for destruction. Following dehydration, the natural gas stream leaves the site via a metered sales pipeline. The station has on-site electrical power supplied by a 65 kilowatt (kW) Capstone natural-gas fired microturbine-driven generator. In addition, the pneumatic control devices are operated by plant air supplied by the on-site electric driven air compressor.

Other production equipment located at River Bend consists of three production wellsites (RBU 6-15E, RBU 7-15E, and RBU 11-15E). Each wellsite includes $a \le 400$ -bbl storage tank, natural gas-fired heaters, as well as minimal fugitive and truck loading emissions. The RBU 11-15E wellsite also operates a small 0.20 MMscfd capacity TEG natural gas dehydration system. The RBU 6-15E wellsite is located within the property boundaries of River Bend but does not discharge directly into River Bend. The RBU 7-15E and RBU 11-15E wellsites are located on a separate surface sites within a quarter mile of River Bend. The gas produced at the three (3) wellsites enters the common field gathering system and ultimately into off-site compressor stations. One of these compressor stations, the Tap-1 Compressor Station (Tap-1), is also located within a quarter mile of River Bend and consists of two (2) natural gas-fired compression

engines, two (2) condensate tanks with natural gas-fired heaters, truck loading emissions, and fugitive emissions.

D. Emission Points

The Title V Operating Permit Program at 40 CFR part 71 (Part 71) allows the Permittee to separately list in the permit application units or activities that qualify as "insignificant" based on potential emissions below 2 tons per year (tpy) for all regulated pollutants that are not listed as hazardous air pollutants (HAP) under section 112(b) and below 1,000 lbs/year or the de minimis level established under section 112(g), whichever is lower, for HAP. However, the application may not omit information needed to determine the applicability of or to impose, any applicable requirement. Units and activities that qualify as "insignificant" for the purposes of the Part 71 application are in no way exempt from applicable requirements or any requirements of the Part 71 permit.

Tables 1 and 2 list emission units and emission generating activities, including any air pollution control devices.

Unit I.D.	Description	Control Equipment
RBD-1	45 MMscfd TEG Dehydration Unit (River Bend) Serial #: 8156 Installed: 1/17/2010	Thermal Oxidizer
RBT-1	400-bbl Condensate Storage Tank (River Bend)Serial #: 1764Installed: 12/15/2009	None
RBT-2	400-bbl Condensate Storage Tank (River Bend) Serial #: 1765 Installed: 12/15/2009	None
RBL-1	Condensate Truck Loading Emissions (River Bend)	None
RBF-1	Fugitive Emissions (River Bend)	None
RBU 6-15E F-1	Fugitive Emissions (RBU 6-15E)	None
RBU 7-15E F-1	Fugitive Emissions (RBU 7-15E)	None
RBU 11-15E D-1	0.20 MMscfd TEG Dehydration Unit (RBU 11-15E) Serial #: Unknown Installed: 2007	None
RBU 11-15E F-1	Fugitive Emissions (RBU 11-15E)	None
RBU 11-15E P-1	Pneumatic Pump Emissions (RBU 11-15E)	None
T1C-1	Caterpillar 3516 LE; 1,340 hp (Tap-1) 4-Stroke Lean-Burn Reciprocating Internal Combustion Engines Natural Gas-Fired Serial No. 4EK03995 Installed: 7/1/2013 Mfg: 1/1/2004	Oxidation Catalyst (not enforceable)
T1C-2	Caterpillar 3516 LE; 1,340 hp (Tap-1)4-Stroke Lean-Burn Reciprocating Internal Combustion Engines Natural Gas-FiredSerial No. 4EK03582Installed: 7/18/2013 Mfg: 8/12/2001	Oxidation Catalyst (not enforceable)

Table 1 – Emission Units and Emission Generating Activities*

Unit I.D.		Control Equipment	
	300-bbl* Condensate Storage	e Tank (Tap-1)	
T1T-1			None
	Serial #: 2024	Installed: 6/18/2012	
	300-bbl* Condensate Storag	e Tank (Tap-1)	
T1T-2	_	· • ·	None
	Serial #: 8S06401-02	Installed: 6/18/2012	
T1P-1 and T1P-2	Two (2) Heat Trace Pneumat	ic Pumps (Tap-1)	None
T1F-1	Fugitive Emissions (Tap-1)	None	

* Mfg = Manufactured; hp = horsepower; bbl = barrel; MMscfd = million standard cubic feet per day.

Table 2 - Insignificant Emission Units*

Description
Capstone 65 kW Microturbine Genset (River Bend)
1.0 MMBtu/hr** TEG Dehydration Unit Reboiler (River Bend)
0.25 MMBtu/hr** Tank Heater #1 (River Bend)
0.25 MMBtu/hr**Tank Heater #2 (River Bend)
0.25 MMBtu/hr** Natural Gas-Fired Separator Heater (River Bend)
3.0 MMBtu/hr** Heater for Thermal Oxidizer (River Bend)
Pipeline Pigging Operations (River Bend)
400-bbl slop tank (RBU 6-15E)
0.25 MMBtu/hr Tank Heater (RBU 6-15E)
Condensate Truck Loading (RBU 6-15E)
0.75 MMBtu/hr Separator Heater (RBU 6-15E)
0.75 MMBtu/hr** Separator Heater (RBU 7-15E)
0.25 MMBtu/hr** Tank Heater (RBU 7-15E)
Condensate Truck Loading (RBU 7-15E)
400-bbl slop tank (RBU 7-15E)
0.175 MMBtu/hr** TEG Dehydration Unit Reboiler (RBU 11-15E)
0.25 MMBtu/hr** Separator Heater (RBU 11-15E)
0.25 MMBtu/hr** Tank Heater (RBU 11-15E)
Condensate Truck Loading (RBU 11-15E)
300-bbl Slop Tank (RBU 11-15E)
Capstone 65 kW Microturbine Genset (Tap-1)
0.25 MMBTU/hr** Separator Heater (Tap-1)
Two (2) 0.25 MMBTU/hr Tank Heaters (Tap-1)
Condensate Truck Loading Emissions (Tap-1)
Compressor Blowdown Emissions (Tap-1)

*Insignificant emission units can change at the facility as long as the new or replacement units meet the criteria for insignificance, and XTO supplies information as required under 40 CFR part 71 and this permit. The insignificant emission unit status does not exempt these emission units from the requirements of any standards that may apply under 40 CFR parts 60 or 63.

** MMBtu/hr = million British Thermal units per hour.

E. Potential to Emit

Pursuant to 40 CFR 52.21, potential to emit (PTE) is defined as the maximum capacity of a stationary source to emit a pollutant under its physical and operational design. Any physical or operational limitation on the capacity of the source to emit a pollutant, including air pollution control equipment and restrictions on hours of operation or on the type or amount of material combusted, stored or processed, shall be treated as part of its design <u>if</u> the limitation, or the effect it would have on emissions, is federally enforceable. Independently enforceable applicable

requirements are considered enforceable to the extent that the source is in compliance with the standard. In addition, beneficial reductions in non-targeted pollutants resulting from compliance with an independently enforceable applicable requirement may be counted towards PTE provided the emission reduction of the non-targeted pollutant is enforceable as a practical matter and compliance is being met. See the 1995 guidance memo signed by John Seitz, Director of the Office of Air Quality Planning and Standards titled, "Options for Limiting Potential to Emit of a Stationary Source under Section 112 and Title V of the Clean Air Act."¹

XTO reported the controlled emission unit-specific PTE in their Part 71 permit application. The controlled emissions in Table 3 are based on the legally and practically enforceable requirements set forth in this proposed permit.

Regulated Air Pollutants (tpy)											
Unit ID	NO _X *	CO*	VOC*	PM*	SO ₂ *	CH ₂ O*	Total HAP*	CO ₂ *	CH4* (as CO2e)	N ₂ O* (as CO ₂ e)	CO ₂ e*
RBD-1 w/Thermal Oxidizer	0.6	2.9	14.6	0.1	0.0	0.0	10.9	962.8	6.3	0.0	6.3
RBT-1	0.0	0.0	4.3	0.0	0.0	0.0	0.2	0.0	31.4	0.0	31.4
RBT-2	0.0	0.0	4.3	0.0	0.0	0.0	0.2	0.0	31.4	0.0	31.4
RBL-1	0.0	0.0	2.4	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0
RBF-1	0.0	0.0	5.7	0.0	0.0	0.0	0.1	0.2	333.9	0.0	334.1
RBU 6-15E F-1	0.0	0.0	3.9	0.0	0.0	0.0	0.1	0.1	214.0	0.0	214.1
RBU 6-15E P-1	0.0	0.0	3.9	0.0	0.0	0.0	0.1	0.1	214.0	0.0	214.1
BU 7-15E F- 1	0.6	2.9	14.6	0.1	0.0	0.0	10.9	962.8	6.3	0.0	6.3
RBU 11- 15E D-1	0.0	0.0	10.5	0.0	0.0	0.0	3.9	0.1	45.0	0.0	45.1
RBU 11-15E F-1	0.0	0.0	3.9	0.0	0.0	0.0	0.1	0.1	214.0	0.0	214.1
RBU 11-15E P-1	0.0	0.0	5.1	0.0	0.0	0.0	0.1	0.4	1,057.4	0.0	1,057.8
T1C-1	19.4	32.3	4.9	0.0	0.0	3.8	4.4	4,968.0	1,411.4	0.0	6,379.3
T1C-2	16.7	29.4	4.7	0.0	0.0	3.2	3.8	4,197.1	958.2	0.0	5,155.3
T1T-1	0.0	0.0	2.2	0.0	0.0	0.0	0.1	0.0	24.0	0.0	24.0
T1T-2	0.0	0.0	2.2	0.0	0.0	0.0	0.1	0.0	24.0	0.0	24.0

Table 3 – Potential-to-Emit with Legally and Practically Enforceable Controls

¹ The 1995 guidance memo is available at <u>https://www.epa.gov/enforcement/options-limiting-potential-emit-pte-stationary-source-under-section-112-and-title-v</u>

	Regulated Air Pollutants (tpy)										
Unit ID	NO _X *	CO*	VOC*	PM*	SO ₂ *	CH ₂ O*	Total HAP*	CO ₂ *	CH ₄ * (as CO ₂ e)	N ₂ O* (as CO ₂ e)	CO ₂ e*
T1P-1 and T1P-2	0.0	0.0	15.7	0.0	0.0	0.0	0.1	0.5	2,159.4	0.0	2,160.0
T1F-1	0.0	0.0	2.5	0.0	0.0	0.0	0.0	0.1	80.7	0.0	80.8
IEUs*	1.9	5.0	8.4	0.0	0.0	0.0	0.1	1,990.9	304.0	1.1	2,296.0
TOTAL	38.6	69.6	99.2	0.1	0.0	7.0	24.3	12,120.4	7,109.1	1.1	18,267.8

*NO_X = nitrogen oxide; CO = carbon monoxide; VOC = volatile organic compound; PM = particulate matter; SO₂ = sulfur dioxide; CH₂O = formaldehy de; HAP = hazardous air pollutant; CO₂ = carbon dioxide; CH₄ = methane; N₂O = nitrous oxide; CO₂e = equivalent CO₂; IEU = insignificant emission unit.

II. Applicable Requirement Review

The following sections discuss the information provided by XTO in their Part 71 application, certified to be true and accurate by the Responsible Official of this facility.

A. 40 CFR 52.21: Prevention of Significant Deterioration

The Prevention of Significant Deterioration (PSD) Permit Program at 40 CFR part 52 is a preconstruction review requirement of the CAA that applies to proposed projects that are sufficiently large (in terms of emissions) to be a "major" stationary source or "major modification" of an existing stationary source. Source size is defined in terms of PTE, which, as explained previously, is its capability at maximum design capacity to emit a pollutant, except as constrained by existing legally and practically enforceable conditions applicable to the source. A new stationary source or a modification to an existing minor stationary source is major if the proposed project has the PTE of any pollutant regulated under 40 CFR part 52 in amounts equal to or exceeding specified major source thresholds, which are 100 tpy for 28 listed industrial source categories and 250 tpy for all other sources. PSD also applies to modifications at existing major sources that cause a "significant net emissions increase" at that source. Significance levels for each pollutant are defined in the PSD regulations at 40 CFR 52.21.

According to the emissions information provided by XTO in their Part 71 application, this facility is currently not a major stationary source with respect to the PSD Permit Program, as the PTE of any pollutant does not exceed the thresholds of criteria pollutants regulated under the PSD Permit Program.

B. Source Determination

At 40 CFR 71.2, a major source is generally defined as any stationary source (or any group of stationary sources) that is located on one or more contiguous or adjacent properties, is under common control of the same person (or persons under common control)), and belongs to a single major industrial grouping. On June 3, 2016, the EPA published a final rule clarifying when oil and natural gas sector equipment and activities must be deemed a single source when determining whether major source permitting programs (PSD and New Source Review

preconstruction permit programs, and the Part 71 Permit Program) apply (81 FR 35622). By defining the term "adjacent," the rule specifies that equipment and activities in the oil and natural gas sector that are under common control will be considered part of the same source if they are located on the same surface site or on individual surface sites that share equipment and are within a quarter mile of each other.

According to information provided by XTO, the RBU 7-15E wellsite, RBU 11-15E wellsite, Tap-1 Compressor Station, and River Bend are located within a quarter mile of River Bend and share equipment with River Bend. In addition, the RBU 6-15E wellsite is located on the same surface site as River Bend. Therefore, the EPA has determined that the RBU 6-15E wellsite, RBU 7-15E wellsite, RBU 11-15E wellsite, and Tap-1 Compressor Station are adjacent to River Bend and thus part of the same stationary source. A more detailed source determination is included in the docket for this permit action.

C. 40 CFR Part 60, Subpart A: General Provisions

This subpart applies to the owner or operator of any stationary source which contains an affected facility, the construction or modification of which is commenced after the date of publication of any standard in 40 CFR part 60 (Part 60). The general provisions under subpart A apply to sources that are subject to the specific subparts of Part 60.

As explained below, River Bend is not subject to any specific subparts of Part 60; therefore, the General Provisions of Part 60 do not apply.

D. 40 CFR Part 60, Subpart GG: Standards of Performance for Stationary Gas Turbines

This rule applies to stationary gas turbines, with a heat input at peak load equal to or greater than 10.7 gigajoules per hour (10 MMBtu/hr), that commenced construction, modification or reconstruction after October 3, 1977.

Based on the information provided by XTO in their Part 71 application, the stationary gas turbines located at River Bend and Tap-1 Compressor Station have a maximum heat input less than 10.7 gigajoules per hour; therefore, this rule does not apply. The maximum heat input for each of the Capstone Microturbines is 0.2 MMBtu/hr.

E. 40 CFR Part 60, Subpart Kb: Standards of Performance for Volatile Organic Liquid Storage Vessels (Including Petroleum Liquid Storage Vessels) for which Construction, Reconstruction, or Modification Commenced After July 23, 1984

This subpart establishes requirements for controlling VOC emissions from storage vessels with a capacity greater than or equal to 75 cubic meters that are used to store volatile organic liquids for which construction, reconstruction or modification commenced after July 23, 1984.

Based on the information provided by XTO in their Part 71 application, the condensate tanks at River Bend, RBU 6-15E wellsite, RBU 7-15E wellsite, RBU 11-15E wellsite, and Tap-1

Compressor Station are exempt from these requirements because they have a capacity of less than 10,000 bbls.

F. 40 CFR Part 60, Subpart KKK: Standards of Performance for Equipment Leaks of VOC from Onshore Natural Gas Processing Plants for Which Construction, Reconstruction, or Modification Commenced After January 20, 1984, and on or Before August 23, 2011

This subpart establishes requirements for controlling fugitive VOC emissions from onshore natural gas processing plants. It applies to natural gas processing plants that commenced construction, reconstruction, or modification after January 20, 1984 and on or before August 23, 2011.

Based on the information provided by XTO in their Part 71 application, River Bend, RBU 6-15E wellsite, RBU 7-15E wellsite, RBU 11-15E wellsite, and Tap-1 Compressor Station are not natural gas processing plants, therefore the facility is not subject to this subpart.

G. 40 CFR Part 60, Subpart LLL: Standards of Performance for SO₂ Emissions from Onshore Natural Gas Processing for Which Construction, Reconstruction, or Modification Commenced After January 20, 1984, and on or Before August 23, 2011

This subpart applies to sweetening units and sulfur recovery units at onshore natural gas processing facilities. As defined in this subpart, sweetening units are process devices that separate hydrogen sulfide (H_2S) and CO_2 from a sour natural gas stream. Sulfur recovery units are defined as process devices that recover sulfur from the acid gas (consisting of H_2S and CO_2) removed by a sweetening unit.

Based on the information provided by XTO in their Part 71 application, neither sweetening nor sulfur recovery are performed at the facility. Therefore, this facility is not subject to this subpart.

H. 40 CFR Part 60, Subpart JJJJ: Standards of Performance for Stationary Spark Ignition Internal Combustion Engines

This subpart establishes emission standards and compliance requirements for the control of emissions from stationary spark ignition internal combustion engines that commenced construction, modification or reconstruction after June 12, 2006, and are manufactured on or after specified manufacture trigger dates. The manufacture trigger dates are based on the engine type, fuel used and maximum engine horsepower.

Based on the information provided by XTO in their Part 71 application, the engines operating at the facility were manufactured prior to the manufacture trigger dates in the rule (January 1, 2008 for engines T1C-1 and T1C-2). Therefore, this subpart does not apply.

I. 40 CFR Part 60, Subpart KKKK: Standards of Performance for Stationary Combustion Turbines

This subpart establishes emission standards and compliance schedules for the control of emissions from stationary combustion turbines that commenced construction, modification or reconstruction after February 18, 2005. The rule applies to stationary combustion turbines with a heat input at peak load equal to or greater than 10.7 gigajoules (10 MMBtu) per hour.

Based on the information provided by XTO in their Part 71 application, the stationary gas turbines located at River Bend and the Tap-1 Compressor Station have a maximum heat input less than 10.7 gigajoules per hour; therefore, this rule does not apply. The maximum heat input for each of the Capstone Microturbines is 0.2 MMBtu/hr.

J. 40 CFR Part 60, Subpart OOOO: Standards of Performance for Crude Oil and Natural Gas production, Transmission, and Distribution After August 23, 2011, and on or Before September 18, 2015

This subpart establishes emission standards for the control of VOC and SO₂ emissions from affected facilities that commence construction, modification or reconstruction after August 23, 2011 and on or before September 18, 2015. Affected facilities include, but are not limited to well completions, centrifugal compressors, reciprocating compressors, pneumatic controllers, storage vessels and sweetening units.

Based on the information provided by XTO in their Part 71 application, the two (2) 400-bbl storage vessels at the RBU 6-15E wellsite and RBU 7-15E wellsite commenced construction after August 23, 2011 and prior to September 18, 2015. However, according to XTO, the emissions from the storage vessels are below 6 tpy and do not satisfy the criteria for an affected source under the rule. XTO shall maintain records of each VOC emissions determination made under §60.5365(e) as specified in §60.5420(c)(5)(ii).

Based on the information provided by XTO in their Part 71 application, all of the remaining current equipment at River Bend, RBU 6-15E wellsite, RBU 7-15E wellsite, RBU 11-15E wellsite, and Tap-1 Compressor Station predates the applicability date for this subpart. Therefore, this subpart does not apply to any other emission units.

K. 40 CFR Part 60, Subpart OOOOa: Standards of Performance for Crude Oil and Natural Gas Facilities for which Construction, Modification or Reconstruction Commenced After September 18, 2015

This subpart establishes emission standards for the control of VOC and SO₂ emissions from affected facilities that commence construction, modification or reconstruction after September 18, 2015. Affected facilities include, but are not limited to well completions, centrifugal compressors, reciprocating compressors, pneumatic controllers, storage vessels and sweetening units.

Based on the information provided by XTO in their Part 71 application, the current equipment at River Bend, RBU 6-15E wellsite, RBU 7-15E wellsite, RBU 11-15E wellsite, and Tap-1 Compressor Station predates the applicability date for this subpart. Therefore, this subpart does not apply.

L. 40 CFR Part 63, Subpart A: National Emission Standards for Hazardous Air Pollutants for Source Categories, General Provisions

The requirements of 40 CFR part 63, subpart A apply to sources that are subject to the specific subparts of 40 CFR part 63.

As explained below, River Bend is subject to 40 CFR part 63, subpart HH, National Emission Standards for Hazardous Air Pollutants from Oil and Natural Gas Production Facilities and subpart ZZZZ, National Emission Standards for Hazardous Air Pollutants for Stationary Reciprocating Internal Combustion Engines; therefore, the General Provisions of 40 CFR part 63 apply.

M. 40 CFR Part 63, Subpart HH: National Emission Standards for Hazardous Air Pollutants from Oil and Natural Gas Production Facilities

This subpart establishes emission standards for the control of HAP emissions from affected units located at natural gas production facilities that process, upgrade or store natural gas prior to the point of custody transfer, or that process, upgrade or store natural gas prior to the point at which natural gas enters the natural gas transmission and storage source category or is delivered to a final end user. The affected units are glycol dehydration units, storage vessels with the potential for flash emissions (as defined in the rule) and the group of ancillary equipment and compressors intended to operate in volatile HAP service which are located at natural gas processing plants.

Based on the information provided by XTO in their Part 71 application, River Bend, RBU 6-15E wellsite, RBU 7-15E wellsite, RBU 11-15E wellsite, and the Tap-1 compressor station do not operate any storage vessels with the potential for flash emissions (as defined in the rule). Uncontrolled emissions from dehydration unit RBD-1 exceed the major source thresholds for HAP. Therefore, dehydration unit RBD-1 is subject to the major source requirements of this subpart for large glycol dehydration units.

As defined in §63.761, emissions from processes, operations or equipment that are not part of the same facility, as defined in this section, shall not be aggregated to determine whether such emission points are major sources. Therefore, the RBU 11-15E wellsite is an area source under the rule and dehydration unit RBU 11-15E D-1 is subject to the area source requirements of the rule. However, dehydration unit RBU 11-15E D-1 meets the exemption criteria in §63.764(e) because, according to the information provided by XTO in their Part 71 application, the actual annual average flowrate of natural gas to the dehydration unit is less than 85 thousand standard cubic meters per day. XTO is subject to the recordkeeping requirements for the exemption criteria at §63.774(d)(1).

N. 40 CFR Part 63, Subpart YYYY: National Emission Standards for Hazardous Air Pollutants from Stationary Combustion Turbines

This rule establishes national emission limitations and work practice standards for HAP emitted from Stationary Combustion Turbines. The affected source includes the stationary combustion turbine located at a major source of HAP emissions.

As defined in §63.6090(b)(3), an existing, new or reconstructed stationary combustion turbine with a rated peak power output of less than 1.0 megawatt (MW) does not have to meet the requirements of this subpart. Based on the information provided by XTO in their Part 71 application, although River Bend is a major source of HAP emissions, the 65 kW Capstone Microturbine Generator at the facility is exempt from the requirements of this subpart, because according to XTO it has a peak power output of less than 1.0 MW. This subpart does not apply to the Captone Microturbine Generator at the Tap-1 Compressor Station because the Tap-1 Compressor Station is an area source of HAP emissions.

O. 40 CFR Part 63, Subpart ZZZZ (MACT ZZZZ): National Emission Standards for Hazardous Air Pollutants for Stationary Reciprocating Internal Combustion Engines

This subpart establishes emission standards and operating limitations for the control of HAP emissions from spark ignition and compression ignition reciprocating internal combustion engines.

Based on the information provided by XTO in their Part 71 application, there are no reciprocating internal combustion engines operating at River Bend, RBU 6-15E wellsite, RBU 7-15E wellsite or RBU 11-15E wellsite. According to the regulations at §63.6585(b), a major source of HAP emissions is a plant site that emits or has the potential to emit any single HAP at a rate of 10 tons (9.07 megagrams) or more per year or any combination of HAP at a rate of 25 tons (22.68 megagrams) or more per year, except that for oil and natural gas production facilities, a major source of HAP emissions is determined for each surface site. Since the Tap-1 compressor station is not located on the same surface site as River Bend, the emissions from neither River Bend nor the wellsites shall be aggregated for the purposes of determining a major source of HAP. Therefore, the reciprocating internal combustion engines at the Tap-1 compressor station (T1C-1 and T1C-2) are subject to the area source requirements of this subpart.

P. 40 CFR Part 63, Subpart DDDDD (Boiler MACT): National Emission Standards for Hazardous Air Pollutants for Major Sources: Industrial, Commercial, and Institutional Boilers and Process Heaters

This rule establishes national emission limitations and operating limitations for HAP emitted from new and existing industrial boilers, institutional boilers, commercial boilers and process heaters that are located at major sources of HAP. For the purposes of this subpart, a major source of HAP is as defined in §63.2, except that for oil and natural gas production facilities, a major source of HAP is as defined in §63.761. Boilers or process heaters that combust natural gas for fuel or have a maximum designed heat input capacity less than 10 MMBtu/hr are subject to work

practice standards in lieu of emission limits. For the purposes of this subpart, an affected unit is an existing unit if it was constructed prior to June 4, 2010.

The dehydration unit reboiler and heaters at River Bend meet the definition of process heaters in the rule. However, because River Bend is subject to the major source requirements of 40 CFR part 63, subpart HH, the EPA's "once in, always in" policy² allows XTO to account for the reductions of PTE achieved through compliance with previous MACT standards prior to the first compliance date of subsequent MACT standards. Based on the information provided by XTO in their Part 71 application, the PTE at River Bend with federally enforceable controls was below major source thresholds for HAP as of the first compliance date of this subpart (January 1, 2016 for existing process heaters and April 1, 2013 for new process heaters). Therefore, River Bend does not meet the definition of a major source under the rule and this subpart does not apply. This subpart does not apply to the RBU 6-15E wellsite, RBU 7-15E wellsite, RBU 11-15E wellsite, or Tap-1 compressor station because they do not meet the definition of a major source under the rule.

Q. 40 CFR Part 63, Subpart JJJJJJ (Boiler MACT (for Area Sources)): National Emission Standards for Hazardous Air Pollutants for Area Sources: Industrial, Commercial, and Institutional Boilers

This rule establishes national emission standards and operating limitations for HAP emitted from new and existing industrial boilers, institutional boilers, and commercial boilers that are fueled by coal, biomass, or oil and are located at area sources of HAP. For the purposes of this subpart, an affected unit is an existing unit if it was constructed prior to June 4, 2010.

Based on the information provided by XTO in their Part 71 application, there are no industrial, commercial or institutional boilers located at River Bend, RBU6-15E wellsite, RBU 7-15E wellsite, RBU 11-15E wellsite, and Tap-1 compressor station as defined in the rule. Therefore, subpart JJJJJJ does not apply.

R. 40 CFR Part 64: Compliance Assurance Monitoring

Pursuant to requirements concerning enhanced monitoring and compliance certification under the CAA, the EPA promulgated regulations to implement compliance assurance monitoring (CAM) for major stationary sources of air pollution, for purposes of Title V permitting that are required to obtain operating permits under Part 71. The rule requires owners or operators of such sources to conduct monitoring that provide a reasonable assurance of compliance with applicable requirements under the CAA. The effective date of this rule is November 21, 1997.

1. CAM Applicability

According to §64.2(a), CAM applies to <u>each</u> pollutant specific emission unit (PSEU) located at a major source which is required to obtain a Part 71 permit if the unit satisfies all of the following criteria:

² See EPA's May 16, 1995 guidance document titled "Potential to Emit for MACT Standards -- Guidance on Timing Issues"

- (a) The unit is subject to an emission limitation or standard for the applicable regulated air pollutant other than an emissions limitation or standard that is exempt under §64.2(b)(1);
- (b) The unit uses a control device to achieve compliance with any such limit or standard; and
- (c) The unit has pre-control device emissions of the applicable regulated pollutant that are equal to or greater than 100 percent of the amount, in tpy, required for a source to be classified as a major Title V source.
- 2. CAM Plan Submittal Deadlines
 - (a) <u>Large pollutant-specific emissions units</u>. A CAM plan submittal for all PSEUs with the PTE (taking into account control devices) of any one regulated air pollutant in an amount equal to or greater than 100 percent of the amount, in tpy, required for a source to be classified as a major source, is due at the following times:
 - (i) On or after April 20, 1998, if by that date, a Part 71 application has either:
 - (A) Not been filed; or
 - (B) Not yet been determined to be complete.
 - (ii) On or after April 20, 1998, if a Part 71 permit application for a significant modification is submitted with respect to those PSEUs for which the requested permit revision is applicable; or
 - (iii) Upon application for a renewed Part 71 permit and a CAM plan has not yet been submitted with an initial or a significant modification application, as specified above.
 - (b) <u>Other pollutant-specific emissions units</u>. A CAM Plan must be submitted for all PSEUs that are not large PSEUs, but are subject to this rule, upon application for a Part 71 renewal permit.

Based on the information provided by XTO in their Part 71 application, dehydration unit RBD-1 is a PSEU with pre-controlled emissions that equal or exceed 100 percent of VOC and HAP thresholds. However, RBD-1 is subject to the major source requirements of 40 CFR part 63, subpart HH and thus meets the exemption criteria of §64.2(b)(1). Since no other PSEUs at the facility have pre-controlled emissions that exceed or equal 100 percent of major source thresholds, River Bend is not subject to CAM requirements.

S. 40 CFR Part 68: Chemical Accident Prevention Provisions

This rule applies to stationary sources that manufacture, process, use, store or otherwise handle more than the threshold quantity of a regulated substance in a process. Regulated substances include 77 toxic and 63 flammable substances which are potentially present in the natural gas

stream entering the facility and in the storage vessels located at the facility. The quantity of a regulated substance in a process is determined according to the procedures presented under §68.115. Sections 68.115(b)(l) and (2)(i) indicate that toxic and flammable substances in a mixture do not need to be considered when determining whether more than a threshold quantity is present at a stationary source if the concentration of the substance is below one percent by weight of the mixture. Section 68.115(b)(2)(iii) indicates that prior to entry into a natural gas processing plant, regulated substances in naturally occurring hydrocarbon mixtures need not be considered when determining whether more than a threshold quantity is present at a stationary source. Naturally occurring hydrocarbon mixtures include condensate, field gas, and produced water. Based on the updated information provided in XTO's application, River Bend, RBU 6-15E wellsite, RBU 7-15E wellsite, RBU 11-15E wellsite, and Tap-1 Compressor Station do not have regulated substances above the threshold quantities in this rule; and therefore, they are not subject to the requirement to develop and submit a risk management plan.

T. 40 CFR Part 71: Emergency Provisions

In this draft initial Part 71 permit, the EPA is proposing to not include the "Emergency Provisions" contained in the regulations in 40 CFR part 71 applicable to federal operating permit programs. Specifically, in the regulations discussing the contents of Title V operating permits issued under the federal operating permits program, 40 CFR 71.6(g) provides that certain "emergency" events can constitute "an affirmative defense in an action brought for non-compliance" with certain emission limits contained in the permit, when certain conditions are met. However, nothing in the CAA or 40 CFR part 71 requires that these types of emergency provisions be included as conditions in operating permits issued by the EPA, and for the reasons discussed below, we are exercising our discretion not to include them in this draft initial Part 71 permit.

In 2014, a federal court ruled that the CAA does not authorize the EPA to create affirmative defense provisions applicable to certain enforcement actions. See NRDC v. EPA, 749 F.3d 1055 (D.C. Cir. 2014). The court ruled that sections 113 and 304 of the CAA preclude the EPA from creating affirmative defense provisions in the Agency's regulations imposing HAP emission limits on sources. The court concluded that those affirmative defense provisions purported to alter the jurisdiction of federal courts generally provided in the CAA to assess liability and impose penalties for violations of emission limits in private civil enforcement cases, and that the CAA did not provide authority for the EPA to do so. Consistent with the reasoning in the NRDC v. EPA court decision, the EPA has determined that it is also not appropriate under the CAA to alter the jurisdiction of the federal courts through affirmative defenses provisions in its Title V regulations, such as those contained in the emergency provisions of 40 CFR 71.6(g), and that such provisions are inconsistent with the CAA. In light of the above-described D.C. Circuit Court decision and the EPA's obligation to issue Title V permits consistent with the applicable requirements of the Act, it is no longer appropriate to propose to include permit conditions modeled on affirmative defenses such as those contained in the emergency provisions of 40 CFR 71.6(g) in operating permits issued by the EPA.

Although the EPA views the Part 71 emergency provisions as discretionary (i.e., neither the

statute nor the regulations mandate their inclusion in Part 71 permits), the EPA is considering whether to make changes to the Part 71 Permit Program regulations in order to ensure the EPA's regulations are consistent with the recent D.C. Circuit decisions; and if so, how best to make those changes. Until that time, as part of the normal permitting process, it is appropriate for the EPA permitting authorities to rely on the discretionary nature of the existing emergency provisions to choose not to continue to include permit terms modeled on those provisions in Part 71 permits that we are issuing in the first instance or renewing. By doing so, we are not only fulfilling the EPA's obligation to issue Title V permits consistent with the applicable requirements of the Act, but we will also help ensure that permittee's do not continue to rely on permit provisions that have been found legally invalid.

Accordingly, in this draft initial Part 71 permit, the EPA is exercising its discretion to not include the "Emergency Provisions," in order to ensure the Part 71 permit is in compliance with the applicable requirements of the Act.

III. <u>EPA Authority</u>

Title V of the CAA requires that the EPA promulgate, administer and enforce a federal operating permit program when a state does not submit an approvable program within the time frame set by Title V or does not adequately administer and enforce its EPA-approved program. On July 1, 1996 (61 FR 34202), the EPA adopted regulations codified at 40 CFR part 71 setting forth the procedures and terms under which the agency would administer a federal operating permit program. These regulations were updated on February 19, 1999 (64 FR 8247) to incorporate the EPA's approach for issuing federal operating permits to stationary sources in Indian country.

As described in 40 CFR 71.4(a), the EPA will implement a Part 71 program in areas where a state, local, or tribal agency has not developed an approved Part 70 program. Unlike states, tribes are not required to develop operating permits programs, though the EPA encourages tribes to do so. See, e.g., Indian Tribes: Air Quality Planning and Management (63 FR 7253, February 12, 1998) (also known as the "Tribal Authority Rule"). Therefore, within Indian country, the EPA will administer and enforce a Part 71 federal operating permit program for stationary sources until a tribe receives approval to administer their own operating permit program. The Ute Indian Tribe has not applied for or received delegation of Part 71 or approval to administer their own operating permit program under 40 CFR part 70, so the EPA administers Part 71 within the exterior boundaries of the Uintah and Ouray Indian Reservation.

IV. <u>Use of All Credible Evidence</u>

Determinations of deviations, continuous or intermittent compliance status, or violations of the permit are not limited to the testing or monitoring methods required by the underlying regulations or this permit; other credible evidence (including any evidence admissible under the

Federal Rules of Evidence) must be considered by the Permittee and the EPA in such determinations.

V. <u>Public Participation</u>

A. Public Notice

As described in 40 CFR 71.11(a)(5), all Part 71 draft operating permits shall be publicly noticed and made available for public comment. The public notice of permit actions and public comment period is described in 40 CFR 71(d).

There will be a 30-day public comment period for actions pertaining to a draft permit. Notification will be given for this draft permit by providing notice to the permit applicant, the affected state, tribal and local air pollution control agencies, the city and county executives, and the state and federal land managers which have jurisdiction over the area where the source is located, as well as to all persons who have submitted a request to be included on the mailing list.

If you would like to be added to our mailing list to be informed of future Part 71 permit actions or other CAA permits issued in Indian country, please send an email using the link for the Region 8 CAA public comment opportunities provided at https://www.epa.gov/caa-permitting/caa-permit-public-comment-opportunities-region-8, or send your name and address to the contact listed below:

Part 71 Permitting Lead U.S. Environmental Protection Agency, Region 8 1595 Wynkoop Street (8P-AR) Denver, Colorado 80202-1129

Public notice will be provided at <u>https://www.epa.gov/caa-permitting/caa-permit-public-</u> <u>comment-opportunities-region-8</u> giving opportunity for public comment on the draft permit and the opportunity to request a public hearing.

B. Opportunity to Comment

Members of the public are given an opportunity to review a copy of the draft permit prepared by the EPA, the application, this Statement of Basis for the draft permit and all supporting materials for the draft permit. Copies of these documents are available at:

Uintah County Clerk's Office 147 East Main St #6 Vernal, Utah 84078 Contact: Michael Wilkins, Uintah County Clerk at (435) 781-5361 or <u>mwilkins@co.uintah.ut.us</u>

and

Ute Indian Tribe Energy and Minerals Department Office 988 South 7500 East, Annex Building Fort Duchesne, Utah 84026 Contact: Minnie Grant, Air Coordinator, at (435) 725-4900 or <u>minnieg@utetribe.com</u>

and

U.S. Environmental Protection Agency, Region 8 1595 Wynkoop Street (8P-AR) Denver, Colorado 80202-1129 Contact: Eric Wortman, Environmental Scientist, at (617) 918-1624 or <u>wortman.eric@epa.gov</u>

All documents are available for review at the Region 8 office Monday through Friday from 8:00 a.m. to 4:00 p.m. (excluding federal holidays). Electronic copies of the draft permit, statement of basis and supporting permit record may also be viewed at: https://www.epa.gov/caa-permitting/caa-permit-public-comment-opportunities-region-8.

Any interested person may submit written comments on the draft Part 71 operating permit during the public comment period to the Part 71 Permitting Lead at the address listed in Section A above, or by email using the instructions on the public comment opportunities web site address listed above. All comments will be considered and answered by the EPA in making the final decision on the permit. The EPA keeps a record of the commenters and of the issues raised during the public participation process.

Anyone, including the applicant, who believes any condition of the draft permit is inappropriate should raise all reasonable ascertainable issues and submit all arguments supporting their position by the close of the public comment period. Any supporting materials submitted must be included in full and may not be incorporated by reference, unless the material has already been submitted as part of the administrative record in the same proceeding or consists of state or federal statutes and regulations, EPA documents of general applicability or other generally available reference material.

The final permit will be a public record that can be obtained upon request. A statement of reasons for changes made to the draft permit and responses to comments received will be sent to all persons who comment on the draft permit. The final permit and response to comments document will also be available online at: <u>https://www.epa.gov/caa-permitting/caa-permits-issued-epa-region-8</u>. Anyone may request a copy of the final permit at any time by contacting the Tribal Air Permit Program at (800) 227–8917 or by sending an email to r8airpermitting@epa.gov.

C. Opportunity to Request a Hearing

A person may submit a written request for a public hearing to the Part 71 Permitting Lead, U.S. EPA Region 8, by stating the nature of the issues to be raised at the public hearing. Based on the number of hearing requests received, the EPA will hold a public hearing whenever it finds there is a significant degree of public interest in a draft operating permit. The EPA will provide public

notice of the public hearing. If a public hearing is held, any person may submit oral or written statements and data concerning the draft permit.

D. Appeal of Permits

Within 30 days after the issuance of a final permit decision, any person who filed comments on the draft permit or participated in the public hearing may petition to the Environmental Appeals Board (EAB) to review any condition of the permit decision. Any person who failed to file comments or participate in the public hearing may petition for administrative review, only if the changes from the draft to the final permit decision or other new grounds were not reasonably foreseeable during the public comment period. The 30-day period to appeal a permit begins with the EPA's service of the notice of the final permit decision.

The petition to appeal a permit must include a statement of the reasons supporting the review, a demonstration that any issues were raised during the public comment period, a demonstration that it was impracticable to raise the objections within the public comment period, or that the grounds for such objections arose after such a period. When appropriate, the petition may include a showing that the condition in question is based on a finding of fact or conclusion of law which is clearly erroneous; or, an exercise of discretion, or an important policy consideration that the EAB should review.

The EAB will issue an order either granting or denying the petition for review, within a reasonable time following the filing of the petition. Public notice of the grant of review will establish a briefing schedule for the appeal and state that any interested person may file an amicus brief. Notice of denial of review will be sent only to the permit applicant and to the person requesting the review. To the extent review is denied, the conditions of the final permit decision become final agency action.

A motion to reconsider a final order shall be filed within ten days after the service of the final order. Every motion must set forth the matters claimed to have been erroneously decided and the nature of the alleged errors. Motions for reconsideration shall be directed to the Administrator rather than the EAB. A motion for reconsideration shall not stay the effective date of the final order unless it is specifically ordered by the EAB.

E. Petition to Reopen a Permit for Cause

Any interested person may petition the EPA to reopen a permit for cause, and the EPA may commence a permit reopening on its own initiative. The EPA will only revise, revoke and reissue, or terminate a permit for the reasons specified in 40 CFR 71.7(f) or 71.6(a)(6)(i). All requests must be in writing and must contain facts or reasons supporting the request. If the EPA decides the request is not justified, it will send the requester a brief written response giving a reason for the decision. Denial of these requests is not subject to public notice, comment, or hearings. Denials can be informally appealed to the EAB by a letter briefly setting forth the relevant facts.

United States Environmental Protection Agency Region 8 Air Program 1595 Wynkoop Street Denver, Colorado 80202

Air Pollution Control Permit to Operate Title V Operating Permit Program at 40 CFR Part 71

In accordance with the provisions of Title V of the Clean Air Act (CAA) and the Title V Operating Permit Program at 40 CFR part 71 (Part 71) and applicable rules and regulations,

XTO Energy, Inc. River Bend Dehydration Site (River Bend)

is authorized to operate air emission units and to conduct other air pollutant emitting activities in accordance with the permit conditions listed in this permit.

This source is authorized to operate at the following location(s):

Uintah and Ouray Indian Reservation, Uintah County, Utah River Bend: Latitude 39.94851N, Longitude 109.77057W Tap 1 Compressor Station: Latitude 39.95027N, Longitude 109.77465W RBU 6-15E Wellsite: Latitude 39.94851N, Longitude 109.77057W RBU 7-15E Wellsite: Latitude 39.95026N, Longitude 109.76701W RBU 11-15E Wellsite: Latitude 39.94478N, Longitude 109.76979W

Terms not otherwise defined in this permit have the meaning assigned to them in the referenced regulations. All terms and conditions of the permit are enforceable by the EPA and citizens under the CAA.

Monica S. Morales Director, Air Program Office of Partnerships and Regulatory Assistance PAGE INTENTIONALLY LEFT BLANK

Air Pollution Control Permit to Operate Title V Operating Permit Program at 40 CFR Part 71

XTO Energy, Inc. River Bend Dehydration Site

Permit Number: V-UO-000026-2011.00 Replaces Permit No.: N/A Issue Date: Effective Date: Expiration Date:

The permit number cited above should be referenced in future correspondence regarding this source.

Table 1. Part 71 Permitting History

Date of Action	Permit Number	Type of Action	Description of Action
TBD	V-UO-000026-2011.00	Initial Permit	N/A

	Table of Contents	
I	FACILITY INFORMATION AND EMISSION UNIT IDENTIFICATION	1
	FACILITY INFORMATION	1
	FACILITY EMISSION POINTS	2
	I. NATIONAL EMISSION STANDARDS FOR HAZARDOUS AIR POLLUTANTS FROM DIL AND NATURAL GAS PRODUCTION FACILITIES: 40 CFR PART 63, SUBPART HI	
	Applicability	3
	GENERAL STANDARDS	4
	GLYCOL DEHYDRATION UNIT PROCESS VENT STANDARDS	
	TEST METHODS, COMPLIANCE PROCEDURES, AND COMPLIANCE DETERMINATION REQUIREMENTS	
	INSPECTION AND MONITORING REQUIREMENTS	
	RECORDKEEPING REQUIREMENTS	
	REPORTING REQUIREMENTS	6
R	II. NATIONAL EMISSION STANDARDS FOR HAZARDOUS AIR POLLUTANTS FOR RECIPROCATING INTERNAL COMBUSTION ENGINES: 40 CFR PART 63, SUBPART	
-	Applicability	
	General Provisions	
	OPERATION AND MAINTENANCE REQUIREMENTS	
	CONTINUOUS COMPLIANCE REQUIREMENTS	
	RECORD KEEPING AND REPORTING REQUIREMENTS	
г	V. FACILITY-WIDE REQUIREMENTS	
I		
	RECORDKEEPING REQUIREMENTS	
	REPORTING REQUIREMENTS	
V	7. GENERAL PROVISIONS	10
	ANNUAL FEE PAYMENT	10
	ANNUAL EMISSIONS INVENTORY	
	COMPLIANCE REQUIREMENTS	12
	DUTY TO PROVIDE AND SUPPLEMENT INFORMATION	13
	SUBMISSIONS	14
	SEVERABILITY CLAUSE	14
	PERMIT ACTIONS	15
	Administrative Permit Amendments	15
	MINOR PERMIT MODIFICATIONS	15
	SIGNIFICANT PERMIT MODIFICATIONS	17
	REOPENING FOR CAUSE	17
	PROPERTY RIGHTS	17
	INSPECTION AND ENTRY	18
	TRANSFER OF OWNERSHIP OR OPERATION	18
	OFF PERMIT CHANGES	18
	PERMIT EXPIRATION AND RENEWAL	19

ii

I. Facility Information and Emission Unit Identification

A. Facility Information

Parent Company Name: XTO Energy, Inc.

Plant Operator and Name: River Bend Dehydration Site

Plant Location:	River Bend: Latitude 39.94851N, Longitude 109.77057W Tap 1 Compressor Station: Latitude 39.95027N, Longitude 109.77465W RBU 6-15E Wellsite: Latitude 39.94851N, Longitude 109.77057W RBU 7-15E Wellsite: Latitude 39.95026N, Longitude 109.76701W RBU 11-15E Wellsite: Latitude 39.94478N, Longitude 109.76979W
Region:	8
State:	Utah
County:	Uintah
Reservation:	Uintah and Ouray Indian Reservation
Tribe:	Ute Indian Tribe
Responsible Official:	Manager of Midstream Operations - XTO Energy, Inc.
SIC Code:	1311 – Crude Petroleum and Natural Gas

Description:

Natural gas produced from area wells is compressed at existing offsite locations up to a line pressure of 850 to 1,000 pounds per square inch gauge (psig) and then sent to the River Bend natural gas dehydrator site through 6" and 10" gathering flowlines. Once the gas enters the site, it flows through two (2) two-phase separators in order to reduce water and condensable liquids content in the gas stream, prior to entry into the triethyle ne glycol (TEG) dehydration system. The liquid produced from the inlet separators is then sent to a 30,000-gallon pressurized flash separator. The purpose of the flash separator is to flash the high-pressured liquids and route the flash gas back to the high-pressure gathering system, thereby eliminating the flash emissions from being vented to the atmosphere. The pressurized flash separator is then set to discharge the separated liquids at a pressure of approximately 50 psig into either of the onsite 400-barrel atmospheric liquid storage tanks. The 400-barrel liquid storage tanks are used for temporary storage prior to the liquids being hauled offsite by tanker truck.

Following the inlet separation, the gas is discharged into the TEG natural gas dehydration system for further water removal from the natural gas stream. The TEG natural gas dehydration system consists of a 45 million standard cubic feet per day (MMscfd) capacity natural gas TEG dehydration process still vent, a 1.5 million British thermal units per hour (MMBTU/hr) natural gas-fired process heater and a TEG regenerator. The TEG natural gas dehydration system emissions are controlled by a thermal oxidizer. The TEG natural gas dehydration system utilizes a benzene, toluene, ethylbenzene and xylene (BTEX) emissions control system that

captures vapors from the still vent and the flash tank and sends the vapors to the thermal oxidizer for destruction. Following dehydration, the natural gas stream leaves the site via a metered sales pipeline. The station has on-site electrical power supplied by a 65 kilowatt (kW) Capstone natural-gas fired microturbine-driven generator. In addition, the pneumatic control devices are operated by plant air supplied by the on-site electric driven air compressor.

Other production equipment located at River Bend consists of three (3) production wellsites (RBU 6-15E, RBU 7-15E, and RBU 11-15E). Each wellsite includes $a \le 400$ -barrel storage tank, natural gas-fired heaters, as well as minimal fugitive and truck loading emissions. The RBU 11-15E wellsite also operates a small 0.20 MMscfd capacity TEG natural gas dehydration system. The RBU 6-15E wellsite is located within the property boundaries of River Bend but does not discharge directly into River Bend. The RBU 7-15E and RBU 11-15E wellsites are located on a separate surface sites within a quarter mile of River Bend. The gas produced at the three (3) wellsites enters the common field gathering system and ultimately into off-site compressor stations. One of these compressor stations, the Tap-1 Compressor Station (Tap-1), is also located within a quarter mile of River Bend and consists of two (2) natural gas-fired compression engines, two (2) condensate tanks, natural gas-fired heaters, truck loading emissions and fugitive emissions.

B. Facility Emission Points

Unit I.D.	Description	Control Equipment
RBD-1	45 MMscfd TEG Dehydration Unit (River Bend) Serial #: 8156 Installed: 1/17/2010	Thermal Oxidizer
RBT-1	400 bbl Condensate Storage Tank (River Bend)Serial #: 1764Installed: 12/15/2009	None
RBT-2	400 bbl Condensate Storage Tank (River Bend) Serial #: 1765 Installed: 12/15/2009	None
RBL-1	Condensate Truck Loading Emissions (River Bend)	None
RBF-1	Fugitive Emissions (River Bend)	None
RBU 6-15E F-1	Fugitive Emissions (RBU 6-15E)	None
RBU 7-15E F-1	Fugitive Emissions (RBU 7-15E)	None
RBU 11-15E D-1	0.20 MMscfd TEG Dehydration Unit (RBU 11-15E) Serial #: Unknown Installed: 2007	None
RBU 11-15E F-1	Fugitive Emissions (RBU 11-15E)	None
RBU 11-15E P-1	Pneumatic Pump Emissions (RBU 11-15E)	None
T1C-1	Caterpillar 3516 LE; 1,340 hp (Tap-1)4-Stroke Lean-Burn Reciprocating Internal Combustion Engines Natural Gas-FiredSerial No. 4EK03995Installed: 7/1/2013 Mfg: 1/1/2004	Oxidation Catalyst (not enforceable)
T1C-2	Caterpillar 3516 LE; 1,340 hp (Tap-1) 4-Stroke Lean-Burn Reciprocating Internal Combustion Engines Natural Gas-Fired Serial No. 4EK03582 Installed: 7/18/2013 Mfg: 8/12/2001	Oxidation Catalyst (not enforceable)

Table 2 - Emission Units and Emission Generating Activities*

Unit I.D.	Description	Control Equipment
T1T-1	300 bbl Condensate Storage Tank (Tap-1)	None
	Serial #: 2024 Installed: 6/18/2012	None
T1T-2	300 bbl Condensate Storage Tank (Tap-1)	N
	Serial #: 8S06401-02 Installed: 6/18/2012	None
T1P-1 and T1P-2	Two (2) Heat Trace Pneumatic Pumps (Tap-1)	None
T1F-1	Fugitive Emissions (Tap-1)	None

* Mfg = Manufactured; hp = horsepower; bbl = barrel; MMscfd = million standard cubic feet per day

Table 3 - Insignificant Emission Units*

Description		
Capstone 65 kW Microturbine Genset (River Bend)		
1.0 MMBtu/hr** TEG Dehydration Unit Reboiler (River Bend)		
0.25 MMBtu/hr** Tank Heater #1 (River Bend)		
0.25 MMBtu/hr** Tank Heater #2 (River Bend)		
0.25 MMBtu/hr** Natural Gas-fired Separator Heater (River Bend)		
3.0 MMBtu/hr* Heater for Thermal Oxidizer (River Bend)		
Pipeline Pigging Operations (River Bend)		
400-bbl slop tank (RBU 6-15E)		
0.25 MMBtu/hr Tank Heater (RBU 6-15E)		
Condensate Truck Loading (RBU 6-15E)		
0.75 MMBtu/hr Separator Heater (RBU 6-15E)		
0.75 MMBtu/hr** Separator Heater (RBU 7-15E)		
0.25 MMBtu/hr** Tank Heater (RBU 7-15E)		
Condensate Truck Loading (RBU 7-15E)		
400-bbl Slop Tank (RBU 7-15E)		
0.175 MMBtu/hr** TEG Dehydration Unit Reboiler (RBU 11-15E)		
0.25 MMBtu/hr Separator Heater (RBU 11-15E)		
0.25 MMBtu/hr Tank Heater (RBU 11-15E)		
Condensate Truck Loading (RBU 11-15E)		
300-bbl slop tank (RBU 11-15E)		
Capstone 65 kW Microturbine Genset (Tap-1)		
0.25 MMBTU/hr** separator heater (Tap-1)		
Two (2) 0.25 MMBTU/hr** Tank Heaters (Tap-1)		
Condensate Truck Loading Emissions (Tap-1)		
Compressor Blowdown Emissions (Tap-1)		

*Insignificant emission units can change at the facility as long as the new or replacement units meet the criteria for insignificance, and XTO supplies information as required under 40 CFR part 71 and this permit. The insignificant emission unit status does not exempt these emission units from the requirements of any standards that may apply under 40 CFR parts 60 or 63. **MMBtu = million British thermal units.

II. <u>National Emission Standards for Hazardous Air Pollutants from Oil and Natural</u> Gas Production Facilities: 40 CFR Part 63, Subpart HH

A. Applicability [40 CFR 63.760]

- 1. 40 CFR part 63, subpart HH applies to the 45 MMscfd TEG dehydration unit identified as RBD-1 in Table 2 of this permit. [63.760(b)(1)(i)]
- 2. Notwithstanding conditions in this permit, the Permittee shall comply with all applicable requirements of 40 CFR part 63, subpart HH.

B. General Standards [40 CFR 63.764]

- 1. The General Provisions at 40 CFR part 63, subpart A apply as specified in Table 2 of 40 CFR part 63, subpart HH. Notwithstanding conditions in this permit, the Permittee shall comply with all applicable requirements of 40 CFR part 63, subpart A.
- 2. All reports required under 40 CFR part 63, subpart A shall be sent to the EPA at the following address as listed in §63.13:

Director, Air and Toxics Technical Enforcement Program, 8ENF-AT Office of Enforcement, Compliance and Environmental Justice 1595 Wynkoop Street, Denver, CO 80202–1129

- 3. Except as specified in §63.764(e), the Permittee shall comply with the following requirements for the glycol dehydration units:
 - (a) The control requirements for glycol dehydration unit process vents specified in §63.765;
 - (b) The monitoring requirements specified in §63.773; and
 - (c) The recordkeeping and reporting requirements specified in §§63.774 and 63.775.
- 4. At all times the Permittee shall operate and maintain any glycol dehydration unit, including associated air pollution control equipment and monitoring equipment, in a manner consistent with safety and good air pollution control practices for minimizing emissions. Determination of whether such operation and maintenance procedures are being used will be based on information available to the EPA which may include, but is not limited to, monitoring results, review of operation and maintenance procedures, review of operation and maintenance records and inspection of the unit.

C. Glycol Dehydration Unit Process Vent Standards [40 CFR 63.765]

The Permittee shall comply with the control equipment requirements as follows:

- 1. Except as specified in §63.765(c), the Permittee shall comply with the applicable requirements for controlling air emissions specified in §63.765(b).
- 2. For each closed-vent system, the Permittee shall comply with the closed-vent system requirements specified in §63.771(c);
- 3. For each control device, the Permittee shall comply with the applicable control device requirements specified in §63.771(d) or §63.771(f); and
- 4. For each process modification made to comply with the glycol dehydration unit process vent standards at §63.765(c)(2), the Permittee shall comply with the process modification standards specified in §63.771(e).

D. Test Methods, Compliance Procedures and Compliance Determination Requirements [40 CFR 63.772]

The Permittee shall determine compliance with the requirements of 40 CFR part 63, subpart HH using the applicable test methods and compliance procedures specified in §63.772.

E. Inspection and Monitoring Requirements [40 CFR 63.773]

- 1. For each closed-vent system or cover required for the Permittee to comply with 40 CFR part 63, subpart HH, the Permittee shall comply with the inspection and monitoring requirements specified in §63.773(c).
- 2. For each control device required for the Permittee to comply with 40 CFR part 63, subpart HH, the Permittee shall comply with the inspection and monitoring requirements as specified in §63.773(b) or §63.773(d).

F. Recordkeeping Requirements [40 CFR 63.774]

- 1. The recordkeeping provisions of 40 CFR part 63, subpart A, that apply and those that do not apply to the Permittee are listed in Table 2 of 40 CFR part 63, subpart HH.
- 2. The Permittee shall maintain the records specified in §§63.774(b), (c), (d), (e), (g) and (h).
- 3. Except as specified in §§63.774(c), 63.774(d) and 63.774(f), the Permittee shall maintain the records specified in §63.774(b).
- 4. If compliance with the benzene emission limit specified in §63.765(b)(1)(ii) is elected, the Permittee shall document, to the Administrator's satisfaction, the items in §63.774(c).
- 5. For glycol dehydration units operating at the source that meet the exemption criteria in §63.764(e)(1)(i) or §63.764(e)(1)(ii), the Permittee shall maintain records as specified in §63.774(d). The Permittee shall maintain the records as specified in §63.774(d) for emission unit RBU 11-15E D-1 as identified in Table 2 of this permit.
- 6. The Permittee shall keep records of the requirements of §63.774(e) when using a flare to comply with §63.771(d).
- 7. The Permittee shall maintain records, pursuant to §63.774(g), of the occurrence and duration of each malfunction of operation (i.e., process equipment) or the air pollution control equipment and monitoring equipment. The Permittee shall maintain records of actions taken during periods of malfunction to minimize emissions in accordance with §63.764(j), including corrective actions to restore malfunctioning process and air pollution control and monitoring equipment to its normal or usual manner of operation.
- 8. The Permittee shall keep records of the requirements of §63.774(h) when using a control device whose model is tested under §63.772(h) to comply with §§63.771(d), (e)(3)(ii) and (f)(1).

9. The Permittee shall keep records, pursuant to §63.774(i), of the date the semi-annual maintenance inspection required under §63.773(b) is performed when using a control device whose model was tested under §63.772(h).

G. Reporting Requirements [40 CFR 63.775]

- 1. The reporting provisions of subpart A of this part, that apply and those that do not apply to the Permittee are listed in Table 2 of this subpart.
- 2. The Permittee shall submit the information specified in §63.775(b).
- 3. The Permittee shall submit Notification of Compliance Status Reports as specified in §63.775(d).
- 4. The Permittee shall submit Periodic Reports as specified in §63.775(e).
- 5. The Permittee shall submit notifications of process changes as specified in §63.775(f).
- 6. The Permittee shall comply with any applicable electronic reporting provisions specified at §63.775(g).

III. National Emission Standards for Hazardous Air Pollutants for Reciprocating Internal Combustion Engines: 40 CFR Part 63, Subpart <u>7222</u>

A. Applicability [40 CFR 63.6585]

40 CFR part 63, subpart ZZZZ applies to the following emission units:

- 1. Caterpillar 3516 LE engine identified as T1C-1 in Table 2 of this permit.
- 2. Caterpillar 3516 LE engine identified as T1C-2 in Table 2 of this permit.

B. General Provisions [40 CFR 63.6665]

- 1. The General Provisions at 40 CFR part 63, subpart A apply as specified in Table 8 of 40 CFR part 63, subpart ZZZZ. Notwithstanding conditions in this permit, the Permittee shall comply with all applicable requirements of 40 CFR part 63, subpart A.
- 2. All reports required under 40 CFR part 63, subpart A shall be sent to the EPA at the following address as listed in §63.13:

Director, Air and Toxics Technical Enforcement Program, 8ENF–AT Office of Enforcement, Compliance and Environmental Justice 1595 Wynkoop Street, Denver, CO 80202–1129

C. Operation and Maintenance Requirements [40 CFR 63.6603, 63.6605, and 63.6625]

1. Engine units T1C-1 and T1C-2 are subject to the requirements for existing nonemergency spark ignition (SI) four-stroke lean-burn (4SLB) remote stationary reciprocating internal combustion engines (RICE) > 500 site-rated hp at an area source of HAP constructed prior to June 12, 2006 of 40 CFR part 63, subpart ZZZZ. The permittee shall evaluate the status of engine units T1C-1 and T1C-2 every 12 months to determine the engines meet the definition of remote stationary RICE. If the annual evaluation of the remote status of an engine indicates that the stationary RICE no longer meets the definition of remote stationary RICE in 40 CFR 63.6675, the permittee shall comply with all of the requirements for existing non-emergency ignition (SI) fourstroke lean-burn (4SLB) stationary RICE > 500 site-rated hp at area sources of hazardous air pollutants (HAP) that are not remote stationary RICE within 1 year of the evaluation and apply for a modification to this permit.

- 2. The permittee shall comply with the requirements in Table 2d of 40 CFR part 63, subpart ZZZZ as specified in §63.6603(a).
- 3. The permittee shall comply with the emission limitations, operating limitations and other requirements in 40 CFR part 63, subpart ZZZZ at all times.
- 4. The Permittee shall operate and maintain any affected source, including associated air pollution control equipment and monitoring equipment, in a manner consistent with safety and good air pollution control practices for minimizing emissions at all times. The general duty to minimize emissions does not require the Permittee to make any further efforts to reduce emissions if the required levels have been achieved. Determination of whether such operations and maintenance procedures are being used will be based on information available to the EPA, which may include, but is not limited to, monitoring results, review of operation and maintenance procedures, review of operation and maintenance records and inspection of the source.
- 5. The Permittee shall meet the monitoring, installation, collection, operation and maintenance requirements as specified in §63.6625.

D. Continuous Compliance Requirements [40 CFR 63.6640]

1. The permittee shall demonstrate continuous compliance with the emission limitations, operating limitations and other requirements in Table 2d that apply according to the methods specified in Table 6 of 40 CFR part 63, subpart ZZZZ.

E. Recordkeeping and Reporting Requirements [40 CFR 63.6603, 63.6640, 63.6655, and 63.6660]

- 1. The Permittee shall keep records as specified in §63.6655.
- 2. The Permittee shall keep the records in the format and for the duration as specified in \$63.6660.
- 3. The permittee shall keep a record of initial and annual evaluations of the remote status of the stationary RICE. The initial evaluation must indicate that the stationary RICE

met the definition of remote stationary RICE in § 63.6675 as of the initial compliance date, October 19, 2013. The annual evaluations are thereafter required to be performed every 12 months.

- 4. The permittee shall report each instance in which an operating limit in Table 2d of 40 CFR part 63, subpart ZZZZ was not met. These instances are deviations from the operating limitations and must be reported according to the reporting requirements of \$63.6650(f) and in the semiannual monitoring report required under the Facility-Wide Reporting Requirements section of this permit.
- 5. The permittee shall report each instance in which the requirements in Table 8 of 40 CFR part 63, subpart ZZZZ, were not met.

IV. Facility-Wide Requirements [40 CFR 71.6(a)(1)]

Conditions in this section of this permit apply to all emissions units located at the source, including any units not specifically listed in Table 2 and Table 3 of the Facility Emission Points section of this permit.

A. Recordkeeping Requirements [40 CFR 71.6(a)(3)(ii)]

The Permittee shall comply with the following generally applicable recordkeeping requirements:

- 1. If the Permittee determines that his or her stationary source that emits (or has the potential to emit, without considering controls) one or more HAP is not subject to a relevant standard or other requirement established under 40 CFR part 63, the Permittee shall keep a record of the applicability determination on site at the source for a period of 5 years after the determination, or until the source changes its operations to become an affected source, whichever comes first. The record of the applicability determination shall include an analysis (or other information) that demonstrates why the Permittee believes the source is unaffected (e.g., because the source is an area source). [40 CFR 63.10(b)(3)]
- 2. The permittee is the owner or operator of a TEG dehydration unit that is exempt from the control requirements under §63.764(e) (Unit RBU 11-15E D-1). The permittee shall retain each determination used to demonstrate that actual flowrate of natural gas throughput is less than 85,000 scm/day (3,000,000 scf/day) or the actual average benzene emissions are below 1 tpy. [40 CFR 63.764(e)(1), 63.772(b)(2) and 63.774(d)(1)]
- 3. Records shall be kept of off permit changes, as required by the Off Permit Changes section of this permit.

B. Reporting Requirements [40 CFR 71.6(a)(3)(iii)]

1. The Permittee shall submit to the EPA all reports of any required monitoring under this permit semiannually. The first report shall cover the period from the effective date of this permit through December 31, 2017. Thereafter, the report shall be submitted semi-

annually, by April 1st and October 1st of each year. The report due on April 1st shall cover the 6-month period ending on the last day of December before the report is due. The report due on October 1st shall cover the 6-month period ending on the last day of June before the report is due. All instances of deviations from permit requirements shall be clearly identified in such reports. All required reports shall be certified by a responsible official consistent with the Submissions section of this permit.

To help Part 71 Permittees meet reporting responsibilities, the EPA has developed a form "SIXMON" for 6-month monitoring reports. The form may be found on the EPA's website at: <u>https://www.epa.gov/title-v-operating-permits/epa-issued-operating-permits</u>]

- 2. "Deviation" means any situation in which an emissions unit fails to meet a permit term or condition. A deviation is not always a violation. A deviation can be determined by observation or through review of data obtained from any testing, monitoring, or recordkeeping established in accordance with §71.6(a)(3)(i) and (a)(3)(ii). For a situation lasting more than 24 hours which constitutes a deviation, each 24-hour period is considered a separate deviation. Included in the meaning of deviation are any of the following:
 - (a) A situation where emissions exceed an emission limitation or standard;
 - (b) A situation where process or emissions control device parameter values indicate that an emission limitation or standard has not been met; or
 - (c) A situation in which observations or data collected demonstrate noncompliance with an emission limitation or standard or any work practice or operating condition required by the permit.
- 3. The Permittee shall promptly report to the EPA deviations from permit requirements, including those attributable to upset conditions as defined in this permit, the probable cause of such deviations, and any corrective actions or preventive measures taken. "Prompt" is defined as follows:
 - (a) Any definition of "prompt" or a specific time frame for reporting deviations provided in an underlying applicable requirement as identified in this permit.
 - (b) Where the underlying applicable requirement fails to address the time frame for reporting deviations, reports of deviations will be submitted based on the following schedule:
 - (i) For emissions of a HAP or a toxic air pollutant (as identified in the applicable regulation) that continue for more than an hour in excess of permit requirements, the report must be made within 24 hours of the occurrence.
 - (ii) For emissions of any regulated air pollutant, excluding a HAP or a toxic air pollutant that continues for more than 2 hours in excess of permit requirements, the report must be made within 48 hours.
 - (iii) For all other deviations from permit requirements, the report shall be submitted with the semi-annual monitoring report.

(c) If any of the conditions in (i) or (ii) of paragraph (b) above are met, the Permittee shall notify the EPA by telephone (1-800-227-6312), facsimile (303-312-6409), or by email to <u>r8airreportenforcement@epa.gov</u> based on the timetables listed above. [Notification must specify that this notification is a deviation report for a Part 71 permit]. A written notice, certified consistent with the Submissions section of this permit must be submitted within 10 working days of the occurrence. All deviations reported under this section must also be identified in the 6-month report required under Condition 1 in this section of this permit.

[Explanatory note: To help Part 71 Permittees meet reporting responsibilities, the EPA has developed a form "PDR" for prompt deviation reporting. The form may be found on the EPA's website at: <u>https://www.epa.gov/title-v-operating-permits/epa-issued-operating-permits</u>]

V. General Provisions

A. Annual Fee Payment [40 CFR 71.9]

- 1. The Permittee shall pay an annual permit fee in accordance with the procedures outlined below.
- 2. The Permittee shall pay the annual permit fee each year no later than April 1st. The fee shall cover the previous calendar year.
- 3. The fee payment shall be in United States currency and shall be paid by money order, bank draft, certified check, corporate check, or electronic funds transfer payable to the order of the U.S. Environmental Protection Agency.
- 4. The Permittee shall send fee payment and a completed fee filing form to:

For regular U.S. Postal Service mail	For <u>non-U.S. Postal Service express</u>
	Mail (FedEx, Airborne, DHL, and UPS)
U.S. Environmental Protection Agency	U.S. Bank
FOIA and Miscellaneous Payments	Government Lockbox 979078
Cincinnati Finance Center	U.S. EPA FOIA & Misc. Payments
P.O. Box 979078	1005 Convention Plaza
St. Louis, MO 63197-9000	SL-MO-C2-GL
	St. Louis, MO 63101

5. The Permittee shall send an updated fee calculation worksheet form and a photocopy of each fee payment check (or other confirmation of actual fee paid) submitted annually by the same deadline as required for fee payment to the address listed in the Submissions section of this permit.

[Explanatory note: The fee filing form "FF" and the fee calculation worksheet form "FEE" may be found on the EPA's website at: <u>https://www.epa.gov/title-v-operating-permits/epa-issued-operating-permits</u>]

- 6. Basis for calculating annual fee:
 - (a) The annual emissions fee shall be calculated by multiplying the total tons of actual emissions of all "regulated pollutants (for fee calculation)" emitted from the source by the presumptive emissions fee (in dollars per ton) in effect at the time of calculation.
 - (i) "Actual emissions" means the actual rate of emissions in tpy of any regulated pollutant (for fee calculation) emitted from a Part 71 source over the preceding calendar year. Actual emissions shall be calculated using each emissions unit's actual operating hours, production rates, inplace control equipment, and types of materials processed, stored, or combusted during the preceding calendar year.
 - (ii) Actual emissions shall be computed using methods required by the permit for determining compliance, such as monitoring or source testing data.
 - (iii) If actual emissions cannot be determined using the compliance methods in the permit, the Permittee shall use other federally recognized procedures.

[Explanatory note: The presumptive fee amount is revised each calendar year to account for inflation, and it is available from the EPA prior to the start of each calendar year.]

- (b) The annual emissions fee shall be increased by a GHG fee adjustment for any source that has initiated an activity listed in the table at §71.9(c)(8) since the fee was last paid. The GHG fee adjustment shall be equal to the set fee provided in the table at §71.9(c)(8) for each activity that has been initiated since the fee was last paid.
- (c) The Permittee shall exclude the following emissions from the calculation of fees:

(i) The amount of actual emissions of each regulated pollutant (for fee calculation) that the source emits in excess of 4,000 tpy;

- (ii) Actual emissions of any regulated pollutant (for fee calculation) already included in the fee calculation; and
- (iii) The quantity of actual emissions (for fee calculation) of insignificant activities [defined in \$71.5(c)(11)(i)] or of insignificant emissions levels from emissions at the source identified in the Permittee's application pursuant to \$71.5(c)(11)(i).
- 7. Fee calculation worksheets shall be certified as to truth, accuracy, and completeness by a responsible official.

[Explanatory note: The fee calculation worksheet form already incorporates a section to help you meet this responsibility.]

8. The Permittee shall retain fee calculation worksheets and other emissions-related data used to determine fee payment for 5 years following submittal of fee payment. [Emission-related data include, for example, emissions-related forms provided by the

EPA and used by the Permittee for fee calculation purposes, emissions-related spreadsheets, and emissions-related data, such as records of emissions monitoring data and related support information required to be kept in accordance with §71.6(a)(3)(ii).]

- 9. Failure of the Permittee to pay fees in a timely manner shall subject the Permittee to assessment of penalties and interest in accordance with §71.9(l).
- 10. When notified by the EPA of underpayment of fees, the Permittee shall remit full payment within 30 days of receipt of notification.
- 11. A Permittee who thinks an EPA-assessed fee is in error and who wishes to challenge such fee, shall provide a written explanation of the alleged error to the EPA along with full payment of the EPA-assessed fee.

B. Annual Emissions Inventory [40 CFR 71.9(h)(1) and (2)]

- 1. The Permittee shall submit an annual emissions report of its actual emissions for both criteria pollutants and regulated HAPs for this source for the preceding calendar year for fee assessment purposes. The annual emissions report shall be certified by a responsible official and shall be submitted each year to the EPA by April 1st.
- 2. The annual emissions report shall be submitted to the EPA at the address listed in the Submissions section of this permit.

[Explanatory note: An annual emissions report, required at the same time as the fee calculation worksheet by §71.9(h), has been incorporated into the fee calculation worksheet form as a convenience.]

C. Compliance Requirements [40 CFR 71.6(a)(6), Section 113(a) and 113(e)(1) of the CAA, and 40 CFR 51.212, 52.12, 52.33, 60.11(g), 61.12]

- 1. Compliance with the Permit
 - (a) The Permittee must comply with all conditions of this Part 71 permit. Any permit noncompliance constitutes a violation of the CAA and is grounds for enforcement action; for permit termination, revocation and reissuance, or modification; or for denial of a permit renewal application.
 - (b) It shall not be a defense for a Permittee in an enforcement action that it would have been necessary to halt or reduce the permitted activity in order to maintain compliance with the conditions of this permit.
 - (c) For the purpose of submitting compliance certifications in accordance with §71.6(c)(5), or establishing whether or not a person has violated or is in violation of any requirement of this permit, nothing shall preclude the use, including the exclusive use, of any credible evidence or information, relevant to whether a source would have been in compliance with applicable requirements if the appropriate performance or compliance test or procedure had been performed.

- 2. Compliance Schedule [40 CFR 71.5(c)(8)(iii)]
 - (a) For applicable requirements with which the source is in compliance, the source will continue to comply with such requirements.
 - (b) For applicable requirements that will become effective during the permit term, the source shall meet such requirements on a timely basis.
- 3. Compliance Certifications [40 CFR 71.6(c)(5)]
 - (a) The Permittee shall submit to the EPA a certification of compliance with permit terms and conditions, including emission limitations, standards, or work practices annually by April 1st, and shall cover the same 12-month period as the two consecutive semi-annual monitoring reports.

[Explanatory note: To help Part 71 Permittees meet reporting responsibilities, the EPA has developed a reporting form for annual compliance certifications. The form may be found on the EPA's website at: <u>https://www.epa.gov/title-v-operating-permits/epa-issued-operating-permits</u>]

- (b) The compliance certification shall be certified as to truth, accuracy, and completeness by a responsible official consistent with §71.5(d).
- (c) The certification shall include the following:
 - (i) Identification of each permit term or condition that is the basis of the certification;
 - (ii) The identification of the method(s) or other means used for determining the compliance status of each term and condition during the certification period, and whether such methods or other means provide continuous or intermittent data. Such methods and other means shall include, at a minimum, the methods and means required in this permit. If necessary, the Permittee also shall identify any other material information that must be included in the certification to comply with section 113(c)(2) of the CAA, which prohibits knowingly making a false certification or omitting material information;
 - (iii) The status of compliance with each term and condition of the permit for the period covered by the certification based on the method or means designated in (ii) above. The certification shall identify each deviation and take it into account in the compliance certification;
 - (iv) Such other facts as the EPA may require to determine the compliance status of the source; and
 - (v) Whether compliance with each permit term was continuous or intermittent.

D. Duty to Provide and Supplement Information [40 CFR 71.6(a)(6)(v), 71.5(a)(3), and 71.5(b)]

1. The Permittee shall furnish to the EPA, within a reasonable time, any information that the EPA may request in writing to determine whether cause exists for modifying,

revoking, and reissuing, or terminating the permit, or to determine compliance with the permit. Upon request, the Permittee shall also furnish to the EPA copies of records that are required to be kept pursuant to the terms of the permit, including information claimed to be confidential. Information claimed to be confidential must be accompanied by a claim of confidentiality according to the provisions of 40 CFR part 2, subpart B.

2. The Permittee, upon becoming aware that any relevant facts were omitted or incorrect information was submitted in the permit application, shall promptly submit such supplementary facts or corrected information. In addition, a Permittee shall provide additional information as necessary to address any requirements that become applicable after the date a complete application is filed, but prior to release of a draft permit.

E. Submissions [40 CFR 71.5(d), 71.6(c)(1) and 71.9(h)(2)]

1. Any document (application form, report, compliance certification, etc.) required to be submitted under this permit shall be certified by a responsible official as to truth, accuracy, and completeness. Such certifications shall state that based on information and belief formed after reasonable inquiry, the statements and information in the document are true, accurate, and complete.

[Explanatory note: the EPA has developed a reporting form "CTAC" for certifying truth, accuracy and completeness of Part 71 submissions. The form may be found on the EPA's website at: https://www.epa.gov/title-v-operating-permits/epa-issued-operating-permits]

2. All fee calculation worksheets and applications for renewals and permit modifications shall be submitted to:

Part 71 Permit Contact, Air Program, 8P-AR U.S. Environmental Protection Agency, 1595 Wynkoop Street Denver, Colorado 80202

3. Except where otherwise specified, all reports, test data, monitoring data, notifications, and compliance certifications shall be submitted to:

Director, Air Toxics and Technical Enforcement Program, 8ENF-AT U.S. Environmental Protection Agency, 1595 Wynkoop Street Denver, Colorado 80202

F. Severability Clause [40 CFR 71.6(a)(5)]

The provisions of this permit are severable, and in the event of any challenge to any portion of this permit, or if any portion is held invalid, the remaining permit conditions shall remain valid and in force.

G. Permit Actions [40 CFR 71.6(a)(6)(iii)]

This permit may be modified, revoked, reopened, and reissued, or terminated for cause. The filing of a request by the Permittee for a permit modification, revocation and reissuance, or termination, or of a notification of planned changes or anticipated noncompliance does not stay any permit condition.

H. Administrative Permit Amendments [40 CFR 71.7(d)]

The Permittee may request the use of administrative permit amendment procedures for a permit revision that:

- 1. Corrects typographical errors;
- 2. Identifies a change in the name, address, or phone number of any person identified in the permit, or provides a similar minor administrative change at the source;
- 3. Requires more frequent monitoring or reporting by the Permittee;
- 4. Allows for a change in ownership or operational control of a source where the EPA determines that no other change in the permit is necessary, provided that a written agreement containing a specific date for transfer of permit responsibility, coverage, and liability between the current and new Permittee has been submitted to the EPA;
- 5. Incorporates into the Part 71 permit the requirements from preconstruction review permits authorized under an EPA-approved program, provided that such a program meets procedural requirements substantially equivalent to the requirements of §§71.7 and 71.8 that would be applicable to the change if it were subject to review as a permit modification, and compliance requirements substantially equivalent to those contained in §71.6; or
- 6. Incorporates any other type of change which the EPA has determined to be similar to those listed in (1) through (5) above.

[Note to Permittee: If 1 through 5 above do not apply, please contact the EPA for a determination of similarity prior to submitting your request for an administrative permit amendment under this provision.]

I. Minor Permit Modifications [40 CFR 71.7(e)(1)]

- 1. The Permittee may request the use of minor permit modification procedures only for those modifications that:
 - (a) Do not violate any applicable requirement;
 - (b) Do not involve significant changes to existing monitoring, reporting, or recordkeeping requirements in the permit;

- (c) Do not require or change a case-by-case determination of an emission limitation or other standard, or a source-specific determination for temporary sources of ambient impacts, or a visibility or increment analysis;
- (d) Do not seek to establish or change a permit term or condition for which there is no corresponding underlying applicable requirement and that the source has assumed to avoid an applicable requirement to which the source would otherwise be subject. Such terms and conditions include:
 - (i) A federally enforceable emissions cap assumed to avoid classification as a modification under any provision of Title I; and
 - (ii) An alternative emissions limit approved pursuant to regulations promulgated under Section 112(i)(5) of the CAA;
- (e) Are not modifications under any provision of Title I of the CAA; and
- (f) Are not required to be processed as a significant modification.
- 2. Notwithstanding the list of changes ineligible for minor permit modification procedures in 1 above, minor permit modification procedures may be used for permit modifications involving the use of economic incentives, marketable permits, emissions trading, and other similar approaches, to the extent that such minor permit modification procedures are explicitly provided for in an applicable implementation plan or in applicable requirements promulgated by the EPA.
- 3. An application requesting the use of minor permit modification procedures shall meet the requirements of §71.5(c) and shall include the following:
 - (a) A description of the change, the emissions resulting from the change, and any new applicable requirements that will apply if the change occurs;
 - (b) The source's suggested draft permit;
 - (c) Certification by a responsible official, consistent with §71.5(d), that the proposed modification meets the criteria for use of minor permit modification procedures and a request that such procedures be used; and
 - (d) Completed forms for the permitting authority to use to notify affected States as required under §71.8.
- 4. The source may make the change proposed in its minor permit modification application immediately after it files such application. After the source makes the change allowed by the preceding sentence, and until the permitting authority takes any of the actions authorized by §71.7(e)(1)(iv)(A) through (C), the source must comply with both the applicable requirements governing the change and the proposed permit terms and conditions. During this time period, the source need not comply with the existing permit terms and conditions it seeks to modify. However, if the source fails to comply with its proposed permit terms and conditions during this time period, the existing permit terms and conditions it seeks to modify may be enforced against it.

5. The permit shield under §71.6(f) may not extend to minor permit modifications.

J. Significant Permit Modifications [40 CFR 71.7(e)(3), 71.8(d) and 71.5(a)(2)]

- 1. The Permittee must request the use of significant permit modification procedures for those modifications that:
 - (a) Do not qualify as minor permit modifications or as administrative amendments;
 - (b) Are significant changes in existing monitoring permit terms or conditions; or
 - (c) Are relaxations of reporting or recordkeeping permit terms or conditions.
- 2. Nothing herein shall be construed to preclude the Permittee from making changes consistent with Part 71 that would render existing permit compliance terms and conditions irrelevant.
- 3. Permittees must meet all requirements of Part 71 for applications, public participation, and review by affected states and tribes for significant permit modifications. For the application to be determined complete, the Permittee must supply all information that is required by §71.5(c) for permit issuance and renewal, but only that information that is related to the proposed change.

K. Reopening for Cause [40 CFR 71.7(f)]

The permit may be reopened and revised prior to expiration under any of the following circumstances:

- 1. Additional applicable requirements under the CAA become applicable to a major Part 71 source with a remaining permit term of three or more years. Such a reopening shall be completed no later than 18 months after promulgation of the applicable requirement. No such reopening is required if the effective date of the requirement is later than the date on which the permit is due to expire, unless the original permit or any of its terms and conditions have been extended pursuant to §71.7(c)(3);
- 2. Additional requirements (including excess emissions requirements) become applicable to an affected source under the acid rain program. Upon approval by the Administrator, excess emissions offset plans shall be deemed to be incorporated into the permit;
- 3. The EPA determines that the permit contains a material mistake or that inaccurate statements were made in establishing the emissions standards or other terms or conditions of the permit; or
- 4. The EPA determines that the permit must be revised or revoked to assure compliance with the applicable requirements.

L. Property Rights [40 CFR 71.6(a)(6)(iv)]

This permit does not convey any property rights of any sort, or any exclusive privilege.

M. Inspection and Entry [40 CFR 71.6(c)(2)]

- 1. Upon presentation of credentials and other documents as may be required by law, the Permittee shall allow the EPA or an authorized representative to perform the following:
- 2. Enter upon the Permittee's premises where a Part 71 source is located or emissionsrelated activity is conducted, or where records must be kept under the conditions of the permit;
- 3. Have access to and copy, at reasonable times, any records that must be kept under the conditions of the permit;
- 4. Inspect at reasonable times any facilities, equipment (including monitoring and air pollution control equipment), practices, or operations regulated or required under the permit; and
- 5. As authorized by the CAA, sample or monitor at reasonable times substances or parameters for the purpose of assuring compliance with the permit or applicable requirements.

N. Transfer of Ownership or Operation [40 CFR 71.7(d)(1)(iv)]

A change in ownership or operational control of this source may be treated as an administrative permit amendment if the EPA determines no other change in this permit is necessary and provided that a written agreement containing a specific date for transfer of permit responsibility, coverage, and liability between the current and new Permittee has been submitted to the EPA.

O. Off Permit Changes [40 CFR 71.6(a)(12) and 40 CFR 71.6(a)(3)(ii)]

The Permittee is allowed to make certain changes without a permit revision, provided that the following requirements are met, and that all records required by this section are kept for a period of five (5) years:

- 1. Each change is not addressed or prohibited by this permit;
- 2. Each change shall meet with all applicable requirements and shall not violate any existing permit term or condition;
- 3. Changes under this provision may not include changes subject to any requirement of 40 CFR parts 72 through 78 or modifications under any provision of Title I of the CAA;
- 4. The Permittee must provide contemporaneous written notice to the EPA of each change, except for changes that qualify as insignificant activities under §71.5(c)(11). The written notice must describe each change, the date of the change, any change in emissions, pollutants emitted, and any applicable requirements that would apply as a result of the change;
- 5. The permit shield does not apply to changes made under this provision;

- 6. The Permittee must keep a record describing all changes that result in emissions of any regulated air pollutant subject to any applicable requirement not otherwise regulated under this permit, and the emissions resulting from those changes;
- 7. The notice shall be kept on site and made available to the EPA on request, in accordance with the general recordkeeping provision of this permit; and
- 8. Submittal of the written notice required above shall not constitute a waiver, exemption, or shield from applicability of any applicable standard or prevention of significant deterioration (PSD) permitting requirements under 40 CFR 52.21 that would be triggered by the change.

P. Permit Expiration and Renewal [40 CFR 71.5(a)(1)(iii), 71.5(a)(2), 71.5(c)(5), 71.6(a)(11), 71.7(b), 71.7(c)(1) and 71.7(c)(3)]

- 1. This permit shall expire upon the earlier occurrence of the following events:
 - (a) Five (5) years elapse from the date of issuance; or
 - (b) The source is issued a Part 70 or Part 71 permit under an EPA-approved or delegated permit program.
- 2. Expiration of this permit terminates the Permittee's right to operate unless a timely and complete permit renewal application has been submitted at least six months but not more than 18 months prior to the date of expiration of this permit.
- 3. If the Permittee submits a timely and complete permit application for renewal, consistent with §71.5(a)(2), but the EPA has failed to issue or deny the renewal permit, then all the terms and conditions of the permit, including any permit shield granted pursuant to §71.6(f) shall remain in effect until the renewal permit has been issued or denied.
- 4. The Permittee's failure to have a Part 71 permit is not a violation of this part until the EPA takes final action on the permit renewal application. This protection shall cease to apply if, subsequent to the completeness determination, the Permittee fails to submit any additional information identified as being needed to process the application by the deadline specified in writing by the EPA.
- 5. Renewal of this permit is subject to the same procedural requirements that apply to initial permit issuance, including those for public participation, affected State, and tribal review.
- 6. The application for renewal shall include the current permit number, description of permit revisions and off permit changes that occurred during the permit term, any applicable requirements that were promulgated and not incorporated into the permit during the permit term, and other information required by the application form.

XTO Energy Inc. 810 Houston Street Fort Worth, TX 76102-6298 (817) 870-2800 (817) 870-1671 Fax

August 2, 2017

XTO Energy Inc. Riverbend Dehydration Site EPA Title V – Part 71 Permit V-UO-000026-2011.00 Application Update Information Uintah County, UT

US Certified Mail No: 7016 2140 0000 8376 9895

Part 71 Permit Lead U.S. EPA – Region 8 1595 Wynkoop Street, Mail Code 8P-AR Denver, CO 80202

To Whom It May Concern:

XTO Energy, Inc. (XTO) hereby submits the accompanying application update and supplemental information pursuant to the U.S. EPA's request for the XTO Energy Inc. Riverbend Dehydration Site located in Uintah County, Utah. The information submitted in this update includes the following items:

- Response to EPA Information Request.
- Updated PTE table.
- Updated Regulatory Applicability table.
- Description of relevant modifications.
- Updated map of the River Bend Dehydration site and Surrounding Facilities.
- Updated GIS form.
- Updated EPA EUD forms.
- New EPA EUD forms for the applicable aggregated sources.
- Updated applicable EMISS forms.
- Updated applicable EPA IE forms.
- Updated supporting emissions information.
- Signed EPA CTAC form.

The attached information is certified by the Responsible Official for the XTO Energy Inc. Riverbend Dehydration Site using the completed EPA CTAC form.

Should you have any questions regarding this submittal, please feel free to contact me by phone at 817-885-2672 or by email at craig_allison@xtoenergy.com.

Sincerely,

Craig Allison EH&S Advisor XTO Energy Inc

WCA/encl Cc: Mr. Eric Wortman, U.S. EPA Region 8 Air Permitting

CERTIFICATION OF TRUTH, ACCURACY, AND COMPLETENESS (CTAC)

This form must be completed, signed by the "Responsible Official" designated for the facility or emission unit, and sent with each submission of documents (i.e., application forms, updates to applications, reports, or any information required by a part 70 or 71 permit).

A. Responsible Official
Name: (Last) <u>Hermann</u> (First) <u>Timothy</u> (MI) <u>L</u>
Title XTO Energy Inc Manager of MSO Western Division Operations
Street or P.O. Box 810 Houston St.
City Fort Worth State TX ZIP 76102 -
Telephone (817) 885-0313 Ext Facsimile (817) 870 - 8441
B. Certification of Truth, Accuracy and Completeness (to be signed by the responsible official).
I certify under penalty of law that this document and all attachments were prepared under my supervision in accordance with a system designed to assure that qualified personnel properly gather and evaluate the information submitted. Based on my inquiry of the person or persons who manage the system, or those persons directly responsible for gathering the information, the information submitted is, to the best of my knowledge and belief, true, accurate and complete. Name (signed) Name (typed) Timothy L. Hermann

XTO Uintah Basin Title V Applications – 2016 / 2017 EPA Information Request Response 3/8/2017

Riverbend Dehy EPA Questions:

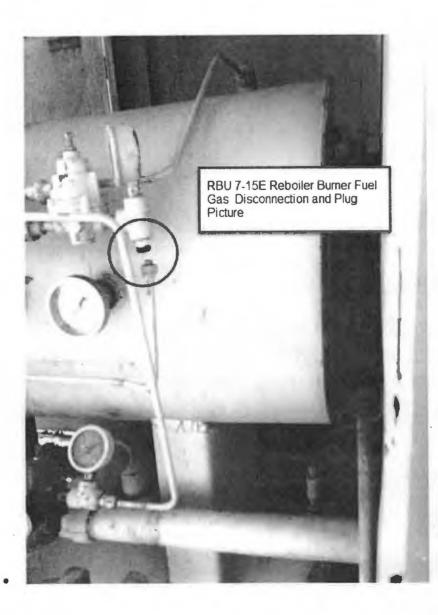
- A. Following up to our phone conversation a couple weeks back, can you please confirm if Tap 1 Compressor Station is still operating and how far away it is from the Riverbend Dehy site? The RBU Dehy Site is approximately 0.19 miles (< ¼ mile) from the Tap-1 Compressor Station. The Tap-1 Compressor Station is still in-service.
- B. In the July 2011 response from XTO to our information request for multiple U&O facilities, XTO (then SGG) provided lat/long coordinates for the Tap 1 Compressor Station and the Riverbend Dehydration site. My preliminary analysis of those coordinates puts the Tap 1 CS at 0.19 miles from Riverbend Dehy. If Tap 1 is < ¼ mile from Riverbend Dehy, we need to evaluate the equipment operating at the sites to determine if Tap 1 and Riverbend have "shared" equipment and should be treated as one source under the revised definition of major source in part 71. Based on the determination that the Tap-1 Compressor Station and the RBU Dehy site are within ¼ mile of each other, The Tap-1 Compressor Stations receives natural-gas production from nearby wells and serves to compress the produced gas up to a pressure whereby the gas can enter the XTO operated gas gathering system. The natural gas then goes into Gathering system pipeline segment that discharges directly into the RBU Dehy site. The Tap-1 Compressor Station and the RBU Dehy site do not "share" any surface equipment other than the connecting pipelines. The gas from Tap-1 becomes comingled with the other inlet gas streams from other production areas at the inlet (pipeline manifold) of the RBU Dehy site. The gas from the Tap-1 compressor station does require dehydration at the RBU Dehy site prior to being sold.</p>
- C. Please provide the following information by March 8th:
 - a. The distance between Tap 1 Compressor Station and Riverbend Dehydration Site
 - b. If the distance is < ¼ mile, please provide the following:
 - i. A list of equipment operating at Tap 1 CS See attached.
 - ii. The PTE for the equipment operating at Tap 1 CS See attached.
 - iii. If the two sites share equipment (i.e. what is the operational relationship between the sites). The Riverbend Dehy site receives the compressed gas from the Tap-1 Compressor Station to allow the gas to be dehydrated prior to sales.
- D. I had a question regarding the two wellsites at the Riverbend facility with regard to the revised definition of a major source. Since RBU 6-15E is located on the same surface site as Riverbend Dehy, it is included as part of the same source. Similar to my questions on Little Canyon, I'm working on EPA's interpretation for the RBU 7-15E wellsite since it's located within a ¼ mile of Riverbend Dehy but not on the same surface site.
 - a. The RBU 6-15E and 7-15E wellsites discharge gas into the common gathering pipeline then to Tap-1 Compressor Station and not directly to the Riverbend Dehydrator Site. That is correct.
 - b. My understanding from the application is that the gas then flows to an offsite compressor station for further processing. Yes, the gas flows from the wells into the common gathering system and then into the Tap-1 Compressor Station which is located within a ¼ mile of the River Bend Dehy site.
 - c. Does the gas eventually come back to Riverbend Dehy Site before going to market or can it go elsewhere? Yes, it eventually goes to RB dehy site through the discharge of the Tap-1 Compressor Station.
 - d. In other words is the operation of Riverbend Dehy site necessary for the RBU 7-15E wellsite to produce gas to market or can both sites operate independently of each other? The sites cannot operate separately in the sense that the wells require their gas to be compressed at Tap-1 which discharges directly to the Riverbend Dehy site. Therefore, they are tied together operationally.

BU Dehy	ID	Emissions Units	NO _X *	co*	VOC*	PM*	SO2*	Total	CO2*	CH4*	N ₂ O*	COze*
Site PTE								HAPs*		(as CO _z e)	(as CO ₂ e)	
	RBL-1	Condensate Truck Loading	0.0	0.0	2.44	0.0	0.0	0.0	0.0	0.0	0.0	0.0
	RBTO-1	Thermal Oxidizer Emissions	0.6	2.9	0.0	0.1	0.0	0.0	962.8	0.02	0.002	963.8
	RBD-1	45 MMscfd TEG Dehydrator	0.0	0.0	14.6 5.7	0.0	0.0	10.9 0.1	0.0	6.3 333.9	0.0	6.3
	RBF-1 RBT-1	Fugitive Emissions 400-bbl slop tank #1	0.0	0.0	4.3	0.0	0.0	0.1	0.03	31,4	0.0	334.0
	RBT-2	400-bbl slop tank #2	0.0	0.0	4.3	0.0	0.0	0.2	0.03	31.4	0.0	31.4
		RBU S-15E Wellsite 0.20										
	RBU 6-15E D-1	MMscfd TEG Dehydrator	0.0	0.0	0.00	0.0	0.0	0.00	0.0	0.0	0.0	0.0
	RBU 6-15E F-1	RBU 6-15E Wellsite Fugitive										
		Emissions RBU 6-15E Weilsite	0.0	0.0	3.9	0.0	0.0	0.1	0.1	214.0	0.0	214.1
	RBU 6-15E P-1	Pneumatic Pump Emissions	0.0	0.0	5.1	0.0	0.0	0.1	0.4	1057.4	0.0	1057.
		RBU 7-15E Wellsite 0.20	0.0	0.0	3.2	0.0	0.0	0.4	0.4	1037.4	0.0	1037.
	RBU 7-15E D-1	MMscfd glycol dehydrator	0.0	0.0	0.00	0.0	0.0	0.00	0.0	0.0	0.0	0.0
	RBU 7-15E F-1	RBU 7-15E Wellsite Fugitive									1	
		Emissions	0.0	0.0	3.9	0.0	0.0	0.1	0.1	214.0	0.0	214.1
	RBU 11-15E D-	RBU 11-15E Wellsite 0.20	1			-						
	1	MMscfd glycol dehydrator	0.0	0.0	10.54	0.0	0.0	3.90	0.1	45.0	0.0	45.1
	RBU 11-15E F-	RBU 11-15E Wellsite Fugitive										
	1	Emissions	0.0	0.0	3.9	0.0	0.0	0.1	0.1	214.0	0.0	214.3
	RBU 11-15E P- 1	RBU 11-15E Wellsite Pneumatic Pump Emissions	0.0	0.0	5.1	0.0	0.0	0.1	0.4	1057.4	0.0	1057.
		Tap-1 Caterpillar 3516 TALE	0.0	0.0	212	0.0	0.0	UIL	0.4	1037.4	0.0	10371
	T1C-1	Compressor Engine #1	19.4	32.3	4.9	0.01	0.0	4.4 -	4968.0	1411.4	0.0	6379.
		Tap-1 Caterpillar 3516 TALE										
	T1C-2	Compressor Engine #2	16.7	29.4	4.7	0.00	0.0	3.8	4197.1	958.2	0.0	5155.
		Tap-1 - 300-bbl Condensate										
1	T1T-1	Tank #1	0.0	0.0	2.2	0.0	0.0	0.13	0.03	24.0	0.0	24.0
Emission Units	T1T-2	Tap-1 - 300-bbl Condensate										
5	111-2	Tank #2	0.0	0.0	2.2	0.0	0.0	0.13	0.03	24.0	0.0	24.0
niss	T1P-1/T1P-2	Tap-1 Heat Trace Pumps (2)	0.0	0.0	15.7	0.0	0.0	0.1	0.5	2159.4	0.0	2160.
5	T1F-1	Tap-1 Fugitives	0.0	0.0	2.5	0.0	0.0	0.02	0.04	80.7	0.0	80.8
	RBU Dehy Site											
	IEU	Pigging Operations	0.0	0.0	0.26	0.0	0.0	0.01	0.02	13.3	0.0	13.3
	RBU Dehy Site	Capstone Model C65NG		-								
	IEU	Standard MicroTurbine		17	0.0	0.0	0.0	0.0	80.3	0.0	0.0	80.7
	DBU Dahu Sita	(65kW) 1.0 MMBtu/hr Dehy Reboiler	0.1	1.7	0.0	0.0	0.0	0.0	80.2	0.0	0.0	80.2
	RBU Dehy Site	for RBD-1	0.5	0.5	0.1	0.0	0.0	0.0	512.0	0.2	0.3	639.
	RBU Dehy Site	250 Mbtu/hr heater for slop	0.3	0.5	0.4	0.0	0.0	0.0				
	IEU	tank #1	0.1	0.1	0.01	0.0	0.0	0.0	127.99	0.06	0.07	128.1
	RBU Dehy Site	250 Mbtu/hr heater for slop										
	IEU	tank #2	0.1	0.1	0.01	0.0	0.0	0.0	127.99	0.06	0.07	128.1
	RBU 6-15E											
	Wellsite IEU	175 Mbtu/hr Reboiler	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.00	0.00	0.0
	RBU 6-15E	250 Mbtu/hr heater for slop										
	Wellsite IEU	tank #1	0.1	0.1	0.0	0.0	0.0	0.0	128.0	0.1	0.1	128.
	RBU 6-15E						191		- 1			
	Wellsite IEU	75 Mbtu/hr separator heater	0.04	0,03	0.00	0.0	0.0	0.0	38.4	0.02	0.02	38.4
	RBU 6-15E											
	Wellsite IEU	Condensate Truck Loading	0.0	0.0	0.2	0.0	0.0	0.0	0.0	0.0	0.0	0.0
	RBU 6-15E	400 bbl slop tapk	0.0	0.0	1.9	0.0	0.0	0.03	0.01	12.5	0.0	12.5
	Wellsite IEU	400-bbl slop tank RBU 7-15E Wellsite	0.0	0.0	1.9	0.0	0.0	0.03	0.01	12.5	0.0	12.3
	RBU 7-15E P-1	Pneumatic Pump Emissions	0.0	0.0	0.8	0.0	0.0	0.1	0.1	169.2	0.0	169.
	RBU 7-15E	250 Mbtu/hr Dehydrator	0.0	0.0	0.0	0.0	0.0	0.1			0.0	205.
	Wellsite IEU	Reboiler	0.0	0.0	0.00	0.0	0.0	0.00	0.0	0.0	0.0	0.0
	RBU 7-15E											
	Wellsite IEU	250 Mbtu/hr tank heater	0.1	0.1	0.0	0.0	0.0	0.0	128.0	0.1	0.1	128.
	RBU 7-15E											
	Wellsite IEU	75 Mbtu/hr seperator heater	0.04	0.03	0.00	0.0	0.0	0.0	38.4	0.02	0.02	38.4
	RBU 7-15E											
	Wellsite IEU	Condensate Truck Loading	0.0	0.0	0.2	0.0	0.0	0.0	0.0	0.0	0.0	0.0
	RBU 7-15E											
	Wellsite IEU	400-bbl slop tank	0.0	0.0	1.9	0.0	0.0	0.03	0.01	12.5	0.0	12.5
	RBU 11-15E	175 Mbtu/hr Dehydrator										
	Wellsite IEU	Reboiler	0.1	0.1	0.01	0.0	0.0	0.0	89.6	0.04	0.05	89.7
	RBU 11-15E											
	Wellsite IEU	250 Mbtu/hr tank heater	0.1	0.1	0.01	0.0	0.0	0.0	128.0	0.1	0.1	128.
	RBU 11-15E	250 Mbtu/hr separator	-									
	Wellsite IEU	heater	0.1	0.1	0.01	0.0	0.0	0.0	128.0	0.1	0.1	128.
	RBU 11-15E											
	Wellsite IEU	Condensate Truck Loading	0.0	0.0	0.1	0.0	0.0	0.0	0.0	0.0	0.0	0.0
atte	RBU 11-15E											
n u	Wellsite IEU	300-bbl slop tank	0.0	0.0	1.4	0.0	0.0	0.02	0.01	8.3	0.0	8.3
isio		Standard MicroTurbine										
80	Tap-1 Site IEU	(65kW)	0.1	1.7	0.0	0.0	0.0	0.0	80.2	0.0	0.0	80.
E		Tap-1 - Three (3) 250		1			1	1	1	1		1
nt Emi			0.40	0.74	0.04	0.03	0.0	0.0	384.0	0.2	0.2	384
icant Emi	T1-Heaters IEU	Mbtu/hr Heaters	0.40	0.34	0.04	0.05					0.6	
gnificant Emi	T1-Heaters IEU	Motu/nr Heaters			-	1	1		1			1
insignificant Emission Units		Mbtu/hr Heaters Tap-1 Truck Loading Tap-1 Comp Blowdowns	0.40	0.0	0.3	0.0	0.0	0.002	0.0	0.0 256.5	0.0	0.0

XTO Energy Inc.

RBT-1 400 RBT-2 400 RBU Pneumatic Controllers RBU Pn RBU 6-15E RBU Pneumatic Controllers RBU Pneumatic Controllers RBU 7-35E 0-1 MMacq RBU 7-35E 0-1 MMacq RBU 7-35E 0-1 MMacq RBU 7-15E P-1 RBU Pneumatic Controllers RBU RBU 7-15E P-1 RBU RBU 7-15E P-1 RBU RBU 7-15E P-1 RBU RBU 11-15E P-1 RBU T1C-1 Com T1C-1 Com T1C-1 Com T1C-2 Tap-1 C Com T1C-2 Com T1C-2 Tap-1 C Com	Visefd TEG Dehydrator Vio-bbl slop tank #1 Vio-bbl slop tank #2 Pneumatic Controllers 16-15£ Wellsite 0.20 ecid 17£ G-Dehydrator BU 6-15£ Wellsite 0.20 ecid 17£ Wellsite 0.20 ecid 17£ Wellsite 0.20 ecid 18 BU 7-15£ Wellsite 0.20 ecid glycol dehydrator BU 7-15£ Pneumatic Controllers U 7-15£ Wellsite 0.20 ecid glycol dehydrator BU 1-15£ Wellsite 0.20 ecid glycol dehydrator BU 11-15£ Wellsite matic Pump Emissions J 11-15£ Pneumatic Controllers Controllers Controllers Controllers	Natural Gas Dehydrator Storage Tank Storage Tank Pneumatic Controllers Natural Gas Dehydrator Pneumatic Controllers Natural Gas Dehydrator Pneumatic Controllers Natural Gas Dehydrator Pneumatic Controllers	Pre-2010 Pre-2010 Pre-2010 Pre-2012 Pre-2012 Pre-2010 Pre-2010 Pre-2010 Pre-2012	1/17/2010 12/15/2009 12/15/2009 1/17/2010 1/18/2010 1/18/2010 Pre-2010 3/2/2012 Pre-2010 Pre-2010 Pre-2010	14.56 4.31 4.31 0.30 N/A N/A N/A N/A N/A 10.54 N/A	МАСТ НН NSPS 0000 NSPS 0000 MACT НН NSPS 0000 MACT НН NSPS 0000 MACT НН NSPS 0000	YES NO NO	Major Source of HAP's Tank S/N 1764 - Pre-Aug 2011 Const Date / BELOW 6 TPY VOC Tank S/N 1765 - Pre-Aug 2011 Const Date / BELOW 6 TPY VOC Controllers operate On Plant Instrument Air Dehy Unit removed on July 28, 2017 Operate On Plant Instrument Air Dehy Unit removed on July 28, 2017 Area Source - Unit is less than 3.0 mmscfd actual flowrate
RBT-2 400 RBU Pneumatic Controllers RBU Pn RBU 6-15E RBU RBU 6-15E RBU Pneumatic Controllers RBU RBU 6-15E Pneumatic Controllers RBU RBU 7-15E P-1 RBU RBU 11-15E P-1 RBU RBU 11-15E P-1 RBU RBU 11-15E Pneumatic Controllers RBU T1C-1 Com T1C-1 Com T1C-1 Com T1C-1 Com T1C-2 Tap-1 C Com Com	00-bbl slop tank #2 Pneumatic Controllers 16-156 Weilsite-0.20 cid 16 G Dehydrator BU 6-152 Weilsite matic Pump Emissions U 6-152 Pneumatic Controllers 17-156 Weilsite 0.20 cid elyedal dehydrator BU 7-155 Pneumatic Controllers 11-155 Weilsite 0.20 cid glycol dehydrator SU 11-155 Weilsite 0.20 controllers 11-155 Weilsite 0.20 controllers 11-155 Weilsite 0.20 controllers 11-155 Pneumatic Controllers 11-155 Pneumatic Controllers Controllers Controllers Controllers Controllers	Storage Tank Pneumatic Controllers Natural Gas- Dehydrator Pneumatic Pump Pneumatic Controllers Natural Gas- Dehydrator Pneumatic Pump Pneumatic Controllers Natural Gas Dehydrator Pneumatic Pump	2009 Pre-2010 Pre-2010 Pre-2010 Pre-2010 Pre-2012 Pre-2012 Pre-2010 Pre-2010 Pre-2010	12/15/2009 1/17/2010 1/18/2010 1/18/2010 Pre-2010 3/2/2012 Pre-2010 Pre-2010	4.31 N/A 0-00 N/A N/A 0.00 N/A N/A 10.54	NSPS 0000 NSPS 0000 MACT-HH NSPS 0000 MACT-HH NSPS 0000a NSPS 0000a NSPS 0000 MACT-HH	NO NO NO NO NO NO NO	Date / BELOW 6 TPY VOC Tank S/N 1765 - Pre-Aug 2011 Const Date / BELOW 6 TPY VOC Controllers operate On Plant Instrument Air Dehy Unit removed on July 28, 2017 Operate On Plant Instrument Air Dehy Unit removed on July 28, 2017 Area Source - Unit is less than 3.0
RBU Pneumatic AUU Controllers RBU Pneumatic Controllers RBU Pneumatic RBU 6-15E P-1 Pneum RBU 6-15E P-1 Pneumatic Controllers RBU RBU 7-15E P-1 Pneumatic Controllers RBU 7-15E RBU 7-15E P-1 RBU Pneumatic RBU Controllers RBU Controllers RBU RBU 11-15E D-1 MMsei RBU 11-15E P-1 RBU Pneumatic Controllers Controllers RBU Controllers RBU T1C-1 Tap-1 C Commatic Commatic Controllers Commatic T1C-1 Tap-1 C Commatic Commatic T1C-1 Tap-1 C Commatic Commatic T1C-2 Commatic T1C-2 Commatic T1C-2 Commatic T1C-2 Commatic Commatic Co	Pheumatic Controllers 5-155 Wellsite 0.20 scid TEG Dehydrator BU 6-155 Wellsite matic Pump Emissions U 6-155 Pneumatic Controllers I - 155 Wellsite 0.20 cid gived Jehydrator BU 7-155 Wellsite Controllers U 7-155 Pneumatic Controllers U 7-155 Wellsite 0.20 cid gived dehydrator SU 11-155 Wellsite 0.20 cid gived dehydrator SU 11-155 Pneumatic Controllers Caterpiller 3516 TALE	Pneumatic Controllers Natural Gas- Dehydrator Pneumatic Pump Pneumatic Controllers Natural Gas- Dehydrator Pneumatic Controllers Natural Gas Dehydrator Pneumatic Pump	Pre-2010 Pre-2010 Pre-2010 Pre-2012 Pre-2012 Pre-2010 Pre-2010 Pre-2010 Pre-2010 Pre-2010	1/17/2010 1/18/2010 1/18/2010 Pre-2010 3/2/2012 3/2/2012 Pre-2010 Pre-2010	N/A 	NSPS 0000 MACT HH NSPS 0000a NSPS 0000 MACT HH NSPS 0000 MACT HH	NO NO NO NO NO NO	Date / BELOW 6 TPY VOC Controllers operate On Plant Instrument Air Dehy Unit removed on July 28, 2017 Operate On Plant Instrument Air Dehy Unit removed on July 28, 2017 Area Source - Unit is less than 3.0
Controllers RBU Pri RBU 6-15E P-1 MAKe RBU 6-15E P-1 Pneumatic RBU 6-15E P-1 Pneumatic Controllers RBU RBU 7-15E P-1 RBU RBU 17-15E P-1 RBU Pneumatic RBU Controllers RBU RBU 17-15E RBU Pneumatic RBU Controllers RBU RBU 11-15E P-1 RBU RBU 11-15E P-1 RBU Pneumatic RBU Controllers RBU RBU 11-15E P-1 RBU Pneumatic Controllers T1C-1 Tap-1 C Commatic Commatic T1C-1 Tap-1 C T1C-2 Commatic T1C-2 Commatic T1C-2 Commatic T1C-2 Commatic T1C-2 Commatic T1C-2 Tap-1 C Commatic Commatic T1C-2 Tap-1 C	6-15E Wellsite 0.20 scid TEG Dehydrator BU 6-15E Wellsite matic Pump Emissions U 6-15E Pneumatic Controllers 7-15E Wellsite 0.20 cdd gived dehydrator BU 7-15E Wellsite matic Pump Emissions U 7-15E Wellsite Controllers 11-15E Wellsite 0.20 cdd gived dehydrator JU 1.15E Wellsite Durp Emissions J 11-15E Pneumatic Controllers Controllers Caterpillar 3516 TALE	Natural Gas Dehydrator Pneumatic Pump Pneumatic Controllers Natural Gas Dehydrator Pneumatic Controllers Natural Gas Dehydrator Pneumatic Pump	Pre-2010 Pre-2010 Pre-2010 Pre-2012 Pre-2012 Pre-2010 Pre-2010 Pre-2010 Pre-2012	1/18/2010 1/18/2010 Pre-2010 3/2/2012 3/2/2012 Pre-2010 Pre-2010	0-00 N/A N/A 0-00 N/A N/A 10.54	МАСТ НН NSP5 0000а NSP5 0000 МАСТ НН NSP5 0000 MACT НН	NO NO NO NO NO	Instrument Air Dehy Unit removed on July 28, 2017 Operate On Plant Instrument Air Dehy Unit removed on July 28, 2017 Area Source - Unit is less than 3.0
REU 6-15E D-1 MitAge RBU 6-15E RBU RBU 6-15E Pneumatic Controllers RBU RBU 7-15E RBU Pneumatic RBU Controllers RBU RBU 7-15E RBU Pneumatic RBU Controllers RBU RBU 11-15E RBU RBU 11-15E RBU RBU 11-15E RBU Pneumatic Controllers Controllers Tap-10 T1C-1 Tap-10 Controllers Com T1C-1 Tap-10 Controllers Com T1C-1 Tap-10 Com Com T1C-2 Com Com <t< td=""><td>seld TEG Dehydrator BU 6-15E Wellsite matic Pump Emissions U 6-15E Pneumatic Controllers U 7-15E Wellsite 0-20 ded glycal dehydrator BU 7-15E Pneumatic Controllers U 7-15E Wellsite DI 1-15E Wellsite 0.20 ded glycal dehydrator BU 11-15E Wellsite 0.20 ded glycal dehydrator BU 11-15E Wellsite matic Pump Emissions J 11-15E Pneumatic Controllers Caterpillar 3516 TALE</td><td>Dehydrator Pneumatic Pump Pneumatic Controllers Natural-Gas- Dehydrator Pneumatic Pump Pneumatic Controllers Natural Gas Dehydrator Pneumatic Pump</td><td>Pre-2010 Pre-2010 Pre-2012 Pre-2012 Pre-2010 Pre-2010 Pre-2012</td><td>1/18/2010 Pre-2010 3/2/2012 3/2/2012 Pre-2010 Pre-2010</td><td>N/A N/A 0-00 N/A N/A 10.54</td><td>NSPS 0000a NSP5 0000 МАСТ-НН NSPS 0000a NSPS 0000 MACT HH</td><td>N0 N0 N0 N0 N0</td><td>Operate On Plant Instrument Air Dehy Unit removed on July 28, 2017 Area Source - Unit is less than 3.0</td></t<>	seld TEG Dehydrator BU 6-15E Wellsite matic Pump Emissions U 6-15E Pneumatic Controllers U 7-15E Wellsite 0-20 ded glycal dehydrator BU 7-15E Pneumatic Controllers U 7-15E Wellsite DI 1-15E Wellsite 0.20 ded glycal dehydrator BU 11-15E Wellsite 0.20 ded glycal dehydrator BU 11-15E Wellsite matic Pump Emissions J 11-15E Pneumatic Controllers Caterpillar 3516 TALE	Dehydrator Pneumatic Pump Pneumatic Controllers Natural-Gas- Dehydrator Pneumatic Pump Pneumatic Controllers Natural Gas Dehydrator Pneumatic Pump	Pre-2010 Pre-2010 Pre-2012 Pre-2012 Pre-2010 Pre-2010 Pre-2012	1/18/2010 Pre-2010 3/2/2012 3/2/2012 Pre-2010 Pre-2010	N/A N/A 0-00 N/A N/A 10.54	NSPS 0000a NSP5 0000 МАСТ-НН NSPS 0000a NSPS 0000 MACT HH	N0 N0 N0 N0 N0	Operate On Plant Instrument Air Dehy Unit removed on July 28, 2017 Area Source - Unit is less than 3.0
RBU 6-15E P-1 Pneum RBU 6-15E Pneumatic Controllers RBU RBU 7-15E D-1 MMsci RBU 7-15E D-1 MMsci RBU 7-15E D-1 RBU Pneumatic Pneum RBU 7-15E D-1 RBU RBU 7-15E D-1 RBU RBU 7-15E D-1 RBU RBU 11-15E D-1 RBU RBU 11-15E P-1 Pneumatic Controllers RBU RBU 11-15E P-1 RBU RBU 11-15E P-1 RBU Controllers RBU T1C-1 Com T1C-1 Tap-1 C Com Tap-1 C T1C-2 Com T1C-2 Com T1C-2 Tap-1 C Com T1C-2 T1C-2 Tap-1 C Com T1C-2 T1C-2 Tap-1 C Com T1C-2 T1C-2 Tap-1 C Com Com T1C-2 Tap-1 C	natic Pump Emissions U 6-15E Pneumatic Controllers 17-15E Wellsite 0-20 ded alveed dehydrater BU 7-15E Wellsite matic Pump Emissions U 7-15E Pneumatic Controllers 11-15E Wellsite 0-20 dehydrator SU 11-15E Wellsite matic Pump Emissions J 11-15E Pneumatic Controllers Controllers Controllers	Pneumatic Controllers Natural Gas- Dehydratar Pneumatic Pump Pneumatic Controllers Natural Gas Dehydrator Pneumatic Pump	Pre-2010 Pre-2012 Pre-2010 Pre-2010 Pre-2010 Pre-2012	Pre-2010 3/2/2012 3/2/2012 Pre-2010 Pre-2010	N/A 0-00 N/A N/A 10.54	NSP5 0000 MACT HH NSP5 0000a NSP5 0000 MACT HH	NO NO NO NO	Dehy Unit removed on July 28, 2017 Area Source - Unit is less than 3.0
Pneumatic Controllers RBU RBU 7-15E P-1 RBU RBU 7-15E P-1 RBU 7-15E P-1 RBU Pneumatic Controllers RBU Pneumatic Controllers RBU 11-15E P-1 RBU Pneumatic Controllers RBU Pneumatic Controllers RBU 11-15E P-1 RBU Pneumatic Controllers RBU Pneumatic Controllers T1C-1 Tap-1 C Com Tap-1 C Com T1C-1 Tap-1 C Com Tap-1 C Com T1C-2 Com Tap-1 C Com T1C-2 Tap-1 C Com Tap-1 C Com T1C-2 Tap-1 C Com Tap-1 C Com T1C-2 Tap-1 C Com Tap-1 C C C T1C-2 Tap-1 C C C Tap-1 C C C T1C-2 Tap-1 C C C Tap-1 C T1T-1 Tap-1 C Tap-1 C T1T-2 Tap-1 C Tap-1 C	Controllers 17-15E Wellsite 0.20. Controllers BU 7-15E Wellsite matic Pump Emissions U 7-15E Pneumatic Controllers D 11-15E Wellsite 0.20. Cód glycol dehydrator BU 11-15E Wellsite D 11-15E Pneumatic Controllers Caterpillar 3516 TALE	Natural Gas. Dehydrator Pneumatic Pump Pneumatic Controllers Natural Gas Dehydrator Pneumatic Pump	Pre-2010 Pre-2012 Pre-2010 Pre-2010 Pre-2010 Pre-2012	3/2/2012 3/2/2012 Pre-2010 Pre-2010	0.00 N/A N/A 10.54	MACT HH NSPS 0000a NSPS 0000 MACT HH	NO NO NO	Dehy Unit removed on July 28, 2017 Area Source - Unit is less than 3.0
Pneumatic Controllers Reu-T- MMMel R8U-7-15E RBU Pneumatic RBU- Pneumatic RBU 7-15E RBU Pneumatic RBU Pneumatic Controllers RBU 11-15E RBU 11-15E Pneumatic RBU 11-15E Pneumatic Controllers RBU RBU 11-15E Pneumatic Controllers Tap-1 C T1C-1 Com T1C-1 Tap-1 C Controllers Com T1C-1 Tap-1 C Com Tap-1 C T1C-2 Com T1C-2 Tap-1 C Com Com	Controllers 17-15E Wellsite 0.20. Controllers BU 7-15E Wellsite matic Pump Emissions U 7-15E Pneumatic Controllers D 11-15E Wellsite 0.20. Cód glycol dehydrator BU 11-15E Wellsite D 11-15E Pneumatic Controllers Caterpillar 3516 TALE	Natural Gas. Dehydrator Pneumatic Pump Pneumatic Controllers Natural Gas Dehydrator Pneumatic Pump	Pre-2010 Pre-2012 Pre-2010 Pre-2010 Pre-2010 Pre-2012	3/2/2012 3/2/2012 Pre-2010 Pre-2010	0.00 N/A N/A 10.54	MACT HH NSPS 0000a NSPS 0000 MACT HH	NO NO NO	Dehy Unit removed on July 28, 2017 Area Source - Unit is less than 3.0
RBU 7-15E D-1 MMsel RBU 7-15E RBU RBU 7-15E Pneumatic Controllers RBU RBU 11-15E D-1 RBU RBU 11-15E D-1 RBU RBU 11-15E D-1 RBU Controllers RBU RBU 11-15E RBU Controllers RBU Controllers RBU Controllers RBU T1C-1 Tap-1 C Controllers Com T1C-2 Tap-1 - T1T-1 Tap-1 - T1T-1 Tap-1 -	efd giveal-dehydrator BU 7-15E Wellsite matic Pump Emissions U 7-15E Pneumatic Controllers 11-15E Wellsite 0.20 cfd glycol dehydrator SU 11-15E Wellsite matic Pump Emissions J 11-15E Pneumatic Controllers Caterpillar 3516 TALE	Dehydrator Pneumatic Pump Pneumatic Controllers Natural Gas Dehydrator Pneumatic Pump	Pre-2012 Pre-2010 Pre-2010 Pre-2012	3/2/2012 Pre-2010 Pre-2010	N/A N/A 10.54	NSPS 0000a NSPS 0000 MACT HH	NO NO NO	Area Source - Unit is less than 3.0
RBU RBU RBU 7-15E Pneum RBU 7-15E RBU Pneumatic RBU Controllers RBU RBU 11-15E Pneumatic RBU 11-15E Pneumatic RBU 11-15E Pneumatic Controllers RBU T1C-1 Com T1C-1 Tap-1 C Controllers Com T1C-1 Tap-1 C Com Tap-1 C T1C-2 Com T1C-2 Tap-1 C Com Com T1C-2 Tap-1 C T1T-1 Tap-1 - T1T-2 Tap-1 - T1T-2 Tap-1 - T1P-1 / T1P-2 Tap-1 + RBU 6-15E Com	BU 7-15E Wellsite matic Pump Emissions U 7-15E Pneumatic Controllers 11-15E Wellsite 0.20 cfd glycol dehydrator SU 11-15E Wellsite matic Pump Emissions J 11-15E Pneumatic Controllers Caterpillar 3516 TALE	Pneumatic Pump Pneumatic Controllers Natural Gas Dehydrator Pneumatic Pump	Pre-2012 Pre-2010 Pre-2010 Pre-2012	3/2/2012 Pre-2010 Pre-2010	N/A N/A 10.54	NSPS 0000a NSPS 0000 MACT HH	NO NO NO	Area Source - Unit is less than 3.0
RBU 7-15E Pneumatic Controllers RBU 11 RBU 11-15E D-1 RBU 11 RBU 11-15E P-1 Pneumatic Controllers RBU RBU 11-15E P-1 RBU RBU 11-15E P-1 RBU Controllers RBU T1C-1 Controllers T1C-1 Tap-1 C Controllers Com T1C-1 Tap-1 C Controllers Com T1C-1 Tap-1 C Controllers Com T1C-2 Tap-1 - C T1T-1 Tap-1 - C T1T-1 Tap-1 - C T1T-2 Tap-1 - C T1P-1 / T1P-2 Tap-1 - C T1P-1 / T1P-2 Tap-1 - C T1P-1 / T1P-2 Tap-1 - C RBU 6-15E	U 7-15E Pneumatic Controllers 11-15E Wellsite 0.20 cfd glycol dehydrator 3U 11-15E Wellsite matic Pump Emissions J 11-15E Pneumatic Controllers Caterpillar 3516 TALE	Pneumatic Controllers Natural Gas Dehydrator Pneumatic Pump	Pre-2010 Pre-2010 Pre-2012	Pre-2010 Pre-2010	N/A 10.54	NSPS 0000 MACT HH	NO NO	
Pneumatic Controllers RBU 1 RBU 11-15E D-1 RBU 1 RBU 11-15E P-1 RBU T1C-1 Controllers T1C-1 Tap-1 C Com T1C-1 T1C-1 Tap-1 C Com T1C-2 T1C-2 Com T1C-1 Tap-1 C Com Com T1C-2 Tap-1 C Com Com T1T-1 Tap-1 C T1T-1 Tap-1 C T1T-2 Tap-1 C T1T-2 Tap-1 - T1P-1 / T1P-2 Tap-1 F RBU 6-15E Com	Controllers 11-15E Wellsite 0.20 cfd glycol dehydrator 8U 11-15E Wellsite matic Pump Emissions J 11-15E Pneumatic Controllers Caterpillar 3516 TALE	Natural Gas Dehydrator Pneumatic Pump	Pre-2010 Pre-2010 Pre-2012	Pre-2010	10.54	МАСТ НН	NO	
Controllers RBU 11-15E D-1 MMsci RBU 11-15E P-1 Pneum RBU 11-15E P-1 RBU RBU 11-15E P-1 Pneum RBU 11-15E P-1 RBU Pneumatic RBU Controllers Tap-1 C T1C-1 Tap-1 C T1C-1 Tap-1 C T1C-1 Tap-1 C T1C-2 Com T1C-2 Tap-1 C Com C T1C-2 Tap-1 C T1C-3 Tap-1 C T1T-1 Tap-1 - T1T-2 Tap-1 - T1T-2 Tap-1 - T1T-2 Tap-1 - T1P-1 / T1P-2 Tap-1 + RBU 6-15E E	11-15E Wellsite 0.20 cfd glycol dehydrator 3U 11-15E Wellsite matic Pump Emissions J 11-15E Pneumatic Controllers Caterpillar 3516 TALE	Natural Gas Dehydrator Pneumatic Pump	Pre-2010 Pre-2010 Pre-2012	Pre-2010	10.54	МАСТ НН	NO	
RBU 11-15E D-1 RBU 1 RBU 11-15E D-1 MMsci RBU 11-15E P-1 Pneumi RBU 11-15E P-1 RBU Pneumic RBU T1C-1 Tap-1 C T1C-1 Tap-1 C T1C-1 Tap-1 C T1C-1 Tap-1 C T1C-2 Com T1C-2 Com T1C-2 Com T1C-2 Com T1C-2 Com T1C-2 Tap-1 C Com T1C-2 T1T-1 Tap-1 C T1T-2 Tap-1 C T1T-2 Tap-1 C T1P-1 / T1P-2 Tap-1 F RBU 6-15E E	scfd glycol dehydrator BU 11-15E Wellsite matic Pump Emissions J 11-15E Pneumatic Controllers Caterpillar 3516 TALE	Dehydrator Pneumatic Pump	Pre-2012					
Tit-15E P-1 RBU RBU 11-15E P-1 Pneum RBU 11-15E RBU Controllers Tap-1 C T1C-1 Com T1C-1 Tap-1 C Controllers Tap-1 C T1C-1 Tap-1 C T1C-2 Tap-1 C T1C-2 Com T1C-2 Com T1C-2 Com T1C-2 Com T1C-2 Com T1C-2 Com T1C-2 Tap-1 C T1C-3 Tap-1 C T1C-4 Tap-1 C T1C-7 Tap-1 C T1C-8 Tap-1 C T1T-1 Tap-1 C T1T-2 Tap-1 C T1T-2 Tap-1 - T1T-2 Tap-1 - T1P-1 / T1P-2 Tap-1 + RBU 6-15E E	BU 11-15E Wellsite matic Pump Emissions J 11-15E Pneumatic Controllers Caterpillar 3516 TALE	Pneumatic Pump	Pre-2012					minstru actual nowrate
RBU 11-15E Pneumatic RBU Controllers Tap-1 C T1C-1 Common C T1C-1 Tap-1 C Common C Common C T1C-1 Tap-1 C Common C Common C T1C-1 Tap-1 C Common C Common C T1C-2 Tap-1 C T1T-1 Tap-1 C T1T-2 Tap-1 - 1 T1T-2 Tap-1 - 1 T1P-1 / T1P-2 Tap-1 + 1 RBU 6-15E RBU 6-15E	J 11-15E Pneumatic Controllers Caterpillar 3516 TALE			Pre-2012	N/A	NSPS UCOUR	I NO	
Pneumatic Controllers RBU T1C-1 Tap-1 C Com T1C-1 Tap-1 C Com T1C-1 Tap-1 C Com T1C-2 Tap-1 C Com T1T-1 Tap-1 - Tap-1 - T1T-2 Tap-1 - T1T-2 Tap-1 - T1P-1 / T1P-2 Tap-1 + RBU 6-15E E	Controllers Caterpillar 3516 TALE	Pneumatic Controllers			1 1		1	
Controllers T1C-1 Com T1C-1 Tap-1 C Com Tap-1 C T1C-1 Tap-1 C T1C-1 Tap-1 C T1C-1 Tap-1 C T1C-2 Tap-1 C T1C-2 Tap-1 C T1C-2 Tap-1 C T1C-2 Com T1C-2 Tap-1 C C0 Com T1C-2 Tap-1 C T1C-2 Tap-1 C T1C-2 Tap-1 - T1T-1 Tap-1 - T1T-2 Tap-1 - T1T-2 Tap-1 - T1P-1 / T1P-2 Tap-1 + R8U 6-15E E	Caterpillar 3516 TALE	incomotic concro			1			
T1C-1 Com T1C-1 Tap-1 C Com Com T1C-1 Tap-1 C CO Com T1C-2 Com T1C-2 Com T1C-2 Tap-1 C Com Com T1C-2 Tap-1 C Com Com T1C-2 Tap-1 C Com Tap-1 C T1T-1 Tap-1 - T1T-2 Tap-1 - T1P-1 / T1P-2 Tap-1 + R8U 6-15E E			Pre-2010	Pre-2010	N/A	NSPS ODOO	NO	
T1C-1 Com T1C-1 Tap-1 C T1C-2 Tap-1 C T1C-2 Com T1C-2 Com T1C-2 Com T1C-2 Tap-1 C Com Tap-1 C T1C-2 Tap-1 C T1C-1 Tap-1 C T1T-1 Tap-1 C T1T-2 Tap-1 C T1T-1 Tap-1 C T1T-2 Tap-1 C T1P-1 / T1P-2 Tap-1 F R8U 6-15E E	mpressor Engine #1	RICE	1/1/2004	7/1/2013	N/A	MACT ZZZZ	YES	REMOTE AREA - S/N 4EK03995
T1C-1 Tap-1 (C T1C-2 Com T1C-2 Com T1C-2 Com T1C-2 Tap-1 (Com T1C-2 Tap-1 (Com T1C-2 Tap-1 (Tap-1 - Com T1T-1 Tap-1 - Tap-1 - T1T-2 Tap-1 - T1P-1 / T1P-2 Tap-1 + R8U 6-15E Fap-1 +	Caterpillar 3516 TALE mpressor Engine #1	RICE	1/1/2004	7/1/2013	N/A	NSPS JJJJ	NO	S/N 4EK03995
Tic-2 Tap-1 C T1C-2 Com T1C-2 Tap-1 C Com Tap-1 C T1C-2 Tap-1 C T1C-2 Tap-1 C T1T-1 Tap-1 - T1T-2 Tap-1 - T1T-2 Tap-1 - T1P-1 / T1P-2 Tap-1 + R8U 6-15E E	Caterpillar 3516 TALE	Reciprocating						The second
T1C-2 Com T1C-2 Tap-1 C T1C-2 Tap-1 C T1C-2 Tap-1 C T1T-1 Tap-1 C T1T-2 Tap-1 - T1P-1/TIP-2 Tap-1 + RBU 6-15E Tap-1 +	Compressor #1	Compressor	Pre-2010	7/1/2013	N/A	NSPS 0000	NO	Pre-Aug 2011 Construction date
T1C-2 Com T1C-2 Tap-1 C T1T-1 Tap-1 - T1T-2 Tap-1 - T1T-2 Tap-1 - T1P-1 / T1P-2 Tap-1 + R8U 6-15E R	Caterpillar 3516 TALE mpressor Engine #2	RICE	8/12/2001	7/18/2013	N/A	MACT ZZZZ	YES	REMOTE AREA - S/N 4EK03582
TIC-2 C T1T-1 Tap-1 - T1T-2 Tap-1 - T1P-1/TIP-2 Tap-1 + RBU 6-15E RBU 6-15E	Caterpillar 3516 TALE mpressor Engine #2	RICE	8/12/2001	7/18/2013	N/A	NSPS JUJ	NO	S/N 4EK03582
T1T-1 Tap-1 - T1T-2 Tap-1 - T1P-1 / T1P-2 Tap-1 H RBU 6-15E Tap-1 H	Caterpillar 3516 TALE	Reciprocating	1					
T1T-1 T1T-2 Tap-1 - T1P-1 / T1P-2 RBU 6-15E	Compressor #2	Compressor	Pre-2010	7/18/2013	N/A	NSPS 0000	NO	Pre-Aug 2011 Construction date
T1P-1 / T1P-2 Tap-1 H RBU 6-15E	- 300-bbl Condensate Tank #1	Storage Tank	6/16/2010	6/18/2012	2.19	NSPS 0000	NO	Tank 1350 / S/N 2024 - Pre-Aug 2011 Const Date / BELOW 6 TPY VOC
RBU 6-15E	- 300-bbl Condensate							Tank 78938/ S/N 8S06401-02 - Pre- Aug 2011 Const Date / BELOW 6 TPY
RBU 6-15E	Tank #2	Storage Tank	9/12/2001	6/18/2012	2.19	NSPS 0000	NO	voc
	Heat Trace Pumps (2)	Pneumatic Pump	Pre-2014	Pre-2014	N/A	NSP5 OOOOa	NO	Pre- 2015 Install date Tank E1427 / S/N 2802 - BELOW 6 TP
	400-bbl slop tank	Storage Tank	11/1/2012	11/21/2012	1.85	N5P5 0000	YES	VOC
RBU 7-15E								Tank E1414 / 5/N 2678 - BELOW 6 TP
second and constants of the	400-bbl slop tank	Storage Tank	7/1/2012	8/24/2012	1.85	NSPS 0000	YES	VOC
RBU 11-15E								Tank E1391/ S/N 0800 - Pre-2011 and
	300-bbl slop tank	Storage Tank	3/1/2008	5/9/2012	1.42	N5P5 0000	NO	BELOW 6 TPY VOC
RBU 6-15E Wellsite W		Natural Gas Well	N/A	1/22/2004	N/A	NSPS OOOOa	NO	
RBU 7-15E	Well Completion			Initial - 4/3/1992 &				
Wellsite	Well Completion	1		Recompletion - 1/3/2013	N/A	NSPS OOOOa	NO	
RBU 11-1SE Wellsite W	Well Completion	Natural Gas Well	N/A					

XTO ENERGY INC. - UINTAH COUNTY, UTAH


XTO ENERGY INC. – RIVERBEND DEHYDRATION SITE DESCRIPTION OF RELEVANT APPLICATION MODIFICATIONS

- Due to the update in the EPA aggregation policy to include locations within ¼ mile of the permitted location, the following locations were added into the Riverbend Dehydration site application since the original 2009 application was filed (refer to the attached map providing a location of the affected facilities around the Riverbend Dehydration site:
 - o Tap-1 Compressor Station
 - o RBU 11-15E
- Both the RBU 6-15E and RBU 7-15E natural gas dehydration systems were permanently disconnected and
 placed out of service as of July 28, 2017 (refer to the following pictures taken on 7/28/2017 and the
 accompanying work order).

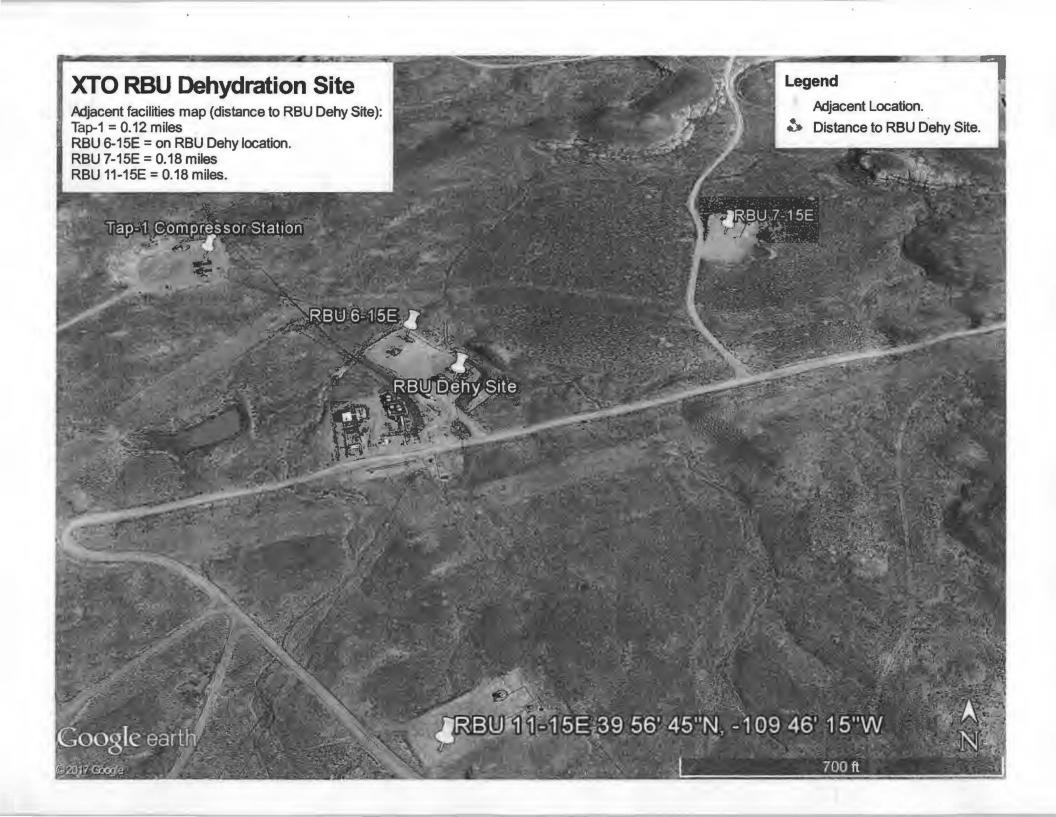
Work Request

Date: 7/25/17

Run 203

Location: RBU 6-15E & RBU 7-15E

Work Order: Remove Kimray glycol circulating pump from Dehy side of production unit, Plug any open ended lines. Disconnect, Block, Blind flange or thread plug Absorber tower inlet & outlet lines from any service or gas flow. Disconnect, Block or thread plug fuel supply to the Dehy fire box.


Contractor/Department: Production Dept.

Contacts:

Lease Operator:

Foreman: Phone#: Phone#:

	BERA United States Environmental Protection Agency OMB No. 2060-0336, Approval Expires 06/30/201
	Federal Operating Permit Program (40 CFR Part 71)
-	GENERAL INFORMATION AND SUMMARY (GIS)
	Mailing Address and Contact Information
	Facility nameRiverbend Dehydration Site
	Mailing address: Street or P.O. Box810 Houston Street, Petro-4
	CityFort Worth StateTX ZIP76102
	Contact person:Craig AllisonTitleEHS Advisor
	Telephone (817)8852672 Ext
	Facsimile (817)8851847
	Facility Location
	Temporary source?Yes _X_No Plant site location39.9750760, -109.6360850
	CityRoosevelt State_UT CountyUintah EPA Region_8
	Is the facility located within:
	Indian lands? _X - Indian AirshedYESNO OCS waters?YES _X_NO
	Indian lands? _X - Indian AirshedYESNO OCS waters?YES _X_NO Non-attainment area?YES _X_NO If yes, for what air pollutants?N/A
	Non-attainment area? YES X_NO If yes, for what air pollutants? N/A
	Non-attainment area? YES _X_NO If yes, for what air pollutants? N/A Within 50 miles of affected State? X_YESNO If yes, What State(s)? Colorado
	Non-attainment area? YES _X_NO If yes, for what air pollutants? N/A Within 50 miles of affected State? X_YESNO If yes, What State(s)? Colorado Owner
	Non-attainment area? YES _X_NO If yes, for what air pollutants?N/A Within 50 miles of affected State? X_YESNO If yes, What State(s)?Colorado Owner
	Non-attainment area? YES _X_NO If yes, for what air pollutants?N/A Within 50 miles of affected State? X_YESNO If yes, What State(s)?Colorado Owner
	Non-attainment area? YES _X_NO If yes, for what air pollutants?N/A Within 50 miles of affected State? _X_YESNO If yes, What State(s)?Colorado Owner
	Non-attainment area? YES _X_NO If yes, for what air pollutants?N/A Within 50 miles of affected State? _X_YESNO If yes, What State(s)?Colorado Owner

E. Appl	ication Type				
	rk only one pern rked.	nit application type	and answer the supple	ementary question appropriate for th	e type
X	_Initial Permit	Renewal	Significant Mod	Minor Permit Mod(MPM)	

____ Group Processing, MPM ____ Administrative Amendment

For initial permits, when did operations commence? ____/_N/A___/____

For permit renewal, what is the expiration date of current permit? ____/_N/A__/___

F. Applicable Requirement Summary

Mark all types of applicable	requirements that apply.					
SIP	FIP/TIP	PSD	Non-attainment NSR			
Minor source NSR	Section 111	Phase I acid rair	Phase II acid rain			
Stratospheric ozone	OCS regulations	_X_ NESHAP	Sec. 112(d) MACT			
Sec. 112(g) MACT	Early reduction of HAP	Sec 112(j) MAC	T RMP [Sec.112(r)]			
Tank Vessel requirements, sec. 183(f)) Section 129 Standards/Requirement						
Consumer / comm products, ' 183(e) NAAQS, increments or visibility (temp. sources)						
Has a risk management plan been registered?YES _X_NO Regulatory agency						
Phase II acid rain application	on submitted?YES _X_N	IO If yes, Permitting	authority			

G. Source-Wide PTE Restrictions and Generic Applicable Requirements

Cite and describe any emissions-limiting requirements and/or facility-wide "generic" applicable requirements.

None	

H. Process Description

List processes, products, and SIC codes for the facility.

Process	Products	SIC
Natural Gas Production	Natural Gas	1311
	-	

I. Emission Unit Identification

Assign an emissions unit ID and describe each emissions unit at the facility. Control equipment and/or alternative operating scenarios associated with emissions units should by listed on a separate line. Applicants may exclude from this list any insignificant emissions units or activities.

Emissions Unit ID Description of Unit	
RBF-1	Fugitive Emissions
RBD-1	45 MMSCFD Glycol Dehydrator (controlled by thermal oxidizer)
RBTO-1	Thermal Oxidizer Emissions
RBL-1	Condensate Truck Loading Emissions
RBT-1	One (1) 400-barrel condensate tank #1
RBT-2	One (1) 400-barrel condensate tank #2
TIC-1	Tap-1 Caterpillar G3516 TALE Compressor Engine Controlled By Oxidation Catalyst
TIC-2	Tap-1 Caterpillar G3516 TALE Compressor Engine Controlled By Oxidation Catalyst
T1T-1	Tap-1 One (1) 300-barrel condensate tank #1
T1T-2	Tap-1 One (1) 300-barrel condensate tank #2
T1P-1 / T1P-2	Tap-1 Pneumatic Pumps
RBU 6-15E	RBU 6-15E Wellsite Emissions
RBU 7-15E	RBU 7-15E Wellsite Emissions
RBU 7-15E	RBU 11-15E Wellsite Emissions

J. Facility Emissions Summary

Enter potential to emit (PTE) for the facility as a whole for each air pollutant listed below. Enter the name of the single HAP emitted in the greatest amount and its PTE. For all pollutants stipulations to major source status may be indicated by entering "major" in the space for PTE. Indicate the total actual emissions for fee purposes for the facility in the space provided. Applications for permit modifications need not include actual emissions information.

NOx 38.8 tons/yr	VOC104.7 tons/yr SO20.1 tons/yr					
PM-100.3 tons/yr	CO69.7 tons/yr Lead0.0 tons/yr					
Total HAP24.3 tons/yr						
Single HAP emitted in the greatest amount PTE tons/yr						
Total of regulated pollutants (for fee calculation), Sec. F, line 5 of form FEE tons/yr						

K. Existing Federally-Enforceable Permits

Permit number(s) __None – Pending Permit ____ Permit type _____ Permitting authority _____

Permit number(s) _V-UO-000026-2011.00 _ Permit type _Part 71 _ Permitting authority _EPA_

L. Emission Unit(s) Covered by General Permits

Emission unit(s) subject to general perm	
Check one: Application made General permit identifier	
1. Cross-referenced Information	

Does this application cross-reference information? ____YES _X_NO (If yes, see instructions)

INSTRUCTIONS FOLLOW

Federal Operating Permit Program (40 CFR Part 71) EMISSION UNIT DESCRIPTION FOR FUEL COMBUSTION SOURCES (EUD-1)

A. General Information

Emissions unit ID _T1C-1_____ Description_Caterpillar G3516 TALE_____

SIC Code (4-digit) _1311_____ SCC Code_____

B. Emissions Unit Description

Primary useCompressor Engine Temporary SourceYes _XNo						
ManufacturerCaterpillar Model NoG3516 TALE						
Serial Number4EK03995 Installation Date7 /_1 /_2013						
Boiler Type: Industrial boiler Process burner Electric utility boiler						
Other (describe)Natural-Gas Compressor Engine						
Engine horsepower rating1340 Boiler steam flow (lb/hr)						
Type of Fuel-Burning Equipment (coal burning only):						
Hand firedSpreader stokerUnderfeed stokerOverfeed stoker						
Traveling grateShaking gratePulverized, wet bed Pulverized, dry bed						
Actual Heat Input10.311MM BTU/hr Max. Design Heat Input10.311MM BTU/hr						

C. Fuel Data

Primary fuel type(s)___Natural Gas______ Standby fuel type(s)______

Describe each fuel you expected to use during the term of the permit.

Fuel Type	Max. Sulfur Content (%)	Max. Ash Content (%)	BTU Value (cf, gal., or lb.)
Natural Gas	0	0	1,044 BTU/scf

D. Fuel Usage Rates

Fuel Type	Annual Actual	Maximum Usage		
	Usage		Annual	
Natural Gas	86.52 mmscf	9877 scf	86.52 mmscf	

E. Associated Air Pollution Control Equipment

Emissions unit IDT1C-1	Device type
Air pollutant(s) ControlledNONE	Manufacturer
Model No	Serial No
Installation date//	Control efficiency (%)
Efficiency estimation method	

F. Ambient Impact Assessment

This information must be completed by temporary sources or when ambient impact assessment is an applicable requirement for this emissions unit (this is not common).

Stack height (ft)20 Inside stack diameter (ft)1.0
Stack temp (°F) _900 Design stack flow rate (ACFM) _7926
Actual stack flow rate (ACFM)7926 Velocity (ft/sec)168

OMB No. 2060-0336, Approval Expires 05/31/2019

Federal Operating Permit Program (40 CFR Part 71) EMISSION CALCULATIONS (EMISS)

Calculate potential to emit (PTE) for applicability purposes and actual emissions for fee purposes for each emissions unit, control device, or alternative operating scenario identified in section I of form **GIS**. If form **FEE** does not need to be submitted with the application, do not calculate actual emissions.

A. Emissions Unit ID _T1C-1_____

B. Identification and Quantification of Emissions

For each emissions unit identified above, list each regulated air pollutant or other pollutant for which the source is major, then list any other regulated pollutant (for fee calculation) not already listed. HAP may be simply listed as "HAP." Next, calculate PTE for applicability purposes and actual emissions for fee purposes for each pollutant. Do not calculate PTE for air pollutants listed solely for fee purposes. Include all fugitives for fee purposes. See instructions concerning GHGs. Values should be reported to the nearest tenth (0.1) of a ton for yearly values or tenth (0.1) of a pound for hourly values.

		Emission Rates		
	Actual			
Air Pollutants	Annual Emissions (tons/yr)	Hourly (lb/hr)	Annual (tons/yr)	CAS No.
NOx		4.43	19.41	
со		7.39	32.35	
VOC		1.12	4.92	
ACETALDEHYDE		0.09	0.38	75070
ACROLEIN		0.053	0.2321	107028
FORMALDEHYDE		0.86	3.7524	50000

Federal Operating Permit Program (40 CFR Part 71) EMISSION UNIT DESCRIPTION FOR FUEL COMBUSTION SOURCES (EUD-1)

A. General Information

Emissions unit ID _T1C-2_____ Description_Caterpillar G3516 TALE_____

SIC Code (4-digit) _1311_____ SCC Code_____

B. Emissions Unit Description

Primary useCompressor Engine Temporary SourceYes _XNo						
ManufacturerCaterpillar Model NoG3516 TALE						
Serial Number4EK03582 Installation Date7_/_18_/_2013						
Boiler Type: Industrial boiler Process burner Electric utility boiler						
Other (describe)Natural-Gas Compressor Engine						
Engine horsepower rating1150 Boiler steam flow (lb/hr)						
Type of Fuel-Burning Equipment (coal burning only):						
Hand firedSpreader stokerUnderfeed stokerOverfeed stoker						
Traveling grateShaking gratePulverized, wet bed Pulverized, dry bed						
Actual Heat Input8.711MM BTU/hr Max. Design Heat Input8.711MM BTU/hr						

C. Fuel Data

Primary fuel type(s)_____ Natural Gas______ Standby fuel type(s)___

Describe each fuel you expected to use during the term of the permit.

Fuel Type	Max. Sulfur Content (%)	Max. Ash Content (%)	BTU Value (cf, gal., or lb.)
Natural Gas	0	0	1,044 BTU/scf

D. Fuel Usage Rates

Fuel Type	Annual Actual	Maximum Usage		
	Usage	Hourly	Annual	
Natural Gas	73.09 mmscf	8344 scf	73.09 mmscf	

E. Associated Air Pollution Control Equipment

Emissions unit IDT1C-2	Device type
Air pollutant(s) ControlledNONE	Manufacturer
Model No	Serial No
Installation date//	_ Control efficiency (%)
Efficiency estimation method	

F. Ambient Impact Assessment

This information must be completed by temporary sources or when ambient impact assessment is an applicable requirement for this emissions unit (this is not common).

Stack height (ft)20 Inside stack diameter (ft)1.0
Stack temp (°F) _900 Design stack flow rate (ACFM) _6664
Actual stack flow rate (ACFM)6664 Velocity (ft/sec)142

Federal Operating Permit Program (40 CFR Part 71) EMISSION CALCULATIONS (EMISS)

Calculate potential to emit (PTE) for applicability purposes and actual emissions for fee purposes for each emissions unit, control device, or alternative operating scenario identified in section I of form **GIS**. If form **FEE** does not need to be submitted with the application, do not calculate actual emissions.

A. Emissions Unit ID _T1C-2_____

B. Identification and Quantification of Emissions

For each emissions unit identified above, list each regulated air pollutant or other pollutant for which the source is major, then list any other regulated pollutant (for fee calculation) not already listed. HAP may be simply listed as "HAP." Next, calculate PTE for applicability purposes and actual emissions for fee purposes for each pollutant. Do not calculate PTE for air pollutants listed solely for fee purposes. Include all fugitives for fee purposes. See instructions concerning GHGs. Values should be reported to the nearest tenth (0.1) of a ton for yearly values or tenth (0.1) of a pound for hourly values.

	Emission Rates			
	Actual Potential to Emit			
Air Pollutants	Annual Emissions (tons/yr)	Hourly (lb/hr)	Annual (tons/yr)	CAS No.
NOx		3.80	16.7	
со		6.72	29.43	
VOC		1.06	4.66	
ACETALDEHYDE		0.073	0.32	75070
ACROLEIN		0.05	0.20	107028
FORMALDEHYDE		0.74	3.22	50000

OMB No. 2060-0336, Approval Expires 05/31/2019

Federal Operating Permit Program (40 CFR Part 71) EMISSION CALCULATIONS (EMISS)

Calculate potential to emit (PTE) for applicability purposes and actual emissions for fee purposes for each emissions unit, control device, or alternative operating scenario identified in section I of form **GIS**. If form **FEE** does not need to be submitted with the application, do not calculate actual emissions.

A. Emissions Unit ID _T1P-1 / T1P-2_____

B. Identification and Quantification of Emissions

For each emissions unit identified above, list each regulated air pollutant or other pollutant for which the source is major, then list any other regulated pollutant (for fee calculation) not already listed. HAP may be simply listed as "HAP." Next, calculate PTE for applicability purposes and actual emissions for fee purposes for each pollutant. Do not calculate PTE for air pollutants listed solely for fee purposes. Include all fugitives for fee purposes. See instructions concerning GHGs. Values should be reported to the nearest tenth (0.1) of a ton for yearly values or tenth (0.1) of a pound for hourly values.

Air Pollutants	Emission Rates			
	Actual Annual Emissions (tons/yr)	Potential to Emit		
		Hourly (lb/hr)	Annual (tons/yr)	CAS No.
VOC		3.6	15.7	
BENZENE		0.01	0.018	71432
TOLUENE		0.01	0.023	108883
XYLENE		0.002	0.01	1330207
N-HEXANE		0.02	0.1	110543
ETHYLBENZENE		0.0002	0.001	100414

Federal Operating Permit Program (40 CFR Par EMISSIONS UNIT DESCRIPTION FOR VOC E	
A. General Information	
Emissions unit ID _T1T-1 Description SIC Code (4-digit)1311 SCC Code	
3. Emissions Unit Description	
Equipment typeStorage Tank	Temporary source:Yes _XNo
ManufacturerBenchmark	Model NoVerical Fixed Roof
Serial No2024	Installation date6/_18/_2012_
Articles being coated or degreased	
Application method	water ware to the task
Overspray (surface coating) (%) Dry	ing method
No. of dryers Tank capacity (c	egreasers) (gal)
C. Associated Air Pollution Control Equipment	
Emissions unit ID Device Type	NONE
Manufacturer Mod	el No
Serial No	Installation date//
Control efficiency (%) Capture	efficiency (%)
Air pollutant(s) controlled Efficie	ncy estimation method
D. Ambient Impact Assessment	
This information must be completed by temporary source applicable requirement for this emissions unit (this is not	
Stack height (ft)16 Inside st	ack diameter (ft)0.25
Stack temp (F)60 Design s	stack flow rate (ACFM)
Actual stack flow rate (ACFM)	Velocity (ft/sec)

E. VOC-containing Substance Data

List each VOC-containing substance consumed, processed or produced at the emissions unit that is emitted into the air. In the name column, if providing a brand name, include the name of the manufacture; if the substance contains HAP, list the constituent HAP.

Substance Name (Chemical, Brand Name)	CAS No.	Substance Type	Actual Usage (gal/yr)	Max Usage (gal/day)	Max Usage (gal/year)	VOC Content (Ib/gal)
Condensate		Condensate	191,625	525	191,625	0.05

Federal Operating Permit Program (40 CFR Part 71) EMISSIONS UNIT DESCRIPTION FOR VOC EMITTING SOURCES (EUD-2)

A. General Information

Emissions unit ID _T1T-2	Description300-barrel condensate storage tank
SIC Code (4-digit)1311	SCC Code31000212

B. Emissions Unit Description

Equipment typeStorage Tank	_Temporary source:Yes _XNo
ManufacturerNATCO M	odel NoVerical Fixed Roof
Serial No8S06401-02	Installation date6_ / _18 / _2012_
Articles being coated or degreased	
Application method	n a a' an airseach a' an
Overspray (surface coating) (%) Dr	ying method
No. of dryers Tank capacity (degreasers) (gal)

C. Associated Air Pollution Control Equipment

Emissions unit ID Devi	ce TypeNONE
Manufacturer	Model No
Serial No	Installation date//
Control efficiency (%)	Capture efficiency (%)
Air pollutant(s) controlled	Efficiency estimation method

D. Ambient Impact Assessment

This information must be completed by temporary sources or when ambient impact assessment is an applicable requirement for this emissions unit (this is not common).				
Stack height (ft)16	Inside stack diameter (ft)0.25			
Stack temp (F)60	Design stack flow rate (ACFM)			
Actual stack flow rate (ACFM)	Velocity (ft/sec)			

E. VOC-containing Substance Data

List each VOC-containing substance consumed, processed or produced at the emissions unit that is emitted into the air. In the name column, if providing a brand name, include the name of the manufacture; if the substance contains HAP, list the constituent HAP.

Substance Name (Chemical, Brand Name)	CAS No.	Substance Type	Actual Usage (gal/yr)	Max Usage (gal/day)	Max Usage (gal/year)	VOC Content (Ib/gal)
Condensate		Condensate	191,625	525	191,625	0.05

Г

٦

Federal Operating Permit Program (40 CFR Part 71) EMISSIONS UNIT DESCRIPTION FOR VOC EMITTING SOURCES (EUD-2)				
A. General Information				
Emissions unit ID _RBT-1 Description400-barrel condensate storage tank SIC Code (4-digit)1311 SCC Code31000212				
B. Emissions Unit Description				
Equipment typeStorage Tank Temporary source:Yes _XNo				
ManufacturerBenchmark Model NoVerical Fixed Roof				
Serial No1764 Installation date12 /_15 /_2009_ Articles being coated or degreased				
Application method				
Overspray (surface coating) (%) Drying method				
No. of dryers Tank capacity (degreasers) (gal)				
C. Associated Air Pollution Control Equipment				
Emissions unit ID Device TypeNONE				
Manufacturer Model No				
Serial No Installation date//				
Control efficiency (%) Capture efficiency (%)				
Air pollutant(s) controlled Efficiency estimation method				
D. Ambient Impact Assessment				
This information must be completed by temporary sources or when ambient impact assessment is an applicable requirement for this emissions unit (this is not common).				
Stack height (ft)21 Inside stack diameter (ft)0.25				
Stack temp (F)60 Design stack flow rate (ACFM)				

_____ Velocity (ft/sec)

Actual stack flow rate (ACFM)

E. VOC-containing Substance Data

List each VOC-containing substance consumed, processed or produced at the emissions unit that is emitted into the air. In the name column, if providing a brand name, include the name of the manufacture; if the substance contains HAP, list the constituent HAP.

Substance Name (Chemical, Brand Name)	CAS No.	Substance Type	Actual Usage (gal/yr)	Max Usage (gal/day)	Max Usage (gal/year)	VOC Content (Ib/gal)
Condensate		Condensate	245,280	672	245,280	0.04
			u.			
				a bi		-
			5			

OMB No. 2060-0336, Approval Expires 05/31/2019

Federal Operating Permit Program (40 CFR Part 71) EMISSIONS UNIT DESCRIPTION FOR VOC EMITTING SOURCES (EUD-2)				
A. General Information				
Emissions unit ID _RBT-2 Description400-barrel condensate storage tank SIC Code (4-digit)1311 SCC Code31000212				
B. Emissions Unit Description				
Equipment typeStorage Tank Temporary source:Yes _XNo				
ManufacturerBenchmark Model NoVerical Fixed Roof				
Serial No1765 Installation date12/_15/_2009_				
Articles being coated or degreased				
Application method				
Overspray (surface coating) (%) Drying method				
No. of dryers Tank capacity (degreasers) (gal)				
C. Associated Air Pollution Control Equipment				
Emissions unit ID Device TypeNONE				
Manufacturer Model No				
Serial No Installation date//				
Control efficiency (%) Capture efficiency (%)				
Air pollutant(s) controlled Efficiency estimation method				
D. Ambient Impact Assessment				
This information must be completed by temporary sources or when ambient impact assessment is an applicable requirement for this emissions unit (this is not common).				
Stack height (ft)21 Inside stack diameter (ft)0.25				
Stack temp (F)60 Design stack flow rate (ACFM)				
Actual stack flow rate (ACFM) Velocity (ft/sec)				

2

E. VOC-containing Substance Data

List each VOC-containing substance consumed, processed or produced at the emissions unit that is emitted into the air. In the name column, if providing a brand name, include the name of the manufacture; if the substance contains HAP, list the constituent HAP.

Substance Name (Chemical, Brand Name)	CAS No.	Substance Type	Actual Usage (gal/yr)	Max Usage (gal/day)	Max Usage (gal/year)	VOC Content (Ib/gal)
Condensate		Condensate	245,280	672	245,280	0.04

Federal Operating Permit Program (40 CFR Part 71) EMISSION UNIT DESCRIPTION FOR PROCESS SOURCES (EUD-3)

A. General Information

Emissions unit ID ____RBU 11-15E D-1___ Description _____0.20 mmscfd natural gas dehydrator__

SIC Code (4-digit) ____1311_____ SCC Code_____

B. Emissions Unit Description

Primary use or equipment typeNatural Gas Dehydration				
ManufacturerSivalls	Model No			
Serial No	Installation date//_2007			
Raw materialsWet Natural Gas				
Finished productsDry Natural Gas				
Temporary source: _XNoYes				

C. Activity or Production Rates

Activity or Production Rate	Amount/Hour	Amount/Year	
Actual Rate	1.3 mscf/hr	11.6 mmscf/yr	
Maximum rate	8.34 mscf/hr	73.1 mmscf/yr	

D. Associated Air Pollution Control Equipment

Emissions unit ID	Device TypeNONE
Manufacturer	Model No
Serial No.	Installation date ////
Control efficiency (%)	Capture efficiency (%)
Air pollutant(s) controlled	Efficiency estimation method

E. Ambient Impact Assessment

	This information must be completed by temporary sources or when ambient impact assessment is an applicable requirement for this emissions unit (This is not common)).					
Stack height (ft)12	Inside stack diameter (ft)0.25					
Stack temp (F)350	Design stack flow rate (ACFM)					
Actual stack flow rate (ACFM)	Velocity (ft/sec)					

INSTRUCTIONS FOR EUD-3 EMISSIONS UNIT DESCRIPTION FOR PROCESS SOURCES

This form is designed to describe emissions units for processes for which forms EUD-1 or EUD-2 are not appropriate. For example, sources such as rock crushers and asphalt batch plants. This form will help you to collect and organize technical information, including operational characteristics, applicable requirements, compliance terms, and emissions for each emissions unit.

Section A - The emissions unit ID should be consistent with the one used in section I of form **GIS**. Enter the four-digit SIC code for the unit, which may be different form that used for the facility as a whole. In addition, complete the Source Classification Code (SCC), if known or available, but this is not mandatory.

Section B - There may be other information that the permitting authority will need to know that is not specifically requested on the forms and that should be included on attachments. Such information would include information needed to adequately identify the emissions unit and to determine its applicable requirements.

Section C - The amount of raw materials that are processed and/or the number of activities performed are values that are typically multiplied by emissions factors to calculate PTE and actual emissions.

Section D - Identify and describe any associated air pollution control device. Attach copies of correspondence from the vendor documenting these values, if available, or indicate how these values were otherwise determined (e.g., AP-42).

Section E - Complete this section only if ambient impact assessment is an applicable requirement or the facility is a temporary source. This is not common.

Federal Operating Permit Program (40 CFR Part 71) EMISSION CALCULATIONS (EMISS)

Calculate potential to emit (PTE) for applicability purposes and actual emissions for fee purposes for each emissions unit, control device, or alternative operating scenario identified in section I of form **GIS**. If form **FEE** does not need to be submitted with the application, do not calculate actual emissions.

A. Emissions Unit ID _RBD-1_____

B. Identification and Quantification of Emissions

For each emissions unit identified above, list each regulated air pollutant or other pollutant for which the source is major, then list any other regulated pollutant (for fee calculation) not already listed. HAP may be simply listed as "HAP." Next, calculate PTE for applicability purposes and actual emissions for fee purposes for each pollutant. Do not calculate PTE for air pollutants listed solely for fee purposes. Include all fugitives for fee purposes. See instructions concerning GHGs. Values should be reported to the nearest tenth (0.1) of a ton for yearly values or tenth (0.1) of a pound for hourly values.

		Emission Rate		
	Actual	Potentia	l to Emit	
Air Pollutants	Annual Emissions (tons/yr)	Hourly (lb/hr)	Annual (tons/yr)	CAS No.
voc	See attached PTE Table			
HAPs	See attached PTE Table			

Federal Operating Permit Program (40 CFR Part 71) INSIGNIFICANT EMISSIONS (IE)

On this page list each insignificant activity or emission unit. In the "number" column, indicate the number of units in this category. Descriptions should be brief but unique. Indicate which emissions criterion of part 71 is the basis for the exemption.

Number	Description of Activities or Emissions Units	RAP (except HAP)	НАР
	Updated July-2017 - Refer to the	X	Х
	attached Station PTE Table		
			- -

UNCONTROLLED CONDENSATE TRUCK LOADING EMISSIONS

Company: XTO Energy Inc. Facility Name: Riverbend Dehydration Site Facility Location: Uintah County, Utah

AP - 42, Chapter 5.2

L_L = 12.46 x S x P x M / T Emissions = L_L * Throughput

TABLE 1. Emission factors are calculated utilizing AP-42 equations and data from EPA TANKS 4.09 LL is converted to tpy VOC emissions per barrel of production per

L_L = Loading Loss Emission Factor (lbs VOC/1000 gal Loaded)

S = Saturation Factor (0.6 For Submerged Loading - Dedicated Service)

P = True Vapor Pressure of the Loaded Liquid (psi)

M = Vapor Molecular Weight of the Loaded Liquid (lbs/lbmol)

T = Temperature of Loaded Liquid (°R)

								L		Production	VOC
Location	Factors	S	TVP (psi)	М	T (°R)	lb/1000 gal	lb/gai	lb/bb1	tpy VOC/bpd	bpd	tpy
Truck Loading	12.46	0.6	10	68	511.68	9.9353	0.0099	0.4173	7.62E-02	32.00	2.4369

Thermal Oxidizer Emission Calculations

Company:	XTO Energy Inc.
Facility Name:	River Bend Dehydration Site
Facility Location:	Uintah County, Utah

Flare Heat Input Capacity	1.787	MMBtu/hr	(Dehydrator emissions only routed to	o thermal oxidizer)
Dehy Still Overhead Gas Daily Volume	32.16	Mscf/day	From Glycalc (scfh) =	1,340.00
Thermal Oxidizer makeup gas Daily Volume	6.603	Mscf/day	From Glycalc (scfh) =	275.00
Operating Time	8,760	hr/yr		

Pollutant	(A) Emission Factor ¹ (Ib/MMBtu)	(B) = (A)x MMBtu/hr Potential Emission Rate (Ibs/hr)	(C) = (B)xOT Potential Emission Rate (Ibs/year)	(D) = (C)/2000 Potential Emission Rate (tons/year)		
Particulate Matter (PM)		Negligible, Smokeless Design				
Particulate Matter (PM ₁₀)		Negligible, Smokeless Design				
Nitrogen Oxides (NO _x)	0.068	0.12	1064.23	0.53		
Sulfur Oxides (SO _x)		None; no H ₂ S present in fuel gas				
Carbon Monoxide (CO)	0.37	0.66	5790.69	2.90		
Volatile Organic Compounds (VOC)	-	_		-		

¹Emission Factors for Waste Gas from AP-42 Tables 13.5-1 and 13.5-2 (9/91) in lb/MMBtu

Thermal Oxidizer Emission Calculations

Company:	XTO Energy Inc.
Facility Name:	River Bend Dehydration Site
Facility Location:	Uintah County, Utah
	Facility Name:

Pilot Emissions (One pilot)

Total Heat Input Capacity of Pilot ²	0.1	MMBtu/hr
Heating Value	1106	Btu/scf
Operating Time	8760	hr/yr
Total Natural Gas Usage	0.0001	MMscf/hr
2		

² Pilot light heat input based on 2Mscf/day.

Pollutant	(A) Emission Factor (Ib/MMscf)	(B) = (A)x MMscf/hr Potential Emission Rate (Ibs/hr)	(C) = (B)xOT Potential Emission Rate (Ibs/year)	(D) = (C)/2000 Potential Emission Rate (tons/year)
Particulate Matter (PM) ³	7.6	0.0006	5.5480	0.0028
Particulate Matter (PM ₁₀) ³	7.6	0.0006	5.5480	0.0028
Nitrogen Oxides (NO _x) ⁴	100	0.0083	73.0000	0.0365
Sulfur Dioxide (SO ₂) ³	0.6	0.0001	0.4380	0.0002
Carbon Monoxide (CO) ⁴	84	0.0070	61.3200	0.0307
Volatile Organic Compounds (VOC) ³	5.5	0.0005	4.0150	0.0020
HAPs ³	0.0805	0.0000	0.0588	0.0000

³Emission Factors from AP-42 Tables 1.4-1, 1.4-2, 1.4-3, and 1.4-4 (7/98) and adjusted accordingly ⁴Emission Factors from AP-42 Table 13.5-1 guidance issued in September 1991.

Total Thermal Oxidizer Emissions

Pollutant	Total Potential Emission Rate (tons/year)
Particulate Matter (PM)	0.0028
Particulate Matter (PM ₁₀)	0.0028
Nitrogen Oxides (NO _x)	0.5686
Sulfur Dioxide (SO ₂)	0.0002
Carbon Monoxide (CO)	2.9260
Volatile Organic Compounds (VOC)	0.0020

POTENTIAL UNCONTROLLED EMISSIONS

Company: XTO ENERGY INC. Facility Name: River Bend Dehydration Site Facility Location: Uintah County, Utah

Unit: TEG Dehydrator - RBD-1

Rating: 45.0 MMscf/day total; Rotortech Model 1110 Electric Pump - max 9.5 gpm rate Updated May-2017

Unit	Gas Flow								Total	Total		
Description	Rate	VOCs	Benzene	Toluene	Ethylbenzene	Xylenes	N-Hexane	224-TMP	HAPs	BTEX	CO2	Methane
	(MMscf/day)	(tons/yr)	(tons/yr)	(tons/yr)	(tons/yr)	(tons/yr)	(tons/yr)	(tons/yr)	(tons/yr)	(tons/yr)	(tons/yr)	(tons/yr)
Dehy w/elec pump	45.0	291.2777	68.8294	94.2297	4.0295	46.2320	3.5578	0.2604	217.1388	213.3206	0.0000	5.0094
Flash Separator		37.8371	0.7824	0.6622	0.0158	0.1269	1.1697	0.08	2.8370	1.5873	0.0000	73.2515
TOTAL		329.115	69.612	94.892	4.045	46.359	4.728	0.340	219.976	214.908	0.000	78.261

POTENTIAL CONTROLLED EMISSIONS

Unit	Gas Flow								Total	Total		
Description	Rate	VOCs	Benzene	Toluene	Ethylbenzene	Xylenes	N-Hexane	224-TMP	HAPs	BTEX	CO2	Methane
	(MMscf/day)	(tons/yr)	(tons/yr)	(tons/yr)	(tons/yr)	(tons/yr)	(tons/yr)	(tons/yr)	(tons/yr)	(tons/yr)	(tons/yr)	(tons/yr)
Dehy w/elec pump	45.0	14.5639	3.4415	4.7115	0.2015	2.3116	0.1779	0.0130	10.8569	10.6660	0.0000	0.2505
Flash Separator*		0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000
TOTAL		14.564	3.441	4.711	0.201	2.312	0.178	0.013	10.857	10.666	0.000	0.250

Dehydrator still vent controlled 99% through the use of a thermal oxidizer (see attached information)

* Flash gas separator is routed to two places: any liquids go to the bullet tank onsite; gas is routed to a suction line and sent off-site to the Tap 1 Compressor Station.

updated w/2016 Analysis and updated pump rate (959pm)

GRI-GLYCalc VERSION 4.0 - SUMMARY OF INPUT VALUES

Case Name: RB Dehy Site - 2017 Updated PTE Uncontrolled Emissions File Name: W:YEHSYEnvironmentalYAirYAreas of OperationYUtahY_MSOYRBU DehyYTitle VYEPA RBU Dehy 2016-20 17 Questions¥RBU Dehy 2017 Updated PTE .ddf Date: May 12, 2017 DESCRIPTION: Description: Throughput: 45 MMSCFD, Gas Analysis: 6/13/2016 Electric Rotor GS1110-E @ max 9.5 gpm Flash Tank w/ gas recycle, TOx Annual Hours of Operation: 8760.0 hours/yr WET GAS: -----------74.00 deg. F Temperature: 1042.00 psig Pressure: Wet Gas Water Content: Saturated Component Conc. (vol %) Carbon Dioxide 0.3517 Nitrogen 0.3686 Methane 89.6464 Ethane 6.0452 1.9291 Propane 0.4376 Isobutane n-Butane 0.4848 Isopentane 0.2080 0.1435 n-Pentanc n-Hexane 0.0608 0.0344 Cyclohexane Other Hexanes 0.0961 0.0881 Heptanes 0.0441 Methylcyclohexane 2, 2, 4-Trimethylpentane 0.0047 0,0228 Benzene Toluene 0.0190 Ethylbenzene 0.0006 Xylenes 0.0053 C8+ Heavies 0.0092 DRY GAS: Flow Rate: 45.0 MMSCF/day Water Content: 7.0 lbs. H20/MMSCF LEAN GLYCOL:

> Glycol Type: TEG Water Content: 1.5 wt% H20 Flow Rate: 9.5 gpm

PUMP:

Glycol Pump Type: Electric/Pneumatic

FLASH TANK:

Flash Control: Recycle/recompression Temperature: 120.0 deg. F Pressure: 60.0 psig

REGENERATOR OVERHEADS CONTROL DEVICE:

Control Device: Combustion Device Dostruction Efficiency: 99.0 % Excess Oxygen: 13.8 % Ambient Air Temperature: 52.0 deg. F

Case Name: RB Dehy Site - 2017 Updated PTE Uncontrolled Emissions File Name: W:¥EHS¥Environmental¥AirYAreas of Operation¥Utah¥_MSO¥RBU Dehy¥Title V¥EPA RBU Dehy 2016-20 17 Questions¥RBU Dehy 2017 Updated PTE .ddf Date: May 12, 2017

CONTROLLED REGENERATOR EMISSIONS

Component	lbs/hr	lbs/day	tons/yr
Methane	0.0114	$\begin{array}{c} 0.\ 274\\ 0.\ 338\\ 0.\ 401\\ 0.\ 213\\ 0.\ 362 \end{array}$	0. 0501
Ethane	0.0141		0. 0617
Propane	0.0167		0. 0732
Isobutane	0.0089		0. 0389
n-Butane	0.0151		0. 0660
Isopentane	0.0083	0. 200	0. 0365
n-Pentane	0.0082	0. 197	0. 0359
n-Hexane	0.0081	0. 195	0. 0356
Cyclohexane	0.0260	0. 625	0. 1140
Other Hexancs	0.0091	0. 217	0. 0397
Heptanes	0.0280	0, 673	0. 1228
Methylcyclohexane	0.0408	0, 980	0. 1789
2,2,4-Trimethylpentane	0.0006	0, 014	0. 0026
Benzene	0.1571	3, 771	0. 6883
Toluene	0.2151	5, 163	0. 9423
Ethylbenzene	0.0092	0. 221	0.0403
Xylenes	0.1058	2. 538	0.4632
C8+ Heavies	0.0079	0. 189	0.0346
Total Emissions	0.6905	16.573	3, 0246
Total Hydrocarbon Emissions	0.6905	16.573	3. 0246
Total VOC Emissions	0.6650	15.960	2. 9128
Total HAP Emissions	0.4960	11.903	2. 1723
Total BTEX Emissions	0.4872	11.694	2. 1341

UNCONTROLLED REGENERATOR EMISSIONS

Component	lbs/hr	lbs/day	tons/yr
Methane	1. 1437	27. 449	$5.\ 0094 \\ 6.\ 1737 \\ 7.\ 3168 \\ 3.\ 8869 \\ 6.\ 6033$
Ethane	1. 4095	33. 829	
Propane	1. 6705	40. 092	
Isobutane	0. 8874	21. 298	
n-Butane	1. 5076	36. 182	
Isopentane	0.8340	20.015	3. 6527
n-Pentane	0.8206	19.694	3. 5942
n-Hexane	0.8123	19.495	3. 5578
Cyclohexane	2.6037	62.488	11. 4041
Other Hexanes	0.9062	21.748	3. 9691
Heptanes	2.8030	67. 272	$\begin{array}{c} 12.\ 2771\\ 17.\ 8853\\ 0.\ 2604\\ 68.\ 8294\\ 94.\ 2297 \end{array}$
Methylcyclohexane	4.0834	98. 002	
2,2,4-Trimethylpentane	0.0594	1. 427	
Benzene	15.7145	377. 148	
Toluenc	21.5136	516. 327	
Ethylbenzene	0.9200	22. 079	4. 0295
Xylenes	10.5761	253. 826	46. 3232

C8-	+ Heavics	0. 7895	18.949	Page: 2 3.4582
Total I	Emissions	69.0550	1657.320	302, 4609
Total Hydrocarbon Total VOC Total HAP Total BTEX	Emissions Emissions	69.0550 66.5018 49.5959 48.7242	1657. 320 1596. 042 1190. 302 1169. 380	302. 4609 291. 2777 217. 2301 213. 4119

FLASH GAS EMISSIONS

.

Note: Flash Gas Emissions arc zero with the Recycle/recompression control option.

FLASH TANK OFF GAS

Component	lbs/hr	lbs/day	tons/yr
	16.7241	401. 378	73. 2515
	5.5263	132. 630	24. 2050
	3.1219	74. 925	13. 6738
	1.0675	25. 621	4. 6758
	1.3661	32. 786	5. 9835
Isopentane	0.6371	15. 289	
n-Pentane	0.5055	12. 132	
n-Hexane	0.2671	6. 409	
Cyclohexane	0.2065	4. 956	
Other Hexanes	0.3946	9. 470	
Heptanes	0. 4332		1.8972
Methylcyclohexane	0. 2486		1.0887
2,2,4-Trimethylpentane	0. 0183		0.0800
Benzene	0. 1786		0.7824
Toluene	0. 1512		0.6622
Ethylbenzene Xylenes C8+ Hcavies		0.087 0.695 0.240	
Total Emissions	30. 8889	741.335	135. 2936
Total Hydrocarbon Emissions	30.8889	207.326	135. 2936
Total VOC Emissions	8.6386		37. 8371
Total HAP Emissions	0.6477		2. 8370
Total BTEX Emissions	0.3624		1. 5873

GRI-GLYCalc VERSION 4.0 - AGGREGATE CALCULATIONS REPORT

Case Name: RB Dehy Site - 2017 Updated PTE Uncontrolled Emissions File Name: W:¥EHS¥Environmental¥Air¥Areas of Operation¥Utah¥_MSO¥RBU Dehy¥Title V¥EPA RBU Dehy 2016-20 17 Questions¥RBU Dehy 2017 Updated PTE .ddf Date: August 02, 2017

DESCRIPTION:

Description: Throughput: 45 MMSCFD, Gas Analysis: 6/13/2016 Electric Rotor GS1110-E @ max 9.5 gpm Flash Tank w/ gas recycle, TOx

Annual Hours of Operation: 8760.0 hours/yr

EMISSIONS REPORTS:

CONTROLLED REGENERATOR EMISSIONS

Component	lbs/hr	lbs/day	tons/yr
Methane	0. 0114	$\begin{array}{c} 0.\ 274\\ 0.\ 338\\ 0.\ 401\\ 0.\ 213\\ 0.\ 362 \end{array}$	0.0501
Ethane	0. 0141		0.0617
Propane	0. 0167		0.0732
Isobutane	0. 0089		0.0389
n-Butane	0. 0151		0.0660
Isopentane	0.0083	$\begin{array}{c} 0.\ 200\\ 0.\ 197\\ 0.\ 195\\ 0.\ 625\\ 0.\ 217 \end{array}$	0.0365
n-Pentane	0.0082		0.0359
n-Hexane	0.0081		0.0356
Cyclohexane	0.0260		0.1140
Other Hexanes	0.0091		0.0397
Heptanes	0. 0280	$\begin{array}{c} 0.\ 673\\ 0.\ 980\\ 0.\ 014\\ 3.\ 771\\ 5.\ 163 \end{array}$	0. 1228
Methylcyclohexane	0. 0408		0. 1789
2,2,4-Trimethylpentane	0. 0006		0. 0026
Benzene	0. 1571		0. 6883
Toluene	0. 2151		0. 9423
Ethylbenzene	0. 0092	0. 221	0.0403
Xylenes	0. 1058	2. 538	0.4632
C8+ Heavies	0. 0079	0. 189	0.0346
Total Emissions	0. 6905	16. 573	3. 0246
Total Hydrocarbon Emissions	0.6905	16.573	3. 0246
Total VOC Emissions	0.6650	15.960	2. 9128
Total HAP Emissions	0.4960	11.903	2. 1723
Total BTEX Emissions	0.4872	11.694	2. 1341

UNCONTROLLED REGENERATOR EMISSIONS

Component	lbs/hr	Ibs/day	tons/yr
Methane Ethane Propane Isobutane n-Butane	$\begin{array}{c} 1.\ 1437\\ 1.\ 4095\\ 1.\ 6705\\ 0.\ 8874\\ 1.\ 5076 \end{array}$	27.449 33.829 40.092 21.298 36.182	$5.0094 \\ 6.1737 \\ 7.3168 \\ 3.8869 \\ 6.6033$

			Page: 2
Isopentane	0.8340	20. 015	3.6527
n-Pentane	0.8206	19. 694	3.5942
n-Hexane	0.8123	19. 495	3.5578
Cyclohexane	2.6037	62. 488	11.4041
Other Hexanes	0.9062	21. 748	3.9691
Heptanes	$\begin{array}{c} 2.\ 8030\\ 4.\ 0834\\ 0.\ 0594\\ 15.\ 7145\\ 21.\ 5136 \end{array}$	67. 272	12. 2771
Methylcyclohexane		98. 002	17. 8853
2,2,4-Trimethylpentane		1. 427	0. 2604
Benzene		377. 148	68. 8294
Toluene		516. 327	94. 2297
Ethylbenzene	0. 9200	22. 079	4. 0295
Xylenes	10. 5761	253. 826	46. 3232
C8+ Heavies	0. 7895	18. 949	3. 4582
Total Emissions	69.0550	1657.320	302.4609
Total Hydrocarbon Emissions	69. 0550	1657. 320	302. 4609
Total VOC Emissions	66. 5018	1596. 042	291. 2777
Total HAP Emissions	49. 5959	1190. 302	217. 2301
Total BTEX Emissions	48. 7242	1169. 380	213. 4119

FLASH GAS EMISSIONS

.

Note: Flash Gas Emissions are zero with the Recycle/recompression control option.

FLASH TANK OFF GAS

Component	lbs/hr	lbs/day	tons/yr
Methane	16. 7241	401. 378	$\begin{array}{c} 73.\ 2515\\ 24.\ 2050\\ 13.\ 6738\\ 4.\ 6758\\ 5.\ 9835\end{array}$
Ethane	5. 5263	132. 630	
Propane	3. 1219	74. 925	
Isobutane	1. 0675	25. 621	
n-Butane	1. 3661	32. 786	
Isopentane	$\begin{array}{c} 0.\ 6371\\ 0.\ 5055\\ 0.\ 2671\\ 0.\ 2065\\ 0.\ 3946 \end{array}$	15. 289	2. 7903
n-Pentane		12. 132	2. 2141
n-Hexane		6. 409	1. 1697
Cyclohexane		4. 956	0. 9045
Other Hexanes		9. 470	1. 7283
Heptanes	0. 4332	$\begin{array}{c} 10. \ 396 \\ 5. \ 965 \\ 0. \ 439 \\ 4. \ 287 \\ 3. \ 629 \end{array}$	1.8972
Methylcyclohexane	0. 2486		1.0887
2,2,4-Trimethylpentane	0. 0183		0.0800
Benzene	0. 1786		0.7824
Toluene	0. 1512		0.6622
Ethylbenzene Xylenes C8+ Heavies	$\begin{array}{c} 0.\ 0036 \\ 0.\ 0290 \\ 0.\ 0100 \end{array}$	0.087 0.695 0.240	$\begin{array}{c} 0.\ 0158 \\ 0.\ 1269 \\ 0.\ 0438 \end{array}$
Total Emissions	30. 8889	741. 335	135. 2936
Total Hydrocarbon Emissions	30, 8889	741. 335	135. 2936
Total VOC Emissions	8, 6386	207. 326	37, 8371
Total HAP Emissions	0, 6477	15. 545	2, 8370
Total BTEX Emissions	0, 3624	8. 697	1, 5873

EQUIPMENT REPORTS:

COMBUSTION DEVICE

Ambient Temperatu Excess Oxyg Combustion Efficier Supplemental Fuel Requireme	gen: 13.80 ncy: 99.00) %) %	
Component	Emitted	Destroyed	
Methane Ethane Propane Isobutane n-Butane sopentane n-Pentane n-Hexane Cyclohexane Other Hexanes	1.00% 1.00% 1.00% 1.00% 1.00% 1.00% 1.00% 1.00% 1.00% 1.00%	99.00% 99.00% 99.00% 99.00% 99.00% 99.00% 99.00% 99.00% 99.00%	
Heptanes Methylcyclohexane 2,2,4-Trimethylpentane Benzene Toluene	1.00% 1.00% 1.00% 1.00% 1.00%	99.00% 99.00% 99.00% 99.00% 99.00%	
Ethylbenzene Xylenes C8+ Heavies	1.00%	99.00% 99.00% 99.00%	

ABSORBER

NOTE: Because the Calculated Absorber Stages was below the minimum allowed, GRI-GLYCalc has set the number of Absorber Stages to 1.25 and has calculated a revised Dry Gas Dew Point.

Calculated Absorber Stages: Calculated Dry Gas Dew Point:	1. 25 0. 98	lbs. H20/MMSCF
Temperature: Pressure: Dry Gas Flow Rate:	1042.0	deg. F psig MMSCF/day
Glycol Losses with Dry Gas: Wet Gas Water Content:	0.3171	
Calculated Wet Gas Water Content: Calculated Lean Glycol Recirc. Ratio:		lbs. H2O/MMSCF gal/lb H2O
	maining Dry Gas	

Water	3.75%	96.25%
Carbon Dioxide	99, 63%	0.37%
Nitrogen	99.97%	0.03%
Methane	99.97%	0.03%
Ethane	99.92%	0.08%

Propane	99.89%	0.11%
Isobutane	99.84%	0.16%
n-Butane	99.79%	0.21%
Isopentane	99.80%	0.20%
n-Pentane	99.74%	0.26%
n-Hexane	99.58%	0.42%
Cyclohexane	98.04%	1.96%
Other Hexanes	99.68%	0.32%
Heptanes	99.26%	0.74%
Methylcyclohexane	97.98%	2.02%
2,2,4-Trimethylpentane	99.71%	0.29%
Benzene	81.95%	18.05%
Toluene	74.97%	25.03%
Ethylbenzene	70.67%	29.33%
Xylenes	61.87%	38.13%
C8+ Heavies	98.97%	1.03%

-

FLASH TANK

Flash Cont Flash Temperatu Flash Press	ure: 120	/recompression .0 deg. F .0 psig
Component	Left in Glycol	Removed in Flash Gas
Water	99. 97%	0.03%
Carbon Dioxide	45. 61%	54.39%
Nitrogen	6. 37%	93.63%
Methane	6. 40%	93.60%
Ethane	20. 32%	79.68%
Propane	34.86%	65. 14%
Isobutane	45.39%	54. 61%
n-Butane	52.46%	47. 54%
Isopentane	56.91%	43. 09%
n-Pentane	62.07%	37. 93%
n-Hexane	75.38%	24.62%
Cyclohexane	92.89%	7.11%
Other Hexanes	69.97%	30.03%
Heptanes	86.68%	13.32%
Methylcyclohexane	94.49%	5.51%
2,2,4-Trimethylpentane	76.84%	23. 16%
Benzene	98.93%	1. 07%
Toluene	99.36%	0. 64%
Ethylbenzene	99.65%	0. 35%
Xylenes	99.76%	0. 24%
C8+ Heavies	98.90%	1.10%

REGENERATOR

No Stripping Gas used in regenerator.

	Remaining	Distilled
Component	in Glycol	Overhead

	daar dina tahii kana aan ilka cala dagi dagi dagi angi dage	Page:	5
Water	63.07%	36.93%	
Carbon Dioxide	0.00%	100.00%	
Nitrogen	0.00%	100.00%	
Methane	0.00%	100.00%	
Ethane	0.00%	100.00%	
Propane	0.00%	100.00%	
Isobutane	0.00%	100.00%	
n-Butane	0.00%	100.00%	
Isopentane	0.88%	99.12%	
n-Pentane	0.81%	99.19%	
n-Hexane	0.66%	99.34%	
Cyclohexane	3.44%	96.56%	
Other Hexanes	1.43%	98.57%	
Heptanes	0.58%	99.42%	
Methylcyclohexane	4.23%	95.77%	
2,2,4-Trimethylpentane	1.95%	98.05%	
Benzene	5.05%	94.95%	
Toluene	7.95%	92.05%	
Ethylbenzene	10.44%	89.56%	
Xylenes	12.94%	87.06%	
C8+ Heavies	12.14%	87.86%	

STREAM REPORTS:

WET GAS STREAM

Temperature: 74.00 deg. Pressure: 1056.70 psia Flow Rate: 1.88c+006 scfh	1
Component	Conc. Loading (vol%) (lb/hr)
Carbon Dio Nitr Met	Vater 5.48e-002 4.88c+001 oxide 3.52e-001 7.65e+002 cogen 3.68e-001 5.10e+002 chane 8.96e+001 7.11e+004 chane 6.04e+000 8.99e+003
Isobu n-Bu Isopen	ppane 1.93e+000 4.21e+003 itane 4.37e-001 1.26e+003 itane 4.85e-001 1.39e+003 itane 2.08e-001 7.42e+002 itane 1.43e-001 5.12e+002
Cyclohe Other Hex Hept	exane 6.08e-002 2.59e+002 exane 3.44e-002 1.43e+002 canes 9.60e-002 4.09e+002 canes 8.81e-002 4.36e+002 exane 4.41e-002 2.14e+002
Ben Tol Ethylben	ntane 4.70e-003 2.65e+001 nzene 2.28e-002 8.80e+001 uene 1.90e-002 8.65e+001 nzene 6.00e-004 3.15e+000 enes 5.30e-003 2.78e+001

C8+ Heavies 9.19e-003 7.75e+001

Total Components 100.00 9.13e+004

DRY GAS STREAM

Temperature: 74.00 deg. F Pressure: 1056.70 psia Flow Rate: 1.88e+006 scfh		
Component	Conc. (vol%)	Loading (lb/hr)
Carbon Dioxide Nitrogen Methane	2.06e-003 3.51e-001 3.69e-001 8.97e+001 6.04e+000	7.62e+002 5.10e+002 7.11e+004
Isobutane n-Butane Isopentane	1. 93e+000 4. 37e-001 4. 84e-001 2. 08e-001 1. 43e-001	1.26e+003 1.39e+003 7.40e+002
Cyclohexane Other Hexanes	9.58e-002 8.75e-002	1. 40e+002 4. 08e+002 4. 33e+002
Toluene Ethylbenzene	1.87e-002 1.43e-002	7.22e+001 6.49e+001 2.23e+000
C8+ Heavies	9.11e-003	7.67e+001
Total Components	100.00	9.11e+004

LEAN GLYCOL STREAM

Temperature: 74.00 deg. F Flow Rate: 9.49e+000 gpm		
Component	Conc. (wt%)	Loading (lb/hr)
Water Carbon Dioxide Nitrogen	9.84e+001 1.50e+000 5.36e-012 2.86e-013 1.12e-017	8.01e+001 2.86e-010 1.53e-011
Propane Isobutane	6.13e-008 3.65e-009 1.10e-009 1.33e-009 1.38e-004	1.95e-007 5.86e-008 7.13e-008
	1.25e-004 1.02e-004 1.74e-003	5.42e-003

Other Hexanes Heptanes	2.46e-004 3.04e-004	and and an output
	2.22e-005 1.57e-002 3.48e-002	1. 18e-003 8. 36e-001 1. 86e+000
C8+ Heavies		1.09e-001
Total Components	100.00	5.34e+003

RICH GLYCOL STREAM

-

IU	H GLICOL SINEAM			
	Temperature:74.00 deg. FPressure:1056.70 psiaFlow Rate:9.81e+000 gpmNOTE:Stream has more than one p	ohase.		¹
	Component	Conc. (wt%)	Loading (Ib/hr)	
	Water Carbon Dioxide Nitrogen	9.57e+001 2.32e+000 5.22e-002 2.79e-003 3.25e-001	1.27e+002 2.86e+000 1.53e-001	
	Propane Isobutane	1.26e-001 8.73e-002 3.56e-002 5.23e-002 2.69e-002	4.79e+000 1.95e+000 2.87e+000	
	n-Hexane Cyclohexane Other Hexanes		1.08e+000 2.90e+000 1.31e+000	
		1.44e-003 3.05e-001 4.28e-001	7.89e-002 1.67e+001 2.35e+001	
	Xylenes C8+ Heavies	2.22e-001 1.66e-002		
	Total Components	100.00	5.49e+003	

FLASH TANK OFF GAS STREAM

Temperature: Pressure: Flow Rate:		sia		na ang ang ang ang ang ang ang ang ang a	6 100 (101 -000 -000
	Component			Loading (lb/hr)	
	Carbon		1.26e-001 2.49e+000		

Methane	3.61e-001 7.35e+001 1.30e+001	1.67e+001
Isobutane n-Butane Isopentane	4.99e+000 1.29e+000 1.66e+000 6.22e-001 4.94e-001	1.07e+000 1.37e+000 6.37e-001
Cyclohexane Other Hexanes	3.23e-001 3.05e-001	2.07e-001 3.95e-001 4.33e-001
Toluene Ethylbenzene	1.61e-001 1.16e-001	1.79e-001 1.51e-001 3.61e-003
C8+ Heavies Total Components		1.00e-002 3.26e+001
Total components	100,00	0.200.001

Page: 8

FLASH TANK GLYCOL STREAM

.

Temperature: 120.00 deg. F Flow Rate: 9.73e+000 gpm		
Component	Conc. (wt%)	Loading (lb/hr)
Water Carbon Dioxide Nitrogen	9. 63e+001 2. 33e+000 2. 39e-002 1. 79e-004 2. 10e-002	1.27e+002 1.31e+000 9.77e-003
Propane Isobutane	2.58e-002 3.06e-002 1.63e-002 2.76e-002 1.54e-002	1.67e+000 8.87e-001 1.51e+000
n-Hexane Cyclohexane Other Hexanes		8.18e-001 2.70e+000 9.19e-001
	1.11e-003 3.03e-001 4.28e-001	6.06e-002 1.66e+001 2.34e+001
Xylenes C8+ Heavies	2.23e-001 1.65e-002	
Total Components	100.00	5.46e+003

FLASH GAS EMISSIONS

Control Method: Recycle/recompression Control Efficiency: 100.00

Note: Flash Gas Emissions are zero with the Recycle/recompression control option.

REGENERATOR OVERHEADS STREAM

Temperature: 212.00 deg. F Pressure: 14.70 psia Flow Rate: 1.34e+003 scfh		
Component	Conc. (vol%)	Loading (lb/hr)
Carbon Dioxide Nitrogen Methane	7.39e+001 8.42e-001 9.89e-003 2.02e+000 1.33e+000	1.31e+000 9.77e-003 1.14e+000
Isobutane n-Butane Isopentane	1.07e+000 4.33e-001 7.36e-001 3.28e-001 3.23e-001	8.87e-001 1.51e+000 8.34e-001
Cyclohexane Other Hexanes	2.98e-001 7.94e-001	2.60e+000 9.06e-001 2.80e+000
Toluene Ethylbenzone	5.71e+000 6.63e+000	1.57e+001 2.15e+001 9.20e-001
C8+ Heavies Total Components		7.90e-001 1.17e+002

COMBUSTION DEVICE OFF GAS STREAM

1000.00 deg. F 14.70 psia 3.37e+000 scfh		
 Component		Loading (lb/hr)
Ethane Propane Isobutane	8. 02e+000 5. 27e+000 4. 26e+000 1. 72e+000 2. 92e+000	1. 41e-002 1. 67e-002 8. 87e-003
	1.28e+000 1.06e+000 3.48e+000	8.21e-003 8.12e-003 2.60e-002

Methylcyclohexane 2,2,4-Trimethylpentane Benzene		4.08e-002 5.94e-004 1.57e-001
Ethylbenzene Xylenes C8+ Heavies Total Components	1. 12e+001 5. 22e-001	1.06e-001

QUESTAR APPLIED TECHNOLOGY

1210 D. Street, Rock Springs, Wyoming 82901

(307) 352-7292

Description: Field: Meter Number: Analysis Date/Time: Date Sampled: Sample Temperature:	River Bend Comp Pre Dehy Turkey Track 6/15/2016, 11:43:18 6/13/2016 74 1042	Company: Data File: G.C. Method: GPA Method Sampled By: Analyst Initials:	XTO 001798.D GAS EXTENDED.M GPA 2286 BC JFL
Sample Pressure: Component	Mol%	Wt%	LV%
Methane	89.6464	77.9606	84.2910
Ethane	6.0452	9.8537	8.9926
Propane	1.9291	4.6112	2.9504
Isobutane	0.4376	1.3786	0.7945
n-Butane	0.4848	1.5273	0.8483
Neopentane	0.0071	0.0279	0.0152
Isopentane	0.2009	0.7856	0.4081
n-Pentane	0.1435	0.5613	0.2885
2,2-Dimethylbutane	0.0086	0.0403	0.0200
2,3-Dimethylbutane	0.0114	0.0531	0.0258
2-Methylpentane	0.0467	0.2184	0.1077
3-Methylpentane	0.0294	0.1371	0.0665
n-Hexane	0.0608	0.2839	0.1387
Heptanes	0.2131	1.0708	
Octanes	0.0085	0.0526	
Nonanes	0.0066	0.0389	
Decanes plus	0.0000	0.0000	
Nitrogen	0.3686	0.5597	
Carbon Dioxide	0.3517	0.8390	
Oxygen	ND	ND	
Hydrogen Sulfide	ND	ND	
Total	100.0000	100.0000	
Calculated Global Pro			
Gross BTU/Real CF	1129.5	BTU/SCF at 60)°F and14.73 psia
Sat.Gross BTU/Real CF)°F and14.73 psia
Gas Compressibility (Z)	0.9973		
Specific Gravity	0.6388	air=1	
Avg Molecular Weight	18.448	gm/mole	
Propane GPM	0.528694	gal/MCF	
Butane GPM	0.295282	gal/MCF	
Gasoline GPM	0.273698	gal/MCF	
26# Gasoline GPM	0.426539	gal/MCF	
Total GPM	2.817606	gal/MCF	
Base Mol%	99.038	%v/v	

.

100 ppm (+/-) H2S detection limit

Component	Mol%	Wt%	LV%
Benzene	0.0228	0.0965	0.0354
Toluene	0.0190	0.0948	0.0353
Ethylbenzene	0.0006	0.0033	0.0012
M&P Xylene	0.0047	0.0269	0.0100
O-Xylene	0.0006	0.0036	0.0013
2,2,4-Trimethylpentane	0.0047	0.0292	0.0131
Cyclopentane	0.0000	0.0000	0.0000
Cyclohexane	0.0344	0.1571	0.0651
Methylcyclohexane	0.0441	0.2347	0.0984
Description:	River Bend Comp Pre Dehy		

GRI GlyCalc Information

Component	Mol%	Wt%	LV%
Carbon Dioxide	0.3517	0.8390	0.3327
Hydrogen Sulfide	ND	ND	ND
Nitrogen	0.3686	0.5597	0.2243
Methane	89.6464	77.9606	84.2910
Ethane	6.0452	9.8537	8.9926
Propane	1.9291	4.6112	2.9504
Isobutane	0.4376	1.3786	0.7945
n-Butane	0.4848	1.5273	0.8483
Isopentane	0.2080	0.8135	0.4233
n-Pentane	0.1435	0.5613	0.2885
Cyclopentane	0.0000	0.0000	0.0000
n-Hexane	0.0608	0.2839	0.1387
Cyclohexane	0.0344	0.1571	0.0651
Other Hexanes	0.0961	0.4489	0.2200
Heptanes	0.0881	0.4585	0.2098
Methylcyclohexane	0.0441	0.2347	0.0984
2,2,4 Trimethylpentane	0.0047	0.0292	0.0131
Benzene	0.0228	0.0965	0.0354
Toluene	0.0190	0.0948	0.0353
Ethylbenzene	0.0006	0.0033	0.0012
Xylenes	0.0053	0.0305	0.0113
C8+ Heavies	0.0092	0.0577	0.0261
Subtotal	100.0000	100.0000	100.0000
Oxygen	ND	ND	ND
Total	100.0000	100.0000	100.0000

				FUGITIVE E	NISSIONS		
	Company:	XTO ENERGY	INC.				
	Facility Name:	Riverbend De	hydration Si	te			
Fa	cility Location:	Uintah County	, Utah	ennen in same en en ferender et algene er i er anse var a deren af er alle er er en er er er er er er er er er	ana dalama yana a 'anana 'an' a 'a falifanani. Anana yana a sana a dalama yana a sana a sana a sana a sana a s		
Armen Coldina Instantion or		1					
		Estimated	Hours of	Factors*	%NMNEVOC	Emission	îs
	The T-O scalars and any con-	Components Count	Operation	lb/hr/component	Weight	Ibiyaar	tons/year
Valves							
	Gas/Vapor	300	8760	0.00992000	10.68%	2783.27764	1.39164
	Light Oil	100	8760	0.00550000	100.00%	4818.00000	2.40900
	Heavy Oil	0	8760	0.00001900	100.00%	0.00000	0.00000
	Water/Light Oil	50	8760	0.00021600	100.00%	94.60600	0.04730
Pumps				1.1.1.1.1.1.1.1.1.1.1.1.1.1.1.1.1.1.1.			
	Gas/Vapor	- 6	8760	0.00529000	10.68%	29.68455	0.01484
	Light Oil	3	8760	0.02866000	100.00%	753.18480	0.37659
	Heavy Oil	0	8760	0.00113000	100.00%	0.00000	0.00000
	Water/Light Oil	3	8760	0.00005300	100.00%	1.39284	0.00070
Flanges			-	, mail and a second			
	Gas/Vapor	650	8760	0.00086000	10.68%	522.79980	0.26140
	Light Oil	75	8760	0.00024300	100.00%	159.65100	0.07983
	Heavy Oil	0	8760	0.00000066	100.00%	0.00000	0.00000
	Water/Light Oil	50	8760	0.00000620	100.00%	2.71560	0.00136
Open-end	ded Lines					and the second	manager with a convert with a subscript framework and
	GasNapor	15	8760	0.00441000	10.68%	61.86620	0.03093
	Light Oil	0	6760	0.00309000	100,00%	0.00000	0.00000
	Heavy Oil	0	8760	0.00030900	100.00%	0.00000	0.00000
	Water/Light Oil	5	8760	0.00055000	100.00%	24.09000	0.01205
Connecto	Name & Spinster, and and an an an and an an and						
	Gas/Vapor	250	8760	0.00044000	10.68%	102.87653	0.05144
	Light Oil	0	8760	0.00046300	100.00%	0.00000	0.00000
	Heavy Oil	0	8760	0.00001700	100.00%	0.00000	0.00000
con the design of the design	Water/Light Oil	50	8760	0.00024300	100.00%	106.43400	0.05322
Other: C	ompressors, relief v	alves, process dr	alns, diephrace	ms, dump arms, hatches.	instruments, maters, polished ro	ds, and vents	
	Gas/Vapor	30	8760	0.01940000	10.68%	544.31035	0.27216
	Light Oil	0	8760	0.01650000	100.00%	0.00000	0.00000
	Heavy Oil	0	8760	0.00006800	100.00%	0.00000	0.00000
	Water/Light Oil	5	8760	0.03090000	100.00%	1353.42000	0.67671

		FUGITIN	E EMISSIONS		
Company:	XTO ENERGY INC.	-			5
Facility Name:	The second secon	n Site			
Facility Location:		1			
1			Contrast of the second s		
e e e e e chran, das muje.				Total in tons/year	5.6
				Total in Lb/hr	1.3
Fugitive HAP	Emissions Totals - Gas	Napor			
	wt% in gas	Total VOC wt %	Total Fugitive VOC tpy	Total tpy for HAP	Total Ib/hr for HAP
Benzene	0.0647%	10.68%	1.75	0.011	0.002
Toluene	0.0579%	10.68%	1 75	0.009	0.002
Xylene	0.0144%	10.68%	1.75	0.002	0.001
n-Hexane	0.2581%	10.68%	1.75	0.042	0.010
E-benzene	0.0017%	10.68%	1.75	0.000	0.000
		· · · · · · · · · · · · · · · · · · ·	TOTAL Fugitive HAP's	0.065	0.015
	Emissions Totals - Ligh	t Oil and Water			
wt% taken fro	om E&P Tanks v2011				
Benzene	wt% in gas 0.0072%	Total VOC wt %	Total Fugitive VOC tpy 3.93	Total tpy for HAP 0.000	Total Ib/hr for HAP
Toluene	0.0384%	100.00%	3,93	0.000	0.000
Xylene	0.0148%	100.00%	3.93	0.002	0.000
n-Hexane	0.0147%	100.00%	3.93	0.001	0.000
E-benzene	0.0059%	100.00%	3.93	0.001	0.000
IE-Delizelle	0.005970	100.00%	0.00	0.000	0.000
I cannot and the destroy of and a series and	•	1	TOTAL Fugitive HAP's	0.003	0.001

FUGITIVE CO₂ EMISSIONS

Company: XTO ENERGY INC. Facility Name: Riverbend Dehydration Site Facility Location: Uintah County, Utah

		Estimated Components	Hours of	Factors*	%NMNEVOC	En	issions
		Count	Operation	lb/hr/component	Weight	lb/year	metric tons/year
Valves							
	Gas/Vapor	300	8760	0.00992000	0.85%	221.61457	0.10073
	Light Oil	100	8760	0.00550000	0.00%	0.0000	0.00000
	Heavy Oil	0	8760	0.00001900	0.00%	0.00000	0.00000
	Water/Light Oil	50	8760	0.00021600	0.00%	0.00000	0.00000
Pumps							
	Gas/Vapor	6	8760	0.00529000	0.85%	2.36359	0.00107
	Light Oil	3	8760	0.02866000	0.00%	0 00000	0.00000
	Heavy Oil	0	8760	0.00113000	0.00%	0.00000	0.00000
	Water/Light Oil	3	8760	0.00005300	0.00%	0.00000	0.00000
Flanges							
	Gas/Vapor	650	8760	0.00086000	0.85%	41.62720	0.01892
	Light Oil	75	8760	0.00024300	0 00%	0.00000	0.00000
	Heavy Oil	0	8760	0.0000086	0.00%	0.00000	0.00000
	Water/Light Oil	50	8760	0.00000620	0.00%	0.00000	0.00000
Open-end	led Lines						
	Gas/Vapor	15	8760	0.00441000	0.85%	4.92601	0.00224
	Light Oil	0	8760	0.00309000	0.00%	0.00000	0.00000
	Heavy Oil	0	8760	0.00030900	0.00%	0.00000	0.00000
	Water/Light Oil	5	8760	0.00055000	0.00%	0.00000	0.00000
Connecto	ors						
	Gas/Vapor	250	8760	0.00044000	0.85%	8.19140	0.00372
	Light Oil	0	8760	0.00046300	0.00%	0.00000	0.00000
	Heavy Oil	0	8760	0.00001700	0.00%	0.00000	0 00000
	Water/Light Oil	50	8760	0.00024300	0 00%	0.00000	0.00000

Other: Compressors, relief valves, process drains, diaphragms, dump arms, hatches, instruments, meters, polished rods, and vents

Gas/Vapor	30	8760	0.01940000	0.85%	43.33995	0.01970
Light Oil	0	8760	0.01650000	0.00%	0.00000	0.00000
Heavy Oil	0	8760	0.00006800	0.00%	0.00000	0.00000
Water/Light Oil	5	8760	0.03090000	0.00%	0 00000	0.00000

*NOTE - emission factors based on Table 2-4 of U.S. EPA's 1995 Protocol for Equipment Leak Emission Estimates.

Total in tons/year 0.15

FUGITIVE METHANE EMISSIONS

Company: XTO ENERGY INC. Facility Name: Riverbend Dehydration Site Facility Location: Uintah County, Utah

		Estimated Components	Hours of	Factors*	%METHANE	Emissions	
		Count	Operation	lb/hr/component	Weight	ib/year	metric tons/year
Valves							
	Gas/Vapor	300	8760	0.00992000	77.55%	20216.69370	9.18941
	Light Oil	100	8760	0.00550000	0.00%	0.00000	0.00000
	Heavy Oil	0	8760	0.00001900	0.00%	0.00000	0.00000
	Water/Light Oil	50	8760	0.00021600	0.00%	0.00000	0.00000
Pumps							
	Gas/Vapor	6	8760	0.00529000	77.55%	215.61756	0.09801
	Light Oil	3	8760	0.02866000	0.00%	0.00000	0.00000
	Heavy Oil	0	8760	0.00113000	0.00%	0.00000	0.00000
	Water/Light Oil	3	8760	0.00005300	0.00%	0.00000	0.00000
Flanges							
	Gas/Vapor	650	8760	0.00086000	77.55%	3797.42331	1.72610
	Light Oil	75	8760	0.00024300	0.00%	0.00000	0.00000
	Heavy Oil	0	8760	0.0000086	0.00%	0.00000	0.00000
	Water/Light Oil	50	8760	0.00000620	0.00%	0.00000	0.00000
Open-end	ed Lines						
	Gas/Vapor	15	8760	0.00441000	77.55%	449.37308	0.20426
	Light Oil	0	8760	0.00309000	0.00%	0.00000	0.00000
	Heavy Oil	0	8760	0.00030900	0.00%	0.00000	0.00000
	Water/Light Oil	5	8760	0.00055000	0.00%	0.00000	0.00000
Connecto	13						
	Gas/Vapor	250	8760	0.00044000	77.55%	747.25682	0.33966
	Light Oil	0	8760	0.00046300	0.00%	0.00000	0.00000
	Heavy Oil	0	6760	0.00001700	0.00%	0.00000	0.00000
	Water/Light Oil	50	8760	0.00024300	0.00%	0.00000	0.00000
Other: Co	ompressors, relief v	alves, process drai	ns, diaphragms,	dump arms, hatches, in	struments, meters, polish	ed rods, and vents	
	Gas/Vapor	30	8760	0.01940000	77.55%	3953.66792	1.79712
	Light Oil	0	8760	0.01650000	0.00%	0.00000	0.00000
	Heavy Oil	0	8760	0.00006800	0.00%	0.00000	0.00000
	Water/Light Oil	5	8760	0.03090000	0.00%	0.00000	0.00000

*NOTE - emission factors based on Table 2-4 of U.S. EPA's 1995 Protocol for Equipment Leak Emission Estimates.

Total in metric tons/year 13.35

Company: XTO Energy Inc.

Facility Name: RBU Dehydration Site

Facility Location: Uintah County, Utah

Description:

Uncontrolled - Two (2) X 400 bbl vertical, fixed-roof storage tanks

Jun-17

Condensate Tank Flash Emissions

Condensate Rate (Two tanks) (bbls/dav)	VOCs (tons/yr)	Benzene (tons/vr)	Toluene (tons/vr)	Ethylbenzene (tons/yr)	Xylenes (tons/vr)	N-Hexane (tons/vr)	224-TMP (tons/vr)	CO2 (tons/vr)	CH4 (tons/vr)	Total HAPs (tons/vr)	Total BTEX (tons/yr)
32.00	5.451	0.0570	0.0860	0.0040	0.0100	0.148	0.002	0.064	2.509	0.3070	0.1570
TOTAL	5.45	0.06	0.09	0.00	0.01	0.15	0.00	0.06	2.51	0.31	0.16

E&P TANKS v2011 used to calculate tank flash emissions; please see attached documentation.

Condensate Tank Working and Breathing Emissions

TANK DESCRIPTION	WORKING LOSSES (lbs/yr)	BREATHING LOSSES (lbs/yr)	VOC LOSSES (lbs/yr)	TOTAL LOSSES (tons/yr)
400-bbl storage tank #1	1383.83	1782.92	3166.75	1.58
400-bbl storage tank #2	1383.83	1782.92	3166.75	1.58
TOTAL	2767.66	3565.84	6333.5	3.17

EPA TANKS 4.09D used to calculate emissions; please see attached documentation.

Condensate Tank Total Emissions

Condensate Rate (bbls/day)	VOCs (tons/yr)	Benzene (tons/yr)	Toluene (tons/yr)	Ethylbenzene (tons/yr)	Xylenes (tons/yr)	N-Hexane (tons/yr)	224-TMP (tons/yr)	CO2 (tons/yr)	CH4 (tons/yr)	Total HAPs (tons/yr)	Total BTEX (tons/yr)
400-bbl storage tank #1	4.31	0.0285	0.0430	0.0020	0.0050	0.074	0.001	0.032	1.2545	0.1535	0.0785
400-bbl storage tank #2	4.31	0.0285	0.0430	0.0020	0.0050	0.074	0.001	0.032	1.2545	0.1535	0.0785
TOTAL	8.62	0.06	0.09	0.004	0.01	0.15	0.002	0.064	2.51	0.31	0.16

```
* Project Setup Information
: W:\EHS\Environmental\Air\Areas of Operation\Utah\_MSO\RBU Dehy\Title V\EPA RBU Dehy 2016-2(
Project File
                : Oil Tank with Separator
Flowsheet Selection
Calculation Method : RVP Distillation
Control Efficiency : 0.00%
Known Separator Stream : Low Pressure Oil
Entering Air Composition : No
                 : C10+
Component Group
                : RBU Dehy - PTE Calc. May 2017
Filed Name
                : RBU 400 BBL Tank 1 - Condensate + Water
: PTE Est. Volume = 32 b/d; RBU 18-10E sample 2012
Well Name
Well ID
                 : 2017.05.22
Date
Data Input
Separator Pressure (psia): 40.00Separator Temperature (F): 80.0
C10+ SG
                      : 0.79
C10+ MW(lb/lbmol)
                      : 140.24
-- Low Preasure Oil ------
                Molet Wtt
No. Component
                  0.0000 0.0000
0.0000 0.0000
    H2S
1
2
    02
3
   CO2
                   0.0140 0.0055
   N2
                   0.0000 0.0000
1.2410 0.1771
4
                   1.2410
5
   C1
                   1.1160 0.2986
   C2
6
   C3
                  1.6120 0.6326
7
   i-C4
8
                   0.8900
                         0.4603
                   1.5600 0.8068
9
   n-C4
                  1.6000 1.0273
10
  i-C5
  n-C5
                  1.7030 1.0934
0.9670 0.7414
11
12
   C6
                 10.5110 9.3721
13
   C7
                 27.6200 28.0755
14
   C8
15
    C9
                  22.2340 25.3805
                 19.0540 23.7779
    C10+
16
                  1.0330 0.7180
17
   Benzene
                  4.6820 3.8385
0.6270 0.5924
    Toluene
18
   E-Benzene
Xylenes
19
                  1.5670 1.4805
20
                   1.9220 1.4740
0.0470 0.0478
21
    n-C6
22
    224Trimethylp
-- Sales Oil -----
Production Rate (bbl/day) : 32.00
Days of Annual Operation : 365
API Gravity
                   : 55.91
Reid Vapor Fressure (psia) : 12.10
Ambient Pressure (F) : 80.0
Reid Vapor Pressure (psia) : 6.20
                    : 12.10
*******************
  Calculation Results
-- Emission Summary ------
             Uncontrolled
```

	ton
Total HAPs	0.3070
Total HC	10.3400
VOCs, C2+	7.8310
VOCs, C3+	5.4510
CO2	0.0640
CH4	2.5090
CH4	2.3050
Uncontrolled Recov	ery Information:
Vapor (mscfd) :	0.6915
HC Vapor (mscfd) :	0.6885
CO2 (mscfd) :	0.0000
CH4 (mscfd) :	0.3200
GOR (SCF/STB) :	21.6094
an mar a in Pir 43 75 - 18 mi	
	ition
NoComponent	Uncontrolled
	ton
1 H2S	0.0000
2 02	0.0000
3 CO2	0.0640
4 N2	0.0000
5 C1	2.5090
6 C2	2.3800
7 C3	2.1080
8 i-C4	0.7130
9 n-C4	0.8720
10 i-C5	0.4480
11 n-C5	0.3570
12 C6	0.0740
13 Benzene	0.0570
14 Toluene	0.0860
15 E-Benzene	0.0040
16 Xylenes	0.0100
17 n-C6	0.1460
18 224Trimethylp	0.0020
19 Pseudo Compl	0.4560
20 Pseudo Comp2	0.0900
21 Pseudo Comp3	0.0230
22 Pseudo Comp4	0.0030
23 Pseudo Comp5	0.0000
24 Total	10.4040

	tream Data							
No	Component	MW	LP Oil	Flash Oil	Sales Oil	Flash Gas	W4S Gas	Total Emission
		lb/1bmol	mole %	mole %	mole %	mole %	mole %	mole %
1	H2S	34.80	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000
2	02	32.00	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000
3	CO2	44.01	0.0140	0.0044	0.0038	0.4339	0.4344	0.4339
4	N2	28.01	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000
5	C1	16.04	1.2410	0.1927	0.1280	46.9805	46.9362	46.9781
6	C2	30.07	1.1160	0.5969	0.5647	23.7663	23.8029	23.7684
7	C3	44.10	1.6120	1,3199	1.3018	14.3556	14.3779	14.3568
8	1-C4	58.12	0.8900	0.8259	0.8220	3.6851	3.6926	3.6855
9	n-C4	58.12	1.5600	1.4925	1.4884	4.5037	4.5099	4.5040
10	i-C5	72.15	1.6000	1.5939	1.5936	1.8643	1.8674	1.8645
11	n~C5	72.15	1.7030	1.7080	1.7083	1.4851	1.4872	1.4852
12	C6	84.00	0.9670	0.9831	0.9841	0.2643	0.2648	0.2643
13	Benzene	78.11	1.0330	1.0517	1.0528	0.2182	0.2175	0.2181
14	Toluene	92.14	4.6820	4.7829	4.7891	0.2812	0.2804	0.2812
15	E-Benzene	106.17	0.6270	0.6411	0.6420	0.0127	0.0126	0.0127
16	Xylenes	106.17	1.5670	1.6023	1.6045	0.0273	0.0272	0.0273
17	n-C6	86.18	1.9220	1.9542	1.9562	0.5166	0.5174	0.5167
18	224Trimethylp	114.23	0.0470	0.0480	0.0480	0.0046	0.0046	0.0046
19	Pseudo Compl	103.97	38.1310	38.9748	39.0269	1.3174	1.2946	1.3161
20	Pseudo Comp2	121.00	22.2340	22.7385	22.7697	0.2232	0.2155	0.2227
21	Pseudo Comp3	134.00	13.1451	13.4452	13.4637	0.0527	0.0500	0.0526

22 Pseudo Comp4 147.00 23 Pseudo Comp5 167.47	4.0765 1.8324	4.1697 1.8744	4.1755 1.8770	0.0067 0.0007	0.0062 0.0006	0.0066
MW (lb/lbmol):	LP 0il 108.25	Flash Oil 110.02	Sales Oil 110.13	Flash Gas 31.25	W&S Gas 31.23	Total Emission 31.25
Stream Mole Ratio: Stream Weight Ratio:	1.0000 108.25	0.9776 107.55	0.9762 107.51	0.0224 0.70	0.0014 0.04	0.0238 0.74
Total Emission (ton): Heating Value (BTU/scf):				9.812 1813.71	0.592 1813.02	10.404 1813.67
Gas Gravity (Gas/Air):	51.87	14.46	12.17	1.08	1.08	1.08
Bubble Pt. @100F (psia): RVP @100F (psia):	14.84	7.09	6.58			
Spec. Gravity @100F:	0.73	0.73	0.73			

J.L.

SPL, Inc. 2440 Chambers Street Suite A Venus, TX 76084 817-539-2168 (O) 817-539-2170 (F)

6.567

6.560

17.826

Certificate of Analysis :

12120196-003A

	Jnitah County RBU 18-10E			For:	Rykki Tepe		
Field: (Sample of: (Unitah County Condensate ;S 60 F @ 190 psig				810 Houston Fort Worth, T		
Sampled by:	J.Petree 12/10/2012 Separator	3		Report Date	:: :	5/8/2013	
Analysis: (GPA 21	03M)	Mol. %	MW	Wt. %	Sp. Gravity	L.V. %	
Nitrogen	/	0.000	28.013	0.000		0.000	
Methane		1.241	16.043	0.179	0.3000	0.443	
Carbon Dioxide		0.014	44.010	0.006	0.8180	0.005	
Ethane		1.116	30.070	0.302	0.3562	0.628	
Propane		1.612	44.097	0.640	0.5070	0.935	
Iso-butane		0.890	58.123	0.466		0.613	
N-butane		1.560	58.123	0.817		1.036	
Iso-pentane		1.600	72.150	1.040		1.233	
N-pentane		1.703	72.150	1.107	0.6311	1.299	
i-Hexanes		0.967	86.177	0.756		0.844	
n-Hexane		1.922	86.016	1.483		1.654	
2,2,4 trimethylpenta	ane	0.047	114.231	0.048		0.052	3
Benzene		1.033	78.114	0.727		0.608	
Heptanes		10.511	95.104	9.156		9.522	
Toluene		4.682	92.141	3.886		3.298	
Octanes		27.620	109.707	28.041		28.409	
E-benzene		0.627	106.167	0.600		0.509	
M-,O-,P-xylene		1.567	106.167	1.499		1.273	
Nonanes		22.234	123.924	25.174		25.007	
Decanes Plus		19.054	140.237	24.073	0.7876	22.632	
		100.000		100.000		100.000	
Calculated Values			Т	otal Sample		Deca	ines Plus
Specific Gravity at				0.7405			0.7876
Api Gravity at 60 °F				59.591			48.149
Molecular Weight				110.998			140.237
	//			0 171			0 507

Pounds per Gallon (in Vacuum) 6.174 Pounds per Gallon (in Air) 6.167 Cu. Ft. Vapor per Gallon @ 14.65 psia 21.041

Dauth V. L. jan.

Southern Petroleum Laboratories, Inc.

Certificate of Analysis Number: 3040-12120196-004A Venus Laboratory 2440 Chambers Street, Suite A Venus, TX 76084

Jan. 09, 2013

Rykki Tepe 810 Houston Street Fort Worth, Texas 76102

Station Name: RBU 18-10E Station Number: RS0686RF Station Location: Unitah County Sample Point: Separator Sampled By:J.PetreeSample Of:CondensateSpotSample Date:12/10/2012Sample Conditions:60 °FCylinder No:Tin Can

Analytical Data

Test	Method	Result	Units	Detection Lab Limit Tech.	Analysis Date
Reid Vapor Pressure @ 100°F	ASTM D-323	6.2	psia	TF	01/02/2013
API Gravity @ 60° F		55.91	• API	TF	01/02/2013
API Specific Gravity @ 60° F		0.7551	° API	TF	01/02/2013

STOCK TANK WORKING AND BREATHING EMISSIONS

Company: XTO ENERGY INC. Facility Name: River Bend Dehydration Site Facility Location: Uintah County, Utah

TANK DESCRIPTION	WORKING LOSSES (lbs/yr)	BREATHING LOSSES (Ibs/yr)	VOC LOSSES (lbs/yr)	TOTAL LOSSES (tons/yr)
400-bbl storage tank #1	1383.83	1782.92	3166.75	1.58
400-bbl storage tank #2	1383.83	1782.92	3166.75	1.58
TOTAL	2767.66	3565.84	6333.5	3.17

EPA TANKS 4.09D used to calculate emissions; please see attached documentation.

TANKS 4.0.9d Emissions Report - Detail Format Tank Indentification and Physical Characteristics

Identification User Identification: City: State: Company: Type of Tank: Description:	R8U Dehy Condensate Tank #1 Vernal Utah XTO Energy Vertical Fixed Roof Tank 400-bbl condensate storage tank
Tank Dimensions Shall Height (ft): Diameter (ft): Liquid Height (ft) : Avg. Liquid Height (ft): Volume (gailons): Turmovers: Net Throughput(gal/yr): Is Tank Heeted (y/n):	20.00 12.00 18.00 10.00 15,228.53 16.11 245,280.00 Y
Paint Characteristics Shell Color/Shade: Shell Condition Roof Color/Shade: Roof Condition:	Gray/Medium Poor Gray/Medium Poor
Roof Characteristics Type: Height (ft) Slope (ft/ft) (Cone Roof)	Cone 1.00 0.17
Breather Vent Settings Vacuum Settings (psig): Pressure Settings (psig)	0.00 0.00

Meterological Data used in Emissions Calculations: Salt Lake City, Utah (Avg Atmospheric Pressure = 12.64 psia)

TANKS 4.0.9d Emissions Report - Detail Format Liquid Contents of Storage Tank

RBU Dehy Condensate Tank #1 - Vertical Fixed Roof Tank Vernal, Utah

			lly Liquid Si persture (de		Liquid Bulk Temp	Vapo	r Pressure	(psia)	Vapor Mol	Liquid Mass	Vepor Mess	Mot	Basis for Vapor Presaure	
Mixture/Component	Month	Avg	Min	Мах	(deg F)	Avg	Min	Max	Waight	Fract	Fract	Weight	Calculations	
Gasoline (RVP 7)	AR	60 00	60 00	85 D0	00.00	3 4847	3.4847	5.6644	68.0000			92.00	Option 4: RVP=7, ASTM Slope=3	

TANKS 4.0.9d Emissions Report - Detail Format Detail Calculations (AP-42)

RBU Dehy Condensate Tank #1 - Vertical Fixed Roof Tank Vernal, Utah

and the second sec	
Annual Emission Calcaulations Standing Losses (Ib):	1,782 9244
Vapor Space Volume (cu ft):	1,168 6725
Vapor Density (lb/cu ft):	0 0425
Vapor Space Expansion Factor:	0 2861
Vented Vapor Saturation Factor:	0 3438
Tank Vapor Space Volume:	
Vepor Space Volume (cu ß); Tank Diameter (ff):	1,168.6725
Vapor Space Outage (ft):	10 3333
Tank Shell Height (ft):	20 0000
Average Liquid Height (ft):	10 0000
Roof Outage (ft):	0 3333
Roof Outage (Cone Roof)	
Roof Outage (R);	0 3333
Roof Height (ft):	1 0000
Roof Slope (ft/fi): Shell Radius (ft):	0 1700 6 0000
	0 0000
Vapor Density Vapor Density (lb/cu ft):	0 0425
Vapor Molecular Weight (ib/ib-mole):	58 0000
Vapor Pressure at Daily Average Liquid	000000
Surface Temperature (psie):	3 4847
Daily Avg Liquid Surface Temp. (deg. R):	519,6700
Daily Average Amblent Temp (deg. F): Ideal Gas Constant R	51 9625
(psie cuft / (lb-mol-deg R));	10 731
Liquid Bulk Temperature (deg R):	519 6700
Tank Paint Solar Absorptance (Sheil):	0 7400
Tank Paint Solar Absorptance (Roof):	0 7400
Daily Total Solar Insulation Factor (Btu/sqft day):	1,452 1184
Vapor Space Expansion Factor	
Vapor Space Expansion Factor:	0 2861
Daily Vapor Temperature Range (deg, R):	25 0000
Daily Vapor Pressure Range (psis):	2 1798
Breather Vent Press Setting Range(psia):	0 0000
Vapor Pressure at Daily Average Liquid Sunface Temperature (psia):	3 4847
Vapor Pressure at Daily Minimum Liquid	0 4047
Surface Temperature (psia):	3 4847
Vapor Pressure at Daily Maximum Liquid	
Surface Temperature (psia):	5 6644
Daily Avg Liquid Surface Temp. (deg R): Daily Min. Liquid Surface Temp. (deg R):	519 8700 519 6700
Daily Max Liquid Surface Temp (deg R):	544 6700
Daily Ambient Temp, Range (deg R):	23 3583
Vented Vapor Saturation Factor	
Vented Vapor Saturation Factor:	0 3438
Vapor Pressure al Daily Average Liquid:	3 48 17
Surface Temperature (psia): Vapor Space Outage (it):	3 4847 10.3333
Working Losses (1b): Vapor Molecular Weight (1b/lb-mole):	1,383 8320 68 0000
Vapor Pressure el Dally Average Liquid	00 0000
Surface Temperature (psie):	3 4847
Annual Net Throughpul (gal/yr):	245,280 0000
Annual Tumovers:	16 1066
Turnover Factor; Maximum Liquid Volume (gel);	1 0000 15,228 5332
Maximum Liquid Height (ft):	15,220 5332
Tank Diameter (it):	12 0000
Working Loss Product Factor:	1 0000
Tatal Losses (b):	3,166 7563

TANKS 4.0.9d Emissions Report - Detail Format Individual Tank Emission Totals

Emissions Report for: Annual

RBU Dehy Condensate Tank #1 - Vertical Fixed Roof Tank Vernal, Utah

	Losses(ibs)						
Components	Working Loss	Breathing Loss	Total Emissions				
Gasoline (RVP 7)	1,383.83	1,782.92	3,166.76				

PIG RECEIVER EMISSIONS

Company: XTO ENERGY INC. Facility Name: Riverbend Dehydration Site Facility Location: Uintah County, Utah

GAS	MOLECULAR		COMPONENT	COMPONENT	COMPONENT
COMPONENT	WEIGHT	Weight	FLOW RATE	FLOW RATE	FLOW RATE
(Wet Gas)	(lb/lb-mole)	Fraction	(Mscf)	(lb/yr)	(tons/yr)
Methane	16.043	0.775	25.118	1061.849	0.531
Ethane	30.07	0.103	3.350	265.474	0.133
Propane	44.097	0.050	1.616	187.816	0.094
i-Butane	58.123	0.013	0.435	66.624	0.033
n-Butane	58.123	0.015	0.495	75.789	0.038
i-Pentane	72.15	0.008	0.244	46.386	0.023
n-Pentane	72.15	0.005	0.176	33.467	0.017
Hexanes	86.177	0.007	0.230	52.138	0.026
Heptanes	100.204	0.003	0.089	23.435	0.012
Octanes	114.231	0.001	0.030	8.926	0.004
Nonanes	128.258	0.000	0.013	4.258	0.002
Decanes +	142.285	0.000	0.003	1.029	0.001
Benzene	78.12	0.001	0.021	4.315	0.002
Toluene	92.13	0.001	0.019	4.551	0.002
Ethylbenzene	106.16	0.000	0.001	0.156	0.000
Xylenes	106.16	0.000	0.005	1.302	0.001
n-Hexane	86.177	0.003	0.084	18.981	0.009
Helium	4.003	0.000	0.000	0.000	0.000
Nitrogen	28.013	0.006	0.188	13.898	0.007
Carbon Dioxide	44.01	0.009	0.275	31.931	0.016
Oxygen	32	0.000	0.000	0.000	0.000
Hydrogen Sulfide	34.08	0.000	0.000	0.000	0.000
VOC SUBTOTAL		0.107	3.458	529.173	0.265
HAP SUBTOTAL	An	0.004	0.129	29.306	0.015
TOTAL		1.000	32.390	1902.326	0.951

PIG SPECIFICATIONS	Receiver #1	Receiver #2		
PIG SPECIFICATIONS	10" P/L	8" P/L (Tap-1)		units
Pig Section Circumference :	2.618	2.094		feet
Pig Section Diameter :	0.833	0.667		feet
Pig Section Length :	10.0	8.000		feet
Pig Section Receiver Volume :	5.454	2.793		actual ft ³
Average Pipeline Pressure :	800	800		lb/ft ²
Pig Volume corrected for Std Conditions(14.7 psia) :	296.825	151.974		scf/event
Number of activities :	104	10	en e	per year
Number of receivers :	1	1		
Total events :	104	10		per year
Total Annual Release Volume (per section) :	30869.769	1519.742	La carrier de	scf/yr
Total Volume :	32.390	Mscf/year		

Pipeline Pressure provided by client

Wet Gas composition used for calculations Emissions (tpy) = Volume released (Mscf/yr) x Weight Fraction x 1000 (scf/Mscf) x 1/379.45 (lb-mol/scf) x MW (lb/mol) / 2000 (lb/ton)

Generator Micro-Turbine Emissions

Company:	XTO ENERGY INC.
Facility Name:	Riverbend Dehydration Site
Facility Location:	Uintah County, Utah

EMISSION POINTS: Capstone Model C65NG Standard MicroTurbine

Engine Make/Model	Capstone M	lodel C65NG Standard MicroTurbine
Site kWe Rating	65	kWe
Heating Value	1106	Btu/Scf
Operating Hours	8760	hrs/yr

			Emissio	on Rate	Emission Factor
Pollutant		Emission Factor	(lb/hr)	(tpy)	Reference
NOx	0.46	lb/MWhe	0.03	0.13	[1]
CO	6.00	lb/MWhe	0.39	1.71	[1]
VOC/NMHC	0.10	lb/MWhe	0.00	0.01	[1]
CO2	610.00	lb/MWh	18.30	80.15	[1]

[1] Capstone Mfg. Emission Factors

*CO2 emissions are expressed in tons per year; pounds per hour X hours/year / 2000 pounds)

	CALCULATION FORMULAS
ib/hr =	(lb/10 ⁶ Watts-hr)*(site Watt rating 10 ³ Watts)
tons/yr=	(lb/hr)*(8760 hrs/yr)* (1 ton/2000lb)

POTENTIAL GHG EMISSIONS BASED ON 8760 HOURS FOR HEATERS, GENERATORS, ENGINES AND FLARES/THERMAL OXIDIZERS

Company: XTO Energy Inc. Facility Name: River Bend Dehydration Site Facility Location: Uintah County, Utah

GHG Mandatory Reporting Regulations, Combustion Sources (Subpart C, 40 CFR Part 98)

Summ	ary	
Engines COre =	0.0	tons/yr
Heaters/Boilers COze =	2794.9	tons/yr
Total COge =	2794.9	tons/yr
Reporting required ?	No	

Note: Reporting Threshold = 25,000 tons/yr COze

											Spe	cies	
						[Species		CO2	CH4	N ₂ O	CO2e
Boilers/Hea	ters		Rati	ng		T	CO2	CH4	N ₂ O	COze	CO28	CO2e	Total
Source	Model	Fuel	(hp)	(MMbtu/hr)	Hours			metric tons			metri	c tons	
RBU Dehy Heater (Dehy 1)	-	Natural Gas	-	1.000	8760		511.97	0.01	0.00	511.97	0.24	0.26	512.4
RBU Dehy Thermal Oxidizer		Natural Gas	-	1.879	8760		961.88	0.02	0.00	961.88	0.45	0.49	962.8
RBU Dehy Tank Heater #1	-	Natural Gas	-	0.250	8760		127.99	0.00	0.00	127.99	0.06	0.07	128.1
RBU Dehy Tank Heater #2	-	Natural Gas	-	0.250	8760		127.99	0.00	0.00	127.99	0.06	0.07	128.1
RBU 6-15E Dehy Rebeller	-	Natural Gas	-	0.000	8760		0.00	0.00	0.00	0.00	0.00	0.00	0.00
RBU 6-15E Tank Heater	-	Natural Gas		0.250	8760		127.99	0.00	0.00	127.99	0.06	0.07	128.1
RBU 6-15E Separator Heater	-	Natural Gas	-	0.075	8760		38.40	0.00	0.00	38.40	0.02	0.02	38.44
RBU 7-15E Dehy Reboiler	-	Natural Gas		0.000	8760		0.00	0-00	0.00	0.00	0.00	0.00	0.00
RBU 7-15E Tank Heater	-	Natural Gas		0.250	8760		127.99	0.00	0.00	127.99	0.06	0.07	128.1
RBU 7-15E Separator Heater	-	Natural Gas	-	0.075	8760		38.40	0.00	0.00	38.40	0.02	0.02	38.44
RBU 11-15E Dehy Reboiler		Natural Gas	*	0.175	8760		89.60	0.00	0.00	89.60	0.04	0.05	89.68
RBU 11-15E Tank Heater	1	Natural Gas		0.250	8760		127.99	0.00	0.00	127.99	0.08	0.07	128.1
RBU 11-15E Separator Heater		Natural Gas		0.250	8760		127.99	0.00	0.00	127.99	0.06	0.07	128.1
Tap-1 Heaters (3 X 0.25 each)		Natural Gas	-	0.750	8760		383.98	0.01	0.00	383.98	0.18	0.20	384.3
			Total	5.454		Totals	2792.18	0.05	0.00	2792.18	1.32	1.42	

Engines GHG Emissions Total= 2792.24 tons

CO2e Total= 2794.9 metric tons

				Natural Gas
	From 40 CFR Part 98, Subpart C, Table C-1	kg CO2/MMBtu	53.02	Emission Factor (CO2) =
1 kg =	From 40 CFR Part 98, Subpart C, Table C-2	kg CO _z /MMBtu	0.00100	Emission Factor (CH ₄) =
1 metric ton = 1000	From 40 CFR Part 98, Subpart C, Table C-2	kg CO ₂ /MMBtu	0.0001	Emission Factor (N ₂ O) =
	1	BTU/scf	1106	HHV (Natural Gas) =

	Globel Warming Potentials	
CO2 =	1	From 40 CFR Part 98, Subpart A, Table A-1
CH4 =	25	From 40 CFR Part 98, Subpart A, Table A-1
N ₂ O =	298	From 40 CFR Part 98, Subpart A, Table A-1

¹CO₂e Emissions (metric tons) = 0.001 (metric ton/kg) X Fuel (scf/yr) X HHV (MMBtu/scf) X Emission Factor (natural Gas) (kg CO₂/MMBtu) X Global Warming Potentials Operational Factors from Newfield operational data

Engines Total (CO₂e) = CO₂ emissions + CH₄ (CO₂e) + N₂O (CO2e) Heaters Total (CO₂e) = CO₂ emissions + CH₄ (CO₂e) + N₂O (CO2e)

8

PTE EMISSION SUMMARY

Company: XTO Energy Facility Name: TAP 1 Compressor Station Facility Location: Uintah County, Utah May-17

Proposed Emissions

	N	NOx		со		VOC		Formaldehyde		HAPs	
Source	lb/hr	ton/yr	lb/hr	ton/yr	lb/hr	ton/yr	lb/hr	ton/yr	lb/hr	ton/yr	
Caterpillar G3516LE #1	4.43	19.41	7.39	32.35	1.12	4.92	0.86	3.75	1.01	4.41	
Caterpillar G3516LE #2	3.80	16.66	6.72	29.43	1.06	4.66	0.74	3.22	0.74	3.78	
Tank Emissions - T1T-1 and T1T-2	-	-	-	-	1.00	4.37	-	-	0.06	0.25	
Gas-operated Heat Trace Pumps	-	-	-	-	1.79	7.84	-	-	0.01	0.06	
Boilers	0.09	0.40	0.08	0.34	0.01	0.04	-	-	0.00	0.00	
Fugitives	-	-	-	-	0.56	2.47	-	-	0.00	0.02	
Truck Loading Emissions	-	-	-	-	0.06	0.28	-	-	-	-	
Totals	8.33	36.47	14.18	62.11	5.61	24.57	1.59	6.97	1.82	8.52	

GHG EMISSION SUMMARY

Company: XTO Energy

Facility Name: TAP 1 Compressor Station

Facility Location: Uintah County, Utah

May-17

Proposed Emissions

	CH4 (CO2e)		С	02	TOTAL CO2e		
Source	lb/hr	ton/yr	lb/hr	ton/yr	lb/hr	ton/yr	
Caterpillar G3516LE #1	322.23	1411.36	1134.24	4967.98	1456.47	6379.34	
Caterpillar G3516LE #2	272.23	1192.35	958.24	4197.08	1230.46	5389.43	
Tank Emissions - T1T-1 and T1T-2	10.96	48.00	0.01	0.05	10.97	48.05	
Gas-operated Heat Trace Pumps	246.51	1079.72	0.12	0.51	246.63	1080.23	
Heaters	0.04	0.16	79.53	348.34	79.57	348.51	
Fugitives	18.43	80.71	0.01	0.04	18.44	80.75	
Truck Loading Emissions	-	-	-	-	-	-	
Totals	870.39	3,812.31	2,172.15	9,514.01	3,042.54	13,326.31	

Compressor Engine Emissions

Company: XTO Energy Facility Name: TAP 1 Compressor Station Facility Location: Uintah County, Utah

EMISSION POINTS: Caterpillar G3516LE #1 Engine Serial #: 4EK03995 Engine mfg. date: 1/1/2004

Engine mfg. date: 1/1/2004 Engine Install Date: 7/1/2013 Unit #: T1C-1

Engine Make/Model	Caterpillar G3516LE #					
Site Horsepower Rating	1340	hp				
Fuel Consumption (BSFC)	7695	Btu/(hp-hr)				
Heat Rating	10.311	MMBtu/hr				
Hourly Fuel Use	9877	scf / hr				
Maximum Annual Fuel Use	86.52	mmscf / yr				
Fuel LHV	1044	BTU/scf				
Operating Hours	8760	hrs/yr				

Pollutant	Emission Factor		Emissio (lb/hr)	Emission Factor Reference	
NOx	1.5	g/hp-hr	4.43	19.41	i (1)
CO	2.50	g/hp-hr	7.39	32.35	[1]
VOC/NMHC	0.38	g/hp-hr	1.12	4.92	[1]

					- Lot - Initian	AP-42 Emission Factors
PM10	0.0003	g/hp-hr	0.001	0.003	[2]	7.71E-05 Ib/MMBtu
Hazardous Air Pollutants)					-
Acetaldehyde	0.0292	g/hp-hr	0.0862	0.3776	[2]	8.36E-03 lb/MMBtu
Acrolein	0.0179	g/hp-hr	0.0530	0.2321	[2]	5.14E-03 lb/MMBtu
Benzene	0.0015	g/hp-hr	0.0045	0.0199	[2]	4.40E-04 lb/MMBtu
Ethylbenzene	0.0001	g/hp-hr	0.0004	0.0018	[2]	3.97E-05 ib/MMBtu
Formaldehyde	0.2900	g/hp-hr	0.8567	3.7524	[1]	5.28E-02 lb/MMBtu
Toluene	0,0014	g/hp-hr	0.0042	0.0184	[2]	4.08E-04 lb/MMBtu
Xylene	0.0006	g/hp-hr	0.0019	0.0083	[2]	1.84E-04 lb/MMBtu
		Total HAPS	1.01	4.41		

[1] Emission Factors provided by Manufacturer

[2] AP-42 Table 3.2-3 for stationary IC sources; July 2000, 4-stroke lean burn

GHG Emissions						
CO2	383.9497	g/hp-hr	1134.2430	4967.9843	[2]	1.10E+02 lb/MMBtu
CH4	4.3631	g/hp-hr	12.8891	56.4544	[2]	1.25E+00 lb/MMBtu

	CALCULATION FORMULAS
g/(hp-hr) =	(lb/MMBtu)*(MMBtu/hr)*(453.6 g/lb) / (site-rated hp)
lb/hr =	(g/hp-hr)*(site-rated hp) / (453.6 g/lb)
tpy =	(lb/hr)*(8760 hr/yr) / (2000 lb/ton)
Fuel Usage (MMscf/yr) =	(Scf/btu)*(btu/{hp-hr})*(site-rated hp)*(24 hr/day)*(365 day/yr)*(MMScf/10 ⁵ Scf)
Heat Rating (MMbtu/hr) =	(site rated horsepower)*(Btu/(hp-hr)) / (453.6 g/lb)

Compressor Engine Emissions

Company: XTO Energy Facility Name: TAP 1 Compressor Station Facility Location: Uintah County, Utah

EMISSION POINTS: Caterpillar G3516LE #2 Engine Serial #: 4EK03582 Engine mfg. date: 8/12/2001 Engine Install Date: 7/18/2013 Unit #: T1C-2

Engine Make/Model	Caterpil	lar G3516LE #2
Site Horsepower Rating	1150	hp
Fuel Consumption (BSFC)	7575	Btu/(hp-hr)
Heat Rating	8,711	MMBtu/hr
Hourly Fuel Use	8344	scf / hr
Maximum Annual Fuel Use	73.09	mmscf / yr
Fuel LHV	1044	BTU/scf
Operating Hours	8760	hrs/yr

Pollutant	Emir	ssion Factor	Emissio (lb/hr)	(tpy)	Emission Factor Reference
NOx	1.5	g/hp-hr	3.80	16.66	[1]
CO	2.65	g/hp-hr	6.72	29.43	[1]
VOC/NMHC	0.42	a/hp-hr	1.06	4,66	[1]

						AP-42 Emission Factors
PM10	0.00027	g/hp-hr	0.001	0.003	[2]	7.71E-05 lb/MMBtu
Hazardous Air Pollutants	3		-			
Acetaldehyde	0.0287	g/hp-hr	0.0728	0.3190	[2]	8.36E-03 lb/MMBtu
Acrolein	0.0177	g/hp-hr	0.0448	0.1961	[2]	5.14E-03 lb/MMBtu
Benzene	0.0015	g/hp-hr	0.0038	0.0168	[2]	4.40E-04 lb/MMBtu
Ethylbenzene	0.0001	g/hp-hr	0.0003	0.0015	[2]	3.97E-05 lb/MMBtu
Formaldehyde	0.2900	g/hp-hr	0.7352	3.2203	[1]	5.28E-02 lb/MMBtu
Toluene	0.0014	g/hp-hr	0.0036	0.0156	[2]	4.08E-04 lb/MMBtu
Xylene	0,0006	g/hp-hr	0.0016	0.0070	[2]	1,84E-04 lb/MMBtu
		Total HAPS	0.86	3.78		

[1] Emission Factors provided by Manufacturer

[2] AP-42 Table 3.2-3 for stationary IC sources; July 2000, 4-stroke lean burn

GHG Emissions						
CO2	377.9622	g/hp-hr	958.2375	4197.0803	[2]	1.10E+02 lb/MMBtu
CH4	4.2950	g/hp-hr	10.8891	47.6941	[2]	1.25E+00 lb/MMBtu

	CALCULATION FORMULAS
g/(hp-hr) =	(lb/MMBtu)*(MMBtu/hr)*(453.6 g/lb) / (site-rated hp)
lb/hr =	(g/hp-hr)*(site-rated hp) / (453.6 g/lb)
tpy =	(lb/hr)*(8760 hr/yr) / (2000 lb/ton)
Fuel Usage (MMscf/yr) =	(Scf/btu)*(btu/{hp-hr})*(site-rated hp)*(24 hr/day)*(365 day/yr)*(MMScf/10 ⁶ Scf)
Heat Rating (MMbtu/hr) =	(site rated horsepower)*(Btu/(hp-hr)) / (453.6 g/lb)

G3516 NON-CURRENT

GAS COMPRESSION APPLICATION

GAS ENGINE SITE SPECIFIC TECHNICAL DATA

CATERPILLAR'

River Bend Tap 1 (Comp1)

ENGINE SPEED (rpm):	1400	RATING STRATEGY:	STANDARD
COMPRESSION RATIO:	8	RATING LEVEL:	CONTINUOUS
AFTERCOOLER TYPE:	SCAC	FUEL SYSTEM:	HPG IMPCO
AFTERCOOLER WATER INLET (°F):	130		WITH AIR FUEL RATIO CONTROL
JACKET WATER OUTLET ("F);	210	SITE CONDITIONS:	
ASPIRATION:	TA	FUEL:	River Bend Tap 1
COOLING SYSTEM:	JW+OC, AC	FUEL PRESSURE RANGE(psig): (See note 1)	35.0-40.0
CONTROL SYSTEM:	EIS	FUEL METHANE NUMBER:	59.1
EXHAUST MANIFOLD:	ASWC	FUEL LHV (Btu/scf):	1044
COMBUSTION:	LOW EMISSION	ALTITUDE(ft):	5162
NOx EMISSION LEVEL (g/bhp-hr NOx):	1.5	MAXIMUM INLET AIR TEMPERATURE(*F):	55
SET POINT TIMING:	27	STANDARD RATED POWER:	1340 bhp@1400rpm

			RATING	SITE RATING AT MAX		
RATING	NOTES	LOAD	100%	100%	75%	52%
ENGINE POWER (WITHOUT FAI	(2)	bhp	1340	1295	972	670
INLET AIR TEMPERATURE	1	°F	42	55	55	55
ENGINE DATA	1					
FUEL CONSUMPTION (LHV)	(3)	Btu/bhp-hr	7695	7729	8010	8449
FUEL CONSUMPTION (HHV)	(3)	Btu/bhp-hr	8507	8546	8856	9342
AIR FLOW (@inlet air temp, 14.7 psia) (WEI	1 (.)(*)	ft3/min	2701	2685	2064	1355
AIR FLOW (WET	(4)(5)	lb/hr	12799	12414	9541	6267
FUEL FLOW (60°F, 14.7 psia)		scfm	165	160	124	90
INLET MANIFOLD PRESSURE	(6)	in Hg(abs)	69.2	67.3	52.9	38.7
EXHAUST TEMPERATURE - ENGINE OUTLET	(7)	*F	906	904	891	893
EXHAUST GAS FLOW (@engine outlet temp, 14.5 psia) (WE	1 10/10/	ft3/min	7926	7677	5848	3872
EXHAUST GAS MASS FLOW (WE	(8)(5)	lb/hr	13291	12892	9912	6536
EMISSIONS DATA - ENGINE OUT	1					
NOx (as NO2)	(9)(10)	g/bhp-hr	1.50	1.50	1.50	1.50
co	(9)(10)	g/bhp-hr	2.50	2.51	2.60	2.51
THC (mol, wt. of 15.84)	(9)(10)	g/bhp-hr	2.56	2.59	2.86	3.00
NMHC (mol. wt. of 15.84)	(9)(10)	g/bhp-hr	0.66	0.67	0.74	0.77
NMNEHC (VOCs) (mol. wt. of 15.84)	(9)(10)(11)	g/bhp-hr	0.38	0.39	0.43	0.45
HCHO (Formaldehyde)	(9)(10)	g/bhp-hr	0.29	0.29	0.32	0.34
CO2	(9)(10)	g/bhp-hr	541	542	564	594
EXHAUST OXYGEN	(9)(12)	% DRY	7.8	7.8	7.6	7.4
HEAT REJECTION	1					
HEAT REJ. TO JACKET WATER (JW)	(13)	Btu/min	41800	41085	34782	30141
HEAT REJ. TO ATMOSPHERE	(13)	Btu/min	5313	5196	4340	3543
HEAT REJ. TO LUBE OIL (OC)	(13)	Btu/min	6610	6496	5500	4766
HEAT REJ. TO AFTERCOOLER (AC)	(13)(14)	Btu/min	10285	10285	6392	2437
COOLING SYSTEM SIZING CRITERIA	1					
TOTAL JACKET WATER CIRCUIT (JW+OC)	(14)	Btu/min	53912			
TOTAL AFTERCOOLER CIRCUIT (AC)	(14)(15)	Btu/min	10799			
A cooling system safety factor of 0% has been added to the cooling system sizing criteria.						

CONDITIONS AND DEFINITIONS Engine rating obtained and presented in accordance with ISO 3046/1, adjusted for fuel, site altitude and site inlet air temperature. 100% rating at maximum inlet air temperature is the maximum engine capability for the specified fuel at site altitude and maximum site Inlet air temperature. Maximum rating is the maximum capability at the specified aftercooler inlet temperature for the specified fuel at site altitude and reduced inlet air temperature. Lowest load point is the lowest continuous duty operating load allowed. No overload permitted at rating shown.

For notes information consult page three.

G3516 NON-CURRENT

GAS COMPRESSION APPLICATION

GAS ENGINE SITE SPECIFIC TECHNICAL DATA

CATERPILLAR*

River Bend Tap 1 (Comp2)

ENGINE SPEED (rpm):	1200	RATING STRATEGY:	STANDARD
COMPRESSION RATIO:	8	RATING LEVEL:	CONTINUOUS
AFTERCOOLER TYPE:	SCAC	FUEL SYSTEM:	HPG IMPCO
AFTERCOOLER WATER INLET (°F):	130		WITH AIR FUEL RATIO CONTROL
JACKET WATER OUTLET (*F):	210	SITE CONDITIONS:	
ASPIRATION:	TA	FUEL:	River Bend Tap 1
COOLING SYSTEM:	JW+OC, AC	FUEL PRESSURE RANGE(psig): (See note 1)	35.0-40.0
CONTROL SYSTEM:	EIS	FUEL METHANE NUMBER:	59.1
EXHAUST MANIFOLD:	ASWC	FUEL LHV (Btu/scf):	1044
COMBUSTION:	LOW EMISSION	ALTITUDE(ft):	5162
NOx EMISSION LEVEL (g/bhp-hr NOx):	1.5	MAXIMUM INLET AIR TEMPERATURE("F):	55
SET POINT TIMING:	27	STANDARD RATED POWER:	1150 bhp@1200rpm
		MAXIMUM	I SITE RATING AT MAXIMUM

			RATING	INLET A	IR TEMPE	RATURE
RATING	NOTE	S LOAD	100%	100%	75%	50%
ENGINE POWER (WITHOUT	FAN) (2)	bhp	1150	1150	862	575
INLET AIR TEMPERATURE		°F	55	55	55	55
ENGINE DATA						
FUEL CONSUMPTION (LHV)	(3)	Btu/bhp-hr	7575	7575	7758	8258
FUEL CONSUMPTION (HHV)	(3)	Btu/bhp-hr	8375	8375	8577	9131
AIR FLOW (@inlet air temp, 14.7 psia) (WET) (4)(5)	ft3/min	2353	2353	1804	1242
AIR FLOW (WET) (4)(5)	lb/hr	10881	10881	8339	5742
FUEL FLOW (60°F, 14.7 psia)		scfm	139	139 .	107	76
INLET MANIFOLD PRESSURE	(6)	in Hg(abs)	67.8	67,8	53.4	37.9
EXHAUST TEMPERATURE - ENGINE OUTLET	(7)	۴F	890	890	866	858
EXHAUST GAS FLOW (@engine outlet temp, 14.5 psla)	WET) (8)(5)	ft3/min	6664	6664	5014	3438
	WET) (8)(5)	lb/hr	11295	11295	8657	5967
EMISSIONS DATA - ENGINE OUT						
NOx (as NO2)	(9)(10	g/bhp-hr	1.50	1.50	1.50	1.50
co	(9)(10)	g/bhp-hr	2.65	2.65	2.80	3.10
THC (mal. wt. of 15.84)	(9)(10)	g/bhp-hr	2.82	2.82	3.07	3.50
NMHC (mol. wt. of 15.84)	(9)(10)		0.73	0.73	0.79	0.90
NMNEHC (VOCs) (mol. wt. of 15.84)	(9)(10)(1		0.42	0.42	0.46	0.52
HCHO (Formaldehyde)	(9)(10)		0.29	0.29	0.31	0.34
CO2	(9)(10		532	532	545	580
EXHAUST OXYGEN	(9)(12		7.9	7.9	7.7	7.4
HEAT REJECTION						
HEAT REJ. TO JACKET WATER (JW)	(13)	Btu/min	36022	36022	29623	24252
HEAT REJ. TO ATMOSPHERE	(13)	Btu/min	4554	4554	3795	3037
HEAT REJ. TO LUBE OIL (OC)	(13)	Btu/min	5696	5696	4684	3835
HEAT REJ. TO AFTERCOOLER (AC)	(13)(14		8079	8079	5429	1914
COOLING SYSTEM SIZING CRITERIA						
TOTAL JACKET WATER CIRCUIT (JW+OC)	(14)	Btu/min	46459	1		
TOTAL AFTERCOOLER CIRCUIT (AC)	(14)(15		8483			
A cooling system safety factor of 0% has been added to the cooling system sizing criteria.				1		

CONDITIONS AND DEFINITIONS Engine raling obtained and presented in accordance with ISO 3046/1, adjusted for fuel, site altitude and site inlet air temperature. 100% rating at maximum inlet air temperature is the maximum engine capability for the specified fuel at site altitude and maximum site inlet air temperature. Maximum raling is the maximum capability at the specified aftercooler inlet temperature for the specified fuel at site altitude and reduced inlet air temperature, Lowest load point is the lowest confinuous duty operating load allowed. No overload permitted at rating shown.

For notes information consult page three.

XTO Energy, Inc. Tap-1 Compressor Station

Calculation of Startup, Shutdown and Maintenance (SSM) Potential to Emit

2017 Update Representative gas sample obtained 6/14	V2011		
Density of Air at 60 F & 14.7 psia =	0.0764	lb/scf	
Specific Gravity of Gas	0.6559		
Density of Gas	0.0501		
Annual No. of Blowdowns =			
cubic ft / blowdown =	2:	500	-
Annual vent rate per Operations			
Unit No	Annual Venting (scf)	Annual Gas Vented (lbs/yr)	Annual Gas Vented (tons/yr)
T1C-1/T1C-2	550000	27551.090	13.78

Emission	Speciated	COMP1	SSM Emissions
Source	Pollutant	Wt %	COMP1-BD
			(tpy)
Startup, Shutdown, Maintenance	Nitrogen	0.4989%	0.069
	Carbon Dioxide	0.8812%	0.121
	Methane	74.4858%	10.261
	Ethane	10.2704%	1.415
	Propane	5.4784% 1.4962%	0.755
	I-Butane		0.206
	N-Butane	1.8337%	0.253
	I-Pentane	0.9294%	0.128
	N-Pentane	0.0323%	0.004
	Hexanes Plus	4.0937%	0.564
	Total	100%	-
Annual VOC Emissions (tons)			1.910
Hourly VOC Emissions (lbs)			318.300
Annual Benzene Emissions (lbs)			0.0095
Hourly Benzene Emissions (tons)			1.582
Annual Carbon Dioxide Emissions (tons)	0.121		
Hourly Carbon Dioxide Emissions (ibs)			20.233
Annual Methane Emissions (tons)			10.261
Hourly Methane Emissions (lbs)			1710.137

I Blowdown frequency is 130 blowdowns per year and 1 hour per blowdown and est. 2,500 scf/blowdown

Natural Gas Analysis	Mol %	Mol Wt.	Weighted Sum	Wt. %
Nitrogen	0.3386	28.0134	0.0949	0.4989
Carbon Dioxide	0.3807	44.0100	0.1675	0.8812
Methane	88.2714	16.0432	14.1616	74.4858
Ethane	6.4936	30.0703	1.9526	10.2704
Propane	2.3620	44.0975	1.0416	5.4784
I-Butane	0.4894	58.1246	0.2845	1.4962
N-Butane	0.5998	58.1246	0.3486	1.8337
I-Pentane	0.2449	72.1518	0.1767	0.9294
N-Pentane	0.0085	72.1518	0.0061	0.0323
Hexane plus	0.8111	95.9580	0.7783	4.0937
Total	100.0000		19.0124	100.0000
Total (C3+)	4.5157	1		13.8637
VOC max			1	25.0000
Methane max				65.0000
Carbon Dioxide max				5.0000

NATURAL GAS FUELED HEATER EMISSIONS

Company: XTO Energy

Facility Name: TAP 1 Compressor Station Facility Location: Uintah County, Utah

	HEATER	HEATER	FUEL*	HOURS OF	FUEL	NOx		CO	
SOURCE DESCRIPTION	SIZE (MBtu/hr)	EFFICIENCY	HEAT VALUE (Btu/scf)	OPERATION (hrs/year)	USAGE (MMscf/yr)	EF AP-42 ¹ Ib/MMscf	EMISSIONS (tons/yr)	EF AP-42 ¹ lb/MMscf	EMISSIONS (tons/yr)
Separator	250	0.8	1020	8760	2.684	100.0	0.13	84.0	0.11
Tank Heaters - (2) X 0.25 MMBTU/hr	500	0.8	1020	8760	5.368	100.0	0.27	84.0	0.23
				TOTALS	2.684		0.40		0.34

	T	TOC		PN	10	Formaldehyde	
SOURCE DESCRIPTION	EF AP-42 ² lb/MMscf	EMISSIONS (tons/yr)	EMISSIONS (tons/yr)	EF AP-42 ² Ib/MMscf	EMISSIONS (tons/yr)	EF AP-42 ³ lb/MMscf	EMISSIONS (tons/yr)
Separator	11.0	0.01	0.01	7.6	0.01	7.50E-02	0.0001
Tank Heaters	11.0	0,03	0.03	7.6	0.02	7.50E-02	0.0002
A Children Constraint and a constraint of the second second second second second second second second second s	TOTALS	0.01	0.04		0.03		0.0003

Criteria emissions rounded to the nearest 1/100 of a ton, VOC/HAP rounded to 1/1000 of a ton.

EF AP-42¹ = emission factor from AP-42 Table 1.4-1, Small Boilers <100 MMbtu/hr (EPA 7/98), Standard = 1,020 Btu/scf

EF AP-42² = emission factor from AP-42 Table 1.4-2 (EPA 7/98)

EF AP-42³ = emission factor from AP-42 Table 1.4-2 (EPA 7/98)

Fuel Heat Value (Btu/scf) * 1,000,000 (scf/MMscf) * Heater Efficiency

NOx/CO/TOC Emissions (tons/yr) = AP-42 EF (lbs/MMscf) * Fuel Consumption (MMscf/yr) * (Fuel Heat Value/ Standard Fuel Heat Value) / 2,000 (lbs/ton) -Standard Fuel Heat Value, Natural Gas (AP-42, 7/98, p1.4-5) = 1,020 Btu/scf

VOC emissions assumed equal to TOC emissions

with we we a state of the state of the state of the state	1_	F	A	IVE VOC EN				
Company: Facility Name: Facility Location:		XTO Ener	gy Ind	D.		a contained annual contained and an and a state		
		Tap-1 Cor	npres	sor Station				
		Uintah Co	unty,	Utah				
					n a na anna an an anna an an anna			and a second sec
		Component s Count	Hour s	Factors	%NMNE VOC	%Reductio	A series of the second diversion of the second seco	sions
							lb/year	tons/year
Valves	0.01	50	0700	0.00000000	40 5004		004 50005	0.0100
and a second	Gas/Vapor	53	1	0.00992000	13.56%	diam.	624.53685	0.31227
	Light Oil	26	in concernance and a second second	0.00550000	100.00%		1252.68000	0.62634
	Heavy Oil	0	8760	0.00001900	100.00%	the second se		A company of the second
	Water/Light Oil	6	8760	0.00021600	100.00%	0	11.35296	0.00568
Pumps			0700	0.00500000	10 500/		10.50554	
	Gas/Vapor	2		0.00529000	13.56%		12.56771	0.00628
	Light Oil	0	a manufacture and a manufacture of the second secon	0.02866000	100.00%	· · · · · · · · · · · · · · · · · · ·	0.00000	0.00000
	Heavy Oil	0		0.00113000	100.00%	A CONTRACTOR OF THE REAL OF TH	ANY AMOUNT COMPANY AND	0.00000
<u></u>	Water/Light Oil	0	8760	0.00005300	100.00%	0	0.00000	0.00000
Flanges	0		0700	0.00000000	40 500/		70 400 47	0.0050
	Gas/Vapor	69	1	0.00086000	13.56%	And the second s	1	0.03524
	Light Oil	12	2	0.00024300	100.00%		25.54416	2
	Heavy Oil	0	8760	0.0000086	100.00%	Lange and the second se	1	0.00000
	Water/Light Oil	2	8760	0.00000620	100.00%	0	0.10862	0.00005
Open-ended	The rate way where we will be a set of the s		0700	0.00444000	40 500/		0.00000	0.00000
- 1001 (A)	Gas/Vapor	0		0.00441000	13.56%		A REAL PROPERTY AND A REAL PROPERTY A REAL PROPERTY AND A REAL PRO	0.00000
	Light Oil	0	A second s	0.00309000	100.00%	2	A survey of the second s	0.00000
M	Heavy Oil	0		0.00030900	100.00%	A second se	Commences in the second state of the second st	0.00000
0	Water/Light Oil	0	8760	0.00055000	100.00%	0	0.00000	0.00000
Connectors	OreAlerer	040	0700	0.00044000	40 500/	-	400 00700	0.00040
	Gas/Vapor	318		0.00044000	13.56%			0.08310
	Light Oil	15	Anno and anno anno anno anno	0.00046300	100.00%			and the second reserves the second
	Heavy Oil	0		0.00001700 0.00024300		and the second s	Automation and and a second	A second s
011 0	Water/Light Oil	i	Acres and a second second	Luna and an and a state of the				And the second s
	pressors, relief v	alves, proces	ss drair	ns, diaphragms	, dump arr	ns, hatches,	instruments, m	neters,
polished rod	A A STREET OF A DESIGNATION OF A DESIGNA		0700	0.04040000	40 500	-	444 00000 10	0.007.000
	Gas/Vapor	18			And a second sec		1	0.207402873
	Light Oil	8			100.00%	and the second		a second second states a second second second
	Heavy Oil	0	1		100.00%	1	and the second s	1
ar	Water/Light Oil	4	8760	0.03090000	100.00%	0	1082.736	0.541368
						Total in ton	slvear	2.467
				1		Total in Lb		0.563

XTO ENERGY INC. - TAP-1 COMPRESSOR STATION - FUGITIVE EMISSIONS

Gas Analysis	1						1	1		-	
Conversion of Mole Perce	ent to Weight Perce	ent		MARK							
Tap-1 Fugitives	1										
Specific Gravily			Molecular Weight	18,8962	wt %						
Gross BTU	1000		NMHC	4.5104	23.8896%				1		
			VOCs (NMNEHC)	2.5624	13.560%						
			HAPs	0.1449	0,77%						
			Mole % *								
Component	Mole %	MW	MW	Weight %			UGITIVE VOC TOTALS		2.4668		
Carbon Dioxide	0.3807	44	0.1675	0.886%		TRUCKLOAD		GAS VOC tpy	0.2817		
Nitrogen	0,3386	28	0.0948	0.502%		BLOWDOWI	N VOC	GAS VOC tpy	1.910		
Hydrogen Sulfide	0.0000	34	0.0000	0.000%					1		
Helium	0.0000	4	0.0000	0.000%							
Methane	88.2714	16	14.1234	74.742%					Fugitive	Truckloading	Comp Blowdowns
Ethane	6.4936	30	1.9481	10,309%				wt%	HAP tpy - GAS	HAP tpy - GAS	HAP toy - GAS
Propane	2.3620	44	1,0393	5.500%			n-Hexane	0.0044	0.01080		
Iso-Butane	0,4894	58	0.2839	1,502%			Benzene	0.0011	0.00281	0.00032	0.00218
N-Butane	0.5998	58	0.3479	1.841%			Toluene	0.0015	0.00369	0.00042	0.00285
Iso-Pentane	0.2534	72	0.1824	0.966%			Ethylbenzene	0.0001	0.00015	0.00002	0.00012
N-Pentane	0.2016	72	0.1452	0.768%			Xylenes	0.0006	0.00147	0.00017	0.00114
Methylcyclopentane	0.0079	86	0.0068	0.036%			TOTAL	0.77%	0.01892	0.00216	0.01465
n-Hexane	0,0982	88	0.0827	0.438%							
Hexane +	0.1446	86	0.1244	0.658%							
2.4-Dimethylpentane	0.0000	100	0.0000	0.000%							
Methycyclohexane	0.0749	96	0.0719	0.381%							
Berizane	0.0278	78	0,0215	0.114%							
Cyclohexane	0.0498	84	0.0418	0.221%							
n-Heptane	0.1100	100	0.1100	0.582%							
Toluene	0.0307	92	0.0282	0.749%				1			
Ethylbenzene	0.0011	106	0,0012	0.008%		y an antis or a construct of African Materia and		Ten de la deservation			
Xylenes	0.0106	106	0.0112	0.059%	Canada and a state of the state					an a	
Octanes+	0.0561	114	0.0640	0.338%		And the second se					
Nonanes+	0.0000	128	0.0000	0.000%	Parlan, G. and Milling and Anna San Campanan and Anna 2				1		
Decanes+	0.0000	142	0.0000	0.000%	and the spectrum particular the spectrum						
and a second		-			13.560%	Talamatan ya valini ini va va va na za za na paka na paka na ka mata ka	Const. and a processory control, Black Linear and provide the second structure of the second struct	1			1
Total	100.0000	*		********	NMNEVOC			1			
, and Mappell's an annual conservation of the second second second second second second second second second se					WT %'s		1	1			

			FUGITIV	E CO2 EMISSI	ONS		
			Ī				
	Company:	XTO Energy In	c.				
Facility Name:		Tap-1 Compres	ssor Station				
Fa	cility Location:	Uintah County,	Utah				
				and a start of the start of the			annan, a' an ann Bhan Mallanan Phanana Anna 7, a mhairt a shararan Anna
**		Estimated	Hours of	Factors*	%NMNEVOC	En	nissions
analise of a second		Components Count	Operation	lb/hr/component	Weight	lb/year	metric tons/year
Valves			ar a mana may a na n	11.0.0.1.1.1.1.1.1.1.1.1.1.1.1.1.1.1.1.	N. W. SALM		
	Gas/Vapor	53	8760	0.00992000	0.89%	40.82753	0.01856
	Light Oil	28	8760	0.00550000	0.00%	0.00000	0.00000
M	Heavy Oil	0	8760	0.00001900	0.00%	0.00000	0.00000
	Water/Light Oil	6	8760	0.00021600	0.00%	0.00000	0.00000
Pumps			-				
	Gas/Vapor	2	8760	0.00529000	0.89%	0.82158	0.00037
	Light Oil	0	8760	0.02866000	0.00%	0.00000	0.00000
dama afa da ana an an 1990	Heavy Oil	0	8760	0.00113000	0.00%	0.00000	0.00000
	Water/Light Oil	0	8760	0.00005300	0.00%	0.00000	0.00000
Flanges			0700	0.00000000			
A	Gas/Vapor	69	8760	0.00086000	0.89%	4.60801	0.00209
	Light Oil	12	8760	0.00024300	0.00%	0.00000	0.00000
	Heavy Oil	0	8760	0.0000086	0.00%	0.00000	0.00000
	Water/Light Oil	2	8760	0.00000620	0.00%	0.00000	0.00000
Open-end			0700		0.000/		
	Gas/Vapor	0	8760	0.00441000	0.69%	0.00000	0.00000
	Light Oil	0	8760	0.00309000	0.00%	0.00000	0.00000
- 1: 100000-00-00-0	Heavy Oil	0	8760	0.00030900	0.00%	0.00000	0.00000
	Water/Light Oil	0	8760	0.00055000	0.00%	0.00000	0.00000
Connecto	Propagation and the second of the second second	040		0.000.0000	0.000/	10.00000	
	Gas/Vapor	318	8760	0.00044000	0.89%	10.86539	0.00494
مر بر المرد ماد	Light Oil	15	8760	0.00046300	0.00%	0.00000	0.00000
	Heavy Oil	0	8760	0.00001700	- 0.00%	0.00000	0.00000
	Water/Light Oil	26	8760	0.00024300	0.00%	0.00000	0.00000
Other Co	i mnressors rollef v	alves process drai	ins diaphragms	, dump arms, hatche	e instrumente mote	na poliebed rod	and vente
	preservey ronor v						
C.C. STARK, "J. " of SMA ADDRESS (PP.).	Gas/Vapor	18	8760	0.01940000	0.89%	27.11689	0.01233
	Light Oil	8	8760	0.01650000	0.00%	0.00000	0.00000
	Heavy Oil	0	8760	0.00006800	0.00%	0.00000	0.00000
	Water/Light Oil	4	8760	0.03090000	0.00%	0.00000	0.00000
*NOTE - e	mission factors base	d on Table 2-4 of U.	S. EPA's 1995 F	Protocol for Equipment	Leak Emission Estima	tes.	an a season a season an
			an mala state		Total in mot	ric tonnes/year	0.04

	Company:	XTO Energy In	C.				
	Facility Name:	Tap-1 Compres					an a
Ea	cility Location:	Uintah County,		•			and and the first state of the second state of the second state of the second state of the second state of the
га	cility Location:	Untan County,	, Utan				reasonable and a second second second
		E.U. shad	Haumal	Factors*	%METHANE		
		Estimated Components	Hours of	Factors	WIE I MANE	Emis	sions
		Count	Operation	lb/hr/component	Weight	Ib/year	metric tons/year
Valves	an also de la constante constante de la constan	1				And the second sec	A
	Gas/Vapor	53	8760	0.00992000	74.74%	3442.37027	1,5647
	Light Oil	26	8760	0.00550000	0.00%	0.00000	0.0000
a manager of a state of state of	Heavy Oil	0	8760	0.00001900	0.00%	0.00000	0.0000
	Water/Light Oil	6	8760	0.00021600	0.00%	0.00000	0.0000
Pumps							
	Gas/Vapor	2	8760	0.00529000	74.74%	69.27168	0.0314
	Light Oil	0	8760	0.02866000	0.00%	0.00000	0.0000
nendla (Konsettorian andreassa 1944	Heavy Oil	0	8760	0.00113000	0.00%	0.00000	0.0000
We account of the Country Country	Water/Light Oil	0	8760	0.00005300	0.00%	0.00000	0.0000
Flanges						and the second	
	Gas/Vapor	69	8760	0.00086000	74.74%	388.52376	0.1766
1 Anno 1997 Anno 1997 Anno 1997	Light Oil	12	8760	0.00024300	0.00%	0.00000	0.0000
	Heavy Oil	0	8760	0.00000086	0.00%	0.00000	0.0000
1992 BD 3997990 (1229-9912) 1977 BD 297	Water/Light Oil	2	8760	0.00000620	0.00%	0.00000	0.0000
Open-end	led Lines	1					
	Gas/Vapor	0	8760	0.00441000	74.74%	0.00000	0.0000
Weinstein Weinstein Protection Billion	Light Oil	0	8760	0.00309000	0.00%	0.00000	0.0000
Anghage of the Minister of Annual Contraction of Co	Heavy Oil	0	8760	0.00030900	0.00%	0.00000	0.0000
and which is appreciate of	Water/Light Oil	0	8760	0.00055000	0.00%	0.00000	0.0000
Connecto	And a descent of the second state of the secon	1					
Martinian Carro Andress	Gas/Vapor	318	8760	0.00044000	74,74%	918.11467	0.4164
	Light Oil	15	8760	0.00046300	0.00%	0.00000	0.0000
	Heavy Oil	0	8760	0.00001700	0.00%	0.00000	0.0000
	Water/Light Oil	26	8760	0.00024300	0.00%	0.00000	0.0000
			anna an an ann an ann an an an an an an				
Other: Co	i ompressors, relief v	valves, pròcess dra	ins, diaphragms,	, dump arms, hatches, i	nstruments, meters, polish	ed rods, and vents	
	Gas/Vapor	18	8760	0.01940000	74.74%	2286.35822	1.039
	Light Oil	8	8760	0.01650000	0.00%	0.00000	0.000
	Heavy Oil	0	6760	0.00006800	0.00%	0.00000	0,000
	Water/Light Oil	4	8760	0.03090000	0.00%	0.00000	0.0000
NOTE - e	mission factors base	d on Table 2-4 of U.	S. EPA's 1995 Pr	otocol for Equipment Lea	k Emission Estimates.	. (1999)	чикаландар — — — — — — — — — — — — — — — — — — —
					Total I	metric tonnes/year	3.:

*

VOC EMISSIONS FROM CONDENSATE TRUCK LOADING OPERATIONS

Company:	XTO Energy
Facility Name:	TAP 1 Compressor Station
Facility Location:	Uintah County, Utah

Tank	Oil	Oil	Saturation	True Vapor	Vapor	Oil	Loading	VOC Loading
Description	Sales	Sales	Factor	Pressure	Mole Wt.	Temperature	Losses	Emissions
	(bbls/day)	(1,000 bbls/yr)	(S)	(P) (psia)	(M)	(T) (Degrees R)	(lbs/1,000 gal)	(tons/yr)
Storage Tank	25.000	9.125	0.6	4	26.79	545	1.4700	0.2817
TOTAL	25.000	9.125						0.2817

Loading Losses (lbs/1,000 gal) = 12.46*S*P*M

(AP-42 Section 5.2, Equation 1)

Loading Emissions (tons/year) = Loading Losses (lbs/1,000 gal) * Oil Sales (1,000 bbls/yr) * (42 gal/bbl) 2,000 lbs/ton

Degrees R =

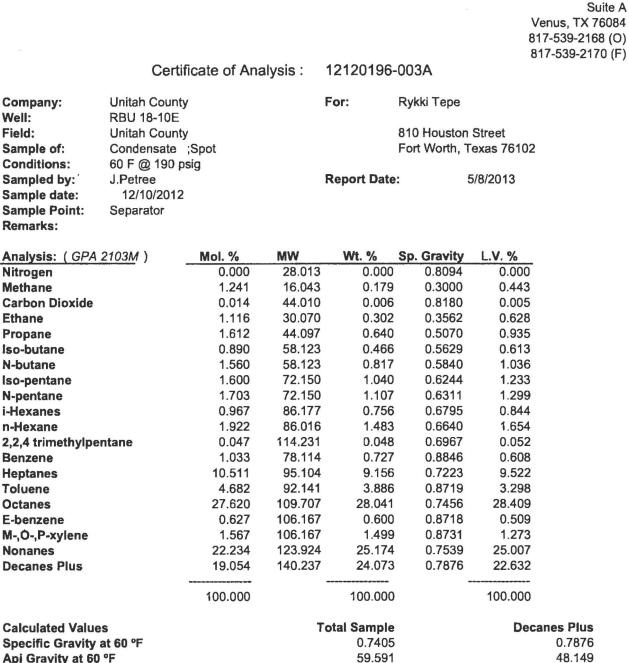
Degrees F + 460

Mode of Operation	S Factor
Submerged loading of a clean tank	0.5
Submerged loading-dedicated service	. 0.6
Submerged loading-vapor balance	1.00
Splash Loading-clean tank	1.45
Splash loading-normal service	1.45
Splash loading-vapor balance	1.00

Tank Truck S Factors

Condensate Tank Emissions (F/W/B)

Company: XTO Energy Facility Name: TAP 1 Compressor Station Facility Location: Uintah County, Utah Description: Uncontrolled - Two (2) X 300 bbl vertical, fixed-roof storage tanks


Condensate										Total	Total
Rate	VOCs	Benzene	Toluene	Ethylbenzene	Xylenes	N-Hexane	224-TMP	CO2	CH4	HAPs	BTEX
(bbis/day)	(tons/yr)	(tons/yr)	(tons/yr)	(tons/yr)	(tons/yr)	(tons/yr)	(tons/yr)	(tons/yr)	(tons/yr)	(tons/yr)	(tons/yr)
25.00	4.37	0.0460	0.0730	0.0040	0.0090	0.121	0.001	0.05	1.92	0.2540	0.1320
TOTAL	4.37	0.05	0.07	0.00	0.01	0.12	0.00	0.05	1.92	0.25	0.13

* Project Setup Information Project File : W:\EHS\Environmental\Air\Areas of Operation\Utah_MSO\RBU Dehy\Title V\EPA RBU Dehy : Flowsheet Selection : Oil Tank with Separator Calculation Method : RVP Distillation Control Efficiency : 0.00% Known Separator Stream : Low Pressure Oil Entering Air Composition : No : C10+ Component Group Filed Name : XTO Energy Well Name : TAP 1 Well ID : PTE Emissions : 2017.05.09 Date *********** * Data Input ***** Separator Pressure (psia) : 190.00 Separator Temperature (F) : 80.0 C10+ SG : 0.79 C10+ MW(lb/lbmol) : 140.24 -- Low Pressure Oil ------No. Component Molet Wtt H2S 0.0000 0.0000 1 0.0000 0.0000 0.0140 0.0055 2 02 3 CO2 0.0000 0.0000 4 N2 0.1771 C1 5 1.2410 C2 C3 1.1160 6 0.2986 0.6326 7 0.8900 0.4603 1.5600 0.8068 1.6000 1.0273 1.7030 1.0934 0.9670 0.7414 i-C4 8 n-C4 i-C5 9 1.027: 1.0934 0.9670 0.7414 10.5110 9.3721 27.6200 28.0755 22.2340 25.3805 19.0540 23.777° 1.0330 4 10 n-C5 11 C6 12 13 C7 C8 14 15 C9 C10+ 16 17 Benzene 18 Toluene E-Benzene Xylenes n-C6 0.6270 0.5924 1.5670 1.4805 1.9220 1.4740 19 20 21 n-C6 0.0470 0.0478 22 224Trimethylp -- Sales Oil -----Production Rate (bbl/day) : 25.00 Days of Annual Operation : 365 API Gravity: 55.91Reid Vapor Pressure (psia): 6.20Ambient Pressure (psia): 12.40Ambient Temperature (F): 70.0 ****** Calculation Results -- Emission Summary -----Uncontrolled

	ton
Total HAPs	0.2550
Total HC	8.1890
VOCs, C2+	6.2680
VOCs, C3+	4.3700
CO2	0.0500
CH4	1,9210
Uncontrolled Recove	ery Information:
Vapor (mscfd) :	0.5406
HC Vapor (mscfd) :	0.5382
CO2 (mscfd) :	0.000
CH4 (mscfd) :	0.2500
GOR (SCF/STB) :	21,6240
Emission Composi	tion
NoComponent	Uncontrolled
_	ton
1 H2S	0.0000
2 02	0,0000
3 CO2	0.0500
4 N2	0.0000
5 C1	1.9210
6 C2	1.8970
7 C3	1.6590
8 i-C4	0.5590
9 n-C4	0.6850
10 i-C5	0.3550
11 n-C5	0.2840
12 C6	0.0600
13 Benzene	0.0460
14 Toluene	0.0730
15 E-Benzene	0.0040
16 Xylenes	0.0090
17 n-C6	0.1210
18 224Trimethylp	0,0010
19 Pseudo Compl	0.4030
20 Pseudo Comp2	0.0840
21 Pseudo Comp3	0.0230
22 Pseudo Comp4	0.0030
23 Pseudo Comp5	0.0000
24 Total	8.2370
Annual Angel (Angel Congregation)	

No	Component	MW	LP Oil	Flash Oil	Sales Oil	Flash Gas	W&S Gas	Total Emission
		lb/lbmol	mole %	mole %	mole %	mole %	mole %	mole %
	H2S	34.80	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000
2	02	32.00	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000
3	CO2	44.01	0.0140	0.0050	0.0030	0.4532	0.3716	0.4397
4	N2	28.01	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000
5	C1	16.04	1.2410	0.2213	0.0784	51.0125	20.9571	46.0144
6	C2	30.07	1.1160	0.6568	0.5192	23.5275	27.8170	24.2408
7	C3	44.10	1.6120	1.3781	1.2818	13.0292	21.5953	14.4537
8	i-C4	58.12	0.8900	0.8427	0.8181	3.1993	6.1755	3.6942
9	n-C4	58.12	1.5600	1.5133	1.4842	3.8380	7.9710	4.5253
10	i-C5	72.15	1.6000	1.6013	1.5929	1.5376	3.6531	1.8894
11	n-C5	72.15	1.7030	1.7131	1.7082	1.2109	3.0310	1.5136
12	C6	84.00	0.9670	0.9825	0.9849	0.2082	0.6140	0.2757
13	Benzene	78.11	1.0330	1.0507	1.0539	0.1709	0.5181	0.2287
14	Toluene	92.14	4.6820	4.7736	4.7952	0.2129	0.7676	0.3051
15	E-Benzene	106.17	0.6270	0.6397	0.6428	0.0093	0.0389	0.0142
16	Xylenes	106.17	1.5670	1.5987	1.6067	0.0199	0.0856	0.0309
17	n-C6	86.18	1.9220	1.9531	1.9579	0.4065	1.2045	0.5392
18	224Trimethylp	114.23	0.0470	0.0479	0.0481	0.0036	0.0116	0.0049
19	Pseudo Compl	103.97	38,1310	38.8925	39.0785	0.9617	4.1383	1.4900
20	Pseudo Comp2	121.00	22.2340	22.6863	22.8018	0.1575	0.8053	0.2652
21	Pseudo Comp3	134.00	13.1451	13.4137	13,4831	0.0363	0.2111	0.0654

22 Pseudo Comp4 147.00 23 Pseudo Comp5 167.47	4.0765 1.8324	4.1599 1.8699	4.1816 1.8797	0.0045	0.0295 0.0038	0.0086 0.0010
MW (lb/lbmol):	LP Oil 108.25	Flash Oil 109.87	Sales Oil 110.24	Flash Gas 29.41	W&S Gas 42.88	Total Emission 31.65
Stream Mole Ratio:	1.0000	0.9799	0.9748	0.0201	0.0040	0.0241
Stream Weight Ratio:	108.25	107.66	107.46	0.59	0.17	0.76
Total Emission (ton):				6.383	1.856	8.239
Heating Value (BTU/scf):				1715.55	2435.89	1835.34
Gas Gravity (Gas/Air):				1.02	1.48	1.09
Bubble Pt. @100F (psia):	51.87	15.86	10.28			
RVP @100F (psia):	14.84	7.50	6.17			
Spec. Gravity @100F:	0.73	0.73	0.73			

Specific Gravity at 60 °F Api Gravity at 60 °F Molecular Weight Pounds per Gallon (in Vacuum) Pounds per Gallon (in Air) Cu. Ft. Vapor per Gallon @ 14.65 psia

0.7876 48.149 140.237 6.567 6.560 17.826

SPL, Inc.

2440 Chambers Street

Daulle I. L. m. Ju.

110.998

6.174

6.167

21.041

Southern Petroleum Laboratories, Inc.

Certificate of Analysis Number: 3040-12120196-004A Venus Laboratory 2440 Chambers Street, Suite A Venus, TX 76084

Jan. 09, 2013

Rykki Tepe 810 Houston Street Fort Worth, Texas 76102

Station Name: RBU 18-10E Station Number: RS0686RF Station Location: Unitah County Sample Point: Separator Sampled By: J.Petree Sample Of: Condensate Spot Sample Date: 12/10/2012 Sample Conditions:60 °F Cylinder No: Tin Can

Analytical Data

Test	Method	Result	Units	Detection Lab Limit Tech.	Analysis Date
Reid Vapor Pressure @ 100°F	ASTM D-323	6.2	psia	TF	01/02/2013
API Gravity @ 60° F		55.91	API	TF	01/02/2013
API Specific Gravity @ 60° F		0.7551	° API	TF	01/02/2013

XTO Energy Inc. Tap-1	Gas-Operated Pumps	VOC	CO2	CH4
Sandaisen Network Can Duman	Fuel Usage (SCFD) - Measured	6000	6000	6000
Sandpiper Natural Gas Pumps	Fuel Usage (SCFM)	4.17	4.17	4.17
	MW Nat'l Gas (lb/lbmol)	20	20	20
	Conversion Factor (scf/lbmol)	379	379	379
Colordation to outs	Conversion Factor (lb/ton)	2000	2000	2000
Calculation Inputs	Operating Time (days)	365	365	365
	Operating time (min)	525600	525600	525600
	Constituent Weight (%)	14%	1%	75%
Sandpiper Natural Gas Pumps	Total VOCs (using SCFM) TPY	7.84	0.51	43.19

.

.

XTO ENERGY INC. - TAP-1 COMPRESSOR STATION PUMP EMISSIONS

Gas Analysis									1
Conversion of Mole Perce	ent to Weight Perce	nt					and an other state and a second state of a state of the second sta	arrange - Andreas Andreas Andreas - Andreas	1
PUMP Calculations						anna Anna ann an Anna an Anna an		and used a spin o carry of the state of	
Specific Gravity	and the second se		Molecular Weight	18.8962	wt %		Annania af Annania (annania) ann ann ann ann ann ann ann ann ann a		
Gross BTU	1000		NMHC	4.5104	23.8696%				
			VOCs (NMNEHC)	2.5624	13.560%				
			HAPs	0.1449	0.77%				
								GAS CO2 tpy	0.5122
			Mole % *				4	GAS CH4 tpy	43.1888
Component	Mole %	MW	MW	Weight %		SITEWIDE	PUMP VOC TOTALS	GAS VOC tpy	7.8356
Carbon Dioxide	0.3807	44	0.1675	0.886%				and the set of the design of the second s	na da anna ann an ann an ann ann ann ann
Nitrogen	0.3386	28	0.0948	0.502%				wt%	HAP tpy - GAS
Hydrogen Sulfide	0.0000	34	0.0000	0.000%			n-Hexane	0.0044	0.03431
Helium	0.0000	4	0.0000	0.000%			Benzene	0.0011	0.00893
Methane	88.2714	16	14.1234	74.742%			Toluene	0.0015	0.01171
Ethane	6.4936	30	1.9481	10.309%			Ethylbenzene	0.0001	0.00048
Propane	2.3620	44	1.0393	5.500%			Xylenes	0.0006	0.00466
Iso-Butane	0.4894	58	0.2839	1.502%			TOTAL HAPS	0.77%	0.06009
N-Butane	0.5998	58	0.3479	1.841%			ninihanan sa		
Iso-Pentane	0.2534	72	0.1824	0.966%					and an an an and a second s
N-Pentane	0.2016	72	0.1452	0.768%			an an the second se	andersenting performance and destructions of a second second second second second second second second second s	ning to Mandala system menters in the management of the provide state of the second of the Application Application of the Application Application of the Application Application Application of the Application Applic
Methylcyclopentane	0.0079	86	0.0068	0.036%		A MARINE AND A DECEMBER OF A			
n-Hexane	0.0962	86	0.0827	0.438%					
Hexane +	0.1446	86	0.1244	0.658%			- Construction Construction		
2,4-Dimethylpentane	0.0000	100	0.0000	0.000%		Anna an an Allandar an			
Methycyclohexane	0.0749	96	0.0719	0.381%					
Benzene	0.0276	78	0.0215	0.114%					
Cyclohexane	0.0498	84	0.0418	0.221%					
n-Heptane	0.1100	100	0.1100	0.582%					
Toluene	0.0307	92	0.0282	0.149%					
Ethylbenzene	0.0011	106	0.0012	0.006%					
Xylenes	0.0106	106	0.0112	0,059%		Annual synthesis - 215 and 157 may - 216 and	*		
Octanes+	0.0561	114	0.0640	0.338%		an a			
Nonanes+	0.0000	128	0.0000	0.000%					
Decanes+	0.0000	142	0.0000	0.000%					
					13.560%				
Total	100.0000				NMNEVOC				
1					WT %'s				

RBU 6-15E, 7-15E, and 11-15E WELLSITE NATURAL GAS FUELED HEATER EMISSIONS

Company: XTO ENERGY INC. Facility Name: RBU 6-15E, 7-15E, and 11-15E Facility Location: Uintah County, Utah

	HEATER	HEATER	FUEL	HOURS OF	FUEL	N	Ox	C	0
SOURCE DESCRIPTION	SIZE (MBtu/hr)	EFFICIENCY	HEAT VALUE (Btu/scf)	OPERATION (hrs/year)	USAGE (MMscf/yr)	EF AP-42 ¹ Ib/MMscf	EMISSIONS (tons/yr)	EF AP-42 ¹ ib/MMscf	EMISSIONS (tons/yr)
6-15E TEG Dehy-Glycol Reboiler	0	0.8	1106	8760	0.000	100.0	0.00	84.0	0.00
7-15E TEG Dehy Glycol Reboiler	0	0.8	1106	8760	0.000	100.0	0.00	84.0	0.00
11-15E TEG Dehy Glycol Reboiler	175	0.8	1106	8760	1.732	100.0	0.09	84.0	0.08
6-15E Tank Heater	250	0.8	1106	8760	2.475	100.0	0.13	84.0	0.11
7-15E Tank Heater	250	0.8	1106	8760	2,475	100.0	0.13	84.0	0.11
11-15E Tank Heater	250	0.8	1106	8760	2.475	100.0	0.13	84.0	0.11
3-15E Separator Heater	75	0.8	1106	8760	0.742	100.0	0.04	84.0	0.03
7-15E Separator Heater	75	0.8	1106	8760	0.742	100.0	0.04	84.0	0.03
11-15E Separator Heater	250	0.8	1106	8760	2.475	100.0	0.13	84.0	0.11
	The second second second	and an an an and a second s		TOTALS	13.116		0.690		0.580

	Т	00	VOC	PM 10		Forma	ldehyde
SOURCE DESCRIPTION	EF AP-42 ² lb/MMscf	EMISSIONS (tons/yr)	EMISSIONS (tons/yr)	EF AP-42 ² Ib/MMscf	EMISSIONS (tons/yr)	EF AP-42 ³ Ib/MMscf	EMISSIONS (tons/yr)
6-15E TEG Dehy Glycol Reboiler	11.0	0.00	0.00	7.6	0.00	7.50E-02	0.0000
7 15E TEG Dehy Glycel Rebeiler	11.0	0.00	0.00	7.6	0.00	7.50E-02	0.0000
11-15E TEG Dehy Glycol Reboiler	11.0	0.01	0.01	7.6	0.01	7.50E-02	0.0001
6-15E Tank Heater	11.0	0.01	0.01	7.6	0.01	7.50E-02	0.0001
7-15E Tank Heater	11.0	0.01	0.01	7.6	0.01	7.50E-02	0.0001
11-15E Tank Heater	11.0	0.01	0.01	7.6	0.01	7.50E-02	0.0001
6-15E Separator Heater	11.0	0.00	0.00	7.6	0.00	7.50E-02	0.0000
7-15E Separator Heater	11.0	0.00	0.00	7.6	0.00	7.50E-02	0.0000
11-15E Separator Heater	11.0	0.01	0.01	7.6	0.01	7.50E-02	0.0001
lan an taon ann an tao tao an tao ann an 1876. An 1877 ann an ann an 1877	TOTALS	0.05	0.05		0.05		0.00

Criteria emissions rounded to the nearest 1/100 of a ton, VOC/HAP rounded to 1/1000 of a ton.

EF AP-42¹ = emission factor from AP-42 Table 1.4-1, Small Boilers <100 MMbtu/hr (EPA 7/98), Standard = 1,020 Btu/scf

EF AP-42² = emission factor from AP-42 Table 1.4-2 (EPA 7/98)

EF AP-42³ = emission factor from AP-42 Table 1.4-2 (EPA 7/98)

Fuel Consumption (MMscf/yr) = Heater Size (MBtu/hr) * 1,000 (Btu/MBtu) * Hours of Operation (hrs/yr)

Fuel Heat Value (Btu/scf) * 1,000,000 (scf/MMscf) * Heater Efficiency

NOx/CO/TOC Emissions (tons/yr) = AP-42 EF (lbs/MMscf) * Fuel Consumption (MMscf/yr) * (Fuel Heat Value/ Standard Fuel Heat Value) / 2,000 (lbs/ton) -Standard Fuel Heat Value, Natural Gas (AP-42, 7/98, p1.4-5) = 1,020 Btu/scf

VOC emissions assumed equal to TOC emissions

Uintah Wellsite Heat	Trace Pumps - VOC	RBU 11-15E	RBU 7-15E	RBU 6-15E
Can dair an Natural Can Dumpa	Fuel Usage (SCFD) - Measured	6000		6000
Sandpiper Natural Gas Pumps	Fuel Usage (SCFM)	4.17		4.17
	Fuel Usage (SCFH) - Spec		40.00	0.00
Kold Katcher HT-48 Pumps	Fuel Usage (SCFM)		0.67	0.00
	MW Nat'l Gas (lb/lbmol)	18.2	18.2	18.2
	Conversion Factor (scf/lbmol)	379	379	379
Coloriation Innuts	Conversion Factor (lb/ton)	2000	2000	2000
Calculation Inputs	Operating Time (days)	365	365	365
	Operating time (min)	525600	525600	525600
	Weight NMNEVOCs (%)	10%	10%	10%
Sandpiper Natural Gas Pumps	Total VOCs (using SCFM) TPY	5.08		5.08
Kold Katchers H-48 Pumps	Total VOCs (using SCFM) TPY	in the second	0.81	0.00

Uintah Wellsite Heat	Trace Pumps - CO2	RBU 11-15E	RBU 7-15E	RBU 6-15E
Candalaan Natural Can Durana	Fuel Usage (SCFD) - Measured	6000		6000
Sandpiper Natural Gas Pumps	Fuel Usage (SCFM)	d 6000 4.17 40.00 0.67 18.2 18.2 379 379 2000 2000 365 365 525600 1% 40.00	4.17	
	Fuel Usage (SCFH) - Spec		40.00	0.00
Kold Katcher HT-48 Pumps	Fuel Usage (SCFM)		0.67	0.00
	MW Nat'l Gas (lb/lbmol)	18.2	18.2	18.2
	Conversion Factor (scf/lbmol)	379	379	379
Coloriation Increte	Conversion Factor (lb/ton)	2000	2000	2000
Calculation Inputs	Operating Time (days)	365	365	365
	Operating time (min)	525600	525600	525600
	Weight CO2 (%)	1%	1%	1%
Sandpiper Natural Gas Pumps	Total CO2 (using SCFM) TPY	0.40	(i) (i)	0.40
Kold Katchers H-48 Pumps	Total CO2 (using SCFM) TPY		0.06	0.00

Uintah Wellsite Heat	Trace Pumps - CH4	RBU 11-15E	RBU 7-15E	RBU 6-15E
	Fuel Usage (SCFD) - Measured	6000		6000
Sandpiper Natural Gas Pumps	Fuel Usage (SCFM)	4.17		4.17
Kald Katakan UT 40 Dumma	Fuel Usage (SCFH) - Spec		40.00	0.00
Kold Katcher HT-48 Pumps	Fuel Usage (SCFM)		0.67	0.00
ny anna an an anna an anna an anna an anna an an	MW Nat'l Gas (lb/lbmol)	18.2	18.2	18.2
	Conversion Factor (scf/lbmol)	379	379	379
Coloulation Innuts	Conversion Factor (lb/ton)	2000	2000	2000
Calculation Inputs	Operating Time (days)	365	365	365
	Operating time (min)	525600	525600	525600
	Weight CH4 (%)	81%	81%	81%
Sandpiper Natural Gas Pumps	Total CH4 (using SCFM) TPY	42.29		42.29
Kold Katchers H-48 Pumps	Total CH4 (using SCFM) TPY		6.77	0.00

*NOTE: RBU 6-15E PUMPS RUN ON INSTRUMENT AIR

POTENTIAL UNCONTROLLED EMISSIONS

Company: XTO ENERGY INC. Facility Name: 11-15E Wellsite Facility Location: Uintah County, Utah

> Unit: TEG Dehydrator at 11-15E wellsite Rating: 0.20 MMscf/day total; 4015 Pump at maximum glycol pump rate

Unit	Gas Flow								Total	Total		
Description	Rate	VOCs	Benzene	Toluene	Ethylbenzene	Xylenes	N-Hexane	224-TMP	HAPs	BTEX	CO2	Methane
	(MMscf/day)	(tons/yr)	(tons/yr)	(tons/yr)	(tons/yr)	(tons/yr)	(tons/yr)	(tons/yr)	(tons/yr)	(tons/yr)	(MT/yr)*	(MT/yr)*
Dehy w/4015 pump	0.20	10.54	1.0440	1.7200	0.0710	0.8830	0.163	0.022	3.9030	3.7180	0.1003	1.8018
TOTAL		10.540	1.044	1.720	0.071	0.883	0.163	0.022	3.903	3.718	0.100	1.802

Page: 1

GRI-GLYCalc VERSION 4.0 - AGGREGATE CALCULATIONS REPORT

Case Name: 11-15E Wellsite Dehy - PTE 2017 File Name: W:¥EHS¥Environmental¥Air¥Areas of Operation¥Utah¥_MSO¥RBU Dehy¥Title V¥EPA RBU Dehy 2016-20 17 Questions¥RBU 11-15E¥RB 11-15E Dehy - PTE 2017.ddf Date: May 30, 2017

DESCRIPTION:

Description: Throughput = 0.20 mmSCFD Gas Analysis: 08/03/10 for RBU 6-18F 4015 glycol pump @ 0.68 GPM No Flash Tank, No Controls

Annual Hours of Operation: 8760.0 hours/yr

EMISSIONS REPORTS:

UNCONTROLLED REGENERATOR EMISSIONS

Component	lbs/hr	lbs/day	tons/yr
Methane	$\begin{array}{c} 0.\ 4117\\ 0.\ 0910\\ 0.\ 0733\\ 0.\ 0325\\ 0.\ 0484 \end{array}$	9.880	1.8031
Ethane		2.185	0.3987
Propane		1.759	0.3210
Isobutane		0.781	0.1425
n-Butane		1.161	0.2118
Isopentane	0.0338	0.810	0. 1479
n-Pentane	0.0308	0.740	0. 1350
n-Hexane	0.0372	0.892	0. 1627
Cyclohexane	0.0925	2.220	0. 4052
Other Hexanes	0.0422	1.013	0. 1849
Heptanes	0. 1416	3. 398	0.6202
Methylcyclohexane	0. 2147	5. 153	0.9404
2,2,4-Trimethylpentane	0. 0050	0. 120	0.0219
Benzene	0. 2384	5. 722	1.0443
Toluene	0. 3931	9. 434	1.7217
Ethylbenzene	0.0161	0.388	0.0707
Xylenes	0.2016	4.838	0.8829
C8+ Heavies	0.8056	19.333	3.5283
Total Emissions	2.9094	69.826	12.7433
Total Hydrocarbon Emissions	2.9094	69.826	12. 7433
Total VOC Emissions	2.4067	57.762	10. 5415
Total HAP Emissions	0.8914	21.393	3. 9042
Total BTEX Emissions	0.8492	20.381	3. 7196

EQUIPMENT REPORTS:

ABSORBER

NOTE: Because the Calculated Absorber Stages was below the minimum allowed, GRI-GLYCalc has set the number of Absorber Stages to 1.25 and has calculated a revised Dry Gas Dew Point.

Calculated Absorber Stages: Calculated Dry Gas Dew Point:	1.25 6.91	lbs. H20/MMSCF
Temperature: Pressure: Dry Gas Flow Rate: Glycol Losses with Dry Gas: Wet Gas Water Content: Calculated Wet Gas Water Content: Calculated Lean Glycol Recirc. Ratio:	80.0 0.2000 0.0006 Saturated 277.68	MMSCF/day

Component	Remaining in Dry Gas	Absorbed in Glycol
Water	2.47%	97.53%
Carbon Dioxide	99.34%	0.66%
Nitrogen	99.96%	0.04%
Methane	99.96%	0.04%
Ethane	99.83%	0.17%
Propane	99.62%	0.38%
Isobutane	99.34%	0.66%
n-Butane	99.08%	0.92%
Isopentane	98.84%	1.16%
n-Pentane	98.48%	1.52%
n-Hexane	96.84%	3.16%
Cyclohexane	87.11%	12.89%
Other Hexanes	97.70%	2.30%
Heptanes	92.61%	7.39%
Methylcyclohexane	82.49%	17.51%
2,2,4-Trimethylpentane	96.47%	3.53%
Benzene	40.01%	59.99%
Toluene	25.49%	74.51%
Ethylbenzene	13.64%	86.36%
Xylenes	9.23%	90.77%
C8+ Heavies	56.74%	43.26%

REGENERATOR

No Stripping Gas used in regenerator.

Component	Remaining in Glycol	Distilled Overhead
Water	62.72%	37.28%
Carbon Dioxide	0.00%	100.00%
Nitrogen	0.00%	100.00%
Methane	0.00%	100.00%
Ethane	0.00%	100.00%
Propane	0.00%	100.00%
Isobutane	0.00%	100.00%
n-Butane	0.00%	100.00%
Isopentane	0.46%	99.54%
n-Pentane	0.47%	99.53%
n-Hexane	0. 49%	99. 51%
Cyclohexane	3. 18%	96. 82%

Page: 2

		Page:
Other Hexanes	0.96%	99.04%
Heptanes	0.49%	99.51%
Methylcyclohexane	3.98%	96.02%
	1.46%	98.54%
2,2,4-Trimethylpentane		
Benzene	4.99%	95.01%
Toluene	7.89%	92.11%
Ethylbenzene	10.39%	89.61%
Xylenes	12.89%	87.11%
		22 220 ⁽
C8+ Heavies	11.98%	88.02%

3

-

STREAM REPORTS:

WET GAS STREAM

-

Temperature: 82.00 deg. F Pressure: 94.70 psia Flow Rate: 8.39e+003 scfh	
Component	Conc. Loading (vol%) (lb/hr)
Carbon Dioxide Nitrogen Methane	5.85e-001 2.33e+000 3.12e-001 3.04e+000 1.21e-001 7.52e-001 9.07e+001 3.22e+002 5.23e+000 3.48e+001
Isobutane n-Butane Isopentane	1.59e+000 1.55e+001 3.36e-001 4.32e+000 3.74e-001 4.80e+000 1.69e-001 2.70e+000 1.20e-001 1.91e+000
Cyclohexane Other Hexanes Heptanes	6.00e-002 1.14e+000 3.83e-002 7.13e-001 9.28e-002 1.77e+000 8.54e-002 1.89e+000 5.62e-002 1.22e+000
Toluene Ethylbenzene	5.47e-003 1.38e-001 2.30e-002 3.97e-001 2.58e-002 5.27e-001 7.95e-004 1.87e-002 9.44e-003 2.22e-001
C8+ Heavies	4.93e-002 1.86e+000
Total Components	100.00 4.02e+002

DRY GAS STREAM

-							
	Temperature: Pressure: Flow Rate:	82.00 94.70 8.33e+003	psia	F			
		Component			Conc. (vol%)	Loading (lb/hr)	

Water 1.46e-002 5.76e-002 Carbon Dioxide 3.13e-001 3.02e+000 Nitrogen 1.22e-001 7.52e-001 Methane 9.13e+001 3.22e+002 Ethane 5.26e+000 3.48e+001 Propane 1.59e+000 1.54e+001 Isobutane 3.36e-001 4.29e+000 n-Butane 3.73e-001 4.76e+000 Isopentane 1.69e-001 2.67e+000 n-Pentane 1.19e-001 1.88e+000 n-Hexane 5.86e-002 1.11e+000 Cyclohexane 3.36e-002 6.21e-001 Other Hexanes 9.13e-002 1.73e+000 Heptanes 7.97e-002 1.75e+000 Methylcyclohexane 4.67e-002 1.01e+000 2,2,4-Trimethylpentane 5.31e-003 1.33e-001 Benzene 9.26e-003 1.59e-001 Toluene 6.64e-003 1.34e-001 Ethylbenzene 1.09e-004 2.55e-003 Xylenes 8.78e-004 2.05e-002 C8+ Heavies 2.82e-002 1.05e+000 100.00 3.97e+002 Total Components

LEAN GLYCOL STREAM

Temperature: 82.00 deg. F Flow Rate: 6.80e-001 gpm		
Component	Conc. (wt%)	Loading (lb/hr)
Water Carbon Dioxide Nitrogen	9.89e+001 1.00e+000 5.28e-013 7.77e-015 1.13e-018	3.83e+000 2.02e-012 2.97e-014
Propane Isobutane	7.45e-009 6.34e-010 2.25e-010 2.86e-010 4.12e-005	2. 43e-009 8. 62e-010 1. 09e-009
n-Hexane Cyclohexane Other Hexanes		1.82e-004 3.04e-003 4.11e-004
	1.94e-005 3.27e-003 8.80e-003	7.42e-005 1.25e-002 3.37e-002
C8+ Heavies		1.10e-001
Total Components	100.00	3,83e+002

Page: 4

Page: 5

.

RICH GLYCOL AND PUMP GAS STREAM

Temperature:	82.00 deg. F
Pressure:	94.70 psia
Flow Rate:	6.90e-001 gpm
NOTE: Stream	has more than one phase.

Component	Conc. (wt%)	Loading (lb/hr)
Water Carbon Dioxide Nitrogen	9.76e+001 1.57e+000 5.90e-003 2.48e-004 1.06e-001	6.10e+000 2.29e-002 9.60e-004
Propane Isobutane	2. 35e-002 1. 89e-002 8. 39e-003 1. 25e-002 8. 75e-003	7. 33e-002 3. 25e-002 4. 84e-002
n-Hexane Cyclohexane Other Hexanes		3.73e-002 9.56e-002 4.26e-002
	1.31e-003 6.47e-002 1.10e-001	5.07e-003 2.51e-001 4.27e-001
Xylenes C8+ Heavies	5.97e-002 2.36e-001	
Total Components	100.00	3.88e+002

REGENERATOR OVERHEADS STREAM

Temperature: 212.00 deg. F Pressure: 14.70 psia Flow Rate: 6.80e+001 scfh		
Component	Conc. (vol%)	Loading (lb/hr)
Carbon Dioxide Nitrogen Methane	7.05e+001 2.90e-001 1.91e-002 1.43e+001 1.69e+000	2.29e-002 9.60e-004 4.12e-001
Isobutane n-Butane Isopentane	9.27e-001 3.12e-001 4.64e-001 2.61e-001 2.38e-001	3.25e-002 4.84e-002 3.38e-002
Cyclohexane Other Hexanes	2.73e-001 7.88e-001	9.25e-002 4.22e-002 1.42e-001

Page: 6

2, 2, 4-Trimethylpentane		
Benzene	1.70e+000	2.38e-001
Toluene	2.38e+000	3.93e-001
Ethylbenzene	8.48e-002	1.61e-002
Xylenes	1.06e+000	2.02e-001
C8+ Heavies	2.64e+000	8.06e-001
Total Components	100.00	5.21e+000

CONDENSATE TANK FLASH, WORKING, AND BREATHING EMISSIONS

Company: XTO ENERGY INC. Facility Name: Wellsites

Facility Location: Uintah County, Utah

TANK DESCRIPTION	WORKING LOSSES* (lbs/yr)	BREATHING LOSSES* (Ibs/yr)	FLASH VOC LOSSES** (lbs/yr)	TOTAL VOC LOSSES (Ibs/yr)	TOTAL LOSSES (tons/yr)
400-bbi storage tank 6-15E	518.94	1782.92	1400	3701.86	1.851
400-bbl storage tank 7-15E	518.94	1782.92	1400	3701.86	1.851
300-bbl storage tank 11-15E	345.96	1563.07	934	2843.03	1.422
TOTAL	1037.88	3565.84	3734	10246.75	5.12

*EPA TANKS 4.09D used to calculate emissions; please see attached documentation. **E&P TANKS v3.0 used to calculate tank flash emissions; please see attached documentation.

Condensate Tank Total Emissions

Condensate										Total	Total
Rate	VOCs	Benzene	Toluene	Ethylbenzene	Xylenes	N-Hexane	224-TMP	CO2	CH4	HAPs	BTEX
(bbls/day)	(tons/yr)	(tons/yr)	(tons/yr)	(tons/yr)	(tons/yr)	(tons/yr)	(tons/yr)	(tons/yr)	(tons/yr)	(tons/yr)	(tons/yr)
400-bbl storage tank 6-15E	1.85	0.0060	0.0090	0.0000	0.0010	0.016	0.0000	0.012	0,498	0.0320	0.0160
400-bbl storage tank 7-15E	1.85	0.0060	0.0090	0.0000	0.0010	0.016	0.0000	0.012	0.498	0.0320	0.0160
300-bbl storage tank 11-15E	1.42	0.0040	0.0060	0.0000	0.0010	0.011	0	0.008	0.332	0.0220	0.0110
TOTAL	5.12	0.02	0.02	0.000	0.00	0.04	0.000	0.032	1.33	0.09	0.04

6/29/2017

****		*****************
	Project Setup Infor	
		: W:\EHS\Environmental\Air\Areas of Operation\Utah\ MSO\RBU Dehy\Title V\EPA RBU Dehy 2
	sheet Selection	
	ulation Method	: RVP Distillation
Cont	rol Efficiency	: 0.00%
Know	n Separator Stream	: Low Pressure Oil
Ente	ring Air Composition	: No
Сощр	onent Group	: C10+
File	d Name	: RBU 6-15E
	Name	: Wasatch - Mesa Verde Representative Sample
Well	ID	: PTE for Permit
Date		: 6/29/2017
*	Data Input	***************************************
	****************	************
	rator Pressure (psia)	
	rator Temperature (F)	
C10+		: 0.79 : 140.24
CI0+	MW(1b/1bmo1)	: 140.24
L	ow Pressure Oil	
No.	Component	Mole% Wt%
1	H2S	0.0000 0.0000
2	02	0.0000 0.0000
3	CO2 N2	0.0140 0.0055
4 5	C1	0.0000 0.0000 1.2410 0.1771
6	C1 C2	1.1160 0.2986
7	C3	1.6120 0.6326
8	i-C4	0.8900 0.4603
9	n-C4	1.5600 0.8068
10	i-C5	1.6000 1.0273
11	n-C5	1.7030 1.0934
12	C6	0.9670 0.7414
13	C7	10.5110 9.3721
14	C8	27.6200 28.0755
15	C9	22.2340 25.3805
16	C10+	19.0540 23.7779
17 18	Benzene	1.0330 0.7180 4.6820 3.8385
19	Toluene E-Benzene	0.6270 0.5924
20	Xylenes	1.5670 1.4805
21	n-C6	1.9220 1.4740
22	224Trimethylp	0.0470 0.0478
9	ales Oil	
	uction Rate (bbl/day)	
	of Annual Operation	
API	Gravity	: 55.91
	l Vapor Pressure (psia	
Ambi	ent Pressure (psia)	: 12.10
Ambi	ent Temperature (F)	: 60.0
****	*****	**********************
*	Calculation Results	3 *
****	******	***************************************
E	mission Summary	
-		htrolled

Total HAPs Total HC VOCs, C2+ VOCs, C3+	ton 0.0320 1.6010 1.1030 0.7000
CO2 CH4	0.0120 0.4980
Girt	0.4500
Uncontrolled Recove	ry Information:
Vapor (mscfd) :	0.1194
HC Vapor (mscfd) :	0.1188
CO2 (mscfd) :	0.000.0
CH4 (mscfd) :	0.0600
GOR (SCF/STB) :	19.9000
	tion
NoComponent	Uncontrolled
1	ton
1 H2S	0.0000
2 02	0.0000
3 CO2	0.0120
4 N2	0.0000
5 C1	0.4980
6 C2	0.4030
7 C3	0.3050
8 i-C4	0.0950 0.1120
9 n-C4 10 i-C5	0.0540
10 1-C5	0.0420
12 C6	0.0080
13 Benzene	0.0060
14 Toluene	0.0090
15 E-Benzene	0.0000
16 Xylenes	0.0010
17 n-C6	0.0160
18 224Trimethylp	0.0000
19 Pseudo Compl	0.0420
20 Pseudo Comp2	0.0080
21 Pseudo Comp3	0.0020
22 Pseudo Comp4	0.0000
23 Pseudo Comp5	0.0000
24 Total	1.6130

91	tream Data							
	Component	MW	LP Oil	Flash Oil	Sales Oil	Flash Gas	W&S Gas	Total Emission
		lb/lbmol	mole %	mole %	mole %	mole %	mole %	mole %
1	H2S	34.80	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000
2	02	32.00	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000
3	CO2	44.01	0.0140	0.0054	0.0036	0.4664	0.5054	0.4727
4	N2	28.01	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000
5	C1	16.04	1.2410	0.2375	0.0425	54.1055	53.6562	54.0331
6	C2	30.07	1.1160	0.6956	0.6119	23.2621	23.6341	23.3220
7	C3	44.10	1.6120	1.4146	1.3758	12.0098	12.0481	12.0159
8	i-C4	58.12	0.8900	0.8530	0.8457	2.8383	2.8462	2.8396
9	n-C4	58.12	1.5600	1.5261	1.5195	3.3447	3.3511	3.3458
10	i-C5	72.15	1.6000	1.6057	1.6069	1.2975	1.3002	1.2979
11	n-C5	72.15	1.7030	1.7162	1.7187	1.0094	1.0113	1.0097
12	C6	84.00	0.9670	0.9822	0.9852	0.1672	0.1675	0.1672
13	Benzene	78.11	1.0330	1.0500	1.0534	0.1365	0.1361	0.1365
14	Toluene	92.14	4.6820	4.7678	4.7846	0.1635	0.1631	0.1635
15	E-Benzene	106.17	0.6270	0.6388	0.6411	0.0069	0.0069	0.0069
16	Xylenes	106.17	1.5670	1.5965	1.6022	0.0147	0.0147	0.0147
17	n-C6	86.18	1.9220	1.9523	1.9582	0.3260	0.3267	0.3261
18	224Trimethylp	114.23	0.0470	0.0478	0.0480	0.0028	0.0028	0.0028
	Pseudo Compl	103.97	38.1310	38.8414	38.9806	0.7087	0.6954	0.7065
20	Pseudo Comp2	121.00	22.2340	22.6539	22.7363	0.1116	0.1075	0.1110
21	Pseudo Comp3	134.00	13.1451	13.3941	13.4430	0.0250	0.0236	0.0248

22 Pseudo Comp4 147.00 23 Pseudo Comp5 167.47	4.0765 1.8324	4.1538 1.8672	4.1689 1.8740	0.0030 0.0003	0.0028 0.0003	0.0030 0.0003
	LP Oil	Flash Oil	Sales Oil	Flash Gas	W&S Gas	Total Emission
MW (lb/lbmol):	108.25	109.78	110.08	28.05	28.11	28.06
Stream Mole Ratio:	1.0000	0.9814	0.9778	0.0186	0.0036	0.0222
Stream Weight Ratio:	108.25	107.73	107.63	0.52	0.10	0.62
Total Emission (ton):				1.353	0.260	1.613
Heating Value (BTU/scf):				1642.57	1645.06	1642.97
Gas Gravity (Gas/Air):				0.97	0.97	0.97
Bubble Pt. 0100F (psia):	51.87	16.69	9.88			
RVP @100F (psia):	14.84	7.81	6.45			
Spec. Gravity @100F:	0.73	0.73	0.73			

Project Setup Information

 Project File
 : W:\EHS\Environmental\Air\Areas of Operation\Utah_MSO\RBU Dehy\Title V\EPA RBU Dehy :

 Flowsheet Selection
 : Oil Tank with Separator

 Calculation Method
 : RVP Distillation

 Control Efficiency
 : 0.00%

 Known Separator Stream
 : Low Pressure Oil

 Entering Air Composition : No : C10+ Component Group Filed Name : RBU 7-15E 400 BBL tank Well Name : Wasatch - Mesa Verde Representative Sample Well ID : PTE for Permit Date : 6/29/2017 * Data Input Separator Pressure (psia) : 190.00 Separator Pressure (psia) : 190.(Separator Temperature (F) : 60.0 C10+ SG : 0.79 C10+ MW(lb/lbmol) : 140.24 -- Low Pressure Oil ------Mole% Wt% No. Component 0.0000 0.0000 0.0000 H2S 1 02 2 3 CO2 0.0140 0.0055 N2 0.0000 0.0000 1.2410 0.1771 4 5 C1 6 C2 1.1160 0.2986 C3 1.6120 0.6326 0.8900 0.4603 1.5600 0.8068 7 8 i-C4 $\begin{array}{ccccccc} 1.5600 & 0.8068 \\ 1.6000 & 1.0273 \\ 1.7030 & 1.0934 \\ 0.9670 & 0.7414 \\ 10.5110 & 9.3721 \\ 27.6200 & 28.0755 \\ 22.2340 & 25.3805 \\ 19.0540 & 23.7779 \\ 1.0330 & 0.7180 \\ 4.6820 & 3.8385 \\ 0.6270 & 0.5924 \\ 1.5670 & 1.4805 \\ 1.9220 & 1.4740 \end{array}$ n-C4 9 10 i-C5 n-C5 11 C6 12 13 C7 C8 14 15 C9 C10+ 16 Benzene 17 E-Benzene Xylenes n-C6 Toluene 18 19 20 21 1.9220 1.4740 22 224Trimethylp 0.0470 0.0478 -- Sales Oil -----Production Rate (bbl/day) : 6.00 Days of Annual Operation : 365 API Gravity : 55.91 Reid Vapor Pressure (psia) : 6.20 Ambient Pressure (psia) : 12.10 Ambient Temperature (F) : 60.0 ********* Calculation Results -- Emission Summary -----Uncontrolled

	ton
Total HAPs	0.0320
Total HC	1.6010
VOCs, C2+	1.1030
VOCs, C3+	0.7000
CO2	0.0120
CH4	0.4980
Uncontrolled Recove	ery Information:
Vapor (mscfd) :	0.1194
HC Vapor (mscfd) :	0.1188
CO2 (mscfd) :	0.0000
CH4 (mscfd) :	0.0600
GOR (SCF/STB) :	19.9000
	ition
NoComponent	Uncontrolled
	ton
1 H2S	0.0000
2 02	0.0000
3 CO2	0.0120
4 N2	0.0000
5 C1	0.4980
6 C2	0.4030
7 C3	0.3050
8 i-C4	0.0950
9 n-C4	0.1120
10 i-C5	0.0540
11 n-C5	0.0420
12 C6	0.0080
13 Benzene	0.0060
14 Toluene	0.0090
15 E-Benzene	0.0000
16 Xylenes	0.0010
17 n-C6	0.0160
18 224Trimethylp	
19 Pseudo Compl	0.0420
20 Pseudo Comp2	0.0080
21 Pseudo Comp3	0.0020
22 Pseudo Comp4	0.0000
23 Pseudo Comp5	0.0000
24 Total	1.6130

St	tream Data							
Not	Component	MW	LP Oil	Flash Oil	Sales Oil	Flash Gas	W&S Gas	Total Emission
		lb/lbmol	mole %	mole %	mole %	mole %	mole %	mole %
1	H2S	34.80	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000
2	02	32.00	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000
3	CO2	44.01	0.0140	0.0054	0.0036	0.4664	0.5054	0.4727
4	N2	28.01	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000
5	C1	16.04	1.2410	0.2375	0.0425	54.1055	53.6562	54.0331
6	C2	30.07	1.1160	0.6956	0.6119	23.2621	23.6341	23.3220
7	C3	44.10	1.6120	1.4146	1.3758	12.0098	12.0481	12.0159
8	i-C4	58.12	0.8900	0.8530	0.8457	2.8383	2.8462	2.8396
9	n-C4	58.12	1.5600	1.5261	1.5195	3.3447	3.3511	3.3458
10	i-C5	72.15	1.6000	1.6057	1.6069	1.2975	1.3002	1.2979
11	n-C5	72.15	1.7030	1.7162	1.7187	1.0094	1.0113	1.0097
12	C6	84.00	0.9670	0.9822	0.9852	0.1672	0.1675	0.1672
13	Benzene	78.11	1.0330	1.0500	1.0534	0.1365	0.1361	0.1365
14	Toluene	92.14	4.6820	4.7678	4.7846	0.1635	0.1631	0.1635
15	E-Benzene	106.17	0.6270	0.6388	0.6411	0.0069	0.0069	0.0069
16	Xylenes	106.17	1.5670	1.5965	1.6022	0.0147	0.0147	0.0147
17	n-C6	86.18	1.9220	1.9523	1.9582	0.3260	0.3267	0.3261
18	224Trimethylp	114.23	0.0470	0.0478	0.0480	0.0028	0.0028	0.0028
19	Pseudo Comp1	103.97	38.1310	38.8414	38.9806	0.7087	0.6954	0.7065
20	Pseudo Comp2	121.00	22.2340	22.6539	22.7363	0.1116	0.1075	0.1110
21	Pseudo Comp3	134.00	13.1451	13.3941	13.4430	0.0250	0.0236	0.0248

22 Pseudo Comp4 147.00 23 Pseudo Comp5 167.47	4.0765 1.8324	4.1538 1.8672	4.1689 1.8740	0.0030 0.0003	0.0028	0.0030 0.0003
	LP Oil	Flash Oil	Sales Oil	Flash Gas	WES Gas	Total Emission
MW (lb/lbmol):	108.25	109.78	110.08	28.05	28.11	28.06
Stream Mole Ratio:	1.0000	0.9814	0.9778	0.0186	0.0036	0.0222
Stream Weight Ratio:	108.25	107.73	107.63	0.52	0.10	0.62
Total Emission (ton):				1.353	0.260	1.613
Heating Value (BTU/scf):				1642.57	1645.06	1642.97
Gas Gravity (Gas/Air):				0.97	0.97	0.97
Bubble Pt. @100F (psia):	51.87	16.69	9.88			
RVP @100F (psia):	14.84	7.81	6.45			
Spec. Gravity @100F:	0.73	0.73	0.73			

* Project Setup Information Project File : W:\EHS\Environmental\Air\Areas of Operation\Utah_MSO\RBU Dehy\Title V\EPA RBU Dehy 2 Flowsheet Selection : Oil Tank with Separator Calculation Method : RVP Distillation Control Efficiency : 0.00% Known Separator Stream : Low Pressure Oil Entering Air Composition : No : C10+ Component Group Filed Name : RBU 11-15E Well Name Well ID : Wasatch - Mesa Verde Representative Sample : RBU 11-15E PTE 4 bopd Date : 2017.06.29 * Data Input Separator Pressure (psia) : 190.00 : 60.0 Separator Temperature (F) : 0.79 C10+ SG C10+ MW(lb/lbmol) : 140.24 -- Low Pressure Oil ------Mole% Wt% No. Component 0.0000 0.0000 0.0000 H2S 1 2 02 0.0140 0.0055 3 CO2 N2 C1 4 0.0000 0.0000 1.2410 0.1771 5 6 C2 1.1160 0.2986 СЗ 1.6120 0.8900 1.5600 0.6326 7 8 i-C4 0.8068 9 n-C4 1.6000 1.7030 0.9670 10 i-C5 1.0273 n-C5 C6 11 1.0934 0.9670 10.5110 9.3721 27.6200 28.0755 22.2340 25.3805 19.0540 23.7779 2.7180 12 13 C7 CB 14 22.2340 25.3805 19.0540 23.7779 15 C9 C10+ 16 1.0330 17 Benzene 0.7180 4.6820 3.8385 0.6270 0.5924 1.5670 1.4805 18 Toluene E-Benzene Xylenes n-C6 19 20 1.9220 1.4740 21 224Trimethylp 0.0470 0.0478 22 -- Sales Oil ------Production Rate (bbl/day) : 4.00 Days of Annual Operation : 365 API Gravity : 55.91 Reid Vapor Pressure (psia) : 6.20

 Reid Vapor ressure (psia)
 : 12.10

 Ambient Pressure (F)
 : 60.0

 : 12.10 ************************ + Calculation Results -- Emission Summary ------Uncontrolled

	ton
Total HAPs	0.0220
Total HC	1.0680
VOCs, C2+	0.7350
VOCs, C3+	0.4670
CO2	0.0080
CH4	0.3320
Che	0.5520
Uncontrolled Recove	ry Information:
Vapor (mscfd) :	0.0796
HC Vapor (mscfd) :	0.0792
CO2 (mscfd) :	0.0000
CH4 (mscfd) :	0.0400
GOR (SCF/STB) :	19.9000
Emission Composi	tion
NoComponent	Uncontrolled
	ton
1 H2S	0.0000
2 02	0.0000
3 CO2	0.0080
4 N2	0.0000
5 C1	0.3320
6 C2	0.2690
7 C3	0.2030
8 i-C4	0.0630
9 n-C4	0.0750
10 i-C5	0.0360
11 n-C5	0.0280
12 C6	0.0050
13 Benzene	0.0040
14 Toluene	0.0060
15 E-Benzene	0.0000
16 Xylenes	0.0010
17 n-C6	0.0110
18 224Trimethylp	0.0000
19 Pseudo Compl	0.0280
20 Pseudo Comp2	0.0050
21 Pseudo Comp3	0.0010
22 Pseudo Comp4	0.0000
23 Pseudo Comp5	0.0000
24 Total	1.0750

NoComponent	MW	LP Oil	Flash Oil	Sales Oil	Flash Gas	W&S Gas	Total Emission
	1b/1bmol	mole %	mole %	mole %	mole %	mole %	mole %
1 H2S	34.80	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000
2 02	32.00	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000
3 CO2	44.01	0.0140	0.0054	0.0036	0.4664	0.5054	0.4727
4 N2	28.01	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000
5 C1	16.04	1.2410	0.2375	0.0425	54.1055	53.6562	54.0331
6 C2	30.07	1.1160	0.6956	0.6119	23.2621	23.6341	23.3220
7 C3	44.10	1.6120	1.4146	1.3758	12.0098	12.0481	12.0159
8 i-C4	58.12	0.8900	0.8530	0.8457	2.8383	2.8462	2.8396
9 n-C4	58.12	1.5600	1.5261	1.5195	3.3447	3.3511	3.3458
LO i-C5	72.15	1.6000	1.6057	1.6069	1.2975	1.3002	1.2979
l1 n-C5	72.15	1.7030	1.7162	1.7187	1.0094	1.0113	1.0097
L2 C6	84.00	0.9670	0.9822	0.9852	0.1672	0.1675	0.1672
13 Benzene	78.11	1.0330	1.0500	1.0534	0.1365	0.1361	0.1365
4 Toluene	92.14	4.6820	4.7678	4.7846	0.1635	0.1631	0.1635
15 E-Benzene	106.17	0.6270	0.6388	0.6411	0.0069	0.0069	0.0069
l6 Xylenes	106.17	1.5670	1.5965	1.6022	0.0147	0.0147	0.0147
L7 n-C6	86.18	1.9220	1.9523	1.9582	0.3260	0.3267	0.3261
18 224Trimethylp	114.23	0.0470	0.0478	0.0480	0.0028	0.0028	0.0028
19 Pseudo Compl	103.97	38.1310	38.8414	38.9806	0.7087	0.6954	0.7065
20 Pseudo Comp2	121.00	22.2340	22.6539	22.7363	0.1116	0.1075	0.1110
21 Pseudo Comp3	134.00	13.1451	13.3941	13.4430	0.0250	0.0236	0.0248

22 Pseudo Comp4 147.00	4.0765	4.1538	4.1689	0.0030	0.0028	0.0030
23 Pseudo Comp5 167.47	1.8324	1.8672	1.8740	0.0003		0.0003
MW (lb/lbmol): Stream Mole Ratio: Stream Weight Ratio: Total Emission (ton): Heating Value (BTU/scf): Gas Gravity (Gas/Air): Bubble Pt. @100F (psia): RVF @100F (psia):	LP Oil 108.25 1.0000 108.25 51.87 14.84	Flash Oil 109.78 0.9814 107.73 16.69 7.81	Sales Oil 110.08 0.9778 107.63 9.88 6.45	Flash Gas 28.05 0.0186 0.52 0.902 1642.57 0.97	W&S Gas 28.11 0.0036 0.10 0.173 1645.06 0.97	Total Emission 28.06 0.0222 0.62 1.075 1642.97 0.97

TANKS 4.0.9d Emissions Report - Detail Format Tank Indentification and Physical Characteristics

Identification User Identification: City: State: Company: Type of Tank: Description:	RBU 6-15E 400 bb! Vernal Utah XTO Energy Vertical Fixed Roof Tank 400-bbl condensate storage tank
Tank Dimensions Shell Height (ft): Diameter (ft): Liquid Height (ft) : Avg. Liquid Height (ft): Volume (gallons): Turnovers: Net Throughput(gal/yr): Is Tank Heated (y/n):	20.00 12.00 18.00 10.00 15,228.53 6.04 91,980.00 Y
Paint Characteristics Shell Color/Shade: Shell Condition Roof Color/Shade: Roof Condition:	Gray/Medium Poor Gray/Medium Poor
Roof Characteristics Type: Height (ft) Slope (ft/ft) (Cone Roof)	Cone 1.00 0.17
Breather Vent Settings Vacuum Settings (psig): Pressure Settings (psig)	0.00 0.00

Meterological Data used in Emissions Calculations: Salt Lake City, Utah (Avg Atmospheric Pressure = 12.64 psia)

TANKS 4.0.9d Emissions Report - Detail Format Liquid Contents of Storage Tank

RBU 6-15E 400 bbl - Vertical Fixed Roof Tank Vernal, Utah

			ily Liquid S perature (de		Liquid Bulk Temp	Vapo	or Pressure	(psia)	Vapor Mol.	Liquid Mass	Vapor Mass	Mol.	Basis for Vapor Pressure
Mixture/Component	Month	Avg.	Min.	Max.	(deg F)	Avg.	Min.	Max.	WeighL	Fract.	Fract.	Weight	Calculations
Gasoline (RVP 7)	All	60.00	60.00	85.00	60.00	3.4847	3.4847	5.6644	68.0000			92.00	Option 4: RVP=7, ASTM Slope=3

TANKS 4.0.9d Emissions Report - Detail Format Detail Calculations (AP-42)

RBU 6-15E 400 bbl - Vertical Fixed Roof Tank Vernal, Utah

Annual Emission Calcautations	
Standing Losses (ib):	1,782.9244
Vapor Space Volume (cu ft):	1,168.6725
Vapor Density (lb/cu ft):	0.0425
Vapor Space Expansion Factor:	0.2861
Vented Vapor Saturation Factor:	0.3438
Verkea Vapor Galanden i acion.	0.0400
Tank Vapor Space Volume:	
Vapor Space Volume (cu ft):	1,168.6725
Tank Diameter (ft):	12.0000
Vapor Space Outage (ft):	10.3333
Tank Shell Height (ft):	20.0000
Average Liquid Height (ft):	10.0000
Roof Outage (ft):	0.3333
Roof Outage (Cone Roof)	
Roof Outage (ft):	0.3333
Roof Height (ft):	1.0000
Roof Slope (ft/ft):	0.1700
Shell Radius (ft):	6,0000
Crist rusting (r).	0.0000
Vapor Density	0.0425
Vapor Density (tb/cu ft):	
Vapor Molecular Weight (ib/ib-mole):	68.0000
Vapor Pressure at Daily Average Liquid	0.4047
Surface Temperature (psia):	3.4847
Daily Avg. Liquid Surface Temp. (deg. R):	519.6700
Daily Average Ambient Temp. (deg. F): Ideal Gas Constant R	51.9625
(psia cuft / (lb-mol-deg R)):	10.731
Liquid Bulk Temperature (deg. R):	519.6700
Tank Paint Solar Absorptance (Shell):	0.7400
Tank Paint Solar Absorptance (Roof):	0.7400
Daily Total Solar Insulation	
Factor (Btu/sqft day):	1,452.1184
	1,102.1101
Vapor Space Expansion Factor	0.0004
Vapor Space Expansion Factor:	0.2861
Daily Vapor Temperature Range (deg. R):	25.0000
Daily Vapor Pressure Range (psia):	2.1798
Breather Vent Press, Setting Range(psia);	0.0000
Vapor Pressure at Daily Average Liquid	0.4047
Surface Temperature (psia):	3.4847
Vapor Pressure at Daily Minimum Liquid	2 40 47
Surface Temperature (psia):	3.4847
Vapor Pressure at Dally Maximum Liquid	5 6044
Surface Temperature (psia):	5.6644
Daily Avg. Liquid Surface Temp. (deg R):	519.6700
Daily Min. Liquid Surface Temp. (deg R):	519.6700
Daily Max. Liquid Surface Temp. (deg R):	544.6700
Daily Ambient Temp. Range (deg. R):	23.3583
Vented Vapor Saturation Factor	
Vented Vapor Saturation Factor:	0.3438
Vapor Pressure at Daily Average Liquid:	
Surface Temperature (psia):	3.4847
Vapor Space Outage (ft):	10.3333

Working Losses (lb):	518.9370
Vapor Molecular Weight (Ib/Ib-mole):	68.0000
Vapor Pressure at Daily Average Liquid	
Surface Temperature (psia):	3.4847
Annual Net Throughout (gel/yr.):	91,980.0000
Annual Turnovers:	6.0400
Turnover Factor:	1.0000
Maximum Liquid Volume (gal):	15,228.5332
Maximum Liquid Height (ft):	18.0000
Tank Diameter (ft):	12.0000
Working Loss Product Factor:	1.0000
Total Losses (lb):	2,301,8614

TANKS 4.0.9d Emissions Report - Detail Format Individual Tank Emission Totals

Emissions Report for: Annual

RBU 6-15E 400 bbl - Vertical Fixed Roof Tank Vernal, Utah

Components	Working Loss	Breathing Loss	Total Emissions
Gasoline (RVP 7)	518.94	1,782.92	2,301.86

÷.

TANKS 4.0.9d Emissions Report - Detail Format Tank Indentification and Physical Characteristics

Identification User Identification: City: State: Company: Type of Tank: Description:	RBU 7-15E TK #1 Vernal Utah XTO Energy Vertical Fixed Roof Tank RBU 7-15E 2017 PTE - 400-bbl condensate storage tank
Tank Dimensions Shell Height (ft): Diameter (ft): Liquid Height (ft) : Avg. Liquid Height (ft): Volume (gallons): Turnovers: Net Throughput(gal/yr): Is Tank Heated (y/n):	20.00 12.00 18.00 10.00 15,228.53 6.04 91,980.00 Y
Paint Characteristics Shell Color/Shade: Shell Condition Roof Color/Shade: Roof Condition:	Gray/Medium Poor Gray/Medium Poor
Roof Characteristics Type: Height (ft) Slope (ft/ft) (Cone Roof)	Cone 1.00 0.17
Breather Vent Settings Vacuum Settings (psig): Pressure Settings (psig)	0.00 0.00

Meterological Data used in Emissions Calculations: Salt Lake City, Utah (Avg Atmospheric Pressure = 12.64 psia)

TANKS 4.0.9d Emissions Report - Detail Format Liquid Contents of Storage Tank

RBU 7-15E TK #1 - Vertical Fixed Roof Tank Vernal, Utah

			illy Liquid S perature (d		Liquid Bulk Temp	Vapo	r Pressure	(psia)	Vapor Mol.	Liquid Mass	Vapor Mass	Mol.	Basis for Vapor Pressure
Mixture/Component	Month	Avg.	Min.	Max.	(deg F)	Avg.	Min,	Max.	Weight.	Fract.	Fract.	Weight	Calculations
Gasoline (RVP 7)	All	60.00	60.00	85 00	60.00	3.4847	3.4847	5.6644	68.0000			92.00	Option 4: RVP=7, ASTM Slope=3

TANKS 4.0.9d Emissions Report - Detail Format Detail Calculations (AP-42)

RBU 7-15E TK #1 - Vertical Fixed Roof Tank Vernal, Utah

Annual Emission Calcaulations	
Standing Losses (lb):	1,782.9244
Vapor Space Volume (cu ft):	1,168.6725
Vapor Density (lb/cu ft):	0.0425
Vapor Space Expansion Factor:	0.2861
Vented Vapor Saturation Factor:	0.3438
Tank Vapor Space Volume:	
Vapor Space Volume (cu ft):	1,168.6725
Tank Diameter (ft):	12.0000
Vapor Space Outage (ft):	10.3333
Tank Shell Height (ft):	20.0000
Average Liquid Height (ft):	10.0000
Roof Outage (ft):	0.3333
Roof Outage (Cone Roof)	
Roof Outage (ft):	0.3333
Roof Height (ft):	1.0000
Roof Slope (ft/ft):	0.1700
Shell Radius (ft):	6.0000
Vapor Density	
Vapor Density (lb/cu ft):	0.0425
Vapor Molecular Weight (lb/lb-mole):	68.0000
Vapor Pressure at Daily Average Liquid	
Surface Temperature (psia):	3.4847
Daily Avg. Liquid Surface Temp. (deg. R):	519.8700
Daily Average Ambient Temp. (deg. F): Ideal Gas Constant R	51,9625
(psia cuft / (lb-mol-deg R)):	10.731
Liquid Bulk Temperature (deg. R):	519,6700
Tank Paint Solar Absorptance (Shell):	0.7400
Tank Paint Solar Absorptance (Roof):	0.7400
Daily Total Solar Insulation	
Factor (Btu/sqft day):	1,452.1184
Vapor Space Expansion Factor	
Vapor Space Expansion Factor:	0.2861
Daily Vapor Temperature Range (deg. R):	25.0000
Daily Vapor Pressure Range (psia):	2.1798
Breather Vent Press. Setting Range(psia): Vapor Pressure at Daily Average Liquid	0.0000
Surface Temperature (psia):	2 4047
Vapor Pressure at Daily Minimum Liquid	3.4847
Surface Temperature (psia):	3.4847
Vapor Pressure at Daily Maximum Liquid	3.4047
Surface Temperature (psia):	5.6644
Daily Avg. Liquid Surface Temp, (deg R):	519.6700
Daily Min, Liquid Surface Temp, (deg R):	519.6700
Daily Max. Liquid Surface Temp. (deg R):	544.6700
Daily Ambient Temp. Range (deg, R):	23.3583
Vented Vapor Saturation Factor	
Vented Vapor Saturation Factor:	0.3438
Vapor Pressure at Daily Average Liquid:	
Surface Temperature (psia):	3.4847
Vapor Space Outage (ft):	10.3333

TANKS 4.0 Report

Working Losses (lb):	518.9370
Vapor Molecular Weight (Ib/Ib-mole):	68.0000
Vapor Pressure at Daily Average Liquid	
Surface Temperature (psia):	3.4847
Annual Net Throughput (gal/yr.):	91,980.0000
Annual Turnovers:	6.0400
Turnover Factor:	1.0000
Maximum Liquid Volume (gal):	15,228.5332
Maximum Liquid Height (ft):	18.0000
Tank Diameter (ft):	12.0000
Working Loss Product Factor:	1.0000
Total Losses (lb):	2,301,8614

TANKS 4.0.9d Emissions Report - Detail Format Individual Tank Emission Totals

Emissions Report for: Annual

RBU 7-15E TK #1 - Vertical Fixed Roof Tank Vernal, Utah

Components	Working Loss	Breathing Loss	Total Emissions
Gasoline (RVP 7)	518.94	1,782.92	2,301.86

-

TANKS 4.0.9d Emissions Report - Detail Format Tank Indentification and Physical Characteristics

Identification User Identification: City: State: Company: Type of Tank: Description:	RBU 11-15E Vernal Utah XTO Energy Vertical Fixed Roof Tank RBU 11-15E - 2017 PTE 300-bbl condensate storage tank
Tank Dimensions Shell Height (ft): Diameter (ft): Liquid Height (ft) : Avg. Liquid Height (ft): Volume (gallons): Turnovers: Net Throughput(gal/yr): Is Tank Heated (y/n):	15.00 12.00 10.00 8.00 8,460.30 7.25 61,320.00 Y
Paint Characteristics Shell Color/Shade: Shell Condition Roof Color/Shade: Roof Condition:	Gray/Medium Poor Gray/Medium Poor
Roof Characteristics Type: Height (ft) Slope (ft/ft) (Cone Roof)	Cone 1.00 0.17
Breather Vent Settings Vacuum Settings (psig): Pressure Settings (psig)	0.00 0.00

Meterological Data used in Emissions Calculations: Salt Lake City, Utah (Avg Atmospheric Pressure = 12.64 psia)

TANKS 4.0.9d Emissions Report - Detail Format Liquid Contents of Storage Tank

RBU 11-15E - Vertical Fixed Roof Tank Vernal, Utah

			ily Liquid Si perature (de		Liquid Bulk Temp	Vapo	or Pressure	(psia)	Vapor Mol.	Liquid Mass	Vapor Mass	Mol.	Basis for Vapor Pressure
Mixture/Component	Month	Avg.	Min.	Max.	(deg F)	Avg.	Min.	Max.	Weight.	Fract.	Fract	Weight	Calculations
Gasoline (RVP 7)	AR I	60.00	60.00	85.00	60.00	3.4847	3.4847	5.6644	68.0000			92.00	Option 4: RVP=7, ASTM Slope=3

TANKS 4.0.9d Emissions Report - Detail Format Detail Calculations (AP-42)

RBU 11-15E - Vertical Fixed Roof Tank Vernal, Utah

Annual Emission Calcaulations	
Standing Losses (Ib):	1,563.0685
Vapor Space Volume (cu ft):	829.3805
Vapor Density (Ib/cu ft):	0.0425
Vapor Space Expansion Factor:	0.2861
Vented Vapor Saturation Factor:	0.4247
Tank Vapor Space Volume:	
Vapor Space Volume (cu fl):	829,3805
Tank Diameter (ft):	12.0000
Vapor Space Outage (ft):	7.3333
Tank Shell Height (ft):	15.0000
Average Liquid Height (ft):	8.0000
Roof Outage (ft):	0.3333
Roof Outage (Cone Roof)	
Roof Outage (ft):	0.3333
Roof Height (ft):	1.0000
Roof Slope (ft/ft):	0.1700
Shell Radius (ft):	6.0000
Vapor Densily	
Vapor Density (lb/cu ft):	0.0425
Vapor Molecular Weight (lb/lb-mole):	68.0000
Vapor Pressure at Daily Average Liquid	the second se
Surface Temperature (psia):	3.4847
Daily Avg. Liquid Surface Temp. (deg. R):	519.6700
Daily Average Ambient Temp. (deg. F): Ideal Gas Constant R	51.9625
(psia cuft / (lb-mol-deg R)):	10,731
Liquid Bulk Temperature (deg. R):	519.6700
Tank Paint Solar Absorptance (Shell):	0,7400
Tank Paint Solar Absorptance (Sheir).	0.7400
Daily Total Solar Insulation	0.7400
Factor (Btu/sqft day):	1,452.1184
Vapor Space Expansion Factor	
Vapor Space Expansion Factor:	0.2861
Daily Vapor Temperature Range (deg. R):	25.0000
Daily Vapor Pressure Range (psia):	2.1798
Breather Vent Press, Setting Range(psia):	0.0000
Vapor Pressure at Daily Average Liquid	0.0000
Surface Temperature (psia):	3,4847
Vapor Pressure at Daily Minimum Liquid	0.4041
Surface Temperature (psia):	3.4647
Vapor Pressure at Dally Maximum Liquid	0.4047
Surface Temperature (psia):	5.6644
Daily Avg. Liquid Surface Temp. (deg R):	519.6700
Daily Min. Liquid Surface Temp. (deg R):	519.6700
Daily Max. Liquid Surface Temp. (deg R):	544.6700
Daily Ambient Temp. Range (deg. R):	23.3583
Vented Vapor Saturation Factor	
Vented Vapor Saturation Factor:	0.4247
Vapor Pressure at Daily Average Liquid:	
Surface Temperature (psia):	3.4847
Vapor Space Outage (ft):	7.3333

Working Losses (lb):	345.9580
Vapor Molecular Weight (lb/lb-mole):	68.0000
Vapor Pressure at Daily Average Liquid	
Surface Temperature (psia):	3.4847
Annual Net Throughput (gal/yr.):	61,320.0000
Annual Turnovers:	7.2480
Turnover Factor:	1.0000
Maximum Liquid Volume (gal):	8,460.2962
Maximum Liquid Height (ft):	10.0000
Tank Diameter (ft):	12.0000
Working Loss Product Factor:	1.0000
Total Losses (Ib):	1,909.0265

TANKS 4.0.9d Emissions Report - Detail Format Individual Tank Emission Totals

Emissions Report for: Annual

RBU 11-15E - Vertical Fixed Roof Tank Vernal, Utah

	Losses(lbs)							
Components	Working Loss	Breathing Loss	Total Emissions					
Gasoline (RVP 7)	345.96	1,563.07	1,909.03					

WELLSITE UNCONTROLLED CONDENSATE TRUCK LOADING EMISSIONS

Company: Summit Gas Gathering Facility Name: RBU Wellsites Facility Location: Uintah County, Utah

AP - 42, Chapter 5.2

$L_L = 12.46 \times S \times P \times M / T$ Emissions = L_L * Throughput

TABLE 1. Emission factors are calculated utilizing AP-42 equations and data from EPA TANKS 4.09 L is converted to tpy VOC emissions per barrel of production per

L_L = Loading Loss Emission Factor (lbs VOC/1000 gal Loaded)

- S = Saturation Factor (0.6 For Submerged Loading Dedicated Service)
- P = True Vapor Pressure of the Loaded Liquid (psi)
- M = Vapor Molecular Weight of the Loaded Liquid (lbs/lbmoi)
- T = Temperature of Loaded Liquid (°R)

RBU 6-15E Truck Loading							L,				VOC
Location	Factors	S	TVP (psi)	M	T (°R)	lb/1000 gal	lb/gal	lb/bbl	tpy VOC/bpd	bpd	tpy
Truck Loading	12.46	0.6	3.5	68	511.68	3.4773	0.0035	0.1460	2.67E-02	6.00	0.1599

RBU 7-15E Truck Loading								Production	VOC		
Location	Factors	S	TVP (psi)	М	T (°R)	lb/1000 gal	lb/gai	ib/bbl	tpy VOC/bpd	bpd	tpy
Truck Loading	12.46	0.6	3.5	68	511.68	3.4773	0.0035	0.1460	2.67E-02	6.00	0.1599

	RBU 11-15E Truck Loading							Production	VOC		
Location	Factors	S	TVP (psi)	М	T (°R)	Ib/1000 gal	lb/gal	lb/bbl	tpy VOC/bpd	bpd	tpy
Truck Loading	12.46	0.6	3.5	68	511.68	3.4773	0.0035	0.1460	2.67E-02	4.00	0.1066

	1	1	EAC	HWELLSITEFU	IGITIVE EMISSIONS		an a
	Company:	XTO ENERGY	INC.				
	Facility Name:	Each Wellsite		a de la companya de la			Management of the second s
Fa	cility Location:	Uintah County		1.	a to a second to	an an ann an	annen bereitet (* 19. deser versenstige
		Contant Dourne			and a sub-standing the strength with the strength of the stren	Menta period page and a second s	
	and a second	Estimated	Hours of	Factors*	%NMNEVOC	Emission	15
		Components Count	Operation	lb/hr/component	Weight	lb/year	tons/year
Valves				**************************************			
	Gas/Vapor	150	8760	0.00992000	9.68%	1261.92850	0.63096
April 1	Light Oil	20	8760	0.00550000	100.00%	963.60000	0.48180
	Heavy Oil		8760	0.00001900	100.00%	0.00000	0,00000
	Water/Light Oil	6	8760	0.00021600	100.00%	11.35296	0.00568
Pumps						The second contraction of the second second second	
	Gas/Vapor	7	8760	0.00529000	9,68%	31.40404	0,01570
	Light Oil	3	8760	0.02866000	100,00%	753.18480	0.37659
	Heavy Oil		8760	0.00113000	100,00%	0.00000	0.00000
	Water/Light Oil		8760	0.00005300	100.00%	0.00000	0.00000
Flanges						reconstruction and and and and and and and and and an	1971
	Gas/Vapor	300	8760	0.00086000	9.68%	218.80212	0.10940
	Light Oil	30	8760	0.00024300	100.00%	63.86040	0.03193
	Heavy Oil		8760	0.00000086	100.00%	0.00000	0.00000
	Water/Light Oil	20	8760	0.00000620	100.00%	1.08624	0.00054
Open-end	weiling						
	Gas/Vapor		8760	0.00441000	9.68%	0.00000	0.00000
	Light Oil		8760	0.00309000	100.00%	0.00000	0.00000
	Heavy Oil		8760	0.00030900	100.00%	0.00000	0.00000
and the formation of the state of the state of the	Water/Light Oil		8760	0.00055000	100.00%	0.00000	0.00000
Connecto							
	Gas/Vapor	20	8760	0.00044000	9.68%	7.46302	0.00373
	Light Oil	20	8760	0.00046300	100.00%	81.11760	0,04056
•	Heavy Oil		8760	0.00001700	100.00%	0.00000	0,00000
	Water/Light Oil	20	8760	0.00024300	100.00%	42.57360	0.02129

	1	1	EAU	A WELLOILE	FUGITIVE EMISSIO	eni.	1
	Company:	XTO ENERGY	INC	1 	and a state of the		
	acility Name:	Each Wellsite					
	lity Location:	Uintah County	litab				
rau	Locadon.	Offican County	, otan	1			
		Estimated	Hours of	Factors*	%NMNEVOC	Em	issions
		Components Count	Operation	ib/hr/component	Weight	lb/year	tons/year
ther: Con	pressors, relief v	alves, process dra	ains, diaphrag	gms, dump arms, hato	hes, instruments, meters, polis	the dealer and a second s	and an
			a ga anton a sur a sur a sur a sur a sur a		a nan alimatana ana sara ana ana ana ana ana ana ana ana ana		
	Gas/Vapor	10	8760	0.01940000	9.68%	164.5258	0.08226
	Light Oil	10	8760	0.01650000	100.00%	1445.4000	0 0.72270
and the distance of the second states of the second states	Heavy Oil		8760	0.00006800	100.00%	0.0000	0.00000
- 1171, of the star of the 117 is a sec	Water/Light Oil	10	8760	0.03090000	100.00%	2706.8400	1.35342
NOTE - emi	ission factors base	d on Table 2-4 of U	.S. EPA's 199	1 5 Protocol for Equipme	nt Leak Emission Estimates.		
					anna a start ann an	Total in tons/year	3.88
						Total in Lb/hr	0.89
				ĺ			
	Fugitive HAP	Emissions Tota	ils - Gas/Va	por	an and standard stand	an a	
		wt% in gas		Total VOC wt %	Total Gas Fugitive VOC tpy	Total tpy for HAP	Total lb/hr for HAP
	Benzene	0.0994%		9.68%	0.84	0.009	0.002
	Toluene	0.1320%	a a second a	9.68%	0.84	0.011	0.003
	Xylene	0.0556%		9.68%	0.84	0.005	0.001
an a	n-Hexane	0.2868%		9.68%	0,84	0.025	0.006
	E-benzene	0.0047%		9.68%	0.84	0.000	0.000
nanana aratitati arati a	(* 18.19) (* 19.19) (* 19.19) (* 1				TOTAL Fugitive HAP's	0.050	0.011
	Fugitive HAP	Emissions Tota	ls - Light O	il and Water			
		wt% in liquid		Total VOC wt %	Total Liquid Fugitive VOC tpy	Total tpy for HAP	Total Ib/hr for HAP
	Benzene	0.035%		100.00%	3.03	0.001	0.000
	Toluene	0.097%		100.00%	3.03	0.003	0.001
	E-benzene	0.039%		100.00%	3.03	0.001	0.000
	Xylene	0.1054%		100.00%	3.03	0.003	0.000
	2,2,4 TMP	0.000%		100.00%	3.03	0.000	0.000
a state of the second se	n-Hexane	0.250%		100.00%	3.03	0.008	0.002
		Cine Circ			0.00		C, UOL
					TOTAL Fugitive HAP's	0.016	0.004

							AFAMA Mathamana an
	Company:	XTO ENERGY	INC.				and a second
	Facility Name:	Each Wellsite					an and a find the second s
Fa	cility Location:	Uintah County	/, Utah		and a second		and a second
	1	1		and an and a second			
994 - 6 West (1999 and 1999 and		Estimated	Hours of	Factors*	%METHANE	Emissi	ons
		Components Count	Operation	lb/hr/component	Weight	lb/year	metric tons/year
/alves					· · · · · · · · · · · · · · · · · · ·		
	Gas/Vapor	150	8760	0.00992000	80.65%	10512.32934	5,25616
	Light Oil	20	8760	0,00550000	50.91%	490.58563	0.24529
	Heavy Oil		8760	0.00001900	0.00%	0.00000	0.00000
	Water/Light Oil	6	8760	0.00021600	50.91%	5.77999	0.00289
umps							
	Gas/Vapor	7	8760	0,00529000	80.65%	261.60723	0.13080
	Light Oil	3:	8760	0.02866000	50.91%	383.45957	0,19173
	Heavy Oil		8760	0.00113000	0.00%	0.00000	0,00000
	Water/Light Oil		8760	0.00005300	50.91%	0.00000	0.00000
langes							11.1.4 M 247 93 10107 20 AL 20 M 2010 1017 1017 1017 1017 1017 1017 1017
	Gas/Vapor	300	8760	0.00086000	80.65%	1822.70226	0.91135
	Light Oil	30	8760	0.00024300	50.91%	32.51245	0.01626
	Heavy Oil		8760	0.00000086	0.00%	0.00000	0.00000
	Water/Light Oil	20	8760	0.00000620	50.91%	0.55302	0.00028
pen-end	the property of the second						and the set of the set
	Gas/Vapor		6760	0.00441000	80.65%	0.00000	0.00000
	Light Oil		8760	0.00309000	50.91%	0.00000	0.00000
- consideration of the state	Heavy Oil		8760	0.00030900	0.00%	0.00000	0.00000
	Water/Light Oil		8760	0.00055000	50,91%	0.00000	0.00000
onnecto	CALL OF THE OWNER OWNE						ale e e e en energiese production de la construction de la construction de la construction de la constru
	Gas/Vapor	20	8760	0.00044000	80.65%	62,16969	0.03108
	Light Oil	20	8760	0,00046300	50.91%	41,29839	0.02085
	Heavy Oil		8760	0.00001700	0.00%	0.00000	0.00000
an and a second seco	Water/Light Oil	20	8760	0.00024300	50.91%	21.67496	0.01084
)ther: Co	mpressors, relief v	alves, process dra	lins, diaphragm	ns, dump arms, hatches, i	nstruments, meters, polished roo	is, and vents	er en nomen ander en
	Gas/Vapor	10	8760	0.01940000	80.65%	1370,55907	0.68528
	Light Oil	10	8760	0.01650000	50.91%	735.87844	0,36794
	Heavy Oil	1	8760	0.00006800	0.00%	0.00000	0.0000.0
	Water/Light Oil	10	8760	0.03090000	50.91%	1378.09963	0.68905
NOTE - e	mission factors base	d on Table 2-4 of U	.S. EPA's 1995	Protocol for Equipment Lea	ak Emission Estimates.		аланын түүн төлөө төлөрөн түүлөрөн төрөөн төрөө төрө төрөө төрөө түүүн төрөө төрө
					Methane Total	n tons/vear	8.56
					Methane Total	and a second	1.95

						-	999 gagar can be an
	Company:	XTO ENERGY	INC.			a second and a second and a second and a second and a second a second second second second second second second	
far far sen an	Facility Name:	Each Wellsite		and an			nenne ar ner tellen er en er en sekente sakke om en sekente sek telle
	cility Location:	Uintah County	, Utah				
	T				ANN		
		Estimated	Hours of	Factors*	%CO2	Emis	sions
		Components Count	Operation	lb/hr/component	Weight	lb/year	metric tons/year
/aives		10	<u></u>				
	Gas/Vapor	150	8760	0.00992000	0.76%	99.33144	0.04515
	Light Oil	20	8760	0,00550000	0.83%	8.00321	0.00364
	Heavy Oil		8760	0.00001900	0.00%	0.00000	0.00000
	Water/Light Oil	6	8760	0.00021600	0.83%	0.09429	0.00004
umps							
	Gas/Vapor	7	8760	0.00529000	0.76%	2.47194	0.00112
	Light Oil	3	8760	0,02866000	0.83%	6.25560	0.00284
	Heavy Oil		8760	0.00113000	0.00%	0,00000	0.00000
	Water/Light Oil		8760	0.00005300	, 0.83%	0.00000	0.00000
langes							
	Gas/Vapor	300	8760	0.00086000	0.76%	17.22279	0,00783
	Light Oil	30	8760	0.00024300	0.83%	0.53039	0.00024
	Heavy Oil		8760	0.0000086	0.00%	0.00000	0.00000
	Water/Light Oil	20	8760	0.00000620	0.83%	0.00902	0,00000
)pen-ende	d Lines					1	
	Gas/Vapor		8760	0.00441000	0.76%	0.00000	0.00000
	Light Oil		8760	0.00309000	0.83%	0.00000	0,00000
	Heavy Oil		8760	0.00030900	0.00%	0.00000	0.00000
	Water/Light Oil		8760	0.00055000	0.83%	0.00000	0.00000
onnector	6						
	Gas/Vapor	20	8760	0.00044000	0.76%	0,58744	0.00027
	Light Oil	20	8760	0.00046300	0,83%	0.67372	0.00031
	Heavy Oil		8760	0.00001700	0.00%	0.00000	0.00000
	Water/Light Oil	20	8760	0,00024300	0,83%	0,35360	0.00016
Other: Col	mpressors, relief v	alves, process dra	ins, dlaphragm	is, dump arms, hatches, ins	truments, meters, polish	ed rods, and vents	
	Gas/Vapor	10	8760	0.01940000	0.76%	12.95047	0.00589
	Light Oil	10	8760	0.01650000	0.83%	for a second	0.00546
	Heavy Oil	10	8760	0.00006800	0.00%	a france for 5 might prister in a france and an announcement and the second and and an an an and a second and a	0.00000
Statement many tenant a sum	Water/Light Oil	10	8760	0.03090000	0.83%		0.01022
	- returning in On	.0	0100	0.0000000	0.00.7	22.70173	0.01022
NOTE - en	ission factors based	d on Table 2-4 of U.	S. EPA's 1995	Protocol for Equipment Leak	Emission Estimates.		n y y y a zakada adala da sa
					CO ₂	Total in metric tons/year	0.08
					When the second	Total in Lb/hr	0.02

UNITED STATES ENVIRONMENTAL PROTECTION AGENCY

REGION 8 1595 Wynkoop Street DENVER, CO 80202-1129 Phone 800-227-8917 http://www.epa.gov/region08

August 9, 2017

MEMORANDUM

- SUBJECT: Source Determination Analysis for River Bend Dehydrator Site
- FROM: Eric Wortman, Permit Engineer, EPA Region 8 Air Program

TO: XTO Energy – River Bend Dehydrator Site Initial Part 71 Permit File

The 8/2/16 revised definition of a major source at 40 CFR 71.2 (81 FR 35622) states that "For onshore activities belonging to Standard Industrial Classification (SIC) Major Group 13: Oil and Gas Extraction, pollutant emitting activities shall be considered adjacent if they are located on the same surface site; or if they are located on surface sites within a quarter mile of one another (measured from the center of the equipment on the surface site) and they share equipment." "Surface site" is given the same meaning as in 40 CFR 63.761, which defines a surface site as any combination of one or more graded pad sites, gravel pad sites, foundations, platforms, or the immediate physical location upon which equipment is physically affixed. "Shared equipment includes, but is not limited to, produced fluids storage tanks, phase separators, natural gas dehydrators or emissions control devices." The preamble explains that shared equipment generally means equipment "used to process or store the oil, natural gas or the byproducts of production." (see 81 FR 35624/2)

In the initial part 71 permit application for the River Bend Dehydrator Site, XTO Energy (XTO) included emissions from the RBU 6-15E, RBU 7-15E, and RBU 11-15E wellsites. The RBU 6-15E wellsite is located on the same gravel pad within the property boundaries of the River Bend Dehydrator facility and is part of the same "surface site" as defined in 63.761. The RBU 7-15E and RBU 11-15E wellsites are located within a quarter mile of the River Bend Dehydrator Site, but are not located on the same surface site. Emissions equipment at the three wellsites each consist of a condensate storage tank, fugitive emissions, truck loading emissions, and various natural gas-fired process heaters. The RBU 11-15E wellsite also operates a small < 2.0 MMscfd dehydration unit. Natural gas produced from the RBU 6-15E, RBU 7-15E and RBU 11-15E wellsites enters a common low-pressure gathering pipeline that flows to the Tap 1 Compressor Station (Tap 1 CS), and eventually back to the River Bend Dehydrator Site for further processing before entering the sales pipeline. (see Figure 1 below)

The Tap 1 CS is also located within a quarter mile of the River Bend Dehydrator Site, but is not located on the same surface site. The Tap 1 CS receives natural gas from nearby wells (including RBU 6-15E, RBU 7-15E, and RBU 11-15E wellsites) and compresses the gas up to a pressure where it can enter the XTO-operated high-pressure gas gathering pipeline. The emission units at Tap 1 CS include two natural gas-fired reciprocating internal combustion engines, two condensate storage tanks, heat trace pneumatic pumps, natural gas-fired heaters, condensate truck loading emissions, and fugitive emissions. The compressed natural gas from Tap 1 CS discharges directly into the River Bend Dehydrator Site, where the natural gas is dehydrated to meet pipeline specifications before entering the sales pipeline. Emissions equipment at the River Bend Dehydrator facility consists of a 45 MMscfd dehydration unit, two

condensate storage tanks, truck loading emissions, fugitive emissions, and various natural gas-fired process heaters.

All sites—the River Bend Dehydrator Site, the Tap 1 CS, and the RBU 6-15E, RBU 71-5E, and RBU 11-15E wellsites—have the same two-digit SIC code 13 and are under common control.

This source determination analysis uses the River Bend Dehydrator facility's surface site as the center site for the quarter-mile distance. (See 81 FR 35627/2-3; Response to Comments, Source Determination for Certain Emission Units in the Oil and Natural Gas Sector, at 71 "If there is any question remaining of which emitting activity should be the center point, such a determination is left to the discretion of the permitting authority.") In this case, because the River Bend Dehydrator facility was a new operation at the time of the permit application—and would thus need a title V permit regardless of any adjacent surface sites—it is reasonable to use the dehydrator facility as the center site.

Based on the information in the permit application and the definition of "surface site" in 40 CFR 63.761, the RBU 6-15E wellsite is located on the same surface site as the River Bend Dehydrator facility, but the RBU 7-15E wellsite, RBU 11-15E wellsite, and the Tap 1 CS are on three other, separate surface sites within a quarter-mile radius of the center site. Because the RBU 6-15E wellsite is on the same surface site as the center site, it is adjacent to the center site and thus part of the same major source as defined in part 71. The RBU 7-15E wellsite, RBU 11-15E wellsite, and Tap 1 CS share the equipment at the River Bend Dehydrator facility. For example, the 45 MMscfd dehydrator at River Bend is used to dehydrate the natural gas discharged from the Tap 1 CS, which includes gas produced from the RBU 7-15E and RBU 11-15E wellsites. Accordingly, pursuant to 40 CFR 71.2, the River Bend Dehydrator facility has "shared equipment" with the RBU 7-15E wellsite, RBU 11-15E wellsite, and the Tap 1 CS. Therefore, the emission units located at the RBU 7-15E wellsite, RBU 11-15E wellsite, and the Tap 1 CS are adjacent to the River Bend Dehydrator Site under the revised definition of a major source. Because activities at the RBU 7-15E wellsite, RBU 11-15E wellsite, and the Tap 1 CS also share the same two-digit SIC code and are under common control, they are thus considered part of the same major source as defined in part 71.

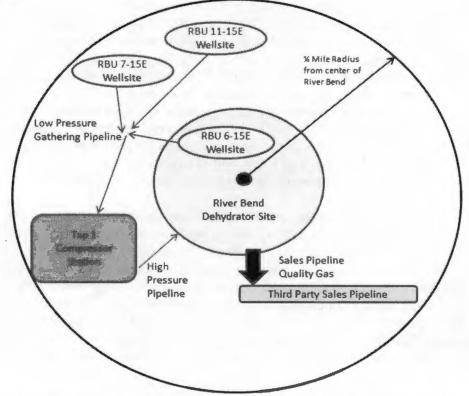


Figure 1. Flow Diagram of XTO Energy Natural Gas Production Operations – Uinta Basin, Utah River Bend Dehydration Site, RBU 6-15E Wellsite, RBU 7-15E Wellsite, RBU 11-15E Wellsite, Tap 1 Compressor Station

Manzanares, Candice

From:Allison, Craig < Craig_Allison@xtoenergy.com>Sent:Friday, July 7, 2017 1:34 PMTo:Wortman, EricSubject:RE: River Bend Dehy and Title VAttachments:XTO Riverbend Dehy Site Reg Applicability Table-7-7-2017.pdf; Emissions - Riverbend
PTE Table-7-7-2017.pdf

Eric:

Thanks for your response. My comments in RED:

- Note that you can take credit for the 95% reduction from MACT HH on RRBU D-1, so the controlled PTE in the Statement of Basis will be 14.6 tpy VOC and 10.9 tpy Total HAPs. Please refer to the attached, revised PTE table.
- With regard to your question on Title V applicability...after reviewing the updated PTE information, the controlled PTE for the aggregation of all sources is major for VOC and Total HAPs. This brings the site into Title V in addition to the major source status for HH. XTO is looking at permanently removing the dehy's at RBU 11-15E and RBU 7-15E, and can do so before the end of July of 2017. Since the dehy's are only used for 4 months or so during the winter, we can eliminate them at these locations by installing a solar powered methanol system instead of using the dehy's. This would get the facility VOC PTE below the 100 tpy limit, thereby eliminating the Title V applicability for uncontrolled VOC's and total HAP's. What are your comments on this modification?
- I disagree with your applicability that the small dehydrator at RBU 6-15E is an area source. According to §63.761, only HAP emissions from glycol dehydration units and storage vessels shall be aggregated for a major source determination at production field facilities. Since the RBU 6-15E wellsite is part of the same surface site as River Bend, emissions from dehydration unit RBU 6-15E D-1 and RBD-1 shall be aggregated to determine major source status. Therefore, dehydration unit RBU 6-15E D-1 is subject to the major source requirements of this subpart for small glycol dehydration units. The RBU 6-15E dehy system is currently not operating and will be permanently removed as of 7/31/2017. Therefore, XTO is removing this source from the application. Please let me know if you need anything else to support this revision.
- I'm also assuming that the operations at RBU 11-15E are similar to RBU 7-15E in that the gas is fed to a gathering flowline that eventually leads into Tap-1 CS. Let me know if I'm mistaken. Yes, you are correct.

In light of my comments, please let me know how we need to proceed with the RBU dehy Title V. Thanks.

Regards, Craig Allison EH&S Advisor Environmental Health & Safety Office: 817-885-2672 | Cell: 817-201-2379 | Fax: 817-885-1847 XTO ENERGY INC., an ExxonMobil subsidiary 810 Houston Street, Fort Worth, Texas 76102

From: Wortman, Eric [mailto:Wortman.Eric@epa.gov]
Sent: Monday, July 03, 2017 10:49 AM
To: Allison, Craig
Subject: RE: River Bend Dehy and Title V

Thanks Craig. Here's a few quick notes based on the info. you sent.....just an fyi. - Eric

- Note that you can take credit for the 95% reduction from MACT HH on RRBU D-1, so the controlled PTE in the Statement of Basis will be 14.6 tpy VOC and 10.9 tpy Total HAPs.
- With regard to your question on Title V applicability...after reviewing the updated PTE information, the controlled PTE for the aggregation of all sources is major for VOC and Total HAPs. This brings the site into Title V in addition to the major source status for HH.
- I disagree with your applicability that the small dehydrator at RBU 6-15E is an area source. According to §63.761, only HAP emissions from glycol dehydration units and storage vessels shall be aggregated for a major source determination at production field facilities. Since the RBU 6-15E wellsite is part of the same surface site as River Bend, emissions from dehydration unit RBU 6-15E D-1 and RBD-1 shall be aggregated to determine major source status. Therefore, dehydration unit RBU 6-15E D-1 is subject to the major source requirements of this subpart for small glycol dehydration units.
- I'm also assuming that the operations at RBU 11-15E are similar to RBU 7-15E in that the gas is fed to a gathering flowline that eventually leads into Tap-1 CS. Let me know if I'm mistaken.

From: Allison, Craig [mailto:Craig_Allison@xtoenergy.com] Sent: Friday, June 30, 2017 5:09 PM To: Wortman, Eric <<u>Wortman.Eric@epa.gov</u>> Subject: RE: River Bend Dehy and Title V

Eric:

Thanks for the reply on the RBU Dehy TV. I wanted to have this formal response in order to answer any questions on why we have a Part 71 at RBU dehy.

Attached are the main two tables that we discussed that you will need to move forward on the draft permit. I will be following up next week with the other formal documents (EUD's, CTAC, supporting emissions calcs, etc.). Also, I will finish Tap-5 next week and get it to you as well. All of this will be coming the latter half of the week because I am out of the office until Wednesday, 7/5/2017.

Take a look at the attachments and let me know if you need any clarification on the information for RBU Dehy. Hopefully, this will help you get moving on the RBU Dehy draft. Thanks.

Regards, **Craig Allison EH&S Advisor Environmental Health & Safety** Office: 817-885-2672 | Cell: 817-201-2379 | Fax: 817-885-1847 **XTO ENERGY INC.**, an ExxonMobil subsidiary 810 Houston Street, Fort Worth, Texas 76102

From: Wortman, Eric [mailto:Wortman.Eric@epa.gov]
Sent: Friday, June 30, 2017 1:19 PM
To: Allison, Craig
Cc: Smith, Claudia
Subject: River Bend Dehy and Title V

Craig,

Per our discussion earlier on the phone, the dehydrator at the River Bend Dehydration Site is subject to the major source requirements of MACT HH because uncontrolled emissions exceed major HAP thresholds and there are no federally enforceable controls on the dehydration unit. Part 71 and MACT HH require major sources to obtain a title V permit

[see 40 CFR 63.760(h) and 40 CFR 71.3(a)]. The consent decree is not relevant because it expired/terminated in April of 2014. Because of the "Once In, Always In" policy, XTO cannot obtain a synthetic minor permit for the dehydrator at River Bend to avoid title V because the compliance date for MACT HH has already passed. EPA's "Once In, Always In" policy can be accessed at the following link: <u>https://www.epa.gov/sites/production/files/2015-08/documents/pteguid.pdf</u>.

Please note that this email is only provided to assist with your inquiry and is not an official determination of applicability to Federal air permitting requirements. If you would like more information or to proceed with a formal applicability determination, please let me know.

Eric

Eric Wortman | Environmental Scientist U.S. Environmental Protection Agency Telephone: (617) 918-1624 | Email: <u>wortman.eric@epa.gov</u>

Equipment ID	Emissions Units	Equipment Type	Equipment Construction / Manufacture Date	Equipment Install Date	Uncontrolled VOC Emissions rate (TPY)	Potential Applicable Regulation	Regulatory Applicability (Yes / No)	Comments
RBD-1		Natural Gas						
	45 MMscfd TEG Dehydrator	Dehydrator	Pre-2010	1/17/2010	14.56	MACT HH	YES	Major Source of HAP's
RBT-1	400-bbl slop tank #1	Storage Tank	2009	12/15/2009	4.31	NSPS 0000	NO	
RBT-2	400-bbl slop tank #2	Storage Tank	2009	12/15/2009	4.31	NSPS 0000	NO	
RBU Pneumatic	RBU Pneumatic Controllers	Pneumatic	D== 2010	1/17/2010	A1/A			Controllers operate On Plant
Controllers	Againer (1.2 Stargensternet	Controllers	Pre-2010	1/17/2010	N/A	NSPS 0000	NO	Instrument Air
herein gen anne anne	betredition in the second second second second	يون بور بوريد دور رون و مور و در د	Magni, Highes	And Andrewski and the	3.9.4	Synth Cirlinan a s	64	Deby Unit to the removed on ar Debyto July 31, 2017
	RBU 6-15E Wellsite			if o Silve Boole A			•••	and the testing of a local state
RBU 6-15E P-1	Pneumatic Pump Emissions	Pneumatic Pump	Pre-2010	1/18/2010	N/A	NSPS 0000a	NO	
RBU 6-15E								
Pneumatic	RBU 6-15E Pneumatic	Pneumatic						
Controllers	Controllers	Controllers	Pre-2010	Pre-2010	N/A	NSPS 0000	NO	Operate On Plant Instrument Air
	RBU 7-15E Wellsite 0.20	Natural Gas						Area Source - Unit is less than 3.0
RBU 7-15E D-1	MMscfd glycol dehydrator	Dehydrator	Pre-2012	3/2/2012	10.54	MACT HH	NO	mmscfd actual flowrate
00117 455 5 -	RBU 7-15E Wellsite							
RBU 7-15E P-1	Pneumatic Pump Emissions	Pneumatic Pump	Pre-2012	3/2/2012	N/A	NSPS OOOOa	NO	
RBU 7-15E	00117 165 0	Deeus						
Pneumatic	RBU 7-15E Pneumatic Controllers	Pneumatic Controllers						
Controllers	Controllers	Controllers	Pre-2010	Pre-2010	N/A	NSPS 0000	NO	
RBU 11-15E D-1	RBU 11-15E Wellsite 0.20	Natural Gas						Area Source - Unit is less than 3.0
KBU 11-15E D-1	MMscfd glycol dehydrator	Dehydrator	Pre-2010	Pre-2010	10.54	MACT HH	NO	mmscfd actual flowrate
RBU 11-15E P-1	RBU 11-15E Wellsite							
KBO 11-13E F-1	Pneumatic Pump Emissions	Pneumatic Pump	Pre-2012	Pre-2012	N/A	NSPS OOOOa	NO	
RBU 11-15E	RBU 11-15E Pneumatic	Pneumatic						
Pneumatic	Controllers	Controllers		1				
Controllers	14 M 11 M 1 M 10 M 10 M 10 M	controllers	Pre-2010	Pre-2010	N/A	NSPS 0000	NO	
T1C-1	Tap-1 Caterpillar 3516 TALE							
110-1	Compressor Engine #1	RICE	1/1/2004	7/1/2013	N/A	MACT ZZZZ	YES	REMOTE AREA - S/N 4EK03995
T1C-1	Tap-1 Caterpillar 3516 TALE							
	Compressor Engine #1	RICE	1/1/2004	7/1/2013	N/A	NSPS JJJJ	NO	S/N 4EK03995
T1C-1	Tap-1 Caterpillar 3516 TALE	Reciprocating					10000	
	Compressor #1	Compressor	Pre-2010	7/1/2013	N/A	NSPS 0000	NO	Pre-Aug 2011 Construction date
T1C-2	Tap-1 Caterpillar 3516 TALE							
	Compressor Engine #2	RICE	8/12/2001	7/18/2013	N/A	MACT 2222	YES	REMOTE AREA - S/N 4EK03582
T1C-2	Tap-1 Caterpillar 3516 TALE			7/10/2010				
	Compressor Engine #2	RICE	8/12/2001	7/18/2013	N/A	NSPS IIII	NO	S/N 4EK03582
T1C-2	Tap-1 Caterpillar 3516 TALE	Reciprocating	D == 2010	7/10/2012		10000		
	Compressor #2	Compressor	Pre-2010	7/18/2013	N/A	NSPS 0000	NO	Pre-Aug 2011 Construction date Tank 1350 / S/N 2024 - Pre-Aug 2013
T1T-1	Tap-1 - 300-bbl Condensate	Storage Teals	6/16/2010	6/18/2012	2.19	NSPS 0000	NO	Const Date / BELOW 6 TPY VOC
	Tank #1 Tap-1 - 300-bbl Condensate	Storage Tank	6/16/2010	6/18/2012	2.19	NSPS 0000	NU	Aug 2011 Const Date / BELOW 6 TPY
T1T-2	Tank #2	Storage Tank	9/12/2001	6/18/2012	2.19	NSPS 0000	NO	VOC
T1P-1/T1P-2	Tap-1 Heat Trace Pumps (2)	Pneumatic Pump	Pre-2014	Pre-2014	N/A	NSPS OOQOa	NO	Pre- 2015 Install date
RBU 6-15E	rop 1 near nace rumps (2)	i neumatic rump	FIC-2014	116-2014	N/A	1151 3 00000		Tank E1427 / S/N 2802 - BELOW 6
Wellsite IEU	400-bbl slop tank	Storage Tank	11/1/2012	11/21/2012	1.85	N5P5 0000	YES	TPY VOC
RBU 7-15E	too an hop tons	515100C 1011K	**/*/2012		2.00			Tank E1414 / S/N 2678 - BELOW 6
Wellsite IEU	400-bbl slop tank	Storage Tank	7/1/2012	8/24/2012	1.85	NSPS 0000	YES	TPY VOC
RBU 11-1SE	400-bbi siop tank	storage rank	7/1/2012	6/24/2012	C6.1	11353 0000	TES	
	200 bbl size and	Canada Tan'	2/1/2007	5/0/2012		NERS 0000		Tank E1391/ S/N 0800 - Pre-2011 an
Wellsite IEU	300-bbl slop tank	Storage Tank	3/1/2008	5/9/2012	1.42	NSPS 0000	NO	BELOW 6 TPY VOC
RBU 6-15E	Mall Completion	Natural Car Mi-II	11/4	1/22/2005		NERE COOC-	NO	
Wellsite	Well Completion	Natural Gas Well	N/A	1/22/2004	N/A	NSPS 0000a	NO	
RBU 7-15E				Initial - 4/3/1992 &				
Wellsite				Recompletion -				
	Well Completion	Natural Gas Well	N/A	1/3/2013	N/A	NSPS OOOOa	NO	
RBU 11-15E								

, · · ·

Emissions Units Condensate Truck Loading Thermal Oxidizer Emissions 45 MMscfd TEG Dehydrator Fugitive Emissions 400-bbl slop tank #1 400-bbl slop tank #2 RBL 6-16E Wellister Oxid- MMscfd Ste Wellister Oxid- RBU 6-15E Wellister RBU 6-15E Wellister Pneumatic Pump Emissions RBU 7-15E Welliste Fugitive Emissions RBU 7-15E Welliste Fugitive Emissions RBU 7-15E Welliste Fugitive Emissions RBU 7-15E Welliste Fugitive Emissions RBU 1-15E Welliste Oxid	NOx* 0.0 0.5 0.0	CO* 0.0 2.9 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0	VOC* 2.44 0.0 14.6 5.7 4.3 4.3 0.00	PM* 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.	SO2° 0.0 0.0 0.0 0.0	Total HAPs* 0.0 0.0 10.9 0.1	CO2* 0.0 962.8 0.0	(as CO ₂ e) 0.0 0.02 6.3	(as CO ₂ e) 0.0 0.002 0.0	CO2e*
Thermal Oxidizer Emissions 45 MMscfd TEG Dehydrator Fugitive Emissions 400-bbl slop tank #1 400-bbl slop tank #2 RBU 6-156 Wellotte 0.20 ANAddd TEG-Dehydrator RBU 6-15E Wellsite Fugitive Emissions RBU 6-15E Wellsite Pneumatic Pump Emissions RBU 7-15E Wellsite 0.20 MMscfd glycol dehydrator RBU 7-15E Wellsite Fugitive Emissions	0.5 0.0 0.0 0.0 0.0 0.0 0.0	2.9 0.0 0.0 0.0 0.0 0.0 0.0	0.0 14.6 5.7 4.3 4.3	0.0 0.0 0.0 0.0	0.0 0.0 0.0	0.0 10.9	962.8 0.0	0.02	0.002	963.8
45 MMscfd TEG Dehydrator Fugitive Emissions 400-bbl slop tank #1 400-bbl slop tank #2 RBU 6-15E Wellste Fugitive Emissions RBU 6-15E Wellste Fugitive Pneumatic Pump Emissions RBU 7-15E Wellsite 0.20 MMscfd glycol dehydrator RBU 7-15E Wellsite Fugitive Emissions	0.0 0.0 0.0 0.0 0.0 0.0 0.0	0.0 0.0 0.0 0.0 0.0 0.0	14.6 5.7 4.3 4.3	0.0 0.0 0.0	0.0 0.0	10.9	0.0			
Fugitive Emissions 400-bbl slop tank #1 400-bbl slop tank #1 RBL 6-166 Weilute 0-26 MNaeld TEG-Dehydrahor RBU 6-15E Wellsite Fugitive Emissions RBU 6-15E Wellsite Fugitive Pneumatic Pump Emissions RBU 7-15E Wellsite 0.20 MMscfd glycol dehydrator RBU 7-15E Wellsite Fugitive Emissions	0.0 0.0 0.0 0.0 0.0 0.0	0.0 0.0 0.0 0.0 0.0	5.7 4.3 4.3	0.0 0.0	0.0			63	0.0	
400-bbl slop tank #1 400-bbl slop tank #2 RBU 6-156 Welliste 0.20 ANAdeld TEG-Dehydroben RBU 6-15E Welliste Fugitive Emissions RBU 6-15E Welliste Pneumatic Pump Emissions RBU 7-15E Welliste 0.20 MMscfd glycol dehydrator RBU 7-15E Welliste Fugitive Emissions	0.0 0.0 0.0 0.0 0.0	0.0 0.0 0.0 0.0	4.3 4.3	0.0		0.1				6.3
400-bbl slop tank #2 R&II-6-165 Weilsten 0.20- 6345613 TEG-Delvydration RBU 6-155 Weilster Fugitive Emissions RBU 6-155 Weilsite Pneumatic Pump Emissions RBU 7-155 Weilsite 0.20 MMscfd glycol dehydrator RBU 7-155 Weilsite Fugitive Emissions	0.0 0.0 0.0 0.0	0.0 0.0 0.0	4.3		0.0		0.15	333.9	0.0	334.0
RBU 6-15E Welliste 0.20 MAdeds TEG-Dehydrotor RBU 6-15E Welliste Fugitive Emissions RBU 6-15E Welliste Pneumatic Pump Emissions RBU 7-15E Welliste 0.20 MMscfd glycol dehydrator RBU 7-15E Welliste Fugitive Emissions	0.0	0.0 0.0			0.0	0.2	0.03	31.4 31.4	0.0	31.4
MNbeld TEG-Delydrator RBU 6-15E Wellsite Fugitive Emissions RBU 6-15E Wellsite Fugitive 7.05E Wellsite Pneumatic Pump Emissions RBU 7-15E Wellsite 0.20 MMscfd glycol dehydrator RBU 7-15E Wellsite Fugitive Emissions	0.0	0.0	0.00	0.0	0.0	0.2	0.03	31.4	0.0	51.4
Emissions RBU 6-15E Wellsite Pneumatic Pump Emissions RBU 7-15E Wellsite 0.20 MMscfd glycol dehydrator RBU 7-15E Wellsite Fugitive Emissions	0.0			0.0	0.0	0.00	0.0	0.0	0.0	0.0
Pneumatic Pump Emissions RBU 7-15E Wellsite 0.20 MMscfd glycol dehydrator RBU 7-15E Wellsite Fugitive Emissions			3.9	0.0	0.0	0.1	0.1	214.0	0.0	214.1
RBU 7-15E Wellsite 0.20 MMscfd glycol dehydrator RBU 7-15E Wellsite Fugitive Emissions	0.0	0.0	5.1	0.0	0.0	0.1	0.4	1057.4	0.0	1057.
RBU 7-15E Wellsite Fugitive Emissions		0.0	10.54	0.0	0.0	3.90	0.1	45.0	0.0	45.1
										-
	0.0	0.0	3.9	0.0	0.0	0.1	0.1	214.0	0.0	214.:
MMscfd glycol dehydrator RBU 11-15E Wellsite Fugitive	0.0	0.0	10.54	0.0	0.0	3.90	0.1	45.0	0.0	45.1
Emissions	0.0	0.0	3.9	0.0	0.0	0.1	0.1	214.0	0.0	214.1
RBU 11-15E Wellsite Pneumatic Pump Emissions	0.0	0.0	5.1	0.0	0.0	0.1	0.4	1057.4	0.0	1057.
Tap-1 Caterpillar 3516 TALE Compressor Engine #1	19.4	32.3	4.9	0.01	0.0	4.4	4968.0	1411.4	0.0	6379.
Tap-1 Caterpillar 3516 TALE Compressor Engine #2	16.7	29.4	4.7	0.00	0.0	3.8	4197.1	958.2	0.0	5155.
Tap-1 - 300-bbl Condensate										
Tank #1 Tap-1 - 300-bbl Condensate	0.0	0.0	2.2	0.0	0.0	0.13	0.03	24.0	0.0	24.0
Tank #2	0.0	0.0	2.2	0.0	0.0	0.13	0.03	24.0	0.0	24.0
Tap-1 Heat Trace Pumps (2)	0.0	0.0	15.7	0.0	0.0	0.1	0.5	2159.4	0.0	2160
Tap-1 Fugitives	0.0	0.0	2.5	0.0	0.0	0.02	0.04	80.7	0.0	80.8
Pigging Operations	0.0	0.0	0.26	0.0	0.0	0.01	0.02	13.3	0.0	13.3
Capstone Model C65NG	0.0	0.0	0.20	0.0	0.0	0.01	0.02	13.5	0.0	15.5
Standard MicroTurbine (65kW)	0.1	0.8	0.0	0.0	0.0	0.0	80.2	0.0	0.0	80.2
1.0 MMBtu/hr Dehy Reboiler for RBD-1	0.5	0.5	0.1	0.0	0.0	0.0	512.0	0.2	0.3	639.
250 Mbtu/hr heater for slop tank #1	0.1	0.1	0.01	0.0	0.0	0.0	127.99	0.06	0.07	128.
250 Mbtu/hr heater for slop tank #2	0.1	0.1	0.01	0.0	0.0	0.0	127.99	0.06	0.07	128.
175 Mbruthr Roboiler	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.00	0.00	0.0
250 Mbtu/hr heater for slop tank #1	0.1	0.1	0.0	0.0	0.0	0.0	128.0	0.1	0.1	128.
	0.04	0.03	0.00	0.0	0.0	0.0	38.4	0.02	0.02	38.4
75 Mbtu/hr separator heater										
Condensate Truck Loading	0.0	0.0	0.2	0.0	0.0	0.0	0.0	0.0	0.0	0.0
400-bbl slop tank RBU 7-15E Wellsite	0.0	0.0	1.9	0.0	0.0	0.03	0.01	12.5	0.0	12.5
Pneumatic Pump Emissions	0.0	0.0	0.8	0.0	0.0	0.1	0.1	169.2	0.0	169.
250 Mbtu/hr Dehydrator Reboiler	0.1	0.1	0.0	0.0	0.0	0.0	128.0	0.1	0.1	128.
250 Mbtu/hr tank heater	0.1	0.1	0.0	0.0	0.0	0.0	128.0	0.1	0.1	128.
75 Mbtu/hr seperator heater	0.04	0.03	0.00	0.0	0.0	0.0	38.4	0.02	0.02	38.4
Condensate Truck Loading	0.0	0.0	0.2	0.0	0.0	0.0	0.0	0.0	0.0	0.0
400-bbl slop tank 175 Mbtu/hr Dehydrator	0.0	0.0	1.9	0.0	0.0	0.03	0.01	12.5	0.0	12.5
Reboiler	0.1	0.1	0.01	. 0.0	0.0	0.0	89.6	0.04	0.05	89.7
250 Mbtu/hr tank heater	0.1	0.1	0.01	0.0	0.0	0.0	128.0	0.1	0.1	128.
250 Mbtu/hr separator										
heater	0.1	0.1	0.01	0.0	0.0	0.0	128.0	0.1	0.1	128.
Condensate Truck Loading	0.0	0.0	0.1	0.0	0.0	0.0	0.0	0.0	0.0	0.0
300-bbl slop tank	0.0	0.0	1.4	0.0	0.0	0.02	0.01	8.3	0.0	8.3
Standard MicroTurbine (65kW)	0.1	0.8	0.0	0.0	0.0	0.0	80.2	0.0	0.0	80.2
Tap-1 - Three (3) 250										
										384.
Tap-1 Truck Loading	0.0	0.0	0.3	0.0	0.0	0.002	0.0	0.0	0.0	0.0
T 0 C	0.0	0.0	1.9	0.0	0.0	0.01	0.1	256.5	0.0	256.
	300-bbl slop tank Standard MicroTurbine (65kW) Tap-1 - Three (3) 250 Mbtu/hr Heaters Tap-1 Truck Loading Tap-1 Comp Blowdowns	300-bbl slop tank 0.0 Standard MicroTurbine (65kW) 0.1 Tap-1 - Three (3) 250 Mbtu/hr Heaters 0.40 Tap-1 Truck Loading 0.0 Tap-1 Comp Blowdowns 0.0	300-bbl slop tank 0.0 0.0 Standard MicroTurbine (65kW) 0.1 0.8 Tap-1 - Three (3) 250 Mbtu/hr Heaters 0.40 0.34 Tap-1 Truck Loading 0.0 0.0 Tap-1 Comp Blowdowns 0.0 0.0	300-bbl slop tank 0.0 0.0 1.4 Standard MicroTurbine (65kW) 0.1 0.8 0.0 Tap-1 - Three (3) 250 Mbtu/hr Heaters 0.40 0.34 0.04 Tap-1 - Three (3) 250 Mbtu/hr Heaters 0.40 0.34 0.04	300-bbl slop tank 0.0 0.0 1.4 0.0 Standard MicroTurbine (65kW) 0.1 0.8 0.0 0.0 Tap-1 - Three (3) 250 Mbtu/hr Heaters 0.40 0.34 0.04 0.03 Tap-1 Truck Loading 0.0 0.0 0.3 0.0 Tap-1 Comp Blowdowns 0.0 0.0 1.9 0.0	300-bbl slop tank 0.0 0.0 1.4 0.0 0.0 Standard MicroTurbine (65kW) 0.1 0.8 0.0 0.0 0.0 Tap-1 - Three (3) 250 Mbtu/hr Heaters 0.40 0.34 0.04 0.03 0.0 Tap-1 Truck Loading 0.0 0.0 0.3 0.0 0.0 Tap-1 Comp Blowdowns 0.0 0.0 1.9 0.0 0.0	300-bbl slop tank 0.0 0.0 1.4 0.0 0.0 0.02 Standard MicroTurbine (65kW) 0.1 0.8 0.0 0.0 0.0 0.0 Tap-1 - Three (3) 250 Mbtu/hr Heaters 0.40 0.34 0.04 0.03 0.0 0.0 Tap-1 Truck Loading 0.0 0.0 0.3 0.0 0.002 Tap-1 Comp Blowdowns 0.0 0.01 0.01	300-bbl slop tank 0.0 0.0 1.4 0.0 0.0 0.02 0.01 Standard MicroTurbine (65kW) 0.1 0.8 0.0 0.0 0.0 0.0 80.2 Tap-1 - Three (3) 250 Mbtu/hr Heaters 0.40 0.34 0.04 0.03 0.0 0.0 384.0 Tap-1 Truck Loading 0.0 0.0 0.3 0.0 0.00 0.00 1.4	300-bbl slop tank 0.0 0.0 1.4 0.0 0.0 0.02 0.01 8.3 Standard MicroTurbine (65kW) 0.1 0.8 0.0 0.0 0.0 0.0 80.2 0.0 Tap-1 - Three (3) 250 Mbtu/hr Heaters 0.40 0.34 0.04 0.03 0.0 0.0 384.0 0.2 Tap-1 Truck Loading 0.0 0.0 0.3 0.0 0.00 0.00 0.0 Tap-1 Comp Blowdowns 0.0 0.0 1.9 0.0 0.01 0.1 256.5	300-bbl slop tank 0.0 0.0 1.4 0.0 0.0 0.02 0.01 8.3 0.0 Standard MicroTurbine (65kW) 0.1 0.8 0.0 0.0 0.0 0.0 8.3 0.0 Tap-1 - Three (3) 250 Mbtu/hr Heaters 0.40 0.34 0.04 0.03 0.0 0.0 384.0 0.2 0.2 Tap-1 Truck Loading 0.0 0.0 0.3 0.0 0.00 0.00 0.0 0.0 Tap-1 Comp Blowdowns 0.0 0.0 1.9 0.0 0.01 0.1 256.5 0.0

XTO Energy Inc.

Manzanares, Candice

From:Allison, Craig <Craig_Allison@xtoenergy.com>Sent:Tuesday, March 14, 2017 3:22 PMTo:Wortman, EricSubject:RE: Riverbend & Accompanying WellsitesAttachments:XTO RBU Dehy EPA Request Response-3-14-2017.pdf

Eric:

Attached is the response to your information request. Also, XTO submitted a Tribal Registration in 2013 for the Tap-1 Compressor Station. The emissions that I sent for Tap-1 were an update to the tribal registration emission because the compressor engines were changed out in 2013 for a similar, lower horsepower model. The Tap-1 site is a true-minor site by itself.

Please let me know if you need anything else. I am working on the certified submittal and completing the Tap-5 information to hopefully be sent to you this Thursday. Thanks.

Regards, Craig Allison EH&S Advisor Environmental Health & Safety Office: 817-885-2672 | Cell: 817-201-2379 | Fax: 817-885-1847 XTO ENERGY INC., an ExxonMobil subsidiary 810 Houston Street, Fort Worth, Texas 76102

From: Wortman, Eric [mailto:Wortman.Eric@epa.gov]
Sent: Tuesday, March 14, 2017 12:24 PM
To: Allison, Craig
Subject: RE: Riverbend & Accompanying Wellsites

Great, thanks.

From: Allison, Craig [mailto:Craig_Allison@xtoenergy.com]
Sent: Tuesday, March 14, 2017 1:22 PM
To: Wortman, Eric <<u>Wortman.Eric@epa.gov</u>>
Subject: RE: Riverbend & Accompanying Wellsites

Eric – yes. I am working on it right now. You will have the below requested information today. As far as the timing for the certified submittal of Tap-5 and RBU Dehy requested information, I should be submitting the full packages by this Thursday.

Regards, Craig Allison EH&S Advisor Environmental Health & Safety Office: 817-885-2672 | Cell: 817-201-2379 | Fax: 817-885-1847 XTO ENERGY INC., an ExxonMobil subsidiary 810 Houston Street, Fort Worth, Texas 76102 From: Wortman, Eric [mailto:Wortman.Eric@epa.gov] Sent: Tuesday, March 14, 2017 11:55 AM To: Allison, Craig Subject: RE: Riverbend & Accompanying Wellsites

Craig,

Is it possible to send the info. requested below for Riverbend via email and the rest of the application update can come later if you need more time? Let me know your timeline on this, I may have to reschedule some things depending on if it's ready or not.

Eric

From: Wortman, Eric [mailto:Wortman.Eric@epa.gov] Sent: Wednesday, February 22, 2017 12:23 PM To: Allison, Craig Subject: FW: Riverbend & Accompanying Wellsites

Craig,

Following up to our phone conversation a couple weeks back, can you please confirm if Tap 1 Compressor Station is still operating and how far away it is from the Riverbend Dehy site? In the July 2011 response from XTO to our information request for multiple U&O facilities, XTO (then SGG) provided lat/long coordinates for the Tap 1 Compressor Station and the Riverbend Dehydration site. My preliminary analysis of those coordinates puts the Tap 1 CS at 0.19 miles from Riverbend Dehy. If Tap 1 is < ¼ mile from Riverbend Dehy, we need to evaluate the equipment operating at the sites to determine if Tap 1 and Riverbend have "shared" equipment and should be treated as one source under the revised definition of major source in part 71.

Please provide the following information by March 8th:

- The distance between Tap 1 Compressor Station and Riverbend Dehydration Site
- If the distance is < ¼ mile, please provide the following:

o A list of equipment operating at Tap 1 CS

- o The PTE for the equipment operating at Tap 1 CS
- o If the two sites share equipment (i.e. what is the operational relationship between the sites).

Thanks,

Eric

From: Simpson, Dustin [mailto:Dustin Simpson@xtoenergy.com] Sent: Wednesday, December 21, 2016 5:29 PM To: Wortman, Eric <<u>Wortman.Eric@epa.gov</u>> Subject: RE: Riverbend & Accompanying Wellsites

Eric,

The gas does go to an off-site compressor and then returns to the dehy at the RBU dehy. The dehy could operate independently of either one of the specific wells but the wells could not operate independently of the dehy facility as the gas has to be dehydrated prior to sales.

Thanks,

Dustin Simpson

XTO ENERGY INC., an ExxonMobil subsidiary

Dustin Simpson | 810 Houston Street PTR4 | Fort Worth, TX 76102 | ph: 817.885.2845 | fax: 817.885.1847 | dustin_simpson@xtoenergy.com

The information in this transmission is confidential and may also contain privileged attorney-client information or work product. The information is intended for the use of the individual or entity to whom it is addressed. If you are not the intended recipient, your are notified any use, dissemination, distribution, or copying of this communication is strictly prohibited. If you received this communication in error, please notify us immediately by e-mail or by telephone.

From: Wortman, Eric [mailto:Wortman.Eric@epa.gov] Sent: Wednesday, December 21, 2016 4:01 PM To: Simpson, Dustin Subject: Riverbend & Accompanying Wellsites

Hi Dustin,

I had a question regarding the two wellsites at the Riverbend facility with regard to the revised definition of a major source. Since RBU 6-15E is located on the same surface site as Riverbend Dehy, it is included as part of the same source. Similar to my questions on Little Canyon, I'm working on EPA's interpretation for the RBU 7-15E wellsite since it's located within a ¼ mile of Riverbend Dehy but not on the same surface site. The RBU 6-15E and 7-15E wellsites discharge gas into the common gathering pipeline and not directly to the Riverbend Dehydrator Site. My understanding from the application is that the gas then flows to an offsite compressor station for further processing. Does the gas eventually come back to Riverbend Dehy Site before going to market or can it go elsewhere? In other words is the operation of Riverbend Dehy site necessary for the RBU 7-15E wellsite to produce gas to market or can both sites operate independently of each other?

Thanks,

Eric

Eric Wortman | Environmental Scientist U.S. Environmental Protection Agency – Region 8 1595 Wynkoop Street (8P-AR), Denver, Colorado 80202 Telephone: (303) 312-6649 Email: wortman.eric@epa.gov

XTO Uintah Basin Title V Applications – 2016 / 2017 EPA Information Request 3/8/2017

Riverbend Dehy EPA Questions:

- A. Following up to our phone conversation a couple weeks back, can you please confirm if Tap 1 Compressor Station is still operating and how far away it is from the Riverbend Dehy site? The RBU Dehy Site is approximately 0.19 miles (< ½ mile) from the Tap-1 Compressor Station. The Tap-1 Compressor Station is still in-service.
- B. In the July 2011 response from XTO to our information request for multiple U&O facilities, XTO (then SGG) provided lat/long coordinates for the Tap 1 Compressor Station and the Riverbend Dehydration site. My preliminary analysis of those coordinates puts the Tap 1 CS at 0.19 miles from Riverbend Dehy. If Tap 1 is < ¼ mile from Riverbend Dehy, we need to evaluate the equipment operating at the sites to determine if Tap 1 and Riverbend have "shared" equipment and should be treated as one source under the revised definition of major source in part 71. Based on the determination that the Tap-1 Compressor Station and the RBU Dehy site are within ¼ mile of each other, The Tap-1 Compressor Stations receives natural-gas production from nearby wells and serves to compress the produced gas up to a pressure whereby the gas can enter the XTO operated gas gathering system. The natural gas then goes into Gathering system plpeline segment that discharges directly into the RBU Dehy site. The Tap-1 Compressor Station and the RBU Dehy site do not "share" any surface equipment other than the connecting pipelines. The gas from Tap-1 becomes comingled with the other inlet gas streams from other production areas at the inlet (pipeline manifold) of the RBU Dehy site. The gas from the Tap-1 compressor station does require dehydration at the RBU Dehy site prior to being sold.</p>
- C. Please provide the following information by March 8th:
 - a. The distance between Tap 1 Compressor Station and Riverbend Dehydration Site
 - b. If the distance is < ¼ mile, please provide the following:
 - i. A list of equipment operating at Tap 1 CS See attached.
 - ii. The PTE for the equipment operating at Tap 1 CS See attached.
 - iii. If the two sites share equipment (i.e. what is the operational relationship between the sites). The Riverbend Dehy site receives the compressed gas from the Tap-1 Compressor Station to allow the gas to be dehydrated prior to sales.
- D. I had a question regarding the two wellsites at the Riverbend facility with regard to the revised definition of a major source. Since RBU 6-15E is located on the same surface site as Riverbend Dehy, it is included as part of the same source. Similar to my questions on Little Canyon, I'm working on EPA's interpretation for the RBU 7-15E wellsite since it's located within a ¼ mile of Riverbend Dehy but not on the same surface site.
 - a. The RBU 6-15E and 7-15E wellsites discharge gas into the common gathering pipeline then to Tap-1 Compressor Station and not directly to the Riverbend Dehydrator Site. That is correct.
 - b. My understanding from the application is that the gas then flows to an offsite compressor station for further processing. Yes, the gas flows from the wells into the common gathering system and then into the Tap-1 Compressor Station which is located within a ¼ mile of the River Bend Dehy site.
 - c. Does the gas eventually come back to Riverbend Dehy Site before going to market or can it go elsewhere? Yes, it eventually goes to RB dehy site through the discharge of the Tap-1 Compressor Station.
 - d. In other words is the operation of Riverbend Dehy site necessary for the RBU 7-15E wellsite to produce gas to market or can both sites operate independently of each other? The sites cannot operate separately in the sense that the wells require their gas to be compressed at Tap-1 which discharges directly to the Riverbend Dehy site. Therefore, they are tied together operationally.

PTE EMISSION SUMMARY

.

Company: XTO Energy Facility Name: TAP 1 Compressor Station Facility Location: Uintah County, Utah Mar-17

Proposed Emissions

	N	NOx		CO		VOC		Formaldehyde		HAPs	
Source	lb/hr	ton/yr	lb/hr	ton/yr	lb/hr	ton/yr	lb/hr	ton/yr	lb/hr	ton/yr	
Caterpillar G3516LE #1	4.43	19.41	7.39	32.35	1.12	4.92	0.86	3.75	1.01	4.41	
Caterpillar G3516LE #2	3.80	16.66	6.72	29.43	1.06	4.66	0.74	3.22	0.74	3.78	
Tank Emissions - T1T-1 and T1T-2	-	-	-	-	0.26	1.14	-	-	0.00	0.02	
Gas-operated Heat Trace Pumps	-	-	-	-	2.60	11.40	-	-	0.02	0.09	
Boilers	0.09	0.40	0.08	0.34	0.01	0.04	-	-	0.00	0.00	
Fugitives	-	-	~	-	0.68	2.96	-	-	0.01	0.02	
Truck Loading Emissions	-	-	-	-	0.04	0.17		-	-	-	
Totals	8.33	36.47	14.18	62.11	5.77	25.29	1.59	6.97	1.78	8.32	

Compressor Engine Emissions

Company: XTO Energy Facility Name: TAP 1 Compressor Station Facility Location: Uintah County, Utah

EMISSION POINTS: Caterpillar G3516LE #1 Engine Serial #: 4EK03995 Engine mfg. date: 1/1/2004 Engine Install Date: 7/1/2013 Unit #: T1C-1

Engine Make/Model	Caterpilla	r G3516LE #1
Site Horsepower Rating	1340	hp
Fuel Consumption (BSFC)	7695	Btu/(hp-hr)
Heat Rating	10.311	MMBtu/hr
Operating Hours	8760	hrs/yr

			Emissi	on Rate	Emission Factor	
Pollutant	Emiss	ion Factor	(lb/hr)	(tpy)	Reference	
NOx	1.5	g/hp-hr	4.43	19.41	[1]	
CO	2.50	g/hp-hr	7.39	32.35	[1]	
VOC/NMHC	0.38	g/hp-hr	1.12	4.92	[1]	
						AP-42 Emission Factors
PM10	0.00027	g/hp-hr	0.00	0.0	[2]	7.71E-05 lb/MMBtu
Hazardous Air Pollutants						
Acetaldehyde	0.0292	g/hp-hr	0.0862	0.3776	[2]	8.36E-03 lb/MMBtu
Acrolein	0.0179	g/hp-hr	0.0530	0.2321	[2]	5.14E-03 lb/MMBtu
Benzene	0.0015	g/hp-hr	0.0045	0.0199	[2]	4.40E-04 lb/MMBtu
Ethylbenzene	0.0001	g/hp-hr	0.0004	0.0018	[2]	3.97E-05 lb/MMBtu
Formaldehyde	0.2900	g/hp-hr	0.8567	3.7524	[1]	5.28E-02 lb/MMBtu
Toluene	0.0014	g/hp-hr	0.0042	0.0184	[2]	4.08E-04 lb/MMBtu
Xylene	0.0006	g/hp-hr	0.0019	0.0083	[2]	1.84E-04 lb/MMBtu
		Total HAPS	1.01	4.41		

[1] Emission Factors provided by Manufacturer

[2] AP-42 Table 3.2-3 for stationary IC sources; July 2000, 4-stroke lean burn

	CALCULATION FORMULAS
g/(hp-hr) =	(lb/MMBtu)*(MMBtu/hr)*(453.6 g/lb) / (site-rated hp)
ib/hr =	(g/hp-hr)*(site-rated hp) / (453.6 g/lb)
tpy =	(lb/hr)*(8760 hr/yr) / (2000 lb/ton)
Fuel Usage (MMscf/yr) =	(Scf/btu)*(btu/{hp-hr})*(site-rated hp)*(24 hr/day)*(365 day/yr)*(MMScf/10 ⁶ Scf)
Heat Rating (MMbtu/hr) =	(site rated horsepower)*(Btu/(hp-hr)) / (453.6 g/lb)

Compressor Engine Emissions

Company: XTO Energy Facility Name: TAP 1 Compressor Station Facility Location: Uintah County, Utah

EMISSION POINTS: Caterpillar G3516LE #2 Engine Serial #: 4EK03582 Engine mfg. date: 8/12/2001 Engine Install Date: 7/18/2013 Unit #: T1C-2

Engine Make/Model	Caterpillar G3516LE #2			
Site Horsepower Rating	1150	hp		
Fuel Consumption (BSFC)	7575	Btu/(hp-hr)		
Heat Rating	8.711	MMBtu/hr		
Operating Hours	8760	hrs/yr		

Pollutant		sion Factor	Emissio	on Rate	Emission Factor Reference
NOr	15	a/hp-hr	3.80	16.66	[1]
CO	2.65	g/hp-hr	6.72	29.43	[1]
VOC/NMHC	0.42	g/hp-hr	1.06	4.66	[1]

					AP-42 Emission Factors
0.00027	g/hp-hr	0.00	0.0	[2]	7.71E-05 lb/MMBtu
0.0287	g/hp-hr	0.0728	0.3190	[2]	8.36E-03 lb/MMBtu
0.0177	g/hp-hr	0.0448	0.1961	[2]	5.14E-03 lb/MMBtu
0.0015	g/hp-hr	0.0038	0.0168	[2]	4.40E-04 lb/MMBtu
0.0001	g/hp-hr	0.0003	0.0015	[2]	3.97E-05 lb/MMBtu
0.2900	g/hp-hr	0.7352	3.2203	[1]	5.28E-02 lb/MMBtu
0.0014	g/hp-hr	0.0036	0.0156	[2]	4.08E-04 lb/MMBtu
0.0006	g/hp-hr	0.0016	0.0070	[2]	1.84E-04 lb/MMBtu
	Total HAPS	0.86	3.78		
	0.0287 0.0177 0.0015 0.0001 0.2900 0.0014	0.0287 g/hp-hr 0.0177 g/hp-hr 0.0015 g/hp-hr 0.0001 g/hp-hr 0.2900 g/hp-hr 0.0014 g/hp-hr 0.0006 g/hp-hr	0.0287 g/hp-hr 0.0728 0.0177 g/hp-hr 0.0448 0.0015 g/hp-hr 0.0038 0.0001 g/hp-hr 0.0003 0.2900 g/hp-hr 0.7352 0.0014 g/hp-hr 0.0036 0.0006 g/hp-hr 0.0016	0.0287 g/hp-hr 0.0728 0.3190 0.0177 g/hp-hr 0.0448 0.1961 0.0015 g/hp-hr 0.0038 0.0168 0.0001 g/hp-hr 0.0003 0.0015 0.2900 g/hp-hr 0.7352 3.2203 0.0014 g/hp-hr 0.0036 0.0156 0.0006 g/hp-hr 0.0016 0.0070	0.0287 g/hp-hr 0.0728 0.3190 [2] 0.0177 g/hp-hr 0.0448 0.1961 [2] 0.0015 g/hp-hr 0.0038 0.0168 [2] 0.0001 g/hp-hr 0.0003 0.0015 [2] 0.2900 g/hp-hr 0.7352 3.2203 [1] 0.0014 g/hp-hr 0.0036 0.0156 [2] 0.0006 g/hp-hr 0.0016 0.0070 [2]

AD 42 Emission Eastern

[1] Emission Factors provided by Manufacturer

[2] AP-42 Table 3.2-3 for stationary IC sources; July 2000, 4-stroke lean burn

	CALCULATION FORMULAS
g/(hp-hr) =	(Ib/MMBtu)*(MMBtu/hr)*(453.6 g/lb) / (site-rated hp)
lb/hr =	(g/hp-hr)*(site-rated hp) / (453.6 g/lb)
tpy =	(lb/hr)*(8760 hr/yr) / (2000 lb/ton)
Fuel Usage (MMscf/yr) =	(Scl/btu)*(btu/{hp-hr})*(site-rated hp)*(24 hr/day)*(365 day/yr)*(MMScl/106Scf
Heat Rating (MMbtu/hr) =	(site rated horsepower)*(Btu/(hp-hr)) / (453.6 g/lb)

.

NON-CURRENT

GAS COMPRESSION APPLICATION

GAS ENGINE SITE SPECIFIC TECHNICAL DATA

River Bend Tap 1 (Comp2)

ENGINE SPEED (rpm); COMPRESSION RATIO; AFTERCOOLER TYPE; AFTERCOOLER WATER INLET (°F);	1200 8 SCAC 130	RATING STRATEGY: RATING LEVEL: FUEL SYSTEM:	STANDARD CONTINUOUS HPG IMPCO WITH AIR FUEL RATIO CONTROL
JACKET WATER OUTLET ("F): ASPIRATION: COOLING SYSTEM: CONTROL SYSTEM:	210 TA JW+OC, AC EIS	<u>SITE CONDITIONS:</u> FUEL: FUEL PRESSURE RANGE(psig): (See note 1) FUEL METHANE NUMBER:	River Bend Tap 1 35.0-40.0 59.1
EXHAUST MANIFOLD: COMBUSTION: NOX EMISSION LEVEL (g/bhp-hr NOX): SET POINT TIMING:	ASWC LOW EMISSION 1 5 27	FUEL LHV (Btu/scf): ALTITUDE(h): MAXIMUM INLET AIR TEMPERATURE(°F): STANDARD RATED POWER:	58.1 1044 5162 55 1150 bhp@1200rpm

			MAXIMUM		TING AT N	
RATING	NOTES	LOAD	100%	100%	75%	50%
ENGINE POWER (WITHOUT FAN)	(2)	bhp	1150	1150	862	575
INLET AIR TEMPERATURE		۴F	55	55	55	55
ENGINE DATA						
FUEL CONSUMPTION (LHV)	(3)	Btu/bhp-hr	7575	7575	7758	8258
FUEL CONSUMPTION (HHV)	(3)	Btu/bhp-hr	8375	8375	8577	9131
AIR FLOW (@inlet air temp, 14.7 psia) (WET)	(4)(5)	ft3/min	2353	2353	1804	1242
AIR FLOW (WET)	(4)(5)	lb/hr	10881	10881	8339	5742
FUEL FLOW (60°F, 14.7 psia)	6 0044 35A	scfm	139	139	107	76
INLET MANIFOLD PRESSURE	(6)	in Hg(abs)	87.8	67.8	53.4	37.9
EXHAUST TEMPERATURE - ENGINE OUTLET	(7)	۴F	890	890	866	858
EXHAUST GAS FLOW (@engine outlet temp, 14.5 psia) (WET)	(8)(5)	ft3/min	6564	6664	5014	3438
EXHAUST GAS MASS FLOW (WET)	(8)(5)	lb/hr	11295	11295	8657	5967
EMISSIONS DATA - ENGINE OUT						
NOx (as NO2)	(9)(10)	g/bhp-hr	1.50	1 50	1.50	1.50
co	(9)(10)	g/bhp-hr	2.65	2.65	2.80	3.10
THC (mol. wt. of 15.84)	(9)(10)	g/bhp-hr	2.82	2.82	3.07	3.50
NMHC (mol. wt. of 15.84)	(9)(10)	g/bhp-hr	0.73	0.73	0,79	0.90
NMNEHC (VOCs) (mol. wt. of 15.84)	(9)(10)(11)	g/bhp-hr	0.42	0.42	0.45	0.52
HCHO (Formaldehyde)	(9)(10)	g/bhp-hr	0.29	0.29	0.31	0.34
CO2	(9)(10)	g/bhp-hr	532	532	545	580
EXHAUST OXYGEN	(9)(12)	% DRY	7.9	7.9	7.7	7.4
HEAT REJECTION						
HEAT REJ. TO JACKET WATER (JW)	(13)	Btu/min	36022	36022	29623	24252
HEAT REJ. TO ATMOSPHERE	(13)	Btu/min	4554	4554	3795	3037
HEAT REJ. TO LUBE OIL (OC)	(13)	Btu/min	5696	5696	4684	3835
HEAT REJ. TO AFTERCOOLER (AC)	(13)(14)	Btu/min	8079	8079	5429	1914
COOLING SYSTEM SIZING CRITERIA						
TOTAL JACKET WATER CIRCUIT (JW+OC)	(14)	Btu/min	46459			
TOTAL AFTERCOOLER CIRCUIT (AC)	(14)(15)	Btu/min	8483			
A cooling system safety factor of 0% has been added to the cooling system sizing criteria.						

CONDITIONS AND DEFINITIONS

CONDITIONS AND DEFINITIONS Engine rating obtained and presented in accordance with ISO 3046/1, adjusted for fuel, site altitude and site inlet air temperature. 100% rating at maximum inlet air temperature is the maximum engine capability for the specified fuel at site altitude and maximum site inlet air temperature. Maximum rating is the maximum capability at the specified aftercooler inlet temperature for the specified fuel at site altitude and reduced inlet air temperature. Lowest load point is the lowest continuous duty operating load allowed. No overload permitted at rating shown.

For notes information consult page three.

CATERPILLAR'

G3516 NON-CURRENT

GAS COMPRESSION APPLICATION

GAS ENGINE SITE SPECIFIC TECHNICAL DATA

CATERPILLAR'

River Bend Tap 1 (Comp1)

RATING STRATEGY:	1400	ENGINE SPEED (rpm):
RATING LEVEL:	8	COMPRESSION RATIO:
FUEL SYSTEM:	SCAC	AFTERCOOLER TYPE:
	130	AFTERCOOLER WATER INLET ("F):
SITE CONDITIONS:	210	JACKET WATER OUTLET ("F):
FUEL:	TA	ASPIRATION:
FUEL PRESSURE RANGE(psig): (See note 1)	JW+OC, AC	COOLING SYSTEM:
FUEL METHANE NUMBER:	EIS	CONTROL SYSTEM:
FUEL LHV (Btu/scf):	ASWC	EXHAUST MANIFOLD:
ALTITUDE(ft):	LOW EMISSION	COMBUSTION:
MAXIMUM INLET AIR TEMPERATURE("F):	1.5	NOx EMISSION LEVEL (g/bhp-hr NOx):
STANDARD RATED POWER:	27	SET POINT TIMING:
	RATING LEVEL: FUEL SYSTEM: FUEL: FUEL PRESSURE RANGE(psig): (FUEL METHANE NUMBER: FUEL LHV (Btu/scf): ALTITUDE(th): MAXIMUM INLET AIR TEMPERATI	8 RATING LÉVEL: SCAC FUEL SYSTEM: 130 210 210 SITE CONDITIONS: TA FUEL: JW+OC, AC FUEL PRESSURE RANGE(psig): (EIS FUEL METHANE NUMBER: ASWC FUEL LHV (BN/scf): LOW EMISSION ALTITUDE(ft): 1.5 MAXIMUM INLET AIR TEMPERATION

				RATING		R TEMPE	
RATING	N	IOTES	LOAD	100%	100%	75%	52%
ENGINE POWER (WITHOUT	FAN)	(2)	bhp	1340	1295	972	670
INLET AIR TEMPERATURE			۴F	42	55	55	55
ENGINE DATA							
FUEL CONSUMPTION (LHV)		(3)	Btu/bhp-hr	7695	7729	8010	8449
FUEL CONSUMPTION (HHV)		(3)	Btu/bhp-hr	8507	8546	8856	9342
AIR FLOW (@inlet air temp, 14.7 psia)	WET)	(4)(5)	ft3/min	2701	2685	2064	1355
AIR FLOW	(WET)	(4)(5)	lb/hr	12799	12414	9541	6267
FUEL FLOW (60°F, 14.7 pela)			scfm	165	160	124	90
INLET MANIFOLD PRESSURE		(6)	in Hg(abs)	69.2	67.3	52.9	38.7
EXHAUST TEMPERATURE - ENGINE OUTLET		(7)	۴F	906	904	891	893
EXHAUST GAS FLOW (@engine outlet temp, 14.5 psia)	(WET)	(8)(5)	ft3/min	7926	7677	5848	3872
EXHAUST GAS MASS FLOW	(WET)	(8)(5)	lb/hr	13291	12892	9912	6536
EMISSIONS DATA - ENGINE OUT							
NOx (as NO2)		(9)(10)	g/bhp-hr	1.50	1.50	1.50	1.50
CO		(9)(10)	g/bhp-hr	2.50	2.51	2.60	2.51
THC (mol. wt. of 15.84)		(9)(10)	g/bhp-hr	2.56	2.59	2.86	3 00
NMHC (mol. wt. of 15.84)		(9)(10)	g/bhp-hr	0.66	0.67	0.74	0.77
NMNEHC (VOCs) (mol. wl. of 15.84)	(9)	(10)(11)	g/bhp-hr	0.38	0.39	0.43	0.45
HCHO (Formaldehyde)		(9)(10)	g/bhp-hr	0.29	0.29	0,32	0.34
CO2		(9)(10)	g/bhp-hr	541	542	564	594
EXHAUST OXYGEN		(9)(12)	% DRY	7.8	7.8	7.6	7.4
HEAT REJECTION							
HEAT REJ. TO JACKET WATER (JW)		(13)	Btu/min	41800	41085	34782	30141
HEAT REJ. TO ATMOSPHERE		(13)	Btu/min	5313	5198	4340	3543
HEAT REJ. TO LUBE OIL (OC)		(13)	Btu/min	6610	6496	5500	4766
HEAT REJ. TO AFTERCOOLER (AC)	1 (13)(14)	Btu/min	10285	10285	6392	2437
COOLING SYSTEM SIZING CRITERIA							
TOTAL JACKET WATER CIRCUIT (JW+OC)		(14)	Btu/min	53912			
TOTAL AFTERCOOLER CIRCUIT (AC)	(14)(15)	Btu/min	10799			
A cooling system safety factor of 0% has been added to the cooling system sizing criteria.							

CONDITIONS AND DEFINITIONS Engine rating obtained and presented in accordance with ISO 3046/1, adjusted for fuel, site altitude and site inlet air temperature. 100% rating at maximum inlet air temperature is the maximum engine capability for the specified fuel at site altitude and maximum site inlet air temperature. Maximum rating is the maximum capability at the specified aftercooler inlet temperature for the specified fuel at site altitude and reduced inlet air temperature. Lowest load point is the lowest continuous duty operating load allowed. No overload permitted at rating shown.

For notes information consult page three.

NATURAL GAS FUELED HEATER EMISSIONS

Company: XTO Energy Facility Name: TAP 1 Compressor Station Facility Location: Uintah County, Utah

	HEATER	HEATER	FUEL*	HOURS OF	FUEL	N	Ox	C	0
SOURCE DESCRIPTION	SIZE (MBtu/hr)	EFFICIENCY	HEAT VALUE (Btu/scf)	OPERATION (hrs/year)	USAGE (MMscf/yr)	EF AP-42 ¹ Ib/MMscf	EMISSIONS (tons/yr)	EF AP-42 ¹ Ib/MMscf	EMISSIONS (tons/yr)
Separator	250	0.8	1020	8760	2.684	100.0	0.13	84.0	0.11
Tank Heaters - (2) X 0.25 MMBTU/hr	500	0.8	1020	8760	5.368	100.0	0.27	84.0	0.23
				TOTALS	2.684		0.40		0.34

	1	00	VOC	PN	10	Forma	ldehyde
SOURCE DESCRIPTION	EF AP-42 ² lb/MMscf	EMISSIONS (tons/yr)	EMISSIONS (tons/yr)	EF AP-42 ² Ib/MMscf	EMISSIONS (tons/yr)	EF AP-42 ³ Ib/MMscf	EMISSIONS (tons/yr)
Separator	11.0	0.01	0.01	7.6	0.01	7.50E-02	0.0001
Tank Heaters	11.0	0.03	0.03	7.6	0.02	7.50E-02	0.0002
	TOTALS	0.01	0.04		0.03		0.0003

Criteria emissions rounded to the nearest 1/100 of a ton, VOC/HAP rounded to 1/1000 of a ton.

EF AP-42¹ = emission factor from AP-42 Table 1.4-1, Small Boilers <100 MMbtu/hr (EPA 7/98), Standard = 1,020 Btu/scf

 $EF AP-42^2$ = emission factor from AP-42 Table 1.4-2 (EPA 7/98)

EF AP-42³ = emission factor from AP-42 Table 1.4-2 (EPA 7/98)

Fuel Consumption (MMscf/yr) = <u>Heater Size (MBtu/hr) * 1,000 (Btu/MBtu) * Hours of Operation (hrs/yr)</u> Fuel Heat Value (Btu/scf) * 1,000,000 (scf/MMscf) * Heater Efficiency

NOx/CO/TOC Emissions (tons/yr) = AP-42 EF (lbs/MMscf) * Fuel Consumption (MMscf/yr) * (Fuel Heat Value/ Standard Fuel Heat Value) / 2,000 (lbs/ton) -Standard Fuel Heat Value, Natural Gas (AP-42, 7/98, p1.4-5) = 1,020 Btu/scf

VOC emissions assumed equal to TOC emissions

VOC EMISSIONS FROM CONDENSATE TRUCK LOADING OPERATIONS

Company:	XTO Energy
Facility Name:	TAP 1 Compressor Station
Facility Location:	Uintah County, Utah

Tank	Oil	Oil	Saturation	True Vapor	Vapor	Oil	Loading	VOC Loading
Description	Sales	Sales	Factor	Pressure	Mole Wt.	Temperature	Losses	Emissions
	(bbls/day)	(1,000 bbls/yr)	(S)	(P) (psia)	(M)	(T) (Degrees R)	(lbs/1,000 gal)	(tons/yr)
Storage Tank	15.000	5.475	0.6	4	26.79	545	1.4700	0.1690
TOTAL	15.000	5.475						0.1690

Loading Losses (lbs/1,000 gal) = $\frac{12.46*S*P*M}{T}$

(AP-42 Section 5.2, Equation 1)

Loading Emissions (tons/year) = Loading Losses (lbs/1,000 gal) * Oil Sales (1,000 bbls/yr) * (42 gal/bbl) 2,000 lbs/ton

Degrees R =

Degrees F + 460

Tank Truck S Factors

Mode of Operation	S Factor
Submerged loading of a clean tank	0.5
Submerged loading-dedicated service	0.6
Submerged loading-vapor balance	1.00
Splash Loading-clean tank	1.45
Splash loading-normal service	1.45
Splash loading-vapor balance	1.00

Condensate Tank Emissions (F/W/B)

Company: XTO Energy Facility Name: TAP 1 Compressor Station Facility Location: Uintah County, Utah Description: Uncontrolled - Two (2) X 300 bbl vertical, fixed-roof storage tanks

Condensate								Total	Total
Rate	VOCs	Benzene	Toluene	Ethylbenzene	Xylenes	N-Hexane	224-TMP	HAPs	BTEX
(bbls/day)	(tons/yr)	(tons/yr)	(tons/yr)	(tons/yr)	(tons/yr)	(tons/yr)	(tons/yr)	(tons/yr)	(tons/yr)
15.00	1.142	0.0060	0.0020	0.0000	0.0010	0.012	0	0.0210	0.0090
				· · ·					
TOTAL	1.14	0.01	0.00	0.00	0.00	0.01	0.00	0.02	0.01

 Project Setup Information ******* : C:\Users\ETullos\Desktop\Work\142 - XTO\Tribal\Liquid and Gas Samples\Utah Liquids\D Project File Flowsheet Selection : Oil Tank with Separator Calculation Method : RVP Distillation Control Efficiency : 100.0% Known Separator Stream : Low Pressure Oil Entering Air Composition : No Filed Name : Dakota/Mancos Formations Date : 2013.02.01 * Data Input : 190.00[psig] Separator Pressure Separator Temperature : 76.00[F] Ambient Pressure : 11.80[psia] Ambient Pressure : 11.80 [ps. Ambient Tamperature : 50.00 [F] C10+ SG : 0.8164 C10+ MW : 195.16 -- Low Pressure Oil -----mol % No. Component 0.0000 H2S 1 2 02 0.0000 3 CO2 0.0190 N2 C1 4 0.0050 0.9100 5 6 C2 0.6050 C3 1-C4 7 1.1120 8 0.6830 1.4420 9 n-C4 10 i-C5 n-C5 1.8900 1.7960 11 C6 C7 C8 12 0.3550 11.4800 13 27.4050 14 15 C9 C10+ 20.7240 27.5170 16 0.6150 Benzene 17 Toluene E-Benzene 18 0.7150 0.3400 19 20 Xylenes 1.3530 21 n-C6 0.9880 224Trimethylp 0.0460 22 -- Sales Oil ------Production Rate : 15[bbl/day] Days of Annual Operation : 365 [days/year] API Gravity : 7.36 Reid Vapor Pressure : 4.60[psia] Calculation Results - Emission Summary -----Item Uncontrolled Uncontrolled
 [ton/yr]
 [lb/hr]

 Total HAPs
 0.020
 0.005

 Total HC
 2.866
 0.654

VOCs, C2+1.8290.418VOCs, C3+1.1420.261

.

,

Unc	controlled Recove:	ry Info.						
	Vapor	227.1700 x1E	-3 [MSCFD]					
	HC Vapor	223.8600 x1E	-3 [MSCFD]					
	GOR	15.14	[SCF/bb1]					
	Emission Composi	tion						
No	Component	Uncontrol1ed	Uncontrol	1ed				
		[ton/yr]	[1b/hr]					
1	H2S	0.000	0.000					
2	02	0.000	0.000					
3	CO2	0.054	0.012					
4	N2	0.010	0.002					
5	C1	1.037	0.237					
6	C2	0.687	0.157					
7	C3	0.450	0.103					
8	1-C4	0.137	0.031					
9	n-C4	0.197	0.045					
10	1-C5	0.117	0.027					
11	n-C5	0.080	0.018					
12	C6	0.006	0.001					
13	C7	0.065	0.015					
14	C8	0.052	0.012					
15	C9	0.014	0.003					
	C10+	0.000	0.000					
17	Benzene	0.006	0.001					
18	Toluene	0.002	0.000					
	E-Benzene	0.000	0.000					
20	Xylenes	0.001	0.000					
	n-C6	0.012	0.003					
	224Trimethy1p		0.000					
~~	Total	2.927	0.668					
	TOCAL	2.321	0.000					
	Stream Data		*******		10 out too too out ut all up up too p			
	Component	MW	LP 011		l Sale Oil			
110.	componenc	£-344	mol %	mol %	mol %	mol %		mol %
1	H2S	34.80	0.0000			0.0000		
2	02	32.00	0.0000			0.0000		
3	C02	44.01						
4	N2		0.0190			0.8119		
5		28.01	0.0050	0.0006				
	C1	16.04	0.9100			65.0314		
6	C2	30.07	0.6050	0.4638	0.2883	15.5221		
7	C3	44.10	1,1120	1.0372	0.9836	9.0153	9.8259	9.3317
8	i-C4	58.12	0.6830	0.6693	0.6600	2.1338	2.1853	2.1539
9	n-C4	58.12	1.4420	1.4265	1.4160	3.0841	3.1383	3.1052
10	1-C5	72.15	1.8900	1.8939	1.8964	1.4765	1.4923	1.4827
11	n-C5	72.15	1.7960	1.8035	1.8082	1.0081	1.0186	1.0122
12	C6	86.16	0.3550	0.3578		0.0613		
13	C7	100.20	11.4800	11.5828		0.6122		
14	C8	114.23	27.4050	27.6603		0.4266	0.4328	0.4290
	C9	128.28	20.7240	20.9191	21.0460	0.1034	0.1123	0.1069
	C10+	195.16		27.7774	27.9467		0.0005	0.0005
17	Benzene	78.11	0.6150	0.6201	0.6235	0.0731	0.0741	0.0735
18	Toluane	92.13	0.7150	0.7216	0.7258	0.0219	0.0222	0.0220
19	E-Benzene	106.17	0.3400	0.3432	0.3453	0.0032	0.0032	0.0032
20	Xylenes	106.17	1.3530	1.3657	1.3740	0.0108	0.0110	0.0109
21	n-C6	86.18	0.9880	0.9961	1.0014	0.1300	0.1314	0.1306
22	224Trimethylp	114.24	0.0460	0.0464	0.0467	0.0020	0.0020	0.0020
	MW		129.57	130.55	131.17	25.84	28.27	26.79
	Stream Mole Rati	.0	1.0000	0.9906	0.9846	0.0094	0.0060	0.0154
	Heating Value	[BTU/SCI	F]			1507.44	1624.03	1552.95
	Gas Gravity	[Gas/Ai	r]			0.89	0.98	0.92
	Bubble Pt. @ 100	F [psia]	36.99	16.88	6.34			
	RVP @ 100F	[psia]	9.90	6.65	4.78			
	Spec. Gravity @	And the second sec	0.707	0.708	0.708			
	4.0							

PUMP EMISSIONS

Conversion of Mole Perce	nt to Weight Perce	nt								
PUMP Calculations			1		In the first school in the second school and second			famarina and an t		
Specific Gravity			Molecular Weight	18.8962	wt %	·		ŗ		
Gross BTU	1000		NMHC	4,5104	23.8696%	· · · · · · · · · · · · · · · · · · ·		40.00 Mar. 1.00 Mar. 1.00		
1 1	1999 - Andrew Constantine Constant		VOCs (NMNEHC)	2,5624	13,560%		2000.0 μ ⁻ .			
			HAPs	0.1449	0.77%	данная наколология накология накология накология на накология на накология на накология на накология на наколог С	**************************************			
******			·			Winner Glauna commenter a l'anna gant a communa de l'anna and a communa de l'anna a communa de la communa de la		k- •		
	·····		Mole % *						•	
Component	Mole %	MW	MW	Weight %		SITEWIDE PUMP VOC TOTALS	GAS VOC tpy	6	11.4000	
Carbon Dioxide	0.3807	44	0,1675	0.886%			n - Annon a cana in the second se	-		
Nitrogen	0.3386	28	0.0948	0.502%		**************************************	wt%	HAP tpy	- GAS	
Hydrogen Sulfide	0.0000	34	0.0000	0.000%		n-Hexane	0.0044		0.04991	
Helium	0.0000	4	0.0000	0.000%	www.una	Benzene	0.0011		0.01299	
Methane	88.2714	16	14,1234	74.742%		Toluene	0.0015		0.01704	
Ethane	6,4936	30	1.9481	10.309%		Ethylbenzene	0.0001		0.00070	
Propane	2.3620	44	1.0393	5.500%	annon a Anno 5, Anno 1000,000,000,000,000,000,000,000,000,00	Xylenes	0.0006		0.00678	
Iso-Butane	0.4894	58	0.2839	1.502%			0.77%		0.08742	
N-Butane	0,5998	58	0.3479	1.841%						
Iso-Pentane	0.2534	72	0.1824	0,966%	4.00 ···· 1.0.000 ····· 0.000 ···· 0.000	XTO Energy, Inc.				
Units as our same the should be an an an an an and the state and the state of the s										
N-Pentane	0.2016	72	0.1452	0.768%			- Clation			
N-Pentane Methylcyclopentane	0.2016	72 86	0.1452	0.768%	*****	Roosevelt Tap I Compresso				
Methylcyclopentane	a more and a second and a second s		and an							
Methylcyclopentane n-Hexane	0.0079	86	0.0068	0.036%		Roosevelt Tap I Compresso				
Methylcyclopentane n-Hexane Hexane +	0.0079 0.0962	86 86	0.0068 0.0827	0.036% 0.438%		Roosevelt Tap 1 Compresso Heat Trace Pump Emissions		-		
Methylcyclopentane n-Hexane Hexane + 2,4-Dimethylpentane	0.0079 0.0962 0.1446	86 86 86	0.0068 0.0827 0.1244	0.036% 0.438% 0.658%		Roosevelt Tap 1 Compresso Heat Trace Pump Emissions	n Heat Trace Pumps		1 6000	
	0.0079 0.0962 0.1446 0.0000	86 86 86 100	0.0068 0.0827 0.1244 0.0000	0.036% 0.438% 0.658% 0.000%		Roosevelt Tap 1 Compresso Heat Trace Pump Emissions	Heat Trace Pumps Fuel Usage (SCFD) - M		6000	
Methylcyclopentane n-Hexane Hexane + 2,4-Dimethylpentane Methycyclohexane	0.0079 0.0962 0.1446 0.0000 0,0749	86 88 86 100 96	0.0068 0.0827 0.1244 0.0000 0.0719	0.036% 0.438% 0.658% 0.000% 0.381%		Roosevelt Tap 1 Compresso Heat Trace Pump Emissions Uintal Sandpiper Natural Gas Pumps	Heat Trace Pumps Fuel Usage (SCFD) - M Fuel Usage (SCFM)	leasured	4.17	
Methylcyclopentane n-Hexane Hexane + 2,4-Dimethylpentane Methycyclohexane Benzene Cyclohexane	0.0079 0.0962 0.1446 0.0000 0,0749 0.0276	86 86 86 100 96 78	0.0068 0.0827 0.1244 0.0000 0.0719 0.0215	0.036% 0.438% 0.658% 0.000% 0.381% 0.114%		Roosevelt Tap I Compresso Heat Trace Pump Emissions Uintał	Heat Trace Pumps Fuel Usage (SCFD) - M	leasured		
Methylcyclopentane n-Hexane Hexane + 2,4-Dimethylpentane Methycyclohexane Benzene Cyclohexane n-Heptane	0.0079 0.0962 0.1446 0.0000 0.0749 0.0276 0.0498	86 88 86 100 96 78 84	0.0068 0.0827 0.1244 0.0000 0.0719 0.0215 0.0418	0.036% 0.438% 0.658% 0.000% 0.381% 0.114% 0.221%		Roosevelt Tap 1 Compresso Heat Trace Pump Emissions Uintal Sandpiper Natural Gas Pumps	Heat Trace Pumps Fuel Usage (SCFD) - M Fuel Usage (SCFM) Fuel Usage (SCFM) -	feasured Spec	4.17	
Methylcyclopentane n-Hexane Hexane + 2,4-Dimethylpentane Methycyclohexane Benzene	0.0079 0.0962 0.1446 0.0000 0.0749 0.0276 0.0498 0.1100	86 86 100 96 78 84 100	0.0068 0.0827 0.1244 0.0000 0.0719 0.0215 0.0418 0.1100	0.038% 0.438% 0.658% 0.000% 0.381% 0.114% 0.221% 0.582%		Roosevelt Tap 1 Compresso Heat Trace Pump Emissions Uintal Sandpiper Natural Gas Pumps	Fuel Usage (SCFD) - M Fuel Usage (SCFD) - M Fuel Usage (SCFM) Fuel Usage (SCFM) - Fuel Usage (SCFM)	feasured Spec	4.17 40.00 0.67	
Methylcyclopentane n-Hexane Hexane + 2,4-Dimethylpentane Methycyclohexane Benzene Cyclohexane n-Heptane Toluene Ethylbenzene	0.0079 0.0962 0.1446 0.0000 0.0749 0.0276 0.0498 0.1100 0.0307	86 86 100 96 78 84 100 92	0.0068 0.0827 0.1244 0.0000 0.0719 0.0215 0.0418 0.1100 0.0282	0.038% 0.438% 0.658% 0.000% 0.381% 0.114% 0.221% 0.582% 0.149%		Roosevelt Tap 1 Compresso Heat Trace Pump Emissions Uintat Sandpiper Natural Gas Pumps Kold Katcher HT-48 Pumps	Fuel Usage (SCFD) - M Fuel Usage (SCFM) Fuel Usage (SCFM) Fuel Usage (SCFM) Fuel Usage (SCFM) MW Nat'l Gas (Ib/Ibm	feasured Spec nol) f/lbmol)	4.17 40.00 0.67 20	
Methylcyclopentane n-Hexane Hexane + 2,4-Dimethylpentane Methycyclohexane Benzene Cyclohexane n-Heptane Toluene	0.0079 0.0962 0.1446 0.0000 0.0749 0.0276 0.0498 0.1100 0.0307 0.0011	86 86 86 100 96 78 84 100 92 106	0.0068 0.0827 0.1244 0.0000 0.0719 0.0215 0.0418 0.1100 0.0282 0.0012	0.038% 0.438% 0.658% 0.000% 0.381% 0.114% 0.221% 0.582% 0.149% 0.006%		Roosevelt Tap 1 Compresso Heat Trace Pump Emissions Uintal Sandpiper Natural Gas Pumps	Fuel Usage (SCFD) - M Fuel Usage (SCFM) Fuel Usage (SCFM) Fuel Usage (SCFM) Fuel Usage (SCFM) MW Nat'l Gas (Ib/Ibm Conversion Factor (sc	Spec nol) f/lbmol) /ton)	4.17 40.00 0.67 20 379	
Methylcyclopentane n-Hexane Hexane + 2,4-Dimethylpentane Methycyclohexane Benzene Cyclohexane n-Heptane Toluene Ethylbenzene Xylenes	0.0079 0.0962 0.1446 0.0000 0.0749 0.0276 0.0498 0.1100 0.0307 0.0011 0.0106	86 86 100 96 78 84 100 92 106 106	0.0068 0.0827 0.1244 0.0000 0.0719 0.0215 0.0418 0.1100 0.0282 0.0012 0.0112	0.038% 0.438% 0.658% 0.000% 0.381% 0.114% 0.221% 0.582% 0.149% 0.006% 0.059%		Roosevelt Tap 1 Compresso Heat Trace Pump Emissions Uintat Sandpiper Natural Gas Pumps Kold Katcher HT-48 Pumps	Fuel Usage (SCFD) - M Fuel Usage (SCFM) Fuel Usage (SCFM) Fuel Usage (SCFM) Fuel Usage (SCFM) MW Nat'l Gas (Ib/Ibm Conversion Factor (sc Conversion Factor (Ib	feasured Spec nol) f/lbmol) /ton)	4.17 40.00 0.67 20 379 2000	
Methylcyclopentane n-Hexane Hexane + 2,4-Dimethylpentane Methycyclohexane Benzene Cyclohexane n-Heptane Toluene Ethylbenzene Xylenes Octanes+ Nonanes+	0.0079 0.0962 0.1446 0.0000 0.0749 0.0276 0.0498 0.1100 0.0307 0.0011 0.0108 0.0591	86 88 86 100 96 78 84 100 92 106 106 114	0.0068 0.0827 0.1244 0.0000 0.0719 0.0215 0.0418 0.1100 0.0282 0.0012 0.0112 0.0840	0.038% 0.438% 0.658% 0.000% 0.381% 0.114% 0.221% 0.582% 0.149% 0.006% 0.059% 0.339%		Roosevelt Tap 1 Compresso Heat Trace Pump Emissions Uintat Sandpiper Natural Gas Pumps Kold Katcher HT-48 Pumps	Fuel Usage (SCFD) - M Fuel Usage (SCFM) Fuel Usage (SCFM) Fuel Usage (SCFM) Fuel Usage (SCFM) MW Nat'l Gas (Ib/Ibm Conversion Factor (SC Conversion Factor (Ib Operating Time (days	feasured Spec nol) f/lbmol) /ton)	4.17 40 00 0.67 20 379 2000 180	
Methylcyclopentane n-Hexane Hexane + 2,4-Dimethylpentane Methycyclohexane Benzene Cyclohexane n-Heptane Toluene Ethylbenzene Xylenes Octanes+	0.0079 0.0962 0.1446 0.0000 0.0749 0.0276 0.0498 0.1100 0.0307 0.0011 0.0001 0.0108 0.0561 0.0000	86 86 100 96 78 84 100 92 106 106 114 128	0.0068 0.0827 0.1244 0.0000 0.0719 0.0215 0.0418 0.1100 0.0282 0.0012 0.0112 0.0840 0.0000	0.038% 0.438% 0.658% 0.000% 0.381% 0.114% 0.221% 0.582% 0.149% 0.006% 0.059% 0.339% 0.000%	13.560%	Roosevelt Tap I Compresso Heat Trace Pump Emissions Uintal Sandpiper Natural Gas Pumps Kold Katcher HT-48 Pumps Calculation Inputs Sandpiper Natural Gas Pumps	Fuel Usage (SCFD) - M Fuel Usage (SCFM) Fuel Usage (SCFM) Fuel Usage (SCFM) Fuel Usage (SCFM) MW Nat'l Gas (Ib/Ibm Conversion Factor (Ib Operating Time (days Operating time (min)	feasured Spec noi) f/ibmol) /ton))	4.17 40.00 0.67 20 379 2000 180 259.200	

3/14/2017

-	1		3 a	2				
		Component s Count	Hour s	Factors	%NMVO C	%Reductio		sions
						Ţ	lb/year	tons/year
Valves						1		
	Gas/Vapor	1	8760			0	1099.35179	
	Light Oil	26	8760			0	1252.68000	1
	Heavy Oil		8760	a second s		0	0.00000	0.0000
-	Water/Light Oil	6	8760	0.00021600	100.00%	0	11.35296	0.0056
Pumps		• •	· · · ·		1	*******		1
	Gas/Vapor	2	8760	0.00529000	23.87%	0	22.12253	0.0110
	Light Oil		8760	0.02866000	100.00%	0	0.00000	0.0000
	Heavy Oil		8760	0.00113000	100.00%	0	0.00000	0.00000
	Water/Light Oil	an a	8760	0.00005300	100.00%	0	0.00000	0.0000
Flanges					an waange selecterangese			
	Gas/Vapor	69	8760	0.00086000	23.87%	0	124.07854	0.06204
	Light Oil	12	8760	0.00024300	100.00%	0	25.54416	0.0127
in sub	Heavy Oil		8760	0.0000086	100.00%	Ó	0.00000	0.0000
	Water/Light Oil	2	8760	0.00000620	100.00%	0	0.10862	0.0000
Open-ended		5 5 7 7 8 7 8 7 8 7 8 7 8 7 8 7 8 7 8 7	·····			······································		
	Gas/Vapor	An an and a second s	8760	0.00441000	23.87%	0	0.00000	0.00000
	Light Oil		8760	A	1	0		
	Heavy Oil		8760	\$		0	0.00000	a second and a second se
	Water/Light Oil	•	8760	0.00055000	A company and an other states and the	0	0.00000	
Connectors	+ ····································	•						
00111001010	Gas/Vapor	318	8760	0.00044000	23.87%	0	292.56943	0.14628
	Light Oil		8760			1	\$	
	Heavy Oil		8760	A DIA THE DIA CONTRACT		â		1
	Water/Light Oil	26	8760	0.00024300	and the second se	1		1
	pressors, relief v	herear weep the second second	2	š	2	alaan a	·	Ac environment of an and the environment of the
polished rods	s, and vents							
	Gas/Vapor	18	-	1		1		0.365084492
	Light Oil	8	2.		1 1	÷	1156.32	0.5781
	Heavy Oil		8760	0.00006800	100.00%		-	
	Water/Light Oil	4	8760	0.03090000	100.00%	0	1082.736	0.54136
	ļ		 	an a		Total in target	haar	2.957
	I					Total in tons		
				l		Total in Lb/h	11	0.675

FUGITIVES

Conversion of Mole Perce	ant to Weight Perce	nt				and an	anna anna anna anna anna anna anna ann		
Tap-1 Fugitives	The se troight failes	·		4					
Specific Gravity	····· •		Molecular Weight	18.8962	wt %				
Gross BTU	1000		NMHC	4.5104	23.8696%			······································	
	1000		VOCs (NMNEHC)	2.5624	13.560%			-	
			HAPs	0.1449	0.77%				
			1	0.1440	0.1.1 /4	www.en.en.en.en.en.en.en.en.en.en.en.en.en.			Anne and an and an an an and an an an and an an an and an
	····· •		Mole % *				and an or other on the second se		
Component	Mole %	MW	MW	Weight %		SITEWIDE	FUGITIVE VOC TOTALS	GAS VOC tpy	2.9570
Carbon Dioxide	0.3807	44	0.1675	0.886%		·· •		1	· ·····
Nitrogen	0.3386	28	0.0948	0.502%					
Hydrogen Sulfide	0.0000	34	0.0000	0.000%				4	· · · · · · · · · · · · · · · · · · ·
Helium	0.0000	4	0.0000	0.000%				+	÷
Methane	88.2714	16	14.1234	74.742%	9000 000 000000000	appenses in assess the anaropeistic of a material			gi announ announ ann announaigh anna Announ ann
Ethane	6.4936	30	1.9481	10.309%				wt%	HAP tpy - GAS
Propane	2.3620	44	1.0393	5.500%			n-Hexane	0.0044	
Iso-Butane	0.4894	58	0.2839	1.502%			Benzene	0.0011	0.00337
N-Butane	0.5998	58	0.3479	1.841%		and a second s	Toluene	0.0015	
Iso-Pentane	0.2534	72	0.1824	0.966%			Ethylbenzene	0.0001	
N-Pentane	0.2016	72	0.1452	0.768%			Xylenes	0.0006	
Methylcyclopentane	0.0079	86	0.0068	0.036%				0.77%	
n-Hexane	0.0962	86	0.0827	0.438%	ng ng nangangangan awa nanggiga ang asi na na ng nang na			a contraction of the second se	
Hexane +	0.1446	86	0.1244	0.658%			• • • • • • • • • • • • • • • • • • •	**	
2,4-Dimethylpentane	0.0000	100	0.0000	0.000%					
Methycyclohexane	0.0749	96	0.0719	0.381%		6 464 474 7 200		• • • • • • • • • • • • • • • • • • •	
Benzene	STREES.		0.0215	0.114%					ressonan
Cyclohexane	0.0498	84	0.0418	0.221%	6	Marina			
n-Heptane	0.1100	100	0.1100	0.582%				2	······································
Toluene	0.0307	92	0.0282	0.149%					
Ethylbenzene	0.0011	106	0.0012	0.006%	······	······			
Xylenes	0.0106	106	0.0112	0.059%					*
Octanes+	0.0561	114	0.0640	0.338%					3
Nonanes+	0.0000	128	0.0000	0.000%					I
Decanes+	0.0000	142	0.0000	0.000%			1		
		•			13.560%		10000000		aber www. www.weiner
Total	100.0000	**************************************			NMNEVOC	and Anna and Anna	inter an a de la se		1
n and mentalization of antipulation			and an and a second		WT %'s				

QUESTAR APPLIED TECHNOLOGY

- - - **-**--

.

1210 D. Street, Rock Springs, Wyoming 82901

(307) 352-7292

LIMS ID: Analysis Date/Time: Analyst Initials: Instrument ID: Data File: Date Sampled:	N/A 6/20/2011 AST Instrument 1 QPC62.D 6/14/2011	2:33 PM	Description: Field: ML#: GC Method:	Riverbend Tap 1 Riverbend Summit Gas Gahtering Quesbtex
Component	Mol%	,	Wt%	b LV%
Methane Ethane Propane Isobutane n-Butane Neopentane Isopentane 2,2-Dimethylbutane 2,3-Dimethylbutane 2-Methylpentane 3-Methylpentane n-Hexane Heptanes Octanes Nonanes Decanes plus	88.2714 6.4936 2.3620 0.4894 0.5998 0.0085 0.2449 0.2016 0.0095 0.0238 0.0721 0.0392 0.0962 0.3009 0.0440 0.0212 0.0026		74.7508 10.3070 5.4979 1.5013 1.8403 0.0322 0.9328 0.7678 0.0434 0.1082 0.3281 0.1783 0.4374 1.4759 0.2640 0.1297 0.0199	82.1153 9.5569 3.5741 0.8791 1.0385 0.0178 0.4923 0.4010 0.0218 0.0535 0.1644 0.0878 0.2171 0.6371 0.1201 0.0542 0.0089
Nitrogen Carbon Dioxide	0.3386 0.3807		0.5006 0.8844	0.2038 0.3563
Oxygen Hydrogen Sulfide	0.0000 0.0000		0.0000 0.0000	0.0000 0.0000
Total Clabel Broportion	100.0000	Units	100.0000	100.0000
Global Properties Gross BTU/Real CF Sat.Gross BTU/Real CF Gas Compressibility (Z) Specific Gravity Avg Molecular Weight Propane GPM Butane GPM	1156.1 1137.1 0.9971 0.6559 18.945 0.647336 0.348352	Onito)°F and14.73 psia)°F and14.73 psia
Gasoline GPM 26# Gasoline GPM Total GPM Base Mol%	0.384325 0.575632 1.382709 99.642		gal/MCF gal/MCF gal/MCF %v/v	
Sample Temperature: Sample Pressure: H2OLength of StainTube	78 55 273.0)	°F psig #/MMCF	

Component	Mol%	Wt%	LV%
Benzene	0.0276	0.1139	0.0424
Toluene	0.0307	0.1494	0.0565
Ethylbenzene	0.0011	0.0062	0.0023
M&P Xylene	0.0094	0.0526	0.0200
O-Xylene	0.0012	0.0067	0.0025
2,2,4-Trimethylpentane	0.0079	0.0478	0.0219
Cyclopentane	0.0000	0.0000	0.0000
Cyclohexane	0.0498	0.2215	0.0932
Methylcyclohexane	0.0749	0.3880	0.1652
Description:	Riverbend Tap 1		

• • •

GRI GlyCalc Information

Component	Mol%	Wt%	LV%
Carbon Dioxide	0.3807	0.8844	0.3563
Hydrogen Sulfide	0.0000	0.0000	0.0000
Nitrogen	0.3386	0.5006	0.2038
Methane	88.2714	74.7508	82.1153
Ethane	6.4936	10.3070	9.5569
Propane	2.3620	5.4979	3.5741
Isobutane	0.4894	1.5013	0.8791
n-Butane	0.5998	1.8403	1.0385
Isopentane	0.2534	0.9650	0.5101
n-Pentane	0.2016	0.7678	0.4010
Cyclopentane	0.0000	0.0000	0.0000
n-Hexane	0.0962	0.4374	0.2171
Cyclohexane	0.0498	0.2215	0.0932
Other Hexanes	0.1446	0.6580	0.3275
Heptanes	0.1100	0.5553	0.2579
Methylcyclohexane	0.0749	0.3880	0.1652
2,2,4 Trimethylpentane	0.0079	0.0478	0.0219
Benzene	0.0276	0.1139	0.0424
Toluene	0.0307	0.1494	0.0565
Ethylbenzene	0.0011	0.0062	0.0023
Xylenes	0.0106	0.0593	0.0225
C8+ Heavies	0.0561	0.3481	0.1584
Subtotal	100.0000	100.0000	100.0000
Oxygen	0.0000	0.0000	0.0000
Total	100.0000	100.0000	100.0000

Manzanares, Candice

From: Sent: To: Subject: Simpson, Dustin <Dustin_Simpson@xtoenergy.com> Wednesday, December 21, 2016 3:29 PM Wortman, Eric RE: Riverbend & Accompanying Wellsites

Eric,

The gas does go to an off-site compressor and then returns to the dehy at the RBU dehy. The dehy could operate independently of either one of the specific wells but the wells could not operate independently of the dehy facility as the gas has to be dehydrated prior to sales.

Thanks,

Dustin Simpson

XTO ENERGY INC., an ExxonMobil subsidiary Dustin Simpson | 810 Houston Street PTR4 | Fort Worth, TX 76102 | ph: 817.885.2845 | fax: 817.885.1847 | dustin_simpson@xtoenergy.com

The information in this transmission is confidential and may also contain privileged attorney-client information or work product. The information is intended for the use of the individual or entity to whom it is addressed. If you are not the intended recipient, your are notified any use, dissemination, distribution, or copying of this communication is strictly prohibited. If you received this communication in error, please notify us immediately by e-mail or by telephone.

From: Wortman, Eric [mailto:Wortman.Eric@epa.gov]
Sent: Wednesday, December 21, 2016 4:01 PM
To: Simpson, Dustin
Subject: Riverbend & Accompanying Wellsites

Hi Dustin,

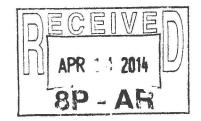
I had a question regarding the two wellsites at the Riverbend facility with regard to the revised definition of a major source. Since RBU 6-15E is located on the same surface site as Riverbend Dehy, it is included as part of the same source. Similar to my questions on Little Canyon, I'm working on EPA's interpretation for the RBU 7-15E wellsite since it's located within a ¼ mile of Riverbend Dehy but not on the same surface site. The RBU 6-15E and 7-15E wellsites discharge gas into the common gathering pipeline and not directly to the Riverbend Dehydrator Site. My understanding from the application is that the gas then flows to an offsite compressor station for further processing. Does the gas eventually come back to Riverbend Dehy Site before going to market or can it go elsewhere? In other words is the operation of Riverbend Dehy site necessary for the RBU 7-15E wellsite to produce gas to market or can both sites operate independently of each other?

Thanks,

Eric

Eric Wortman | Environmental Scientist U.S. Environmental Protection Agency – Region 8

1595 Wynkoop Street (8P-AR), Denver, Colorado 80202 Telephone: (303) 312-6649 Email: <u>wortman.eric@epa.gov</u>


April 7, 2014

Alternate Designated Representative EPA Region 8 Operations 40 CFR Part 71, 40 CFR Part 63

Via USPS Certified Mail: 7013 2630 0001 2576 9242

Mr. Eric Wortman Office of Partnership & Regulatory Assistance EPA Region 8 (AP-AR) 1595 Wynkoop Street Denver, CO 80202-1129

To Whom It May Concern:

XTO Energy, Inc. (XTO) respectfully submits an Alternative Designated Responsible Official for 40 CFR 71 and 40 CFR 63. XTO confirms that the individuals listed in the table below meet the definition of Responsible Official stated in 40 CFR 63.2 and 40 CFR 71.2.

Designated Responsible Official	Alternate Designated Responsible Official
Mr. Kenneth S. Rose	Timothy Hermann
Sr. Vice President of Midstream Operations	Manager of Midstream Operations
810 Houston Street	810 Houston Street
Fort Worth, TX 76102	Fort Worth, TX 76102
817-885-1623 - Office	817-885-2584 - Office
RO Designation began 01/01/2012	Alt. RO Designation begins 04/07/2014

As stated in 40 CFR 63.2 and 40 CFR 71.2, Responsible Official is considered the following for a corporation such as XTO:

- (1) For a corporation: A president, secretary, treasurer, or vice president of the corporation in charge of a principal business function, or any other person who performs similar policy or decisionmaking functions for the corporation, or a duly authorized representative of such person if the representative is responsible for the overall operation of one or more manufacturing, production, or operating facilities and either:
 - (i) The facilities employ more than 250 persons or have gross annual sales or expenditures exceeding \$25 million (in second quarter 1980 dollars);
 - (ii) The delegation of authority to such representative is approved in advance by the Administrator.

Should you have any questions, please feel free to contact me at 817-885-1249 or via e-mail at Rykki_Tepe@xtoenergy.com.

Sincerely,

Rykki Tepe

Rykki Tepe Environmental Engineer XTO Energy Inc.

Ms. Alexis North (Via USPS Certified Mail: 7013 2630 0001 2576 9259) Enforcement and Compliance EPA Region 8 (AP-AR) 1595 Wynkoop Street Denver, CO 80202-1129

BC: XTO EFILE, FIRE SO Rigs Blagge County Agency Terrespondance (2017) 870-2800 • Fax: (817) 885-1671

Wortman, Eric

From: Sent: To: Subject: Patefield, Scott Thursday, March 20, 2014 9:38 AM Wortman, Eric FW: Uintah County, UT - Leak Detection and Monitoring

fyi

From: Patefield, Scott Sent: Thursday, January 24, 2013 2:05 PM To: Tepe, Rykki Subject: Re: Uintah County, UT - Leak Detection and Monitoring

Hi Rykki,

As we discussed on the telephone, if a source is no longer considered an onshore natural gas processing plant, the LDAR requirements of 40CFR60, subpart KKK would no longer apply. The consent decree identifies the Kings Canyon, TAP-4 and TAP-5 Facilities as onshore natural gas processing facilities. If the equipment rendering any of these facilities as a natural gas processing plant is removed (in this case, the dew point skids) and there are no other processes at any given facility that would subject them to the natural gas processing plant requirements, then they would no longer be subject to the NSPS, subpart KKK.

The requirements of MACT HH, MACT ZZZZ and the Consent Decree are independent of a facility's applicability to NSPS KKK, so the requirements of each would still apply even if the facility is no longer subject to the requirements of NSPS KKK.

I hope this helps, please feel free to contact me if you have any further questions or comments.

Thanks,

Scott Patefield, Environmental Scientist Office of Enforcement, Compliance & Environmental Justice EPA Region 8 1595 Wynkoop Street (8ENF-AT) Denver, CO 80202-1129 Phone: (303) 312-6248 Email: patefield.scott@epa.gov

From:	"Tepe, Rykki" < <u>Rykki_Tepe@xtoenergy.com</u> >
To:	Scott Patefield/R8/USEPA/US@EPA,
Date:	01/22/2013 01:43 PM
Subject:	Uintah County, UT - Leak Detection and Monitoring

Hi Scott: As mentioned in the phone call, I am trying to determine whether we can eliminate our Leak Detection Monitoring for our Uintah County Facilities. In an Oct.31, 2011 Semi-Annual LDAR Report it was noted in the cover letter that because we were no longer considered a gas processing plant we would no longer be submitting LDAR Reports. We have continued to perform the leak detection surveys, and would like to eliminate them if not required. However, before eliminating I would like to ensure we are meeting EPA's expectations and that you agree with us. My areas that I have been reviewing in which we previously had applicable leak detection standards are MACT HH, NSPS ZZZZ, and our Consent Decree. We currently perform leak detection at any compressor station in Uintah County, UT where we have a dehydration unit – which includes Riverbend Dehy, Wild Horse Bench, Tap 5, River bend 11-18F, and Riverbend 9-17E, and LCU – Compressor Stations. Could you possibly offer me guidance on how we should move forward, and ensure we're still in compliance?

Feel free to call me if you have questions. Thanks!

Rykki R. Tepe Environmental Engineer XTO Energy, Inc. 810 Houston Street, Fort Worth TX, 76102 Office: 817-885-1249 Cell: 817-253-2986 Fax:817-885-1847 Email: <u>Rykki_Tepe@xtoenergy.com</u>

Wortman, Eric

From: Sent: To: Subject: Simpson, Dustin <Dustin_Simpson@xtoenergy.com> Wednesday, December 21, 2016 3:29 PM Wortman, Eric RE: Riverbend & Accompanying Wellsites

Eric,

The gas does go to an off-site compressor and then returns to the dehy at the RBU dehy. The dehy could operate independently of either one of the specific wells but the wells could not operate independently of the dehy facility as the gas has to be dehydrated prior to sales.

Thanks,

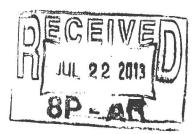
Dustin Simpson

XTO ENERGY INC., an ExxonMobil subsidiary Dustin Simpson | 810 Houston Street PTR4 | Fort Worth, TX 76102 | ph: 817.885.2845 | fax: 817.885.1847 | <u>dustin_simpson@xtoenergy.com</u>

The information in this transmission is confidential and may also contain privileged attorney-client information or work product. The information is intended for the use of the individual or entity to whom it is addressed. If you are not the intended recipient, your are notified any use, dissemination, distribution, or copying of this communication is strictly prohibited. If you received this communication in error, please notify us immediately by e-mail or by telephone.

From: Wortman, Eric [mailto:Wortman.Eric@epa.gov]
Sent: Wednesday, December 21, 2016 4:01 PM
To: Simpson, Dustin
Subject: Riverbend & Accompanying Wellsites

Hi Dustin,


I had a question regarding the two wellsites at the Riverbend facility with regard to the revised definition of a major source. Since RBU 6-15E is located on the same surface site as Riverbend Dehy, it is included as part of the same source. Similar to my questions on Little Canyon, I'm working on EPA's interpretation for the RBU 7-15E wellsite since it's located within a ¼ mile of Riverbend Dehy but not on the same surface site. The RBU 6-15E and 7-15E wellsites discharge gas into the common gathering pipeline and not directly to the Riverbend Dehydrator Site. My understanding from the application is that the gas then flows to an offsite compressor station for further processing. Does the gas eventually come back to Riverbend Dehy Site before going to market or can it go elsewhere? In other words is the operation of Riverbend Dehy site necessary for the RBU 7-15E wellsite to produce gas to market or can both sites operate independently of each other?

Thanks,

Eric

Eric Wortman | Environmental Scientist U.S. Environmental Protection Agency – Region 8 1595 Wynkoop Street (8P-AR), Denver, Colorado 80202 Telephone: (303) 312-6649 Email: <u>wortman.eric@epa.gov</u>

July 19, 2013

Via USPS Certified Mail: 7008 1830 0001 0477 2835

U.S. EPA, Region 8 – Air Program 1595 Wynkoop Street (8P-AR) Denver, Colorado 80202

RE: Change of Ownership – Title V Permits Previous Owner/Operator: Summit Gas Gathering, LLC New Owner/Operator: XTO Energy, Inc. Federal Tax ID 75-2347769

To Whom It May Concern:

Summit Gas Gathering, LLC has been dissolved and starting July 1, 2013, XTO Energy, Inc. assumed the role of owner/operator for Summit Gas Gathering, LLC. Kings Canyon Compressor Station was previously a Title V facility, and is currently registered as a True Minor NSR Registration (8/26/2010). Tap 4 Compressor Station was shut in and decommissioned (2/17/2012).

The following lists the active Title V facilities that require the change in owner/operator to XTO Energy, Inc.

- Little Canyon Unit Compressor Station
- River Bend Dehydration Site & Accompanying Well sites
- Tap 5 Compressor Station

If you have any questions or need any additional information to process these registration changes, please feel free to contact me at 817.885.1249 or by email at rykki_tepe@xtoenergy.com.

Sincerely,

Klen Tepe

Rykki Tepe Environmental Engineer XTO Energy, Inc.

Cc: Mr. Eric Wortman (Via USPS Certified Mail: 7008 1830 0001 0477 2859) Office of Partnerships & Regulatory Assistance 1595 Wynkoop Street (8P-AR) Denver, Colorado 80202

> Ms. Alexis North (Via USPS Certified Mail: 7008 1830 0001 0477 2842) US EPA Region 8, Enforcement & Compliance 1595 Wynkoop Street Denver, Colorado 80202

SEPA United States Environmental Protection Agency

OMB No. 2060-0336, Approval Expires 06/30/2015

Federal Operating Permit Program (40 CFR Part 71)

GENERAL INFORMATION AND SUMMARY (GIS)

A. Mailing Address and Contact Information

Facility nameRiver Bend Dehydrator & Accompanying Wellsites
Mailing address: Street or P.O. Box810 Houston Street, Petro-4
CityFort Worth StateTX ZIP76102
Contact person:Rykki Tepe TitleEnvironmental Engineer
Telephone (817)8851249 Ext
Facsimile (817)8852986
. Facility Location
Temporary source? Yes X_No Plant site location 39.94851, -109.77057
CityRoosevelt State_UT CountyUintah EPA Region_8
Is the facility located within:
Indian lands? _X – Indian AirshedYESNO OCS waters?YES _X_NO
Non-attainment area?YES _X_NO If yes, for what air pollutants?N/A
Within 50 miles of affected State? _X_YESNO If yes, What State(s)?Colorado
. Owner
NameXTO Energy, Inc Street/P.O. Box810 Houston Street, Petro-4
CityFort Worth State _TX _ ZIP76102
Telephone (_817_)8851249 Ext
. Operator
NameXTO Energy, Inc Street/P.O. Box _810 Houston Street, Petro-4
CityFort Worth StateTX ZIP _76102
Telephone (817)8851249 Ext

E.	Application Type			
Mark only one permit application type and answer the supplementary question appropriate fo marked.				
	Initial Permit Renewal Significant Mod Minor Permit Mod(MPM)			
	Group Processing, MPMX Administrative Amendment			
	For initial permits, when did operations commence? /N/A /			
	For permit renewal, what is the expiration date of current permit?/_N/A/			

F. Applicable Requirement Summary

Mark all types of applicable requirements that apply.					
SIP	FIP/TIP	PSD	Non-attainment NSR		
Minor source NSR	Section 111	Phase I acid rai	nPhase II acid rain		
Stratospheric ozone	OCS regulations	_X_ NESHAP	Sec. 112(d) MACT		
Sec. 112(g) MACT	Early reduction of HAP	Sec 112(j) MAC	T RMP [Sec.112(r)]		
Tank Vessel requirem	ents, sec. 183(f)) Se	ection 129 Standards/R	equirement		
Consumer / comm products, ' 183(e)NAAQS, increments or visibility (temp. sources)					
Has a risk management plan been registered? YES X_NO Regulatory agency					
Phase II acid rain applicati	on submitted?YES _X_I	NO If yes, Permitting	authority		

G. Source-Wide PTE Restrictions and Generic Applicable Requirements

Cite and describe any emissions-limiting requirements and/or facility-wide "generic" applicable requirements.

None	

List processes, products, and SIC codes for the facility.

Process	Products	SIC
Natural Gas Production	Natural Gas	1311

I. Emission Unit Identification

Assign an emissions unit ID and describe each emissions unit at the facility. Control equipment and/or alternative operating scenarios associated with emissions units should by listed on a separate line. Applicants may exclude from this list any insignificant emissions units or activities.

Emissions Unit ID	Description of Unit
	No Changes Administrative Amendment – Owner/Operator Change

J. Facility Emissions Summary

Enter potential to emit (PTE) for the facility as a whole for each air pollutant listed below. Enter the name of the single HAP emitted in the greatest amount and its PTE. For all pollutants stipulations to major source status may be indicated by entering "major" in the space for PTE. Indicate the total actual emissions for fee purposes for the facility in the space provided. Applications for permit modifications need not include actual emissions information.

4

No Changes Administrative Amendment - Owner/Operator Change				
NOx tons/yr VOC tons/yr SO2tons/yr				
PM-10 tons/yr CO tons/yr Lead tons/yr				
Total HAPtons/yr				
Single HAP emitted in the greatest amount PTE tons/yr				
Total of regulated pollutants (for fee calculation), Sec. F, line 5 of form FEE tons/yr				
K. Existing Federally-Enforceable Permits				
Permit number(s)None – Pending Permit Permit type Permitting authority				
Permit number(s) Permit type _Consent Decree_ Permitting authorityEPA				
L. Emission Unit(s) Covered by General Permits				
Emission unit(s) subject to general permit				
Check one: Application made Coverage granted				
General permit identifier Expiration Date/_/				
M. Cross-referenced Information				
Does this application cross-reference information?YES _X_NO (If yes, see instructions)				

INSTRUCTIONS FOLLOW

GERA United States Environmental Protection Agency OMB No. 2060-0336, Approval Expires 6/30/2015 Federal Operating Permit Program (40 CFR Part 71) CERTIFICATION OF TRUTH, ACCURACY, AND COMPLETENESS (CTAC)

This form must be completed, signed by the "Responsible Official" designated for the facility or emission unit, and sent with each submission of documents (i.e., application forms, updates to applications, reports, or any information required by a part 71 permit).

A. Responsible Official
Name: (Last)Rose (First)Kenneth (MI) S
TitleSR VP Midstream Operations
Street or P.O. Box810 Houston Street
CityFort Worth State TX ZIP 76102 6298
Telephone (817)8851623 Ext Facsimile (_817) _885 _2683
B. Certification of Truth, Accuracy and Completeness (to be signed by the responsible official)
I certify under penalty of law, based on information and belief formed after reasonable inquiry, the statements and information contained in these documents are true, accurate and complete.
Name (signed) KSRose
Name (typed)Kenneth S. Rose Date:7 / _18 / _20/3

Summit Gas Gathering, LLC

810 Houston Street Ft. Worth, TX 76102-6298

February 17, 2012

Responsible Official Notification of Change 40 CFR Part 71 and 40 CFR Part 63 Uintah County, UT

Via FedEx 2Day: 7932 4251 8563

Mr. Eric Wortman U.S. EPA Region 8 Office of Partnerships & Regulatory Assistance 1595 Wynkoop Denver, CO 80202

Dear Mr. Wortman:

Due to recent internal reorganization, Summit Gas Gathering, LLC (SGG), respectfully submits a Responsible Official Notification of Change for all sources in Uintah County, UT subject to 40 CFR 71 and 40 CFR 63. These sources include, but are not limited to, the following:

- Kings Canyon Unit Compressor Station 40 CFR 71 Permit # V-OU-0019-07.00
- TAP-4 Compressor Station 40 CFR 71 Permit # V-OU-0017-07.00
- TAP-5 Compressor Station 40 CFR 71 Permit # V-OU-0018-07.00
- Little Canyon Unit Compressor Station 40 CFR 71 Permit # Pending Issuance
- River Bend Dehydrator Site & Accompanying Wellsites 40 CFR 71 Permit # Pending Issuance

SGG confirms that the individuals listed in the table below meet the definition of Responsible Official stated in 40 CFR 63.2 and 40 CFR 71.2.

Current Designated Responsible Official	New Designated Responsible Official	
Mr. Nick Dungey	Mr. Kenneth S. Rose	
Chairman of the Board and President	Vice President of Natural Gas Operations	
810 Houston Street	810 Houston Street	
Fort Worth, TX 76102	Fort Worth, TX 76102	
817-885-2440 - Office	817-870-2800 - Office	
RO Designation ends March 16, 2012 RO Designation begins Marc		

As stated in 40 CFR 63.2 and 40 CFR 71.2, Responsible Official is considered the following for a corporation such as SGG:

(1) For a corporation: A president, secretary, treasurer, or vice president of the corporation in charge of a principal business function, or any other person who performs similar policy or decision-making functions for the corporation, or a duly authorized representative of such person if the representative is responsible for the overall operation of one or more manufacturing, production, or operating facilities and either:

(i) The facilities employ more than 250 persons or have gross annual sales or expenditures exceeding \$25 million (in second quarter 1980 dollars); or

Summit Gas Gathering, LLC 810 Houston Street

Ft. Worth, TX 76102-6298

(ii) The delegation of authority to such representative is approved in advance by the Administrator.

Attached is the completed CTAC form signed by the current designated Responsible Official for the operations of the Title V, 40 CFR Part 71 and 40 CFR Part 63 facilities referenced in this request.

Should you have any questions, please feel free to contact me at 817-885-2845 or via e-mail at Clare Hoang@xtoenergy.com.

Sincerely,

Clare Hoang **Environmental Engineer** XTO Energy Inc.

Cc: Via FedEx 2 Day Mail: 7932 4252 2875 Mr. Josh Rickard Office of Enforcement and Compliance 1595 Wynkoop Street Denver, Colorado 80202

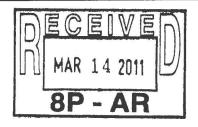
SEPA United States Environmental Protection Agency

Federal Operating Permit Program (40 CFR Part 71)

CERTIFICATION OF TRUTH, ACCURACY, AND COMPLETENESS (CTAC)

This form must be completed, signed by the "Responsible Official" designated for the facility or emission unit, and sent with each submission of documents (i.e., application forms, updates to applications, reports, or any information required by a part 71 permit). This certification is also being used to certify documents and reports submitted as part of the Consent Decree for U.S. Civil Action No. 2:09-CV-00331-SA.

A. Responsible Official	
Name: (Last) Dungey	_ (First)Nick (MI)
Title Senior Vice President of Natu	Iral Gas Operations - XTO Energy
Street or P.O. Box810 Houston St.	
City Fort Worth	_ State _ TX ZIP 76102
Telephone (817) 885-2440 Ext	Facsimile (817) 870 - 8441
and includes the certification language as stand I certify under penalty of law that this docume supervision in accordance with a system des gather and evaluate the information submittee who manage the system, or those persons d	ompleteness (to be signed by the responsible official ated in Paragraph 52 of the E.P.A. Consent Decree) ent and all attachments were prepared under my signed to assure that qualified personnel properly ed. Based on my inquiry of the person or persons lirectly responsible for gathering the information, the nowledge and belief, true, accurate and complete. $M_{1} = \frac{2}{16} \frac{2012}{2012}$


Summit Gas Gathering, LLC

810 Houston Street Ft. Worth, TX 76102-6298 (817) 870-2800 (office)

March 4, 2011

4

Mr. Eric Wortman Air Program - US EPA Region 8 Part 71 - Permitting, Monitoring and Modeling Unit 1595 Wynkoop St. (8P-AR) Denver, CO 80202-1129

Fedex Renner Realing NO. 1000-0001-0000 2020 79451865 2127 Trkg # 0201

RE: Summit Gas Gathering, LLC River Bend Dehydrator Site & Accompanying Wellsites – Uintah County, Utah – Part 71 Permit Pending Initial Part 71 Permit Application – Supplemental Information

Dear Mr. Wortman:

Per your request, Summit Gas Gathering, LLC, hereby submits the attached supplemental information related to the Initial Title V - Part 71 Permit Application for the Summit Gas Gathering, LLC (SGG) River Bend Dehydrator Site & Accompanying Wellsites. The attached information includes the U.S. EPA "Initial Compliance Plan and Compliance Certification (I-COMP)" forms that were missing from the original application

If you should have any questions or require additional information, please feel free to contact me via e-mail at <u>craig_allison@xtoenergy.com</u> or at (817) 885-2672.

Sincerely, Summit Gas Gathering, LLC

my di

Craig Allison EH&S Advisor

- WCA/Encl: U.S. EPA I-COMP Form Certification of Truth, Accuracy, and Completeness (CTAC)
 Cc: Damien Jones, Nathen Young - XTO – SGG Roosevelt NGO Offic
 - c: Damien Jones, Nathen Young XTO SGG Roosevelt NGO Office, Ms. Clare Hoang - XTO Corporate Office - Fort Worth

Federal Operating Permit Program (40 CFR Part 71)

INITIAL COMPLIANCE PLAN AND COMPLIANCE CERTIFICATION (I-COMP)

SECTION A - COMPLIANCE STATUS AND COMPLIANCE PLAN

Complete this section for each unique combination of applicable requirements and emissions units at the facility. List all compliance methods (monitoring, recordkeeping and reporting) you used to determine compliance with the applicable requirement described above. Indicate your compliance status at this time for this requirement and compliance methods and check "YES" or "NO" to the follow-up question.

Emission Unit ID(s): RBD-1

Applicable Requirement (Describe and Cite) MACT Subpart HH – Dehydration Controls

Compliance Methods for the Above (Description and Citation): Oil and Gas MACT (40 CFR 63, Subpart HH) – The glycol dehydration Unit has uncontrolled PTE for HAPs above the 10/25 TPY threshold. HAP emissions from emission unit RBD-1 will be reduced by greater than or equal to 95%.

Compliance Status:

_X	In Compliance:	Will you continue to comply up to permit issuance? _	_X	Yes
	No			

Not In Compliance:	Will you be in	compliance at permit issuance?	Yes	No
--------------------	----------------	--------------------------------	-----	----

Future-Effective Requirement	Do you expect to meet this on a timely	y basis?Yes	No
------------------------------	--	-------------	----

Emission Unit ID(s):

Applicable Requirement (Description and Citation):

Compliance Methods for the Above (Description and Citation):

Compliance Status:

In Compliance:	Will you continue to	comply up to	permit issuance?	Yes	No

_ Not In Compliance: Will	you be in compliance at permit issuance?	Yes	No
---------------------------	--	-----	----

Future-Effective Requirement:	Do you expect to meet this on a timely basis?	Yes	No
-------------------------------	---	-----	----

B. SCHEDULE OF COMPLIANCE

Complete this section if you answered "NO" to any of the questions in section A. Also complete this
section if required to submit a schedule of compliance by an applicable requirement. Please attach
copies of any judicial consent decrees or administrative orders for this requirement.

Unit(s) N/A Requirement

Reason for Noncompliance. Briefly explain reason for noncompliance at time of permit issuance or that future-effective requirement will not be met on a timely basis:

Narrative Description of how Source Compliance Will be Achieved. Briefly explain your plan for achieving compliance:

Schedule of Compliance. Provide a schedule of remedial measures, including an enforceable sequence of actions with milestones, leading to compliance, including a date for final compliance.

Remedial Measure or Action	Date to be Achieved

C. SCHEDULE FOR SUBMISSION OF PROGRESS REPORTS

Only complete this section if you are required to submit one or more schedules of compliance in section B or if an applicable requirement requires submittal of a progress report. If a schedule of compliance is required, your progress report should start within 6 months of application submittal and subsequently, no less than every six months. One progress report may include information on multiple schedules of compliance.

Contents of Progress Report (describe):	
First Report// Frequency of Submittal	
Contents of Progress Report (describe):	
First Report / / Frequency of Submittal	

D. SCHEDULE FOR SUBMISSION OF COMPLIANCE CERTIFICATIONS

This section must be completed once by every source. Indicate when you would prefer to submit compliance certifications during the term of your permit (at least once per year).

Frequency of submittal Beginning / /

EPA Form 5900-86

I-COMP

E. COMPLIANCE WITH ENHANCED MONITORING & COMPLIANCE CERTIFICATION REQUIREMENTS

This section must be completed once by every source. To certify compliance with these, you must be able to certify compliance for every applicable requirement related to monitoring and compliance certification at every unit.			
Enhanced Monitoring Requirements:	X In Compliance	Not In Compliance	
Compliance Certification Requirements:	_X In Compliance	Not In Compliance	

EPA Form 5900-86

GEPA United States Environmental Protection Agency

OMB No. 2060-0336, Approval Expires 09/30/2010

Federal Operating Permit Program (40 CFR Part 71)

CERTIFICATION OF TRUTH, ACCURACY, AND COMPLETENESS (CTAC)

This form must be completed, signed by the "Responsible Official" designated for the facility or emission unit, and sent with each submission of documents (i.e., application forms, updates to applications, reports, or any information required by a part 71 permit).

A. Responsible Official
Name: (Last) <u>Dungey</u> (First) <u>Nick</u> (MI) <u>J</u>
Title Chairman of the Board and President – Summit Gas Gathering, LLC
Street or P.O. Box 810 Houston St
City Fort Worth State TX ZIP 76102 -
Telephone (817) 885-2440 Ext Facsimile (817) 870 - 8441
 B. Certification of Truth, Accuracy and Completeness (to be signed by the responsible official) I certify under penalty of Jaw, based on information and belief formed after reasonable inquiry, the
statements and information contained in these documents are true, accurate and complete.
Name (signed) Vien Act comment
Name (typed) Nick Dungey Date: 3-17 / 2011

Summit Gas Gathering, LLC

810 Houston Street Ft. Worth, TX 76102-6298

Ms. Claudia Young Smith

1595 Wynkoop St. (8P-AR)

Air Program - US EPA Region 8

Title V Permit #V-40-00026-2011-00 Initial Permit (817) 870-2800 (office)

January 13, 2011

DECEIVE JAN 20 2011 **8P - AR**

Certified Mail Return Receipt No. 7009 0080 0000 4061 9510

Denver, CO 80202-1129 RE: Summit Gas Gathering, LLC

Part 71 - Permitting, Monitoring and Modeling Unit

RE: Summit Gas Gathering, LLC River Bend Dehydrator Site & Accompanying Wellsites – Uintah County, Utah – Part 71 Permit Pending Initial Part 71 Permit Application

Dear Ms. Smith:

Summit Gas Gathering, LLC, hereby submits the Initial Title V - Part 71 Permit Application for the Summit Gas Gathering, LLC (SGG) River Bend Dehydrator Site & Accompanying Wellsites.

If you should have any questions or require additional information, please feel free to contact me via e-mail at <u>craig_allison@xtoenergy.com</u> or at (817) 885-2672.

Sincerely, Summit Gas Gathering, LLC

I nais the

Craig Allison EH&S Advisor

WCA/Encl:River Bend Dehydrator Site & Accompanying Wellsites - Part 71 Initial Permit Application
Certification of Truth, Accuracy, and Completeness (CTAC)
River Bend Dehydrator Site & Accompanying Wellsites - Proof of Fee Payment
River Bend Dehydrator Site & Accompanying Wellsites -Fee Calculation Worksheets

Cc: Damien Jones, Nathen Young - XTO - SGG Roosevelt NGO Office

SEPA United States Environmental Protection Agency	OMB No. 2060-0336, Approval Expires 09/30/2010
Federal Operating Permit Program (40 CFR	
GENERAL INFORMATION AND SUMMAR	
A. Mailing Address and Contact Information	
Facility nameSummit Gas Gathering – River	Bend Dehydrator Site & Accompanying wellsites
Mailing address: Street or P.O. Box810 Hous	ton St
CityFt. Worth	StateTX ZIP76102
Contact person:Craig Allison	TitleEH&S Advisor
Telephone (_817)8852672 Ext.	
Facsimile (817_)8852683	

.

B. Facility Location

Temporary source?Yes _XNo Plant site location _Lat. 39.94851°N, Long. 109.77057°W
CityRoosevelt StateUT County _Uintah EPA Region8
Is the facility located within:
Indian lands? _XYES NO OCS waters?YES _XNO
Non-attainment area?YES _XNO If yes, for what air pollutants?
Within 50 miles of affected State? _X_YESNO If yes, What State(s)? _Colorado
C. Owner
Name _Summit Gas Gathering Street/P.O. Box810 Houston St
CityFt. Worth State _TX ZIP _76102
Telephone (817) _8852672 Ext

D. Operator

NameSummit Gas Gathering	Street/P.O. Box810 Houston St
CityFt. Worth	StateTX ZIP76102
Telephone (_817_) _8852672	Ext

E.	Application Type
	Mark only one permit application type and answer the supplementary question appropriate for the type marked.
	_X_Initial Permit Renewal Significant Mod Minor Permit Mod(MPM)
	Group Processing, MPM Administrative Amendment
	For initial permits, when did operations commence?01_/_17/2010
	For permit renewal, what is the expiration date of current permit?/ //

2

F. Applicable Requirement Summary

Mark all types of applicable requirements that apply.			
SIP	FIP/TIP	PSD	Non-attainment NSR
Minor source NSR	Section 111	Phase I acid rain	Phase II acid rain
Stratospheric ozone	OCS regulations	_X NESHAP	Sec. 112(d) MACT
Sec. 112(g) MACT	Early reduction of HAP	Sec 112(j) MACT	RMP [Sec.112(r)]
Tank Vessel requirements, sec. 183(f)) Section 129 Standards/Requirement			
Consumer / comm products, ' 183(e)NAAQS, increments or visibility (temp. sources)			
Has a risk management plan been registered? YES X_NO Regulatory agency			
Phase II acid rain application submitted?YES _XNO If yes, Permitting authority			

G. Source-Wide PTE Restrictions and Generic Applicable Requirements

Cite and describe any emissions-limiting requirements and/or facility-wide "generic" applicable requirements.

H. Process Description

List processes, products, and SIC codes for the facility.

Process	Products	SIC
Natural Gas Production	Natural Gas	1311
· · · · · · · · · · · · · · · · · · ·		

I. Emission Unit Identification

Assign an emissions unit ID and describe each emissions unit at the facility. Control equipment and/or alternative operating scenarios associated with emissions units should by listed on a separate line. Applicants may exclude from this list any insignificant emissions units or activities.

Emissions Unit ID	Description of Unit
RBL-1	Condensate truck loading emissions
RBTO-1	Thermal oxidizer emissions
RBD-1	45 MMscfd Glycol dehydrator controlled by a thermal oxidizer
RBF-1	Fugitive Emissions
RBT-1	One (1) 400-bbl slop tank #1
RBT-2	One (1) 400-bbl slop tank #2
RBU 6-15E D-1	0.18 MMscfd Glycol dehydrator with a 4015 glycol pump
RBU 6-15E F-1	Fugitive Emissions
RBU 7-15E D-1	0.10 MMscfd Glycol dehydrator with a 4015 glycol pump
RBU 7-15E F-1	Fugitive Emissions

J. Facility Emissions Summary

Enter potential to emit (PTE) for the facility as a whole for each air pollutant listed below. Enter the name of the single HAP emitted in the greatest amount and its PTE. For all pollutants stipulations to major source status may be indicated by entering "major" in the space for PTE. Indicate the total actual emissions for fee purposes for the facility in the space provided. Applications for permit modifications need not include actual emissions information.

NOx1.	4 tons/yr	VOC _204.0	_ tons/yr	SO2	tons/yr
PM-10	_0.08 ton	s/yr CO4.8	tons/yr	Lead0.0	tons/yr
Total HAF		ons/yr			
Single HA	P emitted in the g	reatest amountTo	oluene	PTE _3	8.04 tons/yr
Total of re	gulated pollutants	(for fee calculation), S	iec. F, line	5 of form FEE	32.6 tons/yr

K. Existing Federally-Enforceable Permits

Permit number(s)	Permit type	Permitting authority
Permit number(s)	Permit type	Permitting authority

L. Emission Unit(s) Covered by General Permits

	Emission unit(s) subject to general permit
	Check one: Application made Coverage granted
	General permit identifier Expiration Date//
М.	Cross-referenced Information
	Does this application cross-reference information?YESNO (If yes, see instructions)

EPICTURE

SEPA United States Environmental Protection Agency OMB No. 2060-0336, Approval Expires 09/30/2010			
Federal Operating Permit Program (40 CFR Part 71)			
EMISSION UNIT DESCRIPTION FOR FUEL COMBUSTION SOURCES (EUD-1)			
A. General Information			
Emissions unit IDRBTO-1 Description36 inch TO with TJ0200HV burner			
SIC Code (4-digit) _1311 SCC Code			
B. Emissions Unit Description			
Primary useCombust off-gases from dehydrator Temporary SourceYes _XNo			
Manufacturer Enviro-Therm Industrial Refractory Model No36-20			
Serial Number29086 Installation Date12/16/2009			
Boiler Type: Industrial boiler Process burner Electric utility boiler			
Other (describe)Thermal oxidizer controlling dehydrator emissions			
Boiler horsepower rating Boiler steam flow (lb/hr)			
Type of Fuel-Burning Equipment (coal burning only):			
Hand firedSpreader stokerUnderfeed stokerOverfeed stoker			
Traveling grateShaking gratePulverized, wet bedPulverized, dry bed			
Actual Heat InputMM BTU/hr Max. Design Heat InputMM BTU/hr			

5

C. Fuel Data

Primary fuel type(s)___Natural Gas_____ Standby fuel type(s)___NA_____

Describe each fuel you expected to use during the term of the permit.

Fuel Type	Max. Sulfur Content (%)	Max. Ash Content (%)	BTU Value (cf, gal., or lb.)
Natural Gas	0	0	1106 Btu/scf

D. Fuel Usage Rates

Fuel Type	Annual Actual Usage	Maximum Usage	
		Hourly	Annual
Natural Gas	MMscf	Mscf	MMscf

E. Associated Air Pollution Control Equipment

Emissions unit ID Device type	
Air pollutant(s) Controlled_ Manufacturer	
Model No Serial No	
Installation date Control efficiency (%)	
Efficiency estimation methodManufacturer Specifications	

F. Ambient Impact Assessment

This information must be completed by temporary sources or when ambient impact assessment is an applicable requirement for this emissions unit (this is not common).

Stack height (ft)	Inside stack diameter (ft)
Stack temp(°F)	Design stack flow rate (ACFM)
Actual stack flow rate (ACFM)	Velocity (ft/sec)

United States Environmental Protection OMB No. 2060-0336, Approval Expires 09/30/2010 Agency Federal Operating Permit Program (40 CFR Part 71) EMISSION UNIT DESCRIPTION FOR PROCESS SOURCES (EUD-3) A. General Information Emissions unit ID ____RBD-1_____ Description ____45 MMscfd Glycol Dehydrator_____ SIC Code (4-digit) _1311_____ SCC Code_____ B. Emissions Unit Description Primary use or equipment type ___Gas Dehydration_____ Manufacturer Exterran Model No. NA Serial No. ____8156_____ Installation date _12__/19___/ 2009_ Raw materials Wet Natural Gas Finished products ____Dry Natural Gas ______ Temporary source: X No Yes

C. Activity or Production Rates

Activity or Production Rate	Amount/Hour	Amount/Year
Actual Rate	500 Mscf	4,417 MMscf
Maximum rate	1.875 MMscf	16,425 MMscf

D. Associated Air Pollution Control Equipment

Emissions unit IDRBD-1 Device TypeThermal Oxidizer
Manufacturer _Industrial Refractory Services Model No36 inch TO with TJ0200HV burner
Serial No29086 Installation date 12/16/2009
Control efficiency (%)99 Capture efficiency (%)
Air pollutant(s) controlled VOCs & HAPs Efficiency estimation methodManu. Specs

E. Ambient Impact Assessment

assessment is an applicable requirement for this emissions unit (This is not common))	
Stack height (ft) Inside stack diameter (ft)	
Stack temp (F) Design stack flow rate (ACFM)	
Actual stack flow rate (ACFM) Velocity (ft/sec)	·

SEPA United States Environmental Protection Agency

 Agency
 OMB No. 2060-0336, Approval Expires 09/30/2010

 Federal Operating Permit Program (40 CFR Part 71)

EMISSION UNIT DESCRIPTION FOR PROCESS SOURCES (EUD-3)

A. General Information

Emissions unit ID ____RBU 6-15E D-1____ Description ____0.18 MMscfd Glycol Dehydrator_____

5

SIC Code (4-digit) 1311 SCC Code

B. Emissions Unit Description

Primary use or equipment typeGas Dehydration	
ManufacturerPesco	Model NoGCR-50-T3
Serial No204671	Installation date _01_/21 /2004
Raw materialsWet Natural Gas	
Finished productsDry Natural Gas	3
Temporary source: _XNoYes	

C. Activity or Production Rates

Activity or Production Rate	Amount/Hour	Amount/Year
Actual Rate	5.625 Mscf	49.275 MMscf
Maximum rate	8.33 Mscf	73.0 MMscf

D. Associated Air Pollution Control Equipment

Emissions unit IDNA Device TypeNA	
Manufacturer Model No Serial No Installation date	
Control efficiency (%) Capture efficiency (%)	
Air pollutant(s) controlled Efficiency estimation method	

E. Ambient Impact Assessment

	This information must be completed by temporary sources or when ambient impact assessment is an applicable requirement for this emissions unit (This is not common)).		
Stack h	eight (ft)	Inside stack diameter (ft)	·
Stack te	emp (F)	Design stack flow rate (AC	CFM)
Actual s	tack flow rate (ACFM)	Velocity (ft/sec)

SEPA United States Environmental Protection Agency

OMB No. 2060-0336, Approval Expires 09/30/2010

Federal Operating Permit Program (40 CFR Part 71)

EMISSION UNIT DESCRIPTION FOR PROCESS SOURCES (EUD-3)

A. General Information

Emissions unit ID ___RBU 7-15E D-1____ Description ___0.10 MMscfd Glycol Dehydrator_____

SIC Code (4-digit) _1311____ SCC Code_____

B. Emissions Unit Description

Primary use or equipment typeGas Dehyd	ration
ManufacturerBET	Model NoGCR-50-T3
Serial No62029	Installation date _04_/22 /1992
Raw materialsWet Natural Gas	
Finished productsDry Natural Gas	
Temporary source: _XNoYes	

C. Activity or Production Rates

Activity or Production Rate	Amount/Hour	Amount/Year
Actual Rate	4.20 Mscf	36.50 MMscf
Maximum rate	2.71 Mscf	23.73 MMscf

D. Associated Air Pollution Control Equipment

Emissions unit IDNA Device TypeNA	
Manufacturer Model No Serial No Installation date	
Control efficiency (%) Capture efficiency (%)	
Air pollutant(s) controlled Efficiency estimation method	

E. Ambient Impact Assessment

This information must be completed by temporary sources or when ambient impact assessment is an applicable requirement for this emissions unit (This is not common)).	
Stack height (ft)	Inside stack diameter (ft)
Stack temp (F)	Design stack flow rate (ACFM)
Actual stack flow rate (ACFM)	Velocity (ft/sec)

SEPA United States Environmental Protection Agency OMB No. 2060-0336, Approval Expires 09/30/2010
Federal Operating Permit Program (40 CFR Part 71)
EMISSIONS UNIT DESCRIPTION FOR VOC EMITTING SOURCES (EUD-2)
A. General Information
Emissions unit IDRBT-1 Description400-bbl slop storage tank SIC Code (4-digit) SCC Code
B. Emissions Unit Description
Equipment typeStorage Tank Temporary source:Yes _X_No
ManufacturerBenchmark Equipment Model NoNot applicable
Serial No1764 Installation date12/22/2009
Articles being coated or degreasedNA
Application methodNA
Overspray (surface coating) (%) NA Drying methodNA
No. of dryers NA Tank capacity400-bbl
C. Associated Air Pollution Control Equipment
Emissions unit IDNA Device TypeNA
Manufacturer Model No
Serial No Installation date//
Control efficiency (%) Capture efficiency (%)
Air pollutant(s) controlled Efficiency estimation method
D. Ambient Impact Assessment
This information must be completed by temporary sources or when ambient impact assessment is an applicable requirement for this emissions unit (this is not common).
Stack height (ft) Inside stack diameter (ft)
Stack temp (F) Design stack flow rate (ACFM)
Actual stack flow rate (ACFM) Velocity (ft/sec)

E. VOC-containing Substance Data

List each VOC-containing substance consumed, processed or produced at the emissions unit that is emitted into the air. In the name column, if providing a brand name, include the name of the manufacture; if the substance contains HAP, list the constituent HAP.

Substance Name (Chemical, Brand Name)	CAS No.	Substance Type	Actual Usage (gal/yr)	Max Usage (gal/day)	Max Usage (gal/year)	VOC Content (Ib/gal)
Condensate		Condensate		1310.4	478,296	
Produced Water		Produced Water		210	76,650	
				k. *		

	ederal Operating Permit Program (40 CFR Part 71)
E	MISSIONS UNIT DESCRIPTION FOR VOC EMITTING SOURCES (EUD-2)
Α.	General Information
	Emissions unit IDRBT-2 Description400-bbl slop storage tank
	SIC Code (4-digit) SCC Code
B.	Emissions Unit Description
	Equipment typeStorage Tank Temporary source:Yes _XNo
	Manufacturer Benchmark Equipment Model No. Not Applicable
	Serial No1765 Installation date12/22/2009
	Articles being coated or degreasedNA
	Application methodNA
	Overspray (surface coating) (%)NA Drying methodNA
	No. of dryersNA Tank capacity400-bbl
C.	Associated Air Pollution Control Equipment
	Emissions unit IDNA Device TypeNA
	Manufacturer Model No
	Serial No Installation date/ //
	Control efficiency (%) Capture efficiency (%)
	Air pollutant(s) controlled Efficiency estimation method
D.	Ambient Impact Assessment
	This information must be completed by temporary sources or when ambient impact assessment is an applicable requirement for this emissions unit (this is not common).
	Stack height (ft) Inside stack diameter (ft)
	Stack temp (F) Design stack flow rate (ACFM)
	Actual stack flow rate (ACFM) Velocity (ft/sec)

E. VOC-containing Substance Data

List each VOC-containing substance consumed, processed or produced at the emissions unit that is emitted into the air. In the name column, if providing a brand name, include the name of the manufacture; if the substance contains HAP, list the constituent HAP.

Substance Name (Chemical, Brand Name)	CAS No.	Substance Type	Actual Usage (gal/yr)	Max Usage (gal/day)	Max Usage (gal/year)	VOC Content (Ib/gal)
Condensate		Condensate		1310.4	478,296	
Produced Water		Produced Water		210	76,650	
					2	

EPA United States Environmental Protection Agency

OMB No. 2060-0336, Approval Expires 09/30/2010

Federal Operating Permit Program (40 CFR Part 71)

INSIGNIFICANT EMISSIONS (IE)

List each insignificant activity or emission unit. In the "number" column, indicate the number of units in this category. Descriptions should be brief but unique. Indicate which emissions criterion of part 71 is the basis for the exemption.

r the exempt Number	Description of Activities or Emissions Units	RAP, except HAP	НАР
1	1.0 MMBtu/hr Glycol Dehydrator Reboiler	X	X
1	250 MBtu/hr heater for slop tank #1	X	Х
1	250 MBtu/hr heater for slop tank #2	X	Х
1	Pigging Operations	X	X
1	Capstone Model C65NG Standard MicroTurbine	Х	X
			· · · ·
		1 - 200	
2			
	÷		

SEPA United States Environmental Protection Agency

OMB No. 2060-0336, Approval Expires 09/30/2010

Federal Operating Permit Program (40 CFR Part 71)

INSIGNIFICANT EMISSIONS (IE) - River Bend 6-15E Wellsite

List each insignificant activity or emission unit. In the "number" column, indicate the number of units in this category. Descriptions should be brief but unique. Indicate which emissions criterion of part 71 is the basis for the exemption.

Description of Activities or Emissions Units	RAP, except HAP	НАР
100 MBtu/hr Glycol Dehydrator Reboiler	X	X
250 MBtu/hr heater for slop tank #1	X	Х
75 MBtu/hr separator heater	X	X
Condensate truck loading	X	X
One (1) 400-bbl slop storage tank	X	Х
	Description of Activities or Emissions Units 100 MBtu/hr Glycol Dehydrator Reboiler 250 MBtu/hr heater for slop tank #1 75 MBtu/hr separator heater Condensate truck loading	Description of Activities or Emissions Units RAP, except HAP 100 MBtu/hr Glycol Dehydrator Reboiler X 250 MBtu/hr heater for slop tank #1 X 75 MBtu/hr separator heater X Condensate truck loading X

OMB No. 2060-0336, Approval Expires 09/30/2010

Federal Operating Permit Program (40 CFR Part 71)

INSIGNIFICANT EMISSIONS (IE) – River Bend 7-15E Wellsite

List each insignificant activity or emission unit. In the "number" column, indicate the number of units in this category. Descriptions should be brief but unique. Indicate which emissions criterion of part 71 is the basis for the exemption.

on.	DAD	
Description of Activities or Emissions Units	except	HAP
100 MBtu/hr Glycol Dehydrator Reboiler	Х	X
250 MBtu/hr separator heater	X	X
Condensate truck loading	X	Х
One (1) 300-bbl slop storage tank	X	Х
		except HAP 100 MBtu/hr Glycol Dehydrator Reboiler X 250 MBtu/hr separator heater X Condensate truck loading X One (1) 300-bbl slop storage tank X Image: Second structure Image: Second structure Image: Second structure Image: Second structure

GERA United States Environmental Protection Agency

OMB No. 2060-0336, Approval Expires 09/30/2010

Federal Operating Permit Program (40 CFR Part 71)

POTENTIAL TO EMIT (PTE)

For each unit with emissions that count towards applicability, list the emissions unit ID and the PTE for the air pollutants listed below and sum them up to show totals for the facility. You may find it helpful to complete form **EMISS** before completing this form. Show other pollutants not listed that are present in major amounts at the facility on attachment in a similar fashion. You may round values to the nearest tenth of a ton. Also report facility totals in section **J** of form **GIS**.

Emissions Unit ID	Regulated Air Pollutants and Pollutants for which the Source is Major (tons/yr)						
	NOx	VOC	SO2	PM10	со	Lead	HAP
RBL-1	0.0	2.4	0.0	0.0	0.0	0.0	0.0
RBTO-1	0.9	0.0	0.0	0.0	4.8	0.0	0.0
RBD-1	0.0	159.60	0.0	0.0	0.0	0.0	83.2
RBF-1	0.0	5.7	0.0	0.0	0.0	0.0	0.1
RBT-1	0.0	5.5	0.0	0.0	0.0	0.0	0.0
RBT-2	0.0	5.5	0.0	0.0	0.0	0.0	0.0
RBU 6-15E D-1	0.22	. 10.1	0.0	0.0	0.0	0.0	3.9
RBU 6-15E F-1	0.0	3.9	0.0	0.0	0.0	0.0	0.1
RBU 7-15E D-1	0.18	7.8	0.0	0.0	0.0	0.0	2.4
RBU 7-15E F-1	0.0	3.9	0.0	0.0	0.0	0.0	0.1
FACILITY TOTALS	1.4	204.0	0.0	0.0	4.8	0.0	89.8

SEPA United States Environmental Protection Agency

OMB No. 2060-0336, Approval Expires 09/30/2010

Federal Operating Permit Program (40 CFR Part 71)

EMISSION CALCULATIONS (EMISS)

Calculate potential to emit (PTE) for applicability purposes and actual emissions for fee purposes for each emissions unit, control device, or alternative operating scenario identified in section I of form **GIS**. If form **FEE** does not need to be submitted with the application, do not calculate actual emissions.

A. Emissions Unit ID ____RBL-1_____

B. Identification and Quantification of Emissions

First, list each air pollutant that is either regulated at the unit or present in major amounts, then list any other regulated pollutant (for fee calculation) not already listed. HAP may be simply listed as "HAP." Next, calculate PTE for applicability purposes and actual emissions for fee purposes for each pollutant. Do not calculate PTE for air pollutants listed solely for fee purposes. Include all fugitives for fee purposes. You may round to the nearest tenth of a ton for yearly values or tenth of a pound for hourly values.

		Emission Rate		
	Actual			
Air Pollutants	Annual Emissions (tons/yr)	Hourly (lb/hr)	Annual (tons/yr)	CAS No.
voc	1.5	0.5	2.4	

EPA United States Environmental Protection Agency

OMB No. 2060-0336, Approval Expires 09/30/2010

Federal Operating Permit Program (40 CFR Part 71)

EMISSION CALCULATIONS (EMISS)

Calculate potential to emit (PTE) for applicability purposes and actual emissions for fee purposes for each emissions unit, control device, or alternative operating scenario identified in section I of form **GIS**. If form **FEE** does not need to be submitted with the application, do not calculate actual emissions.

A. Emissions Unit ID ____RBTO-1_____

B. Identification and Quantification of Emissions

First, list each air pollutant that is either regulated at the unit or present in major amounts, then list any other regulated pollutant (for fee calculation) not already listed. HAP may be simply listed as "HAP." Next, calculate PTE for applicability purposes and actual emissions for fee purposes for each pollutant. Do not calculate PTE for air pollutants listed solely for fee purposes. Include all fugitives for fee purposes. You may round to the nearest tenth of a ton for yearly values or tenth of a pound for hourly values.

	Emission Rates				
	Actual				
Air Pollutants	Annual Emissions (tons/yr)	Hourly (lb/hr)	Annual (tons/yr)	CAS No.	
NOx	0.9	0.2	0.9		
со	4.6	1.1	4.8		

EPA United States Environmental Protection Agency

OMB No. 2060-0336, Approval Expires 09/30/2010

Federal Operating Permit Program (40 CFR Part 71)

EMISSION CALCULATIONS (EMISS)

Calculate potential to emit (PTE) for applicability purposes and actual emissions for fee purposes for each emissions unit, control device, or alternative operating scenario identified in section I of form **GIS**. If form **FEE** does not need to be submitted with the application, do not calculate actual emissions.

A. Emissions Unit ID ___RBD-1_____

B. Identification and Quantification of Emissions

	Emission Rates			
	Actual	Potential to E	mit	
Air Pollutants	Annual Emissions* (tons/yr)	Hourly (lb/hr)	Annual (tons/yr)	CAS No.
VOC	1.10	36.4	159.6	
Benzene	0.2	6.4	27.9	71432
Ethylbenzene	0.0	0.3	1.4	100414
Toluene	0.3	8.1	35.4	108883
Xylene	0.1	3.5	15.4	1330207
n-Hexane	0.0	0.7	3.0	110543
2,2,4 Trimethylpentane (TMP)	0.0	0.1	0.2	540841
*With Controls				

EPA United States Environmental Protection Agency

OMB No. 2060-0336, Approval Expires 09/30/2010

Federal Operating Permit Program (40 CFR Part 71)

EMISSION CALCULATIONS (EMISS)

Calculate potential to emit (PTE) for applicability purposes and actual emissions for fee purposes for each emissions unit, control device, or alternative operating scenario identified in section I of form **GIS**. If form **FEE** does not need to be submitted with the application, do not calculate actual emissions.

5. Emissions Unit ID ____RBF-1_____

B. Identification and Quantification of Emissions

	Emission Rates				
	Actual	Potential to E	mit		
Air Pollutants	Annual Emissions (tons/yr)	Hourly (lb/hr)	Annual (tons/yr)	CAS No.	
VOC	5.4	1.3	5.7		
			8		

SEPA United States Environmental Protection Agency

OMB No. 2060-0336, Approval Expires 09/30/2010

Federal Operating Permit Program (40 CFR Part 71)

EMISSION CALCULATIONS (EMISS)

Calculate potential to emit (PTE) for applicability purposes and actual emissions for fee purposes for each emissions unit, control device, or alternative operating scenario identified in section I of form **GIS**. If form **FEE** does not need to be submitted with the application, do not calculate actual emissions.

20

A. Emissions Unit ID ____RBT-1_____

B. Identification and Quantification of Emissions

		Emission Rates			
	Actual	Potential to E	mit		
Air Pollutants	Annual Emissions (tons/yr)	Hourly (Ib/hr)	Annual (tons/yr)	CAS No.	
VOC	5.0	1.3	5.5		

EPA United States Environmental Protection Agency

OMB No. 2060-0336, Approval Expires 09/30/2010

Federal Operating Permit Program (40 CFR Part 71)

EMISSION CALCULATIONS (EMISS)

Calculate potential to emit (PTE) for applicability purposes and actual emissions for fee purposes for each emissions unit, control device, or alternative operating scenario identified in section I of form **GIS**. If form **FEE** does not need to be submitted with the application, do not calculate actual emissions.

21

A. Emissions Unit ID ____RBT-2_____

B. Identification and Quantification of Emissions

		Emission Rate		
	Actual	Potential to E	mit	
Air Pollutants	Annual Emissions (tons/yr)	Hourly (lb/hr)	Annual (tons/yr)	CAS No.
VOC	4.5	1.3	5.5	

SEPA United States Environmental Protection Agency

OMB No. 2060-0336, Approval Expires 09/30/2010

Federal Operating Permit Program (40 CFR Part 71)

EMISSION CALCULATIONS (EMISS)

Calculate potential to emit (PTE) for applicability purposes and actual emissions for fee purposes for each emissions unit, control device, or alternative operating scenario identified in section I of form **GIS**. If form **FEE** does not need to be submitted with the application, do not calculate actual emissions.

A. Emissions Unit ID ___RBU 6-15E D-1_____

B. Identification and Quantification of Emissions

Emission Rates			
Actual	Potential to E	mit	
Annual Emissions (tons/yr)	Hourly (lb/hr)	Annual (tons/yr)	CAS No.
3.7	2.4	10.1	
0.3	0.2	0.98	71432
0.0	0.0	0.07	100414
0.5	0.4	1.6	108883
0.3	0.2	0.8	1330207
0.1	0.0	0.16	110543
	Annual Emissions (tons/yr) 3.7 0.3 0.0 0.5 0.3	Actual Annual Emissions (tons/yr)Potential to E Hourly (lb/hr)3.72.40.30.20.00.00.50.40.30.2	Actual Annual Emissions (tons/yr)Potential to EmitHourly (lb/hr)Annual (tons/yr)3.72.410.10.30.20.980.00.00.070.50.41.60.30.20.8

PERA United States Environmental Protection Agency

OMB No. 2060-0336, Approval Expires 09/30/2010

Federal Operating Permit Program (40 CFR Part 71)

EMISSION CALCULATIONS (EMISS)

Calculate potential to emit (PTE) for applicability purposes and actual emissions for fee purposes for each emissions unit, control device, or alternative operating scenario identified in section I of form **GIS**. If form **FEE** does not need to be submitted with the application, do not calculate actual emissions.

A. Emissions Unit ID ____RBU 6-15E F-1_____

B. Identification and Quantification of Emissions

	Emission Rates			
	Actual	Potential to E	mit	
Air Pollutants	Annual Emissions (tons/yr)	Hourly (lb/hr)	Annual (tons/yr)	CAS No.
VOC	3.9	0.9	3.9	

EPA United States Environmental Protection Agency

OMB No. 2060-0336, Approval Expires 09/30/2010

Federal Operating Permit Program (40 CFR Part 71)

EMISSION CALCULATIONS (EMISS)

Calculate potential to emit (PTE) for applicability purposes and actual emissions for fee purposes for each emissions unit, control device, or alternative operating scenario identified in section I of form **GIS**. If form **FEE** does not need to be submitted with the application, do not calculate actual emissions.

A. Emissions Unit ID ____RBU 7-15E D-1_____

B. Identification and Quantification of Emissions

	Emission Rates				
	Actual	Potential to E	mit		
Air Pollutants	Annual Emissions (tons/yr)	Hourly (lb/hr)	Annual (tons/yr)	CAS No.	
VOC	2.7	1.8	7.8		
Benzene	0.2	0.2	0.7	71432	
Toluene	0.3	0.2	1.0	108883	
Xylene	0.1	0.1	0.5	1330207	
n-Hexane	0.1	0.0	0.2	110543	

CEPA United States Environmental Protection Agency

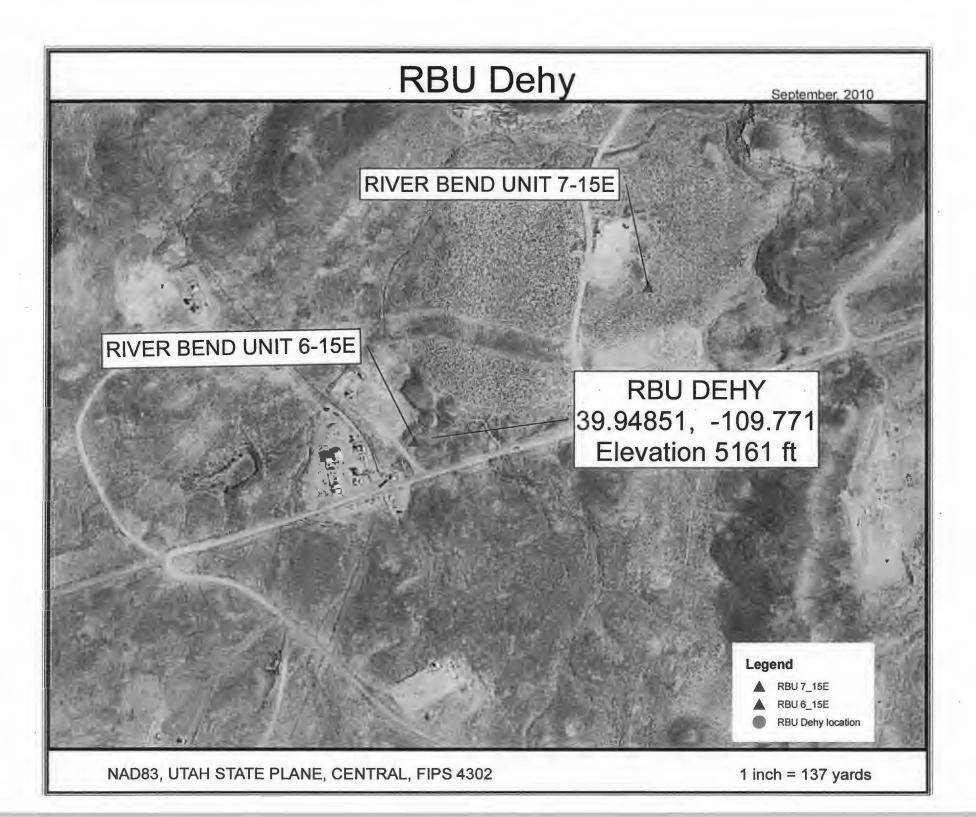
OMB No. 2060-0336, Approval Expires 09/30/2010

Federal Operating Permit Program (40 CFR Part 71)

EMISSION CALCULATIONS (EMISS)

Calculate potential to emit (PTE) for applicability purposes and actual emissions for fee purposes for each emissions unit, control device, or alternative operating scenario identified in section I of form **GIS**. If form **FEE** does not need to be submitted with the application, do not calculate actual emissions.

A. Emissions Unit ID ____RBU 7-15E F-1_____


B. Identification and Quantification of Emissions

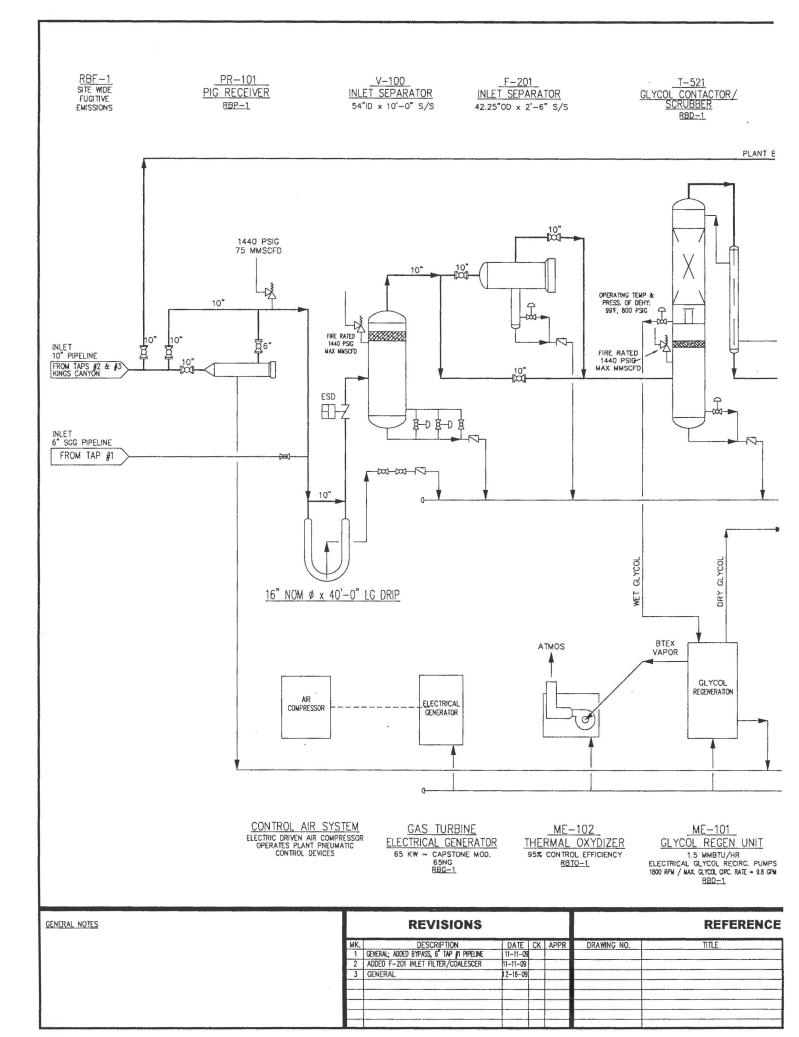
First, list each air pollutant that is either regulated at the unit or present in major amounts, then list any other regulated pollutant (for fee calculation) not already listed. HAP may be simply listed as "HAP." Next, calculate PTE for applicability purposes and actual emissions for fee purposes for each pollutant. Do not calculate PTE for air pollutants listed solely for fee purposes. Include all fugitives for fee purposes. You may round to the nearest tenth of a ton for yearly values or tenth of a pound for hourly values.

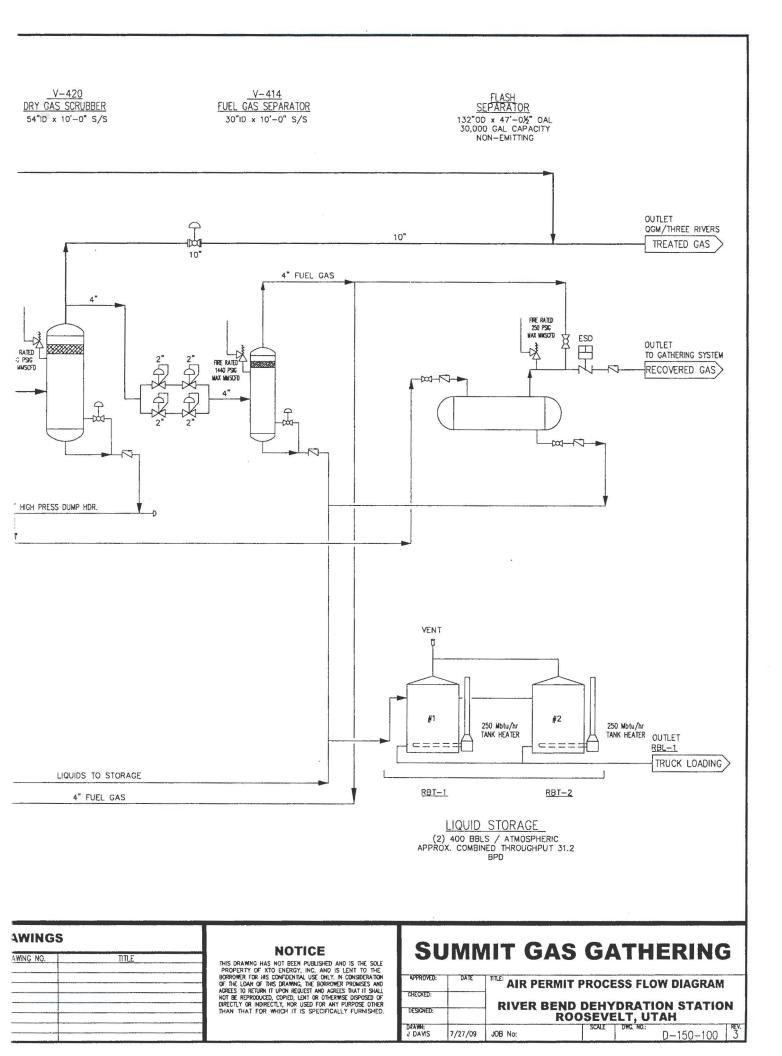
	Emission Rates			
	Actual	Potential to E	mit	
Air Pollutants	Annual Emissions (tons/yr)	Hourly (lb/hr)	Annual (tons/yr)	CAS No.
voc	3.9	0.9	3.9	
· · · · ·				

10

GERA United States Environmental Protection Agency OMB No. 2060-0336, Approval Expires 09/30/2010 Federal Operating Permit Program (40 CFR Part 71)
CERTIFICATION OF TRUTH, ACCURACY, AND COMPLETENESS (CTAC)
This form must be completed, signed by the "Responsible Official" designated for the facility or emission unit, and sent with each submission of documents (i.e., application forms, updates to applications, reports, or any information required by a part 71 permit).
A. Responsible Official
Name: (Last)Dungey (First)Nick (MI) _J
TitleSenior Vice President, Natural Gas Operations
Street or P.O. Box810 Houston St
CityFt. Worth State _TX ZIP _76102
Telephone (817_) _8852285 Ext Facsimile (_817) _8852285
B. Certification of Truth, Accuracy and Completeness (to be signed by the responsible official) I certify under penalty of law, based on information and belief formed after reasonable inquiry, the statements and information contained in these documents are true, accurate and complete.
Name (typed)Nick Dungey Date:/ / 7 / //

SGG River Bend Dehydrator Site & Accompanying Wellsite Process Description


The River Bend Dehydrator Facility is a natural gas dehydrator consisting of the following equipment:


- Two (2) inlet two-phase gas scrubbers (separators) operating at an approximate line pressure of 1,000 psig.
- One (1) 65 KW Capstone natural-gas fired microturbine driven generator (RBG-1)
- One (1) air compressor used for controller operation
- Two (2) 400-barrel Water/Condensate-tanks (RBT-1 and RBT-2) each with a 0.25 mmBTU/hr tank heater,
- One (1) Horizontal Flash Separator consisting of a 30,000 gallon pressurized tank
- One (1) natural gas dehydrator with (RBD-1):
 - o A maximum natural gas process flow of 45 mmscfd natural gas, and
 - One (1) 1.5 mmBTU/hr TEG reboiler heater
 - One BTEX emissions control system consisting of a Thermal Oxidizer with a 3.0 mmBTU/hr burner.

The basic process flow at the facility is as follows:

Natural gas produced from area wells is compressed at existing offsite locations (Tap-1, 2, 3, and Kings Canyon) up to a line pressure of 850 to 1,000 psig and then sent to the River Bend natural gas dehydrator site through 6" and 10" gathering flowlines. Once the gas enters the station, it flows through two (2) two-phase separators (scrubbers) in order to reduce water and condensable liquids content in the gas stream. prior to entry into the dehydrator. The liquid produced from the on-site, inlet scrubbers is then sent to a 30,000-gallon pressurized flash separator. The purpose of the flash separator is to flash the high-pressured liquids and pipe the flash gas back to the highpressure gathering system, thereby eliminating the flash emissions from being vented to the atmosphere. The pressurized flash separator is then set to discharge the separated liquids at a pressure of approximately 50 psig into either of the onsite 400-barrel atmospheric liquid storage tanks (RBT-1 and RBT-2). The 400-barrel on-site liquid storage tanks (RBT-1 and RBT-2) are used for temporary storage prior to the liquids being hauled offsite by tanker truck (RBL-1). Following the inlet separation, the gas is discharged into the TEG natural gas dehydrator for further water removal from the natural-gas stream. The TEG natural gas dehydrator water removal system consists of one (1) 45 mmscfd (max rate) natural gas TEG dehydrator (RBD-1) with one (1) 1.5 mmBTU/hr TEG process heater with regenerator and flash tank emissions controlled by a Thermal Oxidizer. The natural gas dehydrator utilizes a BTEX emissions control system that captures vapors from the still vent and the flash tank and sends the vapors to a Thermal Oxidizer for destruction. Following dehydration the natural gas stream leaves the station via a metered sales pipeline. The station has on-site electrical power supplied by one (1) Capstone natural-gas fired microturbine-driven generator (RBG-1). In addition, the pneumatic control devices are operated by plant air supplied by the on-site electric-driven air compressor.

Other production equipment located near the River Bend Dehydrator facility consists of two production wellsites (RBU 6-15E and 7-15E) each with a small (less than 1.5 mmscfd max) dehydrator, one (1) 400-barrel storage tank, natural gas-fired heaters less than 0.4 mmBTU/hr at each site, and minimal fugitive and truck-loading emissions. The RBU 6-15E well is located within the property boundaries of the River Bend Dehydrator site, but the River Bend 7-15E wellsite is not located on property joining the locations. These wells do not discharge directly into the River Bend Dehydrator site and produce their gas into the common field gathering system and ultimately into off-site compressor stations. The gas discharged from the off-site compressor stations at Taps 1, 2, 3 and Kings Canyon enters the River Bend Dehydrator Site.

POTENTIALLY APPLICABLE FEDERAL REGULATIONS

A breakdown of federal regulations will be discussed, including whether or not a rule is applicable and why or why not. Henceforth, the River Bend Dehy Site, including wellsites 6-15E and 7-15E, will be referred to as either the "Site" or the "Facility" throughout this document.

40 CFR 52 – PREVENTION OF SIGNIFICANT DETERIORATION

Section 52.21(a)(2) defines the "Applicability procedures" for this regulation. Specifically, it states that "The requirements of this section apply to the construction of any new major stationary source (as defined in paragraph (b)(1) of this section) or any project at an existing major stationary source in an area designated as attainment or unclassifiable under sections 107(d)(1)(A)(ii) or (iii) of the Act."

Paragraph (b)(1)(i) of Section 52.21 defines a major stationary source as "(a) Any of the following stationary sources of air pollutants which emits, or has the potential to emit, 100 tons per year or more of any regulated NSR pollutant: Fossil fuel-fired steam electric plants of more than 250 million British thermal units per hour heat input, coal cleaning plants (with thermal dryers), kraft pulp mills, portland cement plants, primary zinc smelters, iron and steel mill plants, primary aluminum ore reduction plants (with thermal dryers), primary copper smelters, municipal incinerators capable of charging more than 250 tons of refuse per day, hydrofluoric, sulfuric, and nitric acid plants, petroleum refineries, lime plants, phosphate rock processing plants, coke oven batteries, sulfur recovery plants, carbon black plants (furnace process), primary lead smelters, fuel conversion plants, sintering plants, secondary metal production plants, chemical process plants (which does not include ethanol production facilities that produce ethanol by natural fermentation included in NAICS codes 325193 or 312140), fossil-fuel boilers (or combinations thereof) totaling more than 250 million British thermal units per hour heat input, petroleum storage and transfer units with a total storage capacity exceeding 300,000 barrels, taconite ore processing plants, glass fiber processing plants, and charcoal production plants;

(b) Notwithstanding the stationary source size specified in paragraph (b)(1)(i) of this section, any stationary source which emits, or has the potential to emit, 250 tons per year or more of a regulated NSR pollutant; or

(c) Any physical change that would occur at a stationary source not otherwise qualifying under paragraph (b)(1) of this section, as a major stationary source, if the changes would constitute a major stationary source by itself.

The Facility does not meet the definition or qualifications of any of the stationary sources listed under Section 52.21(b)(1)(i)(a), including "petroleum storage and transfer units with a total storage capacity exceeding 300,000 barrels." The Facility has approximately 1,500 barrels of storage capacity onsite, including two neighboring wellsites.

The Facility does not meet the criteria listed under Section 52.21(b)(1)(i)(b) as it does not have the potential to emit 250 tons per or year or more of any regulated NSR pollutant. Please see enclosed potential to emit calculations for this Site.

Finally, the Facility does not meet the criteria listed under Section 52.21(b)(1)(i)(c) as it is a new source and has not made a physical change qualifying the source as a major stationary source by itself.

Therefore 40 CFR 52 does not apply to this Site.

40 CFR 60 – STANDARDS OF PERFORMANCE FOR NEW STATIONARY SOURCES

Subpart Db – Industrial, Commercial, Institutional Steam Generating Units

Section 60.40b states "The affected facility to which this subpart applies is each steam generating unit that commences construction, modification, or reconstruction after June 19, 1984, and that has a heat input capacity from fuels combusted in the steam generating unit of greater than 29 megawatts (MW) (100 million British thermal units per hour (MMBtu/hr))."

This Site will not have any steam generating units on-site. Therefore this regulation is not applicable to the intended Facility.

Subpart Dc - Small Industrial, Commercial, Institutional Steam Generating Units

As mentioned above, this Facility will not have any steam generating units on-site. Therefore this regulation is not applicable.

Subpart K – Standards of Performance for Storage Vessels for Petroleum Liquids for Which Construction, Reconstruction, or Modification Commenced After June 11, 1973, and Prior to May 19, 1978

This Facility was constructed after May 19, 1978. Therefore, this regulation does not apply.

Subpart Ka - Standards of Performance for Storage Vessels for Petroleum Liquids for Which Construction, Reconstruction, or Modification Commenced After May 18, 1978, and Prior to July 23, 1984

This Facility was constructed after July 23, 1984. Therefore, this regulation does not apply.

Subpart Kb - Standards of Performance for Volatile Organic Liquid Storage Vessels (Including Petroleum Liquid Storage Vessels) for Which Construction, Reconstruction, or Modification Commenced After July 23, 1984

Section 60.110b(d)(4) states "This subpart does not apply to Vessels with a design capacity less than or equal to 1,589.874 m³ (approximately 13,333.34 barrels of condensate/oil) used for petroleum or condensate stored, processed, or treated prior to custody transfer.

This Facility has two (2) 400-bbl storage tanks associated with the main Site. Wellsite RBU 6-15E has one (1) 400-bbl storage tank while wellsite RBU 7-15E has one (1) 300-bbl storage tank. Total capacity of all four (4) storage tanks is 1,500 barrels. Since the Facility has a design capacity less than the above listed threshold of 1,589.874 m³, Subpart Kb does not apply.

Subpart KKK – Standards of Performance for Equipment Leaks of VOC from Onshore Natural Gas Processing Plants

Section 60.630(3)(e) states "A compressor station, dehydration unit, sweetening unit, underground storage tank, field gas gathering system, or liquefied natural gas unit is covered by this subpart if it is located at an onshore natural gas processing plant. If the unit is not located at

the plant site, then it is exempt from the provisions of this subpart." The definition for onshore natural gas processing plant, as found under Section 60.631, is "...any processing site engaged in the extraction of natural gas liquids from field gas, fractionation of mixed natural gas liquids to natural gas products, or both."

This Facility does not meet the definition of an onshore natural gas processing plant as it does not extract natural gas liquids from field gas or fractionate mixed natural gas liquids to natural gas production. Therefore, Subpart KKK does not apply to this Site.

Subpart LLL – SO₂ Emissions from Onshore Natural Gas Processing Facilities

Section 60.640(a) states "The provisions of this subpart are applicable to the following affected facilities that process natural gas: each sweetening unit, and each sweetening unit followed by a sulfur recovery unit."

This Facility does not utilize a sweetening unit or a sulfur recovery unit. Therefore, Subpart LLL is not applicable to this Site.

Subpart IIII - Stationary Compression Ignition Internal Combustion Engines

Section 60.4200(a) states "The provisions of this subpart are applicable to manufacturers, owners, and operators of stationary compression ignition (CI) internal combustion engines (ICE) as specified in paragraphs (a)(1) through (3) of this section. For the purposes of this subpart, the date that construction commences is the date the engine is ordered by the owner or operator."

The Facility does not have any stationary compression ignition internal combustion engines. Therefore, Subpart IIII does not apply.

Subpart JJJJ - Stationary Spark Ignition Internal Combustion Engines

Section 60.4230(a) states "The provisions of this subpart are applicable to manufacturers, owners, and operators of stationary spark ignition (SI) internal combustion engines (ICE) as specified in paragraphs (a)(1) through (5) of this section. For the purposes of this subpart, the date that construction commences is the date the engine is ordered by the owner or operator." As an operator, Section 60.4230(a)(3) reads "Owners and operators of stationary SI ICE that commence construction after June 12, 2006, where the stationary SI ICE are manufactured: (i) On or after July 1, 2007, for engines with a maximum engine power greater than or equal to 500 HP (except lean burn engines with a maximum engine power greater than or equal to 500 HP and less than 1,350 HP);

(ii) on or after January 1, 2008, for lean burn engines with a maximum engine power greater than or equal to 500 HP and less than 1,350 HP;

(iii) on or after July 1, 2008, for engines with a maximum engine power less than 500 HP; or (iv) on or after January 1, 2009, for emergency engines with a maximum engine power greater than 19 KW (25 HP)."

The Facility does not have any stationary spark ignition internal combustion engines. Therefore, Subpart JJJJ does not apply.

Subpart KKKK -- Stationary Combustion Turbines

According to Section 60.4300, the purpose of Subpart KKKK is to establish "emission standards and compliance schedules for the control of emissions from stationary combustion turbines that commenced construction, modification or reconstruction after February 18, 2005." Section 60.4305 states that Subpart KKKK is applicable if any stationary combustion turbine is installed after February 18, 2005 and is rated equal to or greater than 10.7 gigajoules (10 MMBtu/hr), based on the higher heating value of the fuel.

The Facility has installed a stationary combustion turbine after February 18, 2005. However, the maximum rating of the micro-turbine is 874,000 Btu/hr or 0.874 MMBtu/hr. Therefore, Subpart KKKK is not applicable to this Site.

40 CFR 61 -- NATIONAL EMISSION STANDARDS FOR HAZARDOUS AIR POLLUTANTS

Subpart V – Equipment Leaks (Fugitive Emission Sources)

Section 61.240(a) states "The provisions of this subpart apply to each of the following sources that are intended to operate in volatile hazardous air pollutant (VHAP) service: pumps, compressors, pressure relief devices, sampling connection systems, open-ended valves or lines, valves, connectors, surge control vessels, bottoms receivers, and control devices or systems required by this subpart." The definition listed under Section 61.241 states that "In VHAP service means that a piece of equipment either contains or contacts a fluid (liquid or gas) that is at least 10 percent by weight a volatile hazardous air pollutant (VHAP) as determined according to the provisions of §61.245(d). The provisions of §61.245(d) also specify how to determine that a piece of equipment is not in VHAP service.

The Facility's gas analysis shows that gas lines are not in VHAP service since the VHAP percentage by weight is less than 10 percent (approximately 0.89 percent). However, any liquids at the Facility will exceed 10 percent by weight for VHAPs. Therefore, the Site will comply with Subpart V when pertaining to sources of liquids. Of note, this site does not have any pumps or compressors.

40 CFR 63 – NATIONAL EMISSION STANDARDS FOR HAZARDOUS AIR POLLUTANTS FOR SOURCE CATEGORIES

Subpart HH – Oil and Natural Gas Production

Section 63.760(a) states "this subpart applies to the owners and operators of the emission points, specified in paragraph (b) of this section that are located at oil and natural gas production facilities that meet the specified criteria in paragraphs (a)(1) and either (a)(2) or (a)(3) of this section. Section 63.760(a)(1) reads "facilities that are major or area sources of hazardous air pollutants (HAP) as defined in §63.761..." Section 63.760(a)(2) reads "facilities that process, upgrade, or store hydrocarbon liquids prior to the point of custody transfer."

The Facility meets the criteria of a major source of HAPs as it emits more than 10 TPY of any one HAP and more than 25 TPY of any combination of HAPs (see enclosed emission calculations). Secondly, the Facility stores hydrocarbon liquids prior to the point of custody transfer. Therefore, this Site will comply with the requirements of Subpart HH.

The requirements listed under Section 63.765 (glycol dehydration unit vent standards) apply to the Facility as the exemptions based on production and benzene emissions listed in Section 63.760(e) are exceeded.

The requirements listed under Section 63.766 (storage vessel standards) do not apply to the Facility as the storage vessels do not meet the definition of "each storage vessel with the potential for flash emissions." Section 63.761 lists the definition as "storage vessel with the potential for flash emissions means any storage vessel that contains a hydrocarbon liquid with a stock tank GOR equal to or greater than 0.31 cubic meters per liter and an API gravity equal to or greater than 40 degrees and an actual annual average hydrocarbon liquid throughput equal to or greater than 79,500 liters per day. Flash emissions occur when dissolved hydrocarbons in the fluid evolve from solution when the fluid pressure is reduced." Actual annual average hydrocarbon liquid throughput is less than 79,500 liters (approximately 666 barrels) per day.

Subpart HHH -- Oil and Natural Gas Storage and Distribution

Section 63.1270(a) states "This subpart applies to owners and operators of natural gas transmission and storage facilities that transport or store natural gas prior to entering the pipeline to a local distribution company or to a final end user (if there is no local distribution company), and that are major sources of hazardous air pollutants (HAP) emissions as defined in §63.1271..."

The Facility transports natural gas prior to entering a pipeline and it is a major source of HAP emissions. However, further processing of the natural gas occurs prior to sending it to a local distribution company. Therefore, Subpart HHH is not applicable to this Site.

Subpart EEEE – Organic Liquids Distribution (non-gasoline)

According to Section 63.2330, the purpose of Subpart EEEE is to establish "...national emission limitations, operating limits, and work practice standards for organic hazardous air pollutants (HAP) emitted from organic liquids distribution (OLD) (non-gasoline) operations at major sources of HAP emissions. This subpart also establishes requirements to demonstrate initial and continuous compliance with the emission limitations, operating limits, and work practice standards." Section 63.2334(a) reads that "Except as provided for in paragraphs (b) and (c) of this section, you are subject to this subpart if you own or operate an OLD operation that is located at, or is part of, a major source of HAP emissions. An OLD operation may occupy an entire plant site or be collocated with other industrial (*e.g.*, manufacturing) operations at the same plant site."

Paragraph (c) in Section 63.2334 reads "Organic liquid distribution operations do not include the activities and equipment, including product loading racks, used to process, store, or transfer organic liquids at facilities listed in paragraph (c) (1) and (2) of this section.

(1) Oil and natural gas production field facilities, as the term "facility" is defined in §63.761 of subpart HH.

(2) Natural gas transmission and storage facilities, as the term "facility" is defined in §63.1271 of subpart HHH.

Therefore, Subpart EEEE does not apply to this Facility.

Subpart YYYY - Stationary Combustion Turbines

According to Section 63.6080, the purpose of Subpart YYYY is to establish "...national emission limitations and operating limitations for hazardous air pollutants (HAP) emissions from stationary combustion turbines located at major sources of HAP emissions, and requirements to demonstrate initial and continuous compliance with the emission and operating limitations." Section 63.6085 states that Subpart YYYY is applicable if a company "owns or operates a stationary combustion turbine located at a major source of HAP emissions."

Furthermore, Section 63.6090(b) reads "Subcategories with limited requirements. (1) A new or reconstructed stationary combustion turbine located at a major source which meets either of the following criteria does not have to meet the requirements of this subpart and of subpart A of this part except for the initial notification requirements of §63.6145(d)..." The exemption under Section 63.6090(b)(2) reads "an existing, new, or reconstructed stationary combustion turbine with a rated peak power output of less than 1.0 megawatt (MW) at International Organization for Standardization (ISO) standard day conditions, which is located at a major source, does not have to meet the requirements of this subpart and of subpart A of this part. This determination applies to the capacities of individual combustion turbines, whether or not an aggregated group of combustion turbines has a common add-on air pollution control device. No initial notification. For example, a 0.75 MW emergency turbine would not have to submit an initial notification."

The Facility has installed a stationary combustion turbine with a rated peak power output of less than 1.0 MW at ISO standard day conditions. Therefore, Subpart YYYY is not applicable to this Site and does not have to submit an initial notification.

Subpart ZZZZ – Reciprocating Internal Combustion Engines (RICE)

Section 63.6580 states the purpose of Subpart ZZZZ as "establishes national emission limitations and operating limitations for hazardous air pollutants (HAP) emitted from stationary reciprocating internal combustion engines (RICE) located at major and area sources of HAP emissions. This subpart also establishes requirements to demonstrate initial and continuous compliance with the emission limitations and operating limitations." Section 63.6585 explains "You are subject to this subpart if you own or operate a stationary RICE at a major or area source of HAP emissions, except if the stationary RICE is being tested at a stationary RICE test cell/stand."

The Facility does not have any reciprocating internal combustion engines. Therefore, Subpart ZZZZ does not apply.

40 CFR 64 – COMPLIANCE ASSURANCE MONITORING (CAM)

Section 64.2(a) states that "Except for backup utility units that are exempt under paragraph (b)(2) of this section, the requirements of this part shall apply to a pollutant-specific emissions unit at a major source that is required to obtain a part 70 or 71 permit if the unit satisfies all of the following criteria:

(1) The unit is subject to an emission limitation or standard for the applicable regulated air pollutant (or a surrogate thereof), other than an emission limitation or standard that is exempt under paragraph (b)(1) of this section;

(2) The unit uses a control device to achieve compliance with any such emission limitation or standard; and

(3) The unit has potential pre-control device emissions of the applicable regulated air pollutant that are equal to or greater than 100 percent of the amount, in tons per year, required for a source to be classified as a major source. For purposes of this paragraph, "potential pre-control device emissions" shall have the same meaning as "potential to emit," as defined in §64.1, except that emission reductions achieved by the applicable control device shall not be taken into account."

The Facility meets all three of the above listed criteria and does not qualify for any of the exemptions listed under Section 64.2(b)(1). Therefore, 40 CFR 64 applies to the Site.

40 CFR 68 - CHEMICAL ACCIDENT PREVENTION

Section 68.1 lists the scope as setting "...forth the list of regulated substances and thresholds, the petition process for adding or deleting substances to the list of regulated substances, the requirements for owners or operators of stationary sources concerning the prevention of accidental releases, and the State accidental release prevention programs approved under section 112(r). The list of substances, threshold quantities, and accident prevention regulations promulgated under this part do not limit in any way the general duty provisions under section 112(r)(1)."

Section 68.10 determines applicability as "An owner or operator of a stationary source that has more than a threshold quantity of a regulated substance in a process, as determined under §68.115, shall comply with the requirements of this part..."

Section 68.115(b)(2)(iii) states "For the purposes of determining whether more than a threshold quantity of a regulated substance is present at the stationary source, the following exemption..." for "Naturally occurring hydrocarbon mixtures. Prior to entry into a natural gas processing plant or a petroleum refining process unit, regulated substances in naturally occurring hydrocarbon mixtures need not be considered when determining whether more than a threshold quantity is present at a stationary source. Naturally occurring hydrocarbon mixtures include any combination of the following: condensate, crude oil, field gas, and produced water, each as defined in Sec. 68.3 of this part."

The production tanks (including the 30,000 gallon pressurized bullet tank) operate in condensate service, which is exempt from RMP applicability.

Therefore 40 CFR 68 does not apply to this Site.

40 CFR 82 – STRATOSPHERIC OZONE AND CLIMATE PROTECTION

Section 82.1(a) lists "The purpose of the regulations in this subpart is to implement the Montreal Protocol on Substances that Deplete the Ozone Layer and sections 602, 603, 604, 605, 606, 607, 614 and 616 of the Clean Air Act Amendments of 1990, Public Law 101–549. The Protocol

and section 604 impose limits on the production and consumption (defined as production plus imports minus exports, excluding transhipments and used controlled substances) of certain ozone-depleting substances, according to specified schedules. The Protocol also requires each nation that becomes a Party to the agreement to impose certain restrictions on trade in ozone-depleting substances with non-Parties."

Furthermore, Section 82.1(b) states that "This subpart applies to any person that produces, transforms, destroys, imports or exports a controlled substance or imports or exports a controlled product."

The definition of controlled product is found under Section 82.3 and "means a product that contains a controlled substance listed as a Class I, Group I or II substance in appendix A to this subpart. Controlled products include, but are not limited to, those products listed in appendix D to this subpart..."

The definition of controlled substance under Section 82.3 "means any substance listed in appendix A or appendix B to this subpart, whether existing alone or in a mixture, but excluding any such substance or mixture that is in a manufactured product other than a container used for the transportation or storage of the substance or mixture. Thus, any amount of a listed substance in appendix A or appendix B to this subpart that is not part of a use system containing the substance is a controlled substance. If a listed substance or mixture must first be transferred from a bulk container to another container, vessel, or piece of equipment in order to realize its intended use, the listed substance or mixture is a "controlled substance." The inadvertent or coincidental creation of insignificant guantities of a listed substance in appendix A or appendix B to this subpart; during a chemical manufacturing process, resulting from unreacted feedstock, from the listed substance's use as a process agent present as a trace quantity in the chemical substance being manufactured, or as an unintended byproduct of research and development applications, is not deemed a controlled substance. Controlled substances are divided into two classes, Class I in appendix A to this subpart, and Class II listed in appendix B to this subpart. Class I substances are further divided into eight groups, Group I, Group II, Group III, Group IV, Group V, Group VI, Group VII, and Group VIII, as set forth in appendix A to this subpart."

The Facility is not currently using any Class I or Class II substances and does not plan to utilize either type of substances in the future. Therefore, 40 CFR 82 does not apply to this Site.

Summit Gas Gathering, LLC

810 Houston Street Ft. Worth, TX 76102-6298

January 13, 2011

COF

U.S. Environmental Protection Agency FOIA and Miscellaneous Payments Cincinnati Finance Center P.O. Box 979078 St. Louis, MO 63197-9000

RE: Summit Gas Gathering, LLC - 2010 Initial Part 71 Permit Fee Payments River Bend Dehydrator Site & Accompanying Wellsites

To Whom It May Concern:

XTO Energy, hereby submits the attached payment for Title V – Part 71 Initial Permit fees for 2010 for the Summit Gas Gathering, LLC (SGG) River Bend Dehydrator Site & Accompanying Wellsites located in Uintah County, Utah. Also attached is the associated U.S. EPA fee Filing Form (FF).

If you should have any questions or require additional information, please feel free to contact me at (817) 885-2672.

Sincerely,

wy a

Craig Allison EH&S Advisor

USPS Certified Mail - No. 7009 0080 0000 4061 9503

- Encl: Check # 0000003376 River Bend Dehy Site EPA Form FF - Fee Filing Forms
- Cc: Damien Jones, SGG Roosevelt NGO Office Ms. Claudia Smith, U.S. EPA Region 8

JUL4UDLLD

SUMMIT GAS GATHERING, LLC FORT WORTH, TEXAS 76102-6298 817-885-2195

SOG RIVER BEND DEHY SITE INITI VENDOR NUMBER VENDOR NUMER VENDOR NUMBER VENDOR NUMER VENDOR NUMBER VENDOR NUMER VENDOR NUMBER VENDOR NUMBER VENDOR NUMBER VENDOR NUMER VENDOR NUMBER VENDOR NUMER VENDOR NUMBER VENDOR NUMER VENDOR NUMER VENDOR NUMER VENDOR NUMER VENDOR NUMER VENDOR NUMER VENDOR NUMER V	SG RIVER BEND DEHY SITE INITI VENDOR NUMBER VENDOR NUMERATION SUBJECT SUBJECT SUBJECTION COME THOUSAND FOUR HUNDRED NINETY-NINE DOLLARS AND SIXTY CENTS VENDOR VENDOR VOID AFTER BO DAYS VENDOR VOID AFTER BO DAYS VENDOR VOID AFTER BO DAYS VENDOR VENDOR VENDOR	INVOICE NU	IMBER / DESCRIPTION	INVOICE DATE	IN	VOICE AMOUNT
8006078 U.S. ENVIRONMENTAL PROTECTION 0000003376 1,499.6 MITTANCE ADVICE PLEASE DETACH STUB BEFORE DEPOSITING CHECK THIS DOCUMENT FEATURES VISIBLE AND INVISIBLE FIBERS. A VOID BACKGROUND. MICROPRINTING AND A TRUE WATERMARK. SUMMIT GAS GATHERING, LLC Bank of America, N.A. Dallas, Texas 8000078 CHECK DATE CHECK NO. 1/10/11 OWNET GAS GATHERING, LLC Bank of America, N.A. Dallas, Texas 841276/811 CHECK DATE CHECK NO. 1/10/11 0000003376 AND AND AND AND AND AND AND AND AND SUMMIT GAS GATHERING, LLC Dallas, Texas Bank of America, N.A. Dallas, Texas AND SIXTY CENTS O THE O DX 978078 SAINT LOUIS, MO 63197-9000 AUTHORIZED SIGNATURE </th <th>8006078 U.S. ENVIRONMENTAL PROTECTION 0000003376 1,499.60 ITTANCE ADVICE PLEASE DETACH STUB BEFORE DEPOSITING CHECK THIS DOCUMENT FEATURES VISIBLE AND INVISIBLE FIBERS. A VOID BACKGROUND. MICROPRINTING AND A TRUE WATERMARK. SUMMIT GAS GATHERING, LLC 810 Houston St Fort Worth, Texas 76102-6298 Bank of America, N.A. Dailes, Texas 84-1278/811 EHECK DATE CHECK DATE CHECK NO. VOID ONE THOUSAND FOUR HUNDRED NINETY-NINE DOLLARS AND SIXTY CENTS DULLARS AND \$1,499.60 VOID AFTER 90 DAYS VENDOR \$1,499.60 U.S. ENVIRONMENTAL PROTECTION AGENCY, FOIA AND MISC. PMMTS- CINCINNATI FINANCE CENTER PO BOX 979078 SAINT LOUIS, MO 63197-9000 SECURITY FEATURES INCLUDED. DETAILS ON BACK. (?) MITHORIZED SIGNATURE</th> <th></th> <th></th> <th>1/06/2011</th> <th></th> <th>1,499.60</th>	8006078 U.S. ENVIRONMENTAL PROTECTION 0000003376 1,499.60 ITTANCE ADVICE PLEASE DETACH STUB BEFORE DEPOSITING CHECK THIS DOCUMENT FEATURES VISIBLE AND INVISIBLE FIBERS. A VOID BACKGROUND. MICROPRINTING AND A TRUE WATERMARK. SUMMIT GAS GATHERING, LLC 810 Houston St Fort Worth, Texas 76102-6298 Bank of America, N.A. Dailes, Texas 84-1278/811 EHECK DATE CHECK DATE CHECK NO. VOID ONE THOUSAND FOUR HUNDRED NINETY-NINE DOLLARS AND SIXTY CENTS DULLARS AND \$1,499.60 VOID AFTER 90 DAYS VENDOR \$1,499.60 U.S. ENVIRONMENTAL PROTECTION AGENCY, FOIA AND MISC. PMMTS- CINCINNATI FINANCE CENTER PO BOX 979078 SAINT LOUIS, MO 63197-9000 SECURITY FEATURES INCLUDED. DETAILS ON BACK. (?) MITHORIZED SIGNATURE			1/06/2011		1,499.60
8006078 U.S. ENVIRONMENTAL PROTECTION 0000003376 1,499.6 MITTANCE ADVICE PLEASE DETACH STUB BEFORE DEPOSITING CHECK THIS DOCUMENT FEATURES VISIBLE AND INVISIBLE FIBERS. A VOID BACKGROUND. MICROPRINTING AND A TRUE WATERMARK. SUMMIT GAS GATHERING, LLC Bank of America, N.A. Dallas, Taxas 0000003376 810 Houston St Fort Worth, Texas 76102-6298 Bank of America, N.A. Dallas, Taxas 0000003376 AY ONE THOUSAND FOUR HUNDRED NINETY-NINE DOLLARS AND SIXTY CENTS \$1,499.6 VOID AFTER 90 DAYS VENDOR U.S. ENVIRONMENTAL PROTECTION AGENCY, FOIA AND MISC. PMNTS- CINCINNATI FINANCE CENTER PO BOX 978078 SAINT LOUIS, MO 63197-9000	8006078 U.S. ENVIRONMENTAL PROTECTION 0000003376 1,499.60 ITTANCE ADVICE PLEASE DETACH STUB BEFORE DEPOSITING CHECK THIS DOCUMENT FEATURES VISIBLE AND INVISIBLE FIBERS. A VOID BACKGROUND. MICROPRINTING AND A TRUE WATERMARK. SUMMIT GAS GATHERING, LLC 810 Houston St Fort Worth, Texas 76102-6298 Bank of America, N.A. Dailes, Texas 84-1278/811 EHECK DATE CHECK DATE CHECK NO. VOID ONE THOUSAND FOUR HUNDRED NINETY-NINE DOLLARS AND SIXTY CENTS DULLARS AND \$1,499.60 VOID AFTER 90 DAYS VENDOR \$1,499.60 U.S. ENVIRONMENTAL PROTECTION AGENCY, FOIA AND MISC. PMMTS- CINCINNATI FINANCE CENTER PO BOX 979078 SAINT LOUIS, MO 63197-9000 SECURITY FEATURES INCLUDED. DETAILS ON BACK. (?) MITHORIZED SIGNATURE			·		м ж
8006078 U.S. ENVIRONMENTAL PROTECTION 0000003376 1,499.6 MITTANCE ADVICE PLEASE DETACH STUB BEFORE DEPOSITING CHECK THIS DOCUMENT FEATURES VISIBLE AND INVISIBLE FIBERS. A VOID BACKGROUND. MICROPRINTING AND A TRUE WATERMARK. SUMMIT GAS GATHERING, LLC Bank of America, N.A. Dallas, Texas 0000003376 SUMMIT GAS GATHERING, LLC Dallas, Texas Bank of America, N.A. Dallas, Texas Summary of the poly of th	8006078 U.S. ENVIRONMENTAL PROTECTION 0000003376 1,499.60 ITTANCE ADVICE PLEASE DETACH STUB BEFORE DEPOSITING CHECK THIS DOCUMENT FEATURES VISIBLE AND INVISIBLE FIBERS. A VOID BACKGROUND. MICROPRINTING AND A TRUE WATERMARK. SUMMIT GAS GATHERING, LLC 810 Houston St Fort Worth, Texas 76102-6298 Bank of America, N.A. Dailes, Texas 84-1278/811 EHECK DATE CHECK DATE CHECK NO. VOID ONE THOUSAND FOUR HUNDRED NINETY-NINE DOLLARS AND SIXTY CENTS DULLARS AND \$1,499.60 VOID AFTER 90 DAYS VENDOR \$1,499.60 U.S. ENVIRONMENTAL PROTECTION AGENCY, FOIA AND MISC. PMMTS- CINCINNATI FINANCE CENTER PO BOX 979078 SAINT LOUIS, MO 63197-9000 SECURITY FEATURES INCLUDED. DETAILS ON BACK. (?) MITHORIZED SIGNATURE					
8006078 U.S. ENVIRONMENTAL PROTECTION 0000003376 1,499.6 MITTANCE ADVICE PLEASE DETACH STUB BEFORE DEPOSITING CHECK THIS DOCUMENT FEATURES VISIBLE AND INVISIBLE FIBERS. A VOID BACKGROUND. MICROPRINTING AND A TRUE WATERMARK. SUMMIT GAS GATHERING, LLC Bank of America, N.A. Dallas, Texas B4-1276/811 VONE THOUSAND FOUR HUNDRED NINETY-NINE DOLLARS AND I/10/11 AV ONE THOUSAND FOUR HUNDRED NINETY-NINE DOLLARS AND SIXTY CENTS U.S. ENVIRONMENTAL PROTECTION AGENCY, FOIA AND MISC, PMNTS- CINCINNATI FINANCE CENTER PO BOX 979078 SAINT LOUIS, MO 63197-9000 VINCE THOUSAND FOUR HUNDRED NINETY-NINE DOLLARS AND	8006078 U.S. ENVIRONMENTAL PROTECTION 0000003376 1,499.60 ITTANCE ADVICE PLEASE DETACH STUB BEFORE DEPOSITING CHECK THIS DOCUMENT FEATURES VISIBLE AND INVISIBLE FIBERS. A VOID BACKGROUND. MICROPRINTING AND A TRUE WATERMARK. SUMMIT GAS GATHERING, LLC 810 Houston St Fort Worth, Texas 76102-6298 Bank of America, N.A. Dailes, Texas 84-1278/811 EHECK DATE CHECK DATE CHECK NO. VOID ONE THOUSAND FOUR HUNDRED NINETY-NINE DOLLARS AND SIXTY CENTS DULLARS AND \$1,499.60 VOID AFTER 90 DAYS VENDOR \$1,499.60 U.S. ENVIRONMENTAL PROTECTION AGENCY, FOIA AND MISC. PMMTS- CINCINNATI FINANCE CENTER PO BOX 979078 SAINT LOUIS, MO 63197-9000 SECURITY FEATURES INCLUDED. DETAILS ON BACK. (?) MITHORIZED SIGNATURE		7	*		
8006078 U.S. ENVIRONMENTAL PROTECTION 0000003376 1,499.6 AITTANCE ADVICE PLEASE DETACH STUB BEFORE DEPOSITING CHECK THIS DOCUMENT FEATURES VISIBLE AND INVISIBLE FIBERS: A VOID EACKGROUND, MICROPRINTING AND A TRUE WATERMARK. SUMMIT GAS GATHERING, LLC Bank of America, N.A. Dallas, Texas Bank of America, N.A. Dallas, Texas BAINS of ATHERING, LLC NOT HE SUMMIT GAS GATHERING, LLC Bank of America, N.A. Dallas, Texas BAINS OF AUTHONISTIC PROTECTION AGENCY, FOIL AND FOUR HUNDRED NINETY-NINE DOLLARS AND SIXTY CENTS U.S. ENVIRONMENTAL PROTECTION AGENCY, FOIA AND MISC, PMNTS- CINCINNATI FINANCE CENTER PO BOX 979078 SAINT LOUIS, MO 63197-9000 AUTHORIZED SIGNATURE AUTHORIZED SIGNATURE	8006078 U.S. ENVIRONMENTAL PROTECTION 0000003376 1,499.60 ITTANCE ADVICE PLEASE DETACH STUB BEFORE DEPOSITING CHECK THIS DOCUMENT FEATURES VISIBLE AND INVISIBLE FIBERS. A VOID BACKGROUND. MICROPRINTING AND A TRUE WATERMARK. SUMMIT GAS GATHERING, LLC 810 Houston St Fort Worth, Texas 76102-6298 Bank of America, N.A. Dailes, Texas 84-1278/811 EHECK DATE CHECK DATE CHECK NO. VOID ONE THOUSAND FOUR HUNDRED NINETY-NINE DOLLARS AND SIXTY CENTS DULLARS AND \$1,499.60 VOID AFTER 90 DAYS VENDOR \$1,499.60 U.S. ENVIRONMENTAL PROTECTION AGENCY, FOIA AND MISC. PMMTS- CINCINNATI FINANCE CENTER PO BOX 979078 SAINT LOUIS, MO 63197-9000 SECURITY FEATURES INCLUDED. DETAILS ON BACK. (?) MITHORIZED SIGNATURE	27				а.
8006078 U.S. ENVIRONMENTAL PROTECTION 0000003376 1,499.6 AITTANCE ADVICE PLEASE DETACH STUB BEFORE DEPOSITING CHECK THIS DOCUMENT FEATURES VISIBLE AND INVISIBLE FIBERS. A VOID EACKGROUND. MICROPRINTING AND A TRUE WATERMARK. SUMMIT GAS GATHERING, LLC Bank of America, N.A. Dellas, Texas 810 Houston St Fort Worth, Texas 76102-6298 Bank of America, N.A. Dellas, Texas Y ONE THOUSAND FOUR HUNDRED NINETY-NINE DOLLARS AND 1/10/11 0000003376 Y ONE THOUSAND FOUR HUNDRED NINETY-NINE DOLLARS AND \$1,499.6 VENDOR U.S. ENVIRONMENTAL PROTECTION AGENCY, FOIA AND MISC. PMNTS- CINCINNATI FINANCE CENTER PO BOX 979078 VINO 63197-9000 AUTHORIZED SIGNATURE	8006078 U.S. ENVIRONMENTAL PROTECTION 0000003376 1,499.60 ITTANCE ADVICE PLEASE DETACH STUB BEFORE DEPOSITING CHECK THIS DOCUMENT FEATURES VISIBLE AND INVISIBLE FIBERS. A VOID BACKGROUND. MICROPRINTING AND A TRUE WATERMARK. SUMMIT GAS GATHERING, LLC 810 Houston St Fort Worth, Texas 76102-6298 Bank of America, N.A. Dailes, Texas 84-1278/811 EHECK DATE CHECK DATE CHECK NO. VOID ONE THOUSAND FOUR HUNDRED NINETY-NINE DOLLARS AND SIXTY CENTS DULLARS AND \$1,499.60 VOID AFTER 90 DAYS VENDOR \$1,499.60 U.S. ENVIRONMENTAL PROTECTION AGENCY, FOIA AND MISC. PMMTS- CINCINNATI FINANCE CENTER PO BOX 979078 SAINT LOUIS, MO 63197-9000 SECURITY FEATURES INCLUDED. DETAILS ON BACK. (?) MITHORIZED SIGNATURE	· ·				
8006078 U.S. ENVIRONMENTAL PROTECTION 0000003376 1,499.6 INTTANCE ADVICE PLEASE DETACH STUB BEFORE DEPOSITING CHECK THIS DOCUMENT FEATURES VISIBLE AND INVISIBLE FIBERS. A VOID BACKGROUND. MICROPRINTING AND A TRUE WATERMARK. SUMMIT GAS GATHERING, LLC Bank of America, N.A. Delias, Texas 810 Houston St Fort Worth, Texas 76102-6298 Y ONE THOUSAND FOUR HUNDRED NINETY-NINE DOLLARS AND SIXTY CENTS Y ONE THOUSAND FOUR HUNDRED NINETY-NINE DOLLARS AND SIXTY CENTS U.S. ENVIRONMENTAL PROTECTION AGENCY, FOIA AND MISC, PMNTS- CINCINNATI FINANCE CENTER PO BOX 979078 SAINT LOUIS, MO 63197-9000	8006078 U.S. ENVIRONMENTAL PROTECTION 0000003376 1,499.60 ITTANCE ADVICE PLEASE DETACH STUB BEFORE DEPOSITING CHECK THIS DOCUMENT FEATURES VISIBLE AND INVISIBLE FIBERS. A VOID BACKGROUND. MICROPRINTING AND A TRUE WATERMARK. SUMMIT GAS GATHERING, LLC 810 Houston St Fort Worth, Texas 76102-6298 Bank of America, N.A. Dailes, Texas 84-1278/811 EHECK DATE CHECK DATE CHECK NO. VOID ONE THOUSAND FOUR HUNDRED NINETY-NINE DOLLARS AND SIXTY CENTS DULLARS AND \$1,499.60 VOID AFTER 90 DAYS VENDOR \$1,499.60 U.S. ENVIRONMENTAL PROTECTION AGENCY, FOIA AND MISC. PMMTS- CINCINNATI FINANCE CENTER PO BOX 979078 SAINT LOUIS, MO 63197-9000 SECURITY FEATURES INCLUDED. DETAILS ON BACK. (?) MITHORIZED SIGNATURE	-			1	27
8006078 U.S. ENVIRONMENTAL PROTECTION 0000003376 1,499.6 INTTANCE ADVICE PLEASE DETACH STUB BEFORE DEPOSITING CHECK THIS DOCUMENT FEATURES VISIBLE AND INVISIBLE FIBERS. A VOID BACKGROUND. MICROPRINTING AND A TRUE WATERMARK. SUMMIT GAS GATHERING, LLC Bank of America, N.A. Delias, Texas 810 Houston St Fort Worth, Texas 76102-6298 Y ONE THOUSAND FOUR HUNDRED NINETY-NINE DOLLARS AND SIXTY CENTS Y ONE THOUSAND FOUR HUNDRED NINETY-NINE DOLLARS AND SIXTY CENTS U.S. ENVIRONMENTAL PROTECTION AGENCY, FOIA AND MISC. PMNTS- CINCINNATI FINANCE CENTER PO BOX 979078 SAINT LOUIS, MO 63197-9000	8006078 U.S. ENVIRONMENTAL PROTECTION 0000003376 1,499.60 ITTANCE ADVICE PLEASE DETACH STUB BEFORE DEPOSITING CHECK THIS DOCUMENT FEATURES VISIBLE AND INVISIBLE FIBERS. A VOID BACKGROUND. MICROPRINTING AND A TRUE WATERMARK. SUMMIT GAS GATHERING, LLC 810 Houston St Fort Worth, Texas 76102-6298 Bank of America, N.A. Dailes, Texas 84-1278/811 EHECK DATE CHECK DATE CHECK NO. VOID ONE THOUSAND FOUR HUNDRED NINETY-NINE DOLLARS AND SIXTY CENTS DULLARS AND \$1,499.60 VOID AFTER 90 DAYS VENDOR \$1,499.60 U.S. ENVIRONMENTAL PROTECTION AGENCY, FOIA AND MISC. PMMTS- CINCINNATI FINANCE CENTER PO BOX 979078 SAINT LOUIS, MO 63197-9000 SECURITY FEATURES INCLUDED. DETAILS ON BACK. (?) MITHORIZED SIGNATURE		<u> </u>			7
8006078 U.S. ENVIRONMENTAL PROTECTION 0000003376 1,499.6 INTTANCE ADVICE PLEASE DETACH STUB BEFORE DEPOSITING CHECK THIS DOCUMENT FEATURES VISIBLE AND INVISIBLE FIBERS. A VOID BACKGROUND. MICROPRINTING AND A TRUE WATERMARK. SUMMIT GAS GATHERING, LLC Bank of America, N.A. Delias, Texas 810 Houston St Fort Worth, Texas 76102-6298 Y ONE THOUSAND FOUR HUNDRED NINETY-NINE DOLLARS AND SIXTY CENTS Y ONE THOUSAND FOUR HUNDRED NINETY-NINE DOLLARS AND SIXTY CENTS U.S. ENVIRONMENTAL PROTECTION AGENCY, FOIA AND MISC. PMNTS- CINCINNATI FINANCE CENTER PO BOX 979078 SAINT LOUIS, MO 63197-9000	8006078 U.S. ENVIRONMENTAL PROTECTION 0000003376 1,499.60 ITTANCE ADVICE PLEASE DETACH STUB BEFORE DEPOSITING CHECK THIS DOCUMENT FEATURES VISIBLE AND INVISIBLE FIBERS. A VOID BACKGROUND. MICROPRINTING AND A TRUE WATERMARK. SUMMIT GAS GATHERING, LLC 810 Houston St Fort Worth, Texas 76102-6298 Bank of America, N.A. Dailes, Texas 84-1278/811 EHECK DATE CHECK DATE CHECK NO. VOID ONE THOUSAND FOUR HUNDRED NINETY-NINE DOLLARS AND SIXTY CENTS DULLARS AND \$1,499.60 VOID AFTER 90 DAYS VENDOR \$1,499.60 U.S. ENVIRONMENTAL PROTECTION AGENCY, FOIA AND MISC. PMMTS- CINCINNATI FINANCE CENTER PO BOX 979078 SAINT LOUIS, MO 63197-9000 SECURITY FEATURES INCLUDED. DETAILS ON BACK. (?) MITHORIZED SIGNATURE	The second second		100		* ₂
8006078 U.S. ENVIRONMENTAL PROTECTION 0000003376 1,499.6 INTTANCE ADVICE PLEASE DETACH STUB BEFORE DEPOSITING CHECK THIS DOCUMENT FEATURES VISIBLE AND INVISIBLE FIBERS. A VOID BACKGROUND. MICROPRINTING AND A TRUE WATERMARK. SUMMIT GAS GATHERING, LLC Bank of America, N.A. Delias, Texas 810 Houston St Fort Worth, Texas 76102-6298 Y ONE THOUSAND FOUR HUNDRED NINETY-NINE DOLLARS AND SIXTY CENTS Y ONE THOUSAND FOUR HUNDRED NINETY-NINE DOLLARS AND SIXTY CENTS U.S. ENVIRONMENTAL PROTECTION AGENCY, FOIA AND MISC. PMNTS- CINCINNATI FINANCE CENTER PO BOX 979078 SAINT LOUIS, MO 63197-9000	8006078 U.S. ENVIRONMENTAL PROTECTION 0000003376 1,499.60 ITTANCE ADVICE PLEASE DETACH STUB BEFORE DEPOSITING CHECK THIS DOCUMENT FEATURES VISIBLE AND INVISIBLE FIBERS. A VOID BACKGROUND. MICROPRINTING AND A TRUE WATERMARK. SUMMIT GAS GATHERING, LLC 810 Houston St Fort Worth, Texas 76102-6298 Bank of America, N.A. Dailes, Texas 84-1278/811 EHECK DATE CHECK DATE CHECK NO. VOID ONE THOUSAND FOUR HUNDRED NINETY-NINE DOLLARS AND SIXTY CENTS DULLARS AND \$1,499.60 VOID AFTER 90 DAYS VENDOR \$1,499.60 U.S. ENVIRONMENTAL PROTECTION AGENCY, FOIA AND MISC. PMMTS- CINCINNATI FINANCE CENTER PO BOX 979078 SAINT LOUIS, MO 63197-9000 SECURITY FEATURES INCLUDED. DETAILS ON BACK. (?) MITHORIZED SIGNATURE		··)			
8006078 U.S. ENVIRONMENTAL PROTECTION 0000003376 1,499.6 INTERNET US BEFORE DEPOSITING CHECK THIS DOCUMENT FEATURES VISIBLE AND INVISIBLE FIBERS. A VOID BACKGROUND. MICROPRINTING AND A TRUE WATERMARK. SUMMIT GAS GATHERING, LLC Bank of America, N.A. Dallas, Texas 810 Houston St Fort Worth, Texas 76102-6298 Y ONE THOUSAND FOUR HUNDRED NINETY-NINE DOLLARS AND SIXTY CENTS Y ONE THOUSAND FOUR HUNDRED NINETY-NINE DOLLARS AND SIXTY CENTS U.S. ENVIRONMENTAL PROTECTION AGENCY, FOIA AND MISC. PMNTS- CINCINNATI FINANCE CENTER PO BOX 979078 SAINT LOUIS, MO 63197-9000	8006078 U.S. ENVIRONMENTAL PROTECTION 0000003376 1,499.60 ITTANCE ADVICE PLEASE DETACH STUB BEFORE DEPOSITING CHECK THIS DOCUMENT FEATURES VISIBLE AND INVISIBLE FIBERS. A VOID BACKGROUND. MICROPRINTING AND A TRUE WATERMARK. SUMMIT GAS GATHERING, LLC 810 Houston St Fort Worth, Texas 76102-6298 Bank of America, N.A. Dailes, Texas 84-1278/811 EHECK DATE CHECK DATE CHECK NO. VOID ONE THOUSAND FOUR HUNDRED NINETY-NINE DOLLARS AND SIXTY CENTS DULLARS AND \$1,499.60 VOID AFTER 90 DAYS VENDOR \$1,499.60 U.S. ENVIRONMENTAL PROTECTION AGENCY, FOIA AND MISC. PMMTS- CINCINNATI FINANCE CENTER PO BOX 979078 SAINT LOUIS, MO 63197-9000 SECURITY FEATURES INCLUDED. DETAILS ON BACK. (?) MITHORIZED SIGNATURE					
8006078 U.S. ENVIRONMENTAL PROTECTION 0000003376 1,499.6 INTERNET US BEFORE DEPOSITING CHECK THIS DOCUMENT FEATURES VISIBLE AND INVISIBLE FIBERS. A VOID BACKGROUND. MICROPRINTING AND A TRUE WATERMARK. SUMMIT GAS GATHERING, LLC Bank of America, N.A. Dallas, Texas 810 Houston St Fort Worth, Texas 76102-6298 Y ONE THOUSAND FOUR HUNDRED NINETY-NINE DOLLARS AND SIXTY CENTS Y ONE THOUSAND FOUR HUNDRED NINETY-NINE DOLLARS AND SIXTY CENTS U.S. ENVIRONMENTAL PROTECTION AGENCY, FOIA AND MISC. PMNTS- CINCINNATI FINANCE CENTER PO BOX 979078 SAINT LOUIS, MO 63197-9000	8006078 U.S. ENVIRONMENTAL PROTECTION 0000003376 1,499.60 ITTANCE ADVICE PLEASE DETACH STUB BEFORE DEPOSITING CHECK THIS DOCUMENT FEATURES VISIBLE AND INVISIBLE FIBERS. A VOID BACKGROUND. MICROPRINTING AND A TRUE WATERMARK. SUMMIT GAS GATHERING, LLC 810 Houston St Fort Worth, Texas 76102-6298 Bank of America, N.A. Dailes, Texas 84-1278/811 EHECK DATE CHECK DATE CHECK NO. VOID ONE THOUSAND FOUR HUNDRED NINETY-NINE DOLLARS AND SIXTY CENTS DULLARS AND \$1,499.60 VOID AFTER 90 DAYS VENDOR \$1,499.60 U.S. ENVIRONMENTAL PROTECTION AGENCY, FOIA AND MISC. PMMTS- CINCINNATI FINANCE CENTER PO BOX 979078 SAINT LOUIS, MO 63197-9000 SECURITY FEATURES INCLUDED. DETAILS ON BACK. (?) MITHORIZED SIGNATURE	ta a		• • • •	2	
8006078 U.S. ENVIRONMENTAL PROTECTION 0000003376 1,499.6 ITTANCE ADVICE PLEASE DETACH STUB BEFORE DEPOSITING CHECK THIS DOCUMENT FEATURES VISIBLE AND INVISIBLE FIBERS. A VOID BACKGROUND. MICROPRINTING AND A TRUE WATERMARK. ITTANCE ADVICE PLEASE DETACH STUB BEFORE DEPOSITING CHECK Bank of America, N.A. Dallas, Texas 04-1276/611 It houston St Fort Worth, Texas 76102-6298 Dallas, Texas It houston St Fort Worth, Texas 76102-6298 Dallas, Texas It houston St Fort Worth, Texas 76102-6298 Dallas, Texas It houston St Fort Worth, Texas 76102-6298 Dallas, Texas It houston St Fort Worth, Texas 76102-6298 Dallas, Texas It houston St Fort Worth, Texas 76102-6298 Dallas, Texas It houston St Fort Worth, Texas 76102-6298 Dallas, Texas It houston St Fort Worth, Texas 76102-6298 Dallas, Texas It houston St Fort Worth, Texas 76102-6298 Dallas, Texas It houston St Fort Worth, Texas 76102-6298 Dallas, Texas It houston St Fort Worth, Texas 76102-6298 Dallas, Texas It houston St Fort Worth, Texas 76102-6298 Dallas, Texas It houston St Fort Worth, Texas 76102-6298 Bank of America, N.A. It houston St Fort Worth, Texas	8006078 U.S. ENVIRONMENTAL PROTECTION 0000003376 1,499.60 ITTANCE ADVICE PLEASE DETACH STUB BEFORE DEPOSITING CHECK THIS DOCUMENT FEATURES VISIBLE AND INVISIBLE FIBERS. A VOID BACKGROUND. MICROPRINTING AND A TRUE WATERMARK. SUMMIT GAS GATHERING, LLC 810 Houston St Fort Worth, Texas 76102-6298 Bank of America, N.A. Dailes, Texas 84-1278/811 EHECK DATE CHECK DATE CHECK NO. VOID ONE THOUSAND FOUR HUNDRED NINETY-NINE DOLLARS AND SIXTY CENTS DULLARS AND \$1,499.60 VOID AFTER 90 DAYS VENDOR \$1,499.60 U.S. ENVIRONMENTAL PROTECTION AGENCY, FOIA AND MISC. PMMTS- CINCINNATI FINANCE CENTER PO BOX 979078 SAINT LOUIS, MO 63197-9000 SECURITY FEATURES INCLUDED. DETAILS ON BACK. (?) MITHORIZED SIGNATURE		7		2	*
8006078 U.S. ENVIRONMENTAL PROTECTION 0000003376 1,499.6 INTERNET US BEFORE DEPOSITING CHECK THIS DOCUMENT FEATURES VISIBLE AND INVISIBLE FIBERS. A VOID BACKGROUND. MICROPRINTING AND A TRUE WATERMARK. SUMMIT GAS GATHERING, LLC Bank of America, N.A. Dallas, Texas 810 Houston St Fort Worth, Texas 76102-6298 Y ONE THOUSAND FOUR HUNDRED NINETY-NINE DOLLARS AND SIXTY CENTS Y ONE THOUSAND FOUR HUNDRED NINETY-NINE DOLLARS AND SIXTY CENTS U.S. ENVIRONMENTAL PROTECTION AGENCY, FOIA AND MISC. PMNTS- CINCINNATI FINANCE CENTER PO BOX 979078 SAINT LOUIS, MO 63197-9000	8006078 U.S. ENVIRONMENTAL PROTECTION 0000003376 1,499.60 ITTANCE ADVICE PLEASE DETACH STUB BEFORE DEPOSITING CHECK THIS DOCUMENT FEATURES VISIBLE AND INVISIBLE FIBERS. A VOID BACKGROUND. MICROPRINTING AND A TRUE WATERMARK. SUMMIT GAS GATHERING, LLC 810 Houston St Fort Worth, Texas 76102-6298 Bank of America, N.A. Dailes, Texas 84-1278/811 EHECK DATE CHECK DATE CHECK NO. VOID ONE THOUSAND FOUR HUNDRED NINETY-NINE DOLLARS AND SIXTY CENTS DULLARS AND \$1,499.60 VOID AFTER 90 DAYS VENDOR \$1,499.60 U.S. ENVIRONMENTAL PROTECTION AGENCY, FOIA AND MISC. PMMTS- CINCINNATI FINANCE CENTER PO BOX 979078 SAINT LOUIS, MO 63197-9000 SECURITY FEATURES INCLUDED. DETAILS ON BACK. (?) MITHORIZED SIGNATURE	5.1 ¹	Ϋ́	1		<u>``</u> .
8006078 U.S. ENVIRONMENTAL PROTECTION 0000003376 1,499.6 ITTANCE ADVICE PLEASE DETACH STUB BEFORE DEPOSITING CHECK THIS DOCUMENT FEATURES VISIBLE AND INVISIBLE FIBERS. A VOID BACKGROUND. MICROPRINTING AND A TRUE WATERMARK. ITTANCE ADVICE PLEASE DETACH STUB BEFORE DEPOSITING CHECK Bank of America, N.A. Delias, Texas 04-1276/611 It Houston St Fort Worth, Texas 76102-6298 Delias, Texas It HOUSAND FOUR HUNDRED NINETY-NINE DOLLARS AND 1/10/11 It HE DER OF U.S. ENVIRONMENTAL PROTECTION AGENCY, FOLA AND MISC. PIMITS- CINCINNATI FINANCE CENTER PO BOX 979078 SAINT LOUIS, MO 63197-9000 Void After 90 DAYS VENDOR	8006078 U.S. ENVIRONMENTAL PROTECTION 0000003376 1,499.60 ITTANCE ADVICE PLEASE DETACH STUB BEFORE DEPOSITING CHECK THIS DOCUMENT FLATURES VISIBLE AND INVISIBLE FIBERS. A VOID BACKGROUND. MICROPRINTING AND A TRUE WATERMARK. SUMMIT GAS GATHERING, LLC 810 Houston St Fort Worth, Texas 76102-6298 Bank of America, N.A. Dailes, Texas 84-1278/811 CHECK DATE CHECK DATE CHECK NO. VOID ONE THOUSAND FOUR HUNDRED NINETY-NINE DOLLARS AND SIXTY CENTS DULLARS AND \$1,499.60 VOID AFTER 90 DAYS VENDOR \$1,499.60 U.S. ENVIRONMENTAL PROTECTION AGENCY, FOIA AND MISC. PMMTS- CINCINNATI FINANCE CENTER PO BOX 979078 SAINT LOUIS, MO 63197-9000 Check Intel Security Features INCLUDED. DETAILS ON BACK. (?) MITHORIZED SIGNATURE		,			2 de la companya de l
8006078 U.S. ENVIRONMENTAL PROTECTION 0000003376 1,499.6 ITTANCE ADVICE PLEASE DETACH STUB BEFORE DEPOSITING CHECK THIS DOCUMENT FEATURES VISIBLE AND INVISIBLE FIBERS. A VOID BACKGROUND. MICROPRINTING AND A TRUE WATERMARK. ITTANCE ADVICE PLEASE DETACH STUB BEFORE DEPOSITING CHECK Bank of America, N.A. Delias, Texas 04-1276/611 It Houston St Fort Worth, Texas 76102-6298 Delias, Texas It HOUSAND FOUR HUNDRED NINETY-NINE DOLLARS AND 1/10/11 It HE DER OF U.S. ENVIRONMENTAL PROTECTION AGENCY, FOLA AND MISC. PIMITS- CINCINNATI FINANCE CENTER PO BOX 979078 SAINT LOUIS, MO 63197-9000 Void After 90 DAYS VENDOR	8006078 U.S. ENVIRONMENTAL PROTECTION 0000003376 1,499.60 ITTANCE ADVICE PLEASE DETACH STUB BEFORE DEPOSITING CHECK THIS DOCUMENT FLATURES VISIBLE AND INVISIBLE FIBERS. A VOID BACKGROUND. MICROPRINTING AND A TRUE WATERMARK. SUMMIT GAS GATHERING, LLC 810 Houston St Fort Worth, Texas 76102-6298 Bank of America, N.A. Dailes, Texas 84-1278/811 CHECK DATE CHECK DATE CHECK NO. VOID ONE THOUSAND FOUR HUNDRED NINETY-NINE DOLLARS AND SIXTY CENTS DULLARS AND \$1,499.60 VOID AFTER 90 DAYS VENDOR \$1,499.60 U.S. ENVIRONMENTAL PROTECTION AGENCY, FOIA AND MISC. PMMTS- CINCINNATI FINANCE CENTER PO BOX 979078 SAINT LOUIS, MO 63197-9000 Check Intel Security Features INCLUDED. DETAILS ON BACK. (?) MITHORIZED SIGNATURE	1)			,
8006078 U.S. ENVIRONMENTAL PROTECTION 0000003376 1,499.6 ITTANCE ADVICE PLEASE DETACH STUB BEFORE DEPOSITING CHECK THIS DOCUMENT FEATURES VISIBLE AND INVISIBLE FIBERS. A VOID BACKGROUND. MICROPRINTING AND A TRUE WATERMARK. ITTANCE ADVICE PLEASE DETACH STUB BEFORE DEPOSITING CHECK Bank of America, N.A. Dallas, Texas 04-1276/611 It houston St Fort Worth, Texas 76102-6298 Dallas, Texas It houston St Fort Worth, Texas 76102-6298 Dallas, Texas It houston St Fort Worth, Texas 76102-6298 Dallas, Texas It houston St Fort Worth, Texas 76102-6298 Dallas, Texas It houston St Fort Worth, Texas 76102-6298 Dallas, Texas It houston St Fort Worth, Texas 76102-6298 Dallas, Texas It houston St Fort Worth, Texas 76102-6298 Dallas, Texas It houston St Fort Worth, Texas 76102-6298 Dallas, Texas It houston St Fort Worth, Texas 76102-6298 Dallas, Texas It houston St Fort Worth, Texas 76102-6298 Dallas, Texas It houston St Fort Worth, Texas 76102-6298 Dallas, Texas It houston St Fort Worth, Texas 76102-6298 Dallas, Texas It houston St Fort Worth, Texas 76102-6298 Bank of America, N.A. It houston St Fort Worth, Texas	8006078 U.S. ENVIRONMENTAL PROTECTION 0000003376 1,499.60 ITTANCE ADVICE PLEASE DETACH STUB BEFORE DEPOSITING CHECK THIS DOCUMENT FEATURES VISIBLE AND INVISIBLE FIBERS. A VOID BACKGROUND. MICROPRINTING AND A TRUE WATERMARK. SUMMIT GAS GATHERING, LLC 810 Houston St Fort Worth, Texas 76102-6298 Bank of America, N.A. Dailes, Texas 84-1278/811 EHECK DATE CHECK DATE CHECK NO. VOID ONE THOUSAND FOUR HUNDRED NINETY-NINE DOLLARS AND SIXTY CENTS DULLARS AND \$1,499.60 VOID AFTER 90 DAYS VENDOR \$1,499.60 U.S. ENVIRONMENTAL PROTECTION AGENCY, FOIA AND MISC. PMMTS- CINCINNATI FINANCE CENTER PO BOX 979078 SAINT LOUIS, MO 63197-9000 SECURITY FEATURES INCLUDED. DETAILS ON BACK. (?) MITHORIZED SIGNATURE		~	2.00		i l
8006078 U.S. ENVIRONMENTAL PROTECTION 0000003376 1,499.6 ITTANCE ADVICE PLEASE DETACH STUB BEFORE DEPOSITING CHECK THIS DOCUMENT FEATURES VISIBLE AND INVISIBLE FIBERS. A VOID BACKGROUND. MICROPRINTING AND A TRUE WATERMARK. ITTANCE ADVICE PLEASE DETACH STUB BEFORE DEPOSITING CHECK Bank of America, N.A. Dallas, Texas 04-1276/611 It houston St Fort Worth, Texas 76102-6298 Dallas, Texas It houston St Fort Worth, Texas 76102-6298 Dallas, Texas It houston St Fort Worth, Texas 76102-6298 Dallas, Texas It houston St Fort Worth, Texas 76102-6298 Dallas, Texas It houston St Fort Worth, Texas 76102-6298 Dallas, Texas It houston St Fort Worth, Texas 76102-6298 Dallas, Texas It houston St Fort Worth, Texas 76102-6298 Dallas, Texas It houston St Fort Worth, Texas 76102-6298 Dallas, Texas It houston St Fort Worth, Texas 76102-6298 Dallas, Texas It houston St Fort Worth, Texas 76102-6298 Dallas, Texas It houston St Fort Worth, Texas 76102-6298 Dallas, Texas It houston St Fort Worth, Texas 76102-6298 Dallas, Texas It houston St Fort Worth, Texas 76102-6298 Bank of America, N.A. It houston St Fort Worth, Texas	8006078 U.S. ENVIRONMENTAL PROTECTION 0000003376 1,499.60 ITTANCE ADVICE PLEASE DETACH STUB BEFORE DEPOSITING CHECK THIS DOCUMENT FEATURES VISIBLE AND INVISIBLE FIBERS. A VOID BACKGROUND. MICROPRINTING AND A TRUE WATERMARK. SUMMIT GAS GATHERING, LLC 810 Houston St Fort Worth, Texas 76102-6298 Bank of America, N.A. Dailes, Texas 84-1278/811 EHECK DATE CHECK DATE CHECK NO. VOID ONE THOUSAND FOUR HUNDRED NINETY-NINE DOLLARS AND SIXTY CENTS DULLARS AND \$1,499.60 VOID AFTER 90 DAYS VENDOR \$1,499.60 U.S. ENVIRONMENTAL PROTECTION AGENCY, FOIA AND MISC. PMMTS- CINCINNATI FINANCE CENTER PO BOX 979078 SAINT LOUIS, MO 63197-9000 SECURITY FEATURES INCLUDED. DETAILS ON BACK. (?) MITHORIZED SIGNATURE				-	5 m
8006078 U.S. ENVIRONMENTAL PROTECTION 0000003376 1,499.6 ITTANCE ADVICE PLEASE DETACH STUB BEFORE DEPOSITING CHECK THIS DOCUMENT FEATURES VISIBLE AND INVISIBLE FIBERS. A VOID BACKGROUND. MICROPRINTING AND A TRUE WATERMARK. ITTANCE ADVICE PLEASE DETACH STUB BEFORE DEPOSITING CHECK Bank of America, N.A. Dallas, Texas 04-1276/611 It houston St Fort Worth, Texas 76102-6298 Dallas, Texas It houston St Fort Worth, Texas 76102-6298 Dallas, Texas It houston St Fort Worth, Texas 76102-6298 Dallas, Texas It houston St Fort Worth, Texas 76102-6298 Dallas, Texas It houston St Fort Worth, Texas 76102-6298 Dallas, Texas It houston St Fort Worth, Texas 76102-6298 Dallas, Texas It houston St Fort Worth, Texas 76102-6298 Dallas, Texas It houston St Fort Worth, Texas 76102-6298 Dallas, Texas It houston St Fort Worth, Texas 76102-6298 Dallas, Texas It houston St Fort Worth, Texas 76102-6298 Dallas, Texas It houston St Fort Worth, Texas 76102-6298 Dallas, Texas It houston St Fort Worth, Texas 76102-6298 Dallas, Texas It houston St Fort Worth, Texas 76102-6298 Bank of America, N.A. It houston St Fort Worth, Texas	8006078 U.S. ENVIRONMENTAL PROTECTION 0000003376 1,499.60 ITTANCE ADVICE PLEASE DETACH STUB BEFORE DEPOSITING CHECK THIS DOCUMENT FEATURES VISIBLE AND INVISIBLE FIBERS. A VOID BACKGROUND. MICROPRINTING AND A TRUE WATERMARK. SUMMIT GAS GATHERING, LLC 810 Houston St Fort Worth, Texas 76102-6298 Bank of America, N.A. Dailes, Texas 84-1278/811 EHECK DATE CHECK DATE CHECK NO. VOID ONE THOUSAND FOUR HUNDRED NINETY-NINE DOLLARS AND SIXTY CENTS DULLARS AND \$1,499.60 VOID AFTER 90 DAYS VENDOR \$1,499.60 U.S. ENVIRONMENTAL PROTECTION AGENCY, FOIA AND MISC. PMMTS- CINCINNATI FINANCE CENTER PO BOX 979078 SAINT LOUIS, MO 63197-9000 SECURITY FEATURES INCLUDED. DETAILS ON BACK. (?) MITHORIZED SIGNATURE	у I	·)
8006078 U.S. ENVIRONMENTAL PROTECTION 0000003376 1,499.6 INTERNET US BEFORE DEPOSITING CHECK THIS DOCUMENT FEATURES VISIBLE AND INVISIBLE FIBERS. A VOID BACKGROUND. MICROPRINTING AND A TRUE WATERMARK. SUMMIT GAS GATHERING, LLC Bank of America, N.A. Dallas, Texas 810 Houston St Fort Worth, Texas 76102-6298 Y ONE THOUSAND FOUR HUNDRED NINETY-NINE DOLLARS AND SIXTY CENTS Y ONE THOUSAND FOUR HUNDRED NINETY-NINE DOLLARS AND SIXTY CENTS U.S. ENVIRONMENTAL PROTECTION AGENCY, FOIA AND MISC. PMNTS- CINCINNATI FINANCE CENTER PO BOX 979078 SAINT LOUIS, MO 63197-9000	8006078 U.S. ENVIRONMENTAL PROTECTION 0000003376 1,499.60 ITTANCE ADVICE PLEASE DETACH STUB BEFORE DEPOSITING CHECK THIS DOCUMENT FEATURES VISIBLE AND INVISIBLE FIBERS. A VOID BACKGROUND. MICROPRINTING AND A TRUE WATERMARK. SUMMIT GAS GATHERING, LLC 810 Houston St Fort Worth, Texas 76102-6298 Bank of America, N.A. Dailes, Texas 84-1278/811 EHECK DATE CHECK DATE CHECK NO. VOID ONE THOUSAND FOUR HUNDRED NINETY-NINE DOLLARS AND SIXTY CENTS DULLARS AND \$1,499.60 VOID AFTER 90 DAYS VENDOR \$1,499.60 U.S. ENVIRONMENTAL PROTECTION AGENCY, FOIA AND MISC. PMMTS- CINCINNATI FINANCE CENTER PO BOX 979078 SAINT LOUIS, MO 63197-9000 SECURITY FEATURES INCLUDED. DETAILS ON BACK. (?) MITHORIZED SIGNATURE			-	1	
ITTANCE ADVICE PLEASE DETACH STUB BEFORE DEPOSITING CHECK THIS DOCUMENT FEATURES VISIBLE AND INVISIBLE FIBERS, A VOID BACKGROUND, MICROPRINTING AND A TRUE WATERMARK. SUMMIT GAS GATHERING, LLC B10 Houston St Fort Worth, Texas 76102-6298 Bank of America, N.A. Dalles, Texas B4-1270/811 CHECK DATE CHECK NO. 1/10/11 Y Y Y ONE THOUSAND FOUR HUNDRED NINETY-NINE DOLLARS AND SIXTY CENTS THE DER OF U.S. ENVIRONMENTAL PROTECTION AGENCY, FOIA AND MISC. PMNTS- CINCINNATI FINANCE CENTER PO BOX 979078 SAINT LOUIS, MO 63197-9000 AUTHORIZED SIGNATURE AUTHORIZED SIGNATURE	ITTANCE ADVICE PLEASE DETACH STUB BEFORE DEPOSITING CHECK THIS DOCUMENT FEATURES VISIBLE AND INVISIBLE FIBERS. A VOID BACKGROUND. MICROPRINTING AND A TRUE WATERMARK. SUMMIT GAS GATHERING, LLC Bank of America, N.A. Dallas, Texas 810 Houston St Fort Worth, Texas 76102-6298 CHECK DATE CHECK DATE ONE THOUSAND FOUR HUNDRED NINETY-NINE DOLLARS AND SIXTY CENTS THE DER OF U.S. ENVIRONMENTAL PROTECTION AGENCY, FOIA AND MISC, PMNTS- CINCINNATI FINANCE CENTER PO BOX 979078 SAINT LOUIS, MO 63197-9000 CHECKING CENTER PO BOX 979078 AUTHORIZED SIGNATURE AUTHORIZED SIGNATURE AUTHORIZED SIGNATURE	VENDOR NUMBER	VENDOR NAME	CHEC	CK NUMBER	CHECK TOTA
SUMMIT GAS GATHERING, LLC 810 Houston St Fort Worth, Texas 76102-6298 Bank of America, N.A. Delles, Texas 84-1278/811 CHECK DATE	SUMMIT GAS GATHERING, LLC Bank of America, N.A. Bailas, Texes Dellas, Texes 810 Houston St Fort Worth, Texas 76102-6298 Dellas, Texes 84-1276/611 1/10/11 0 ONE THOUSAND FOUR HUNDRED NINETY-NINE DOLLARS AND 1/10/11 0 ONE THOUSAND FOUR HUNDRED NINETY-NINE DOLLARS AND \$1,499.60 0 ONE THOUSAND FOUR HUNDRED NINETY-NINE DOLLARS AND \$1,499.60 0 ONE THOUSAND FOUR HUNDRED NINETY-NINE DOLLARS AND \$1,499.60 0 ONE THOUSAND FOUR HUNDRED NINETY-NINE DOLLARS AND \$1,499.60 0 ONE THOUSAND FOUR HUNDRED NINETY-NINE DOLLARS AND \$1,499.60 0 ONE THOUSAND FOUR HUNDRED NINETY-NINE DOLLARS AND \$1,499.60 0 ONE OF U.S. ENVIRONMENTAL PROTECTION AGENCY, FOIA AND MISC. PMINTS- CINCINNANCE CENTER PO BOX 979078 SAINT LOUIS, MO 63197-9000 AUTHORIZED SKINATURE 1 SECURITY FEATURES INCLUDED DETAILS ON BACK. 1 AUTHORIZED SKINATURE			-	0003378	1,499.80
SUMMIT GAS GATTERING, LLC Dallas, Texes 810 Houston St Fort Worth, Texas 76102-6298 Ballas, Texes 84-1276/611 1/10/11 Y ONE THOUSAND FOUR HUNDRED NINETY-NINE DOLLARS AND SIXTY CENTS THE DER OF U.S. ENVIRONMENTAL PROTECTION AGENCY, FOIA AND MISC. PMNTS- CINCINNATI FINANCE CENTER PO BOX 979078 SAINT LOUIS, MO 63197-9000	SUMINIT GAS GATHERING, LLC Dallas, Texes 810 Houston St Fort Worth, Texas 76102-6298 Ballas, Texes 810 Houston St Fort Worth, Texas 76102-6298 Ballas, Texes 64-1276/811 1/10/11 0000003376 000 AMOUNT 1/10/11 0000003376 000 AMOUNT 1/10/11 0000003376 000 VOID AFTER 90 DAYS VENDOR VOID AFTER 90 DAYS VENDOR VENDOR 00000000 VOID AFTER 90 DAYS VENDOR AUTHORIZED SIGNATURE 1 SECURITY FEATURES INCLUDED. DETAILS ON BACK. 1	THIS DOCUMENT	FEATURES VISIBLE AND INVISIBLE F			ND A TRUE WATERMARK.
1/10/11 000003376 AMOUNT AMOUNT SIXTY CENTS \$1,499.6 THE DER OF U.S. ENVIRONMENTAL PROTECTION AGENCY, FOIA AND MISC. PMNTS-CINCINNATI FINANCE CENTER PO BOX 979078 SAINT LOUIS, MO 63197-9000 Void After 90 DAYS AMOUNT State 1000000000000000000000000000000000000	1/10/11 0000003376 1/10/11 0000003376 AMOUNT \$1,499.60 SIXTY CENTS \$1,499.60 VOID AFTER 90 DAYS VENDOR VENDOR AUTHORIZED SIGNATURE AUTHORIZED SIGNATURE SECURITY FEATURES INCLUDED. DETAILS ON BACK. T			Dallas,	Texas	CHECK DATE CHECK NO.
Y ONE THOUSAND FOUR HUNDRED NINETY-NINE DOLLARS AND SIXTY CENTS \$1,499.6 THE DER OF U.S. ENVIRONMENTAL PROTECTION AGENCY, FOIA AND MISC. PMNTS- CINCINNATI FINANCE CENTER PO BOX 979078 SAINT LOUIS, MO 63197-9000 Yuman	Y ONE THOUSAND FOUR HUNDRED NINETY-NINE DOLLARS AND SIXTY CENTS \$1,499.60 THE DER OF U.S. ENVIRONMENTAL PROTECTION AGENCY, FOIA AND MISC. PMNTS- CINCINNATI FINANCE CENTER PO BOX 979078 SAINT LOUIS, MO 63197-9000 Your Control of the second of			64-127	6/811	1/10/11 0000003376
SIXTY CENTS THE DER OF U.S. ENVIRONMENTAL PROTECTION AGENCY, FOIA AND MISC. PMNTS- CINCINNATI FINANCE CENTER PO BOX 979078 SAINT LOUIS, MO 63197-9000 AUTHORIZED SIGNATURE AUTHORIZED SIGNATURE	SIXTY CENTS THE DER OF U.S. ENVIRONMENTAL PROTECTION AGENCY, FOIA AND MISC. PMNTS- CINCINNATI FINANCE CENTER PO BOX 979078 SAINT LOUIS, MO 63197-9000 AUTHORIZED SIGNATURE AUTHORIZED SIGNATURE AUTHORIZED SIGNATURE				_	AMOUNT
THE DER OF U.S. ENVIRONMENTAL PROTECTION AGENCY, FOIA AND MISC. PMNTS- CINCINNATI FINANCE CENTER PO BOX 979078 SAINT LOUIS, MO 63197-9000 UNDER CENTER PO BOX 979078 SAINT LOUIS, MO 63197-9000 UNDER CENTER PO BOX 979078 SAINT LOUIS, MO 63197-9000	THE DER OF U.S. ENVIRONMENTAL PROTECTION AGENCY, FOIA AND MISC. PMNTS- CINCINNATI FINANCE CENTER PO BOX 979078 SAINT LOUIS, MO 63197-9000 AUTHORIZED SIGNATURE AUTHORIZED SIGNATURE AUTHORIZED SIGNATURE		FOUR HUNDRED NINETY-NI	NE DOLLARS AND		\$1,499.60
U.S. ENVIRONMENTAL PROTECTION AGENCY, FOIA AND MISC. PMNTS- CINCINNATI FINANCE CENTER PO BOX 979078 SAINT LOUIS, MO 63197-9000	U.S. ENVIRONMENTAL PROTECTION AGENCY, FOIA AND MISC. PMNTS- CINCINNATI FINANCE CENTER PO BOX 979078 SAINT LOUIS, MO 63197-9000 SECURITY FEATURES INCLUDED. DETAILS ON BACK.					
AGENCY, FOIA AND MISC. PMNTS- CINCINNATI FINANCE CENTER PO BOX 979078 SAINT LOUIS, MO 63197-9000	AGENCY, FOIA AND MISC. PMNTS- CINCINNATI FINANCE CENTER PO BOX 979078 SAINT LOUIS, MO 63197-9000 SECURITY FEATURES INCLUDED. DETAILS ON BACK.		NUMERITAL PROTECTION	8		
SAINT LOUIS, MO 63197-9000	SAINT LOUIS, MO 63197-9000	AGENCY, FO CINCINNAT PO BOX 97	DIA AND MISC. PMNTS- I FINANCE CENTER 9078		Evan M l	an Kirk
	Security FEATURES INCLUDED. DETAILS ON BACK.	SAINT LOUI	S, MO 63197-9000	WIS RED MAG	A	UTHORIZED SIGNATURE
					0	UTHORIZED SIGNATURE

OMB No. 2060-0336, Approval Expires 04/30/2012

Federal Operating Permit Program (40 CFR Part 71)

FEE FILING FORM (FF)

Complete this form each time you prepare form FEE and send this form to the appropriate lockbox bank address, along with full payment. This form required at time of initial fee payment, and thereafter, when paying annual fees.

Source or Facility NameSummit Gas Gathering - River Bend Dehydrator Site & Accompanying wellsites
Mailing Address:
Street/P.O. Box _810 Houston StCityFt. Worth
StateTX ZIP76102
Contact Person: Craig Allison Title EH&S Advisor
Telephone (_817)8852672 Ext
Total Fee Payment Remitted: \$149960

SEPA United States Environmental Protection Agency

OMB No. 2060-0336, Approval Expires 04/30/2012

Federal Operating Permit Program (40 CFR Part 71)

FEE CALCULATION WORKSHEET (FEE)

Use this form initially, or thereafter on an annual basis, to calculate part 71 fees.

A. General Information

Type of fee (Check one): _XInitialAnnual
Deadline for submitting fee calculation worksheet//
For initial fees, emissions are based on (Check one):
X Actual emissions for the preceding calendar year. (Required in most circumstances.)
Estimates of actual emissions for the current calendar year. (Required when operations commenced during the preceding calendar year.)
Date commenced operations//
Estimates of actual emissions for the preceding calendar year. (Optional after a part 71 permit was issued to replace a part 70 permit, but only if initial fee payment is due between January 1 and March 31; otherwise use actual emissions for the preceding calendar year.)
For annual fee payment, you are required to use actual emissions for the preceding calendar year.

B. Source Information: Complete this section only if you are paying fees but not applying for a permit.

Source or facility name	
Mailing address: Street or P.O. Box	
City	State ZIP
Contact person	Title
Telephone ()	Ext Part 71 permit no

C. Certification of Truth, Accuracy and Completeness: Only needed if not submitting a separate form CTAC.

I certify under penalty of law, based on information and belief formed after reasonable inquiry, the
statements and information contained in this submittal (form and attachments) are true, accurate and
complete.
Name (signed)
Name (signed)
Name (typed) Trick T. DuNGEY Date: 1/7/11
Name (typed) Date Date

D. Annual Emissions Report for Fee Calculation Purposes -- Non-HAP

You may use this to report actual emissions (tons per year) of regulated pollutants (for fee calculation) on a calendar-year basis for both initial and annual fee calculation purposes. Section E is designed to report HAP emissions. Quantify all actual emissions, including fugitives, but do not include insignificant emissions and certain regulated air pollutants that are not counted for fee purposes, such as CO (see instructions). You may round to the nearest tenth of a ton on this form. Sum the emissions in each column and enter a subtotal at the bottom of the page. If any subtotal exceeds 4,000 tons, enter 4,000 for that column.

Emission Unit ID	NOx	VOC	SO2	PM10	Lead	Other
RBL-1		1.5				
RBTO-1	0.9					
RBD-1		1.1				
RBF-1		5.4				
RBT-1		5.0				
RBT-2		4.5				
RBU 7-15E D-1		2.7				
RBU 7-15E F-1		3.9				
RBU 6-15E D-1		3.7				
RBU 6-15E F-1		3.9				
			-			
L	0.9	31.7	1	1	<u> </u>	I

This data is for ____2010_____ (year)

SUBTOTALS

E. Annual Emissions Report for Fee Calculation Purposes -- HAP

<u>HAP Identification</u>. Identify individual HAP emitted at the facility, identify the CAS number, and assign a unique identifier for use in the second table in this section. Whenever assigning identifier codes, use "HAP1" for the first, "HAP2" for the second, and so on.

Name of HAP	CAS No	Identifier
Benzene	71432	HAP1
Ethylbenzene	100414	HAP2
Toluene	108883	HAP3
Xylene	1330207	HAP4
n-Hexane	110543	HAP5
2,2,4 Trimethylpentane (TMP)	540841	HAP6

<u>HAP Emissions</u>. Report the actual emissions of individual HAP identified above. Use the identifiers assigned in the table above. Include all emissions, including fugitives, and do not include insignificant emissions. You may round to the nearest tenth of a ton. Sum the emissions in each column and enter a subtotal at the bottom of the page. If any subtotal exceeds 4,000 tons, enter 4,000.

This data is for _____2010_____ (year)

Emissions Unit ID		Actual Emissions (Tons/Year)						
	HAP1	HAP2	HAP3	HAP4	HAP5	HAP6	HAP	HAP
RBD-1	0.2		0.3	0.1				
RBU 7-15E D-1	0.2		0.3	0.1	0.1			
RBU 6-15E D-1	0.3		0.5	0.3	0.1			
	0.7	1	1.1	0.5	0.2		-	
SUBTOTALS								

F. Fee Calculation Worksheet

This section is used to calculate the total fee owed for both initial and annual fee payment purposes. Reconciliation is only for cases where you are paying the annual fee and you used any type of estimate of actual emissions when you calculated the initial fee. If you do not need to reconcile fees, only complete line 1-5 and then skip down to lines 21 - 26. See instructions for more detailed explanation.

1. Sum the emissions from section D of this form (non-HAP) and enter the total (tons).	32.6
2. Sum the emissions from section E of this form (HAP) and enter the total (tons).	2.5
3. Sum lines 1 and 2.	35.1
4. Enter the emissions that were counted twice. If none, enter "0."	2.5
5. Subtract line 4 from line 3, round to the nearest ton, and enter the result here.	32.6
RECONCILIATION (WHEN INITIAL FEES WERE BASED ON ESTIMATES FOR THE "CURRENT" CALENDAR YEAR)	
Only complete lines 6-10 if you are paying the first annual fee and initial fees were based on emissions for the calendar year in which you paid initial fees; otherwise skip to line 11 or to lin	
Enter the total estimated actual emissions for the year the initial fee was paid (previously reported on line 5 of the initial fee form).	
 If line 5 is greater than line 6, subtract line 6 from line 5, and enter the result. Otherwise enter "0." 	
 If line 6 is greater than line 5, subtract line 5 from line 6, and enter the result. Otherwise enter "0." 	······
 If line 7 is greater than 0, multiply line 7 by last year's fee rate (\$/ton) and enter the result here. This is the underpayment. Go to line 21. 	
 If line 8 is greater than 0, multiply line 8 by last year's fee rate (\$/ton) and enter the result here. This is the overpayment. Go to line 21. 	
RECONCILIATION (WHEN INITIAL FEES WERE BASED ON ESTIMATES FOR THE "PRECEDING" CALENDAR YEAR)	
Only complete lines 11-20 if you are paying the first annual fee and initial fees were based on emissions for the calendar year preceding initial fee payment; otherwise skip to line 21. If con section, you will also need to complete sections D and E to report actual emissions for the cale preceding initial fee payment.	npleting this
11. Sum the actual emissions from section D (non-HAP) for the calendar year preceding initial fee payment and enter the result here.	
 Sum the actual emissions from section E (HAP) for the calendar year preceding initial fee payment and enter the result here. 	
13. Add lines 11 and 12 and enter the total here. These are total actual emissions for the calendar year preceding initial fee payment.	
14. Enter double counted emission from line 13 here. If none, enter "0."	
15. Subtract line 14 from line 13, round to the nearest ton, and enter the result here.	

	111	
-	1.	L
1.	- A	1.12

16. Enter the total estimated actual emissions previously reported on line 5 of the initial fee form. These are estimated actual emissions for the calendar year preceding initial fee payment.	
 If line 15 is greater than line 16, subtract line 16 from line 15, and enter the result here. Otherwise enter "0." 	
 If line 16 is greater than line 15, subtract line 15 from line 16, and enter the result here. Otherwise enter "0." 	
 If line 17 is greater than 0, multiply line 17 by last year's fee rate (\$/ton) and enter the result here. This is the underpayment. 	
20. If line 18 is greater than 0, multiply line 18 by last year's fee rate (\$/ton) and enter the result on this line. This is the overpayment.	
FEE CALCULATION	
21. Multiply line 5 (tons) by the current fee rate (\$46.00/ton) and enter the result here.	\$1,499.60
22. Enter any underpayment from line 9 or 19 here. Otherwise enter "0."	0
23. Enter any overpayment from line 10 or 20 here. Otherwise enter "0."	0
24. If line 22 is greater than "0," add it to line 21 and enter the result here. If line 23 is greater than "0," subtract this from line 21 and enter the result here. Otherwise enter the amount on line 21 here. This is the fee adjusted for reconciliation.	\$1,499.60
25. If your account was credited for fee assessment error since the last time you paid fees, enter the amount of the credit here. Otherwise enter "0."	0
26. Subtract line 25 from line 24 and enter the result here. Stop here. This is the total fee amount that you must remit to EPA.	\$1,499.60

TOTAL FACILITY EMISSION FEES

Company: Summit Gas Gathering Facility Name: All Sites Facility Location: Uintah County, Utah

		Part 71	2010		Total
Source	E	missions	Chargeable	E	missions
	Fee F	Rate (per ton)	Emissions	Fee	
River Bend Dehy Site	\$	46.00	18.40	\$	846.40
Wellsite 6-15E	\$	46.00	7.60	\$	349.60
Wellsite 7-15E	\$	46.00	6.60	\$	303.60
		TOTAL	32.60	\$	1,499.60

ACTUAL CONTROLLED 2010 EMISSIONS SUMMARY - SIGNIFICANT SOURCES ONLY

Company:	Summit Gas Gathering
Facility Name:	All Sites
Facility Location:	Uintah County, Utah

	NOx		со		VOC		PM10		HAPs	
Source	lb/hr	ton/yr								
River Bend Dehydration Site	0.20	0.90	1.10	4.60	4.30	17.50	0.00	0.00	0.20	0.80
All RBU 6-15E Emission Sources	0.00	0.00	0.00	0.00	2.90	7.60	0.00	0.00	0.70	1.30
All RBU 7-15E Emission Sources	0.00	0.00	0.00	0.00	1.50	6.60	0.00	0.00	0.20	0.80
Totals	0.20	0.90	1.10	4.60	8.70	31.70	0.00	0.00	1.10	2.90

*When considering whether or not a source is a major source, fugitive emissions are not included per 40 CFR Section 52.21(b)(1)(iii).

"Engine HAP emissions include Formaldehyde

*** Dehy HAP emissions include n-Hexane and 2,2,4 - Trimethylpentane (TMP)

	Benzene		Toluene		Ethylbenzene		Xylene		N-Hexane	
Source	lb/hr	ton/yr	lb/hr	ton/yr	lb/hr	ton/yr	lb/hr	ton/yr	ib/hr	ton/yr
River Bend Dehydration Site	0.00	0.20	0.10	0.30	0.00	0.00	0.00	0.10	0.00	0.00
All RBU 6-15E Emission Sources	0.20	0.30	0.30	0.50	0.00	0.00	0.20	0.30	0.10	0.10
All RBU 7-15E Emission Sources	0.00	0.20	0.10	0.30	0.00	0.00	0.00	0.10	0.00	0.10
Totals	0.20	0.70	0.50	1.10	0.00	0.00	0.20	0.50	0.10	0.20

	2,2,4	TMP	Formaldehyde		
Source	lb/hr	ton/yr	lb/hr	ton/yr	
River Bend Dehydration Site	0.00	0.00	0.00	0.00	
All RBU 6-15E Emission Sources	0.00	0.00	0.00	0.00	
All RBU 7-15E Emission Sources	0.00	0.00	0.00	0.00	
Totals	0.00	0.00	0.00	0.00	

RBU 6-15E WELLSITE ACTUAL 2010 EMISSIONS SUMMARY - SIGNIFICANT SOURCES ONLY

Company: Summit Gas Gathering Facility Name: RBU 6-15E Facility Location: Uintah County, Utah

	NC)x	С	0	V	00	PI	M ₁₀	HA	Ps
Source	lb/hr	ton/yr	lb/hr	ton/yr	lb/hr	ton/yr	lb/hr	ton/yr	lb/hr	ton/yr
0.135 MMscfd dehydrator - RBU 6-15E D-	-	-	-	-	2.00	3.70	-	-	0.70	1.20
Fugitive Emissions - RBU 6-15E F-1	-	-	-	-	0.90	3.90	-	-	0.00	0.10
Totals	0.00	0.00	0.00	0.00	2.90	7.60	0.00	0.00	0.70	1.30

Dehy HAP emissions include n-Hexane and 2,2,4 - Trimethylpentane (TMP)

	Benz	ene	Tolu	lene	Ethylb	enzene	Xyl	ene	N-He	exane
Source	lb/hr	ton/yr	lb/hr	ton/yr	lb/hr	ton/yr	lb/hr	ton/yr	lb/hr	ton/yr
0.135 MMscfd dehydrator - RBU 6-15E D-	0.20	0.30	0.30	0.50	0.00	0.00	0.20	0.30	0.10	0.10
Fugitive Emissions - RBU 6-15E F-1	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00
Totals	0.20	0.30	0.30	0.50	0.00	0.00	0.20	0.30	0.10	0.10

	2,2,4	TMP	Formaldehyde		
Source	lb/hr	ton/yr	lb/hr	ton/yr	
0.135 MMscfd dehydrator - RBU 6-15E D-	0.00	0.00	-	-	
Fugitive Emissions - RBU 6-15E F-1	0.00	0.00	-	-	
Totals	0.00	0.00	0.00	0.00	

Rounded to the closest tenth of one ton

RBU 7-15E WELLSITE ACTUAL 2010 EMISSIONS SUMMARY - SIGNIFICANT SOURCES ONLY

Company: Summit Gas Gathering Facility Name: RBU 7-15E Facility Location: Uintah County, Utah

	NC	Dx	С	0	V	oc	PI	M ₁₀	HA	Ps
Source	lb/hr	ton/yr	lb/hr	ton/yr	lb/hr	ton/yr	lb/hr	ton/yr	lb/hr	ton/yr
0.065 MMscfd dehydrator - RBU 7-15E D-1	-	-	-	-	0.60	2.70	-	-	0.20	0.70
Fugitive Emissions - RBU 7-15E F-1	-	-	-	-	0.90	3.90	-	-	0.00	0.10
Totals	0.00	0.00	0.00	0.00	1.50	6.60	0.00	0.00	0.20	0.80

^{*}Dehy HAP emissions include n-Hexane and 2,2,4 - Trimethylpentane (TMP)

	Benz	zene	Tolu	lene	Ethylb	enzene	Xyl	ene	N-He	xane
Source	lb/hr	ton/yr	lb/hr	ton/yr	lb/hr	ton/yr	lb/hr	ton/yr	lb/hr	ton/yr
0.065 MMscfd dehydrator - RBU 7-15E D-1	0.00	0.20	0.10	0.30	0.00	0.00	0.00	0.10	0.00	0.10
Fugitive Emissions - RBU 7-15E F-1	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00
Totals	0.00	0.20	0.10	0.30	0.00	0.00	0.00	0.10	0.00	0.10

	2,2,4	TMP	Formaldehyde		
Source	lb/hr	ton/yr	lb/hr	ton/yr	
0.065 MMscfd dehydrator - RBU 7-15E D-1	0.00	0.00	-	-	
Fugitive Emissions - RBU 7-15E F-1	0.00	0.00	-	-	
Totals	0.00	0.00	0.00	0.00	

Rounded to the closest tenth of one ton

JANUARY 2011 UNCONTROLLED POTENTIAL TO EMIT SUMMARY

Company:	Summit Gas Gathering
Facility Name:	All Sites
Facility Location:	Uintah County, Utah

	N	Ox	C	:0	V	00	P	M ₁₀	HAP	S '
Source	lb/hr	ton/yr	lb/hr	ton/yr	lb/hr	ton/yr	lb/hr	ton/yr	lb/hr	ton/yr
River Bend Dehydration Site	0.23	1.00	0.33	1.46	40.85	178.90	0.01	0.06	19.03	83.35
All RBU 6-15E Emission Sources	0.05	0.22	0.04	0.19	3.20	14.04	0.00	0.01	0.84	3.70
All RBU 7-15E Emission Sources	0.04	0.18	0.04	0.16	2.69	11.76	0.00	0.01	0.55	2.43
Totals	0.32	1.40	0.41	1.81	46.74	204.70	0.02	0.08	20.43	89.48

*When considering whether or not a source is a major source, fugitive emissions are not included per 40 CFR Section 52.21(b)(1)(iii).

**Engine HAP emissions include Formaldehyde

*** Dehy HAP emissions include n-Hexane and 2,2,4 - Trimethylpentane (TMP)

	Ben	zene	Tol	uene	Ethylb	enzene	Xyl	ene	N-He	exane
Source	lb/hr	ton/yr	lb/hr	ton/yr	lb/hr	ton/yr	lb/hr	ton/yr	lb/hr	ton/yr
River Bend Dehydration Site	6.38	27.94	8.08	35.41	0.31	1.37	3.51	15.37	0.70	3.07
All RBU 6-15E Emission Sources	0.23	0.99	0.37	1.61	0.02	0.07	0.19	0.81	0.04	0.20
All RBU 7-15E Emission Sources	0.16	0.68	0.23	1.02	0.01	0.04	0.11	0.47	0.04	0.19
Totals	6.76	29.61	8.68	38.04	0.34	1.47	3.80	16.65	0.79	3.46

	2,2,4	TMP	Formaldehyde		
Source	lb/hr	ton/yr	lb/hr	ton/yr	
River Bend Dehydration Site	0.05	0.21	0.00	0.00	
All RBU 6-15E Emission Sources	0.00	0.02	0.00	0.01	
All RBU 7-15E Emission Sources	0.00	0.02	0.00	0.00	
Totals	0.06	0.25	0.00	0.01	

JANUARY 2011 CONTROLLED POTENTIAL TO EMIT SUMMARY

Company:	Summit Gas Gathering
Facility Name:	All Sites
Facility Location:	Uintah County, Utah

	N	Ox	C	:0	V	00	PI	W10	HAP	S '
Source	lb/hr	ton/yr								
River Bend Dehydration Site	0.42	1.85	1.43	6.28	4.72	20.68	0.01	0.06	0.22	0.97
All RBU 6-15E Emission Sources	0.05	0.22	0.04	0.19	3.20	14.04	0.00	0.01	0.84	3.70
All RBU 7-15E Emission Sources	0.04	0.18	0.04	0.16	2.69	11.76	0.00	0.01	0.55	2.43
Totals	0.51	2.30	1.51	6.63	10.61	46.48	0.02	0.08	1.62	7.09

*When considering whether or not a source is a major source, fugitive emissions are not included per 40 CFR Section 52.21(b)(1)(iii).

*Engine HAP emissions include Formaldehyde

"Dehy HAP emissions include n-Hexane and 2,2,4 - Trimethylpentane (TMP)

	Ben	zene	Tol	lene	Ethylb	enzene	Xyl	ene	N-He	exane
Source	lb/hr	ton/yr	lb/hr	ton/yr	lb/hr	ton/yr	lb/hr	ton/yr	lb/hr	ton/yr
River Bend Dehydration Site	0.07	0.30	0.08	0.36	0.00	0.01	0.04	0.16	0.02	0.10
All RBU 6-15E Emission Sources	0.23	0.99	0.37	1.61	0.02	0.07	0.19	0.81	0.04	0.20
All RBU 7-15E Emission Sources	0.16	0.68	0.23	1.02	0.01	0.04	0.11	0.47	0.04	0.19
Totals	0.45	1.97	0.68	2.99	0.03	0.12	0.33	1.44	0.11	0.49

	2,2,4	TMP	Formaldehyde		
Source	lb/hr	ton/yr	lb/hr	ton/yr	
River Bend Dehydration Site	0.00	0.00	0.00	0.00	
All RBU 6-15E Emission Sources	0.00	0.02	0.00	0.01	
All RBU 7-15E Emission Sources	0.00	0.02	0.00	0.00	
Totals	0.01	0.04	0.00	0.01	

ALL SITES GHG EMISSIONS SUMMARY

Company: Summit Gas Gathering Facility Name: All Sites Facility Location: Uintah County, Utah

UNCONTROLLED GHG EMISSIONS

SOURCE DESCRIPTION	CH₄ MT/yr*	CO ₂ MT/yr*	N₂O MT/yr*	CO ₂ Equivalents MT/yr*
River Bend Dehydration Site	56.10	703.00	0.00	1881.43
All RBU 6-15E Emission Sources	8.77	197.56	0.00	381.75
All RBU 7-15E Emission Sources	8.92	162.73	0.00	385.09
TOTAL EMISSIONS	73.78	1063.29	0.00	2648.28

CH₄ Tons/yr	CO₂ Tons/yr	N₂O Tons/yr	CO ₂ Equivalents Tons/yr
61.71	773.30	0.00	2056.22
9.64	217.32	0.00	419.93
9.81	179.00	0.00	423.60
81.16	1169.61	0.00	2899.75

CONTROLLED GHG EMISSIONS

SOURCE DESCRIPTION	CH₄ MT/yr*	CO ₂ MT/yr*	N₂O MT/yr*	CO ₂ Equivalents MT/yr*
River Bend Dehydration Site	13.73	2115.27	0.00	2416.00
All RBU 6-15E Emission Sources	8.77	197.56	0.00	381.75
All RBU 7-15E Emission Sources	8.92	162.73	0.00	385.09
TOTAL EMISSIONS	31.42	2475.55	0.00	3182.85

CH ₄	CO ₂	N ₂ O	CO ₂ Equivalents
Tons/yr	Tons/yr	Tons/yr	Tons/yr
15.10	2326.79	0.00	2657.60
9.64	217.32	0.00	419.93
9.81	179.00	0.00	423.60
34.56	2723.11	0.00	3501.13

ND = No data available.

MT = Metric tonne

JANUARY 2011 UNCONTROLLED POTENTIAL TO EMIT SUMMARY

Company:	Summit Gas Gathering
Facility Name:	River Bend Dehydration Site
Facility Location:	Uintah County, Utah

	N	Ox	C	0	V	oc	Pl	И ₁₀	HAP	'S '
Source	lb/hr	ton/yr	lb/hr	ton/yr	lb/hr	ton/yr	lb/hr	ton/yr	lb/hr	ton/yr
Condensate Truck Loading - RBL-1	-	-	-	-	0.54	2.38	-	-	-	-
Total heaters (tanks and dehy)	0.18	0.80	0.15	0.67	0.02	0.08	0.01	0.06	0.00	0.00
Capstone Micro-Turbine	0.03	0.13	0.18	0.79	0.00	0.01	-	-	-	-
45 MMscfd dehydrator #1 - RBD-1	-	-	-	-	36.44	159.60	-	-	19.00	83.21
Pigging Operations	-	-	-	-	0.03	0.15	-	-	0.00	0.01
Fugitive Emissions RBF-1	5 - 0	-	-	-	1.30	5.68	-	-	0.02	0.10
Storage Tank Emissions RBT-1 & RBT-2	-	-	-	-	2.51	11.01	-	-	0.01	0.04
Totals	0.21	1.00	0.33	1.46	40.85	178.90	0.01	0.06	19.03	83.35

*When considering whether or not a source is a major source, fugitive emissions are not included per 40 CFR Section 52.21(b)(1)(iii).

"Engine HAP emissions include Formaldehyde "Dehy HAP emissions include n-Hexane and 2,2,4 - Trimethylpentane (TMP)

	Ben	zene	Toluene		Ethylbenzene		Xylene		N-Hexane	
Source	lb/hr	ton/yr	lb/hr	ton/yr	lb/hr	ton/yr	lb/hr	ton/yr	lb/hr	ton/yr
Condensate Truck Loading - RBL-1	-	-	-	-	-	-	-	-	-	-
Total heaters (tanks and dehy)		-	-	-	-	-	-	-	-	-
Capstone Micro-Turbine	-	-	-	-	-	-	-	-	-	-
45 MMscfd dehydrator #1 - RBD-1	6.37	27.92	8.08	35.40	0.31	1.37	3.51	15.37	0.68	3.00
Pigging Operations	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.01
Fugitive Emissions RBF-1	0.00	0.01	0.00	0.01	0.00	0.00	0.00	0.00	0.01	0.04
Storage Tank Emissions RBT-1 & RBT-2	0.00	0.01	0.00	0.00	0.00	0.00	0.00	0.00	0.01	0.03
Totals	6.38	27.94	8.08	35.41	0.31	1.37	3.51	15.37	0.70	3.07

	2,2,4	TMP	Formaldehyde		
Source	lb/hr	ton/yr	lb/hr	ton/yr	
Condensate Truck Loading - RBL-1	-	-	-	-	
Total heaters (tanks and dehy)	-	-	0.00	0.00	
Capstone Micro-Turbine	-	-	-	-	
45 MMscfd dehydrator #1 - RBD-1	0.05	0.21	-	-	
Pigging Operations	-	-	-	-	
Fugitive Emissions RBF-1	-	-	-	-	
Storage Tank Emissions RBT-1 & RBT-2	-	-	0.00	0.00	
Totals	0.05	0.21	0.00	0.00	

JANUARY 2011 CONTROLLED POTENTIAL TO EMIT SUMMARY*

.

Company:	Summit Gas Gathering
Facility Name:	River Bend Dehydration Site
Facility Location:	Uintah County, Utah

	N	Ox	0	:0	V	oc `	Pl	M ₁₀	HAP	s'
Source	lb/hr	ton/yr	lb/hr	ton/yr	lb/hr	ton/yr	lb/hr	ton/yr	ib/hr	ton/yr
Capstone Micro-Turbine	0.03	0.13	0.18	0.79.	0.00	0.01	-	-	-	-
45 MMscfd dehydrator #1 - RBD-1	-	-	-	-	0.31	1.38	-	-	0.19	0.82
Total heaters (tanks and dehy)	0.18	0.80	0.15	0.67	0.02	0.08	0.01	0.06	0.00	0.00
Pigging Operations	-	-	-	-	0.03	0.15	-	-	0.00	0.01
Condensate Truck Loading - RBL-1	-	-	-	-	0.54	2.38	-	-		-
Fugitive Emissions - RBF-1	-	-	-	-	1.30	5.68	-	-	0.02	0.10
Thermal Oxidizer Emissions - RBTO-1	0.21	0.92	1.10	4.82	-	-	0.00	0.00	-	-
Storage Tank Emissions - RBT-1 & RBT-2	-	-1	-	-	2.51	11.01		-	0.01	0.04
TOTAL EMISSIONS	0.42	1.85	1.43	6.28	4.72	20.68	0.01	0.06	0.22	0.97

*When considering whether or not a source is a major source, fugitive emissions are not included per 40 CFR Section 52.21(b)(1)(iii).

"Engine HAP emissions include Formaldehyde

"Dehy HAP emissions include n-Hexane and 2,2,4 - Trimethylpentane (TMP)

	Ben	zene	Tol	uene	Ethylb	enzene	Xy	ene	N-He	exane
Source	lb/hr	ton/yr	lb/hr	ton/yr	lb/hr	ton/yr	lb/hr	ton/yr	lb/hr	ton/yr
Capstone Micro-Turbine	-	-	-	-	-	-	-	-	-	-
45 MMscfd dehydrator #1	0.06	0.28	0.08	0.35	0.00	0.01	0.04	0.15	0.01	0.02
Total heaters (tanks and dehy)	-	-		-	-	-	-	-	-	-
Pigging Operations	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.01
Condensate Truck Loading - RBL-1	-	-	-	-	~	-	-	-	-	-
Fugitive Emissions - RBF-1	0.00	0.01	0.00	0.01	0.00	0.00	0.00	0.00	0.01	0.04
Thermal Oxidizer Emissions - RBTO-1	-	-	-	-	-	-	-	-	-	-
Storage Tank Emissions - RBT-1 & RBT-2	0.00	0.01	0.00	0.00	0.00	0.00	0.00	0.00	0.01	0.03
TOTAL EMISSIONS	0.07	0.30	0.08	0.36	0.00	0.01	0.04	0.16	0.02	0.10

Thermal oxidizer has a control efficiency of 99%

	2,2,4	TMP	Formaldehyde		
Source	lb/hr	ton/yr	lb/hr	ton/yr	
Capstone Micro-Turbine	-	-	-	-	
45 MMscfd dehydrator #1 - RBD-1	0.00	0.00	-	-	
Total heaters (tanks and dehy)	-	-	0.00	0.00	
Pigging Operations	-	-	-	-	
Condensate Truck Loading - RBL-1	-	-	-	-	
Fugitive Emissions - RBF-1	-	-	-	-	
Thermal Oxidizer Emissions - RBTO-1	-	-	-	-	
Storage Tank Emissions - RBT-1 & RBT-2	-	-	0.00	0.00	
Totals	0.00	0.00	0.00	0.00	

GHG FACILITY EMISSIONS SUMMARY

Company:	Summit Gas Gathering
Facility Name:	River Bend Dehydration Site
Facility Location:	Uintah County, Utah

UNCONTROLLED GHG EMISSIONS

SOURCE	CH₄	CO ₂	N ₂ O	CO ₂ Equivalents
DESCRIPTION	MT/yr*	MT/yr*	MT/yr*	MT/yr*
Condensate Truck Loading - RBL-1	ND	ND	ND	ND
Total heaters (tanks and dehy)	0.01	630.44	0.00	631.12
Capstone Micro-Turbine	ND	66.24	ND	66.24
45 MMscfd dehydrator #1 - RBD-1	41.86	6.13	ND	885.09
Pigging Operations	0.30	0.01	ND	6.24
Fugitive Emissions RBF-1	13.35	0.15	ND	280.59
Storage Tank Emissions RBT-1 & RBT-2	0.58	0.03	ND	12.14
TOTAL EMISSIONS	56.10	703.00	0.00	1881.43

CH ₄	CO2	N ₂ O	CO ₂ Equivalents
Tons/yr	Tons/yr	Tons/yr	Tons/yr
ND	ND	ND	ND
0.01	693.48	0.00	694.24
ND	72.87	ND	72.87
46.04	6.75	ND	973.60
0.33	0.01	ND	6.86
14.69	0.16	ND	308.65
0.63	0.03	ND	ND
61.71	773.30	0.00	2056.22

CONTROLLED GHG EMISSIONS

SOURCE	CH₄	CO ₂	N ₂ O	CO ₂ Equivalents
DESCRIPTION	MT/yr*	MT/yr*	MT/yr*	MT/yr*
Condensate Truck Loading - RBL-1	ND	ND	ND	ND
Total heaters (tanks and dehy)	0.01	630.44	0.00	631.12
Capstone Micro-Turbine	ND	66.24	ND	66.24
45 MMscfd dehydrator #1 - RBD-1	0.03	3.20	ND	3.90
Pigging Operations	0.30	0.01	ND	6.24
Fugitive Emissions RBF-1	13.35	0.15	ND	280.59
Storage Tank Emissions RBT-1 & RBT-2	0.01	0.03	ND	12.14
Thermal Oxidizer Emissions - RBTO-1	0.03	1415.20	ND	1415.76
TOTAL EMISSIONS	13.73	2115.27	0.00	2416.00

CH4	CO2	N ₂ O	CO ₂ Equivalents
Tons/yr	Tons/yr	Tons/yr	Tons/yr
ND	ND	ND	ND
0.01	693.48	0.00	694.24
ND	72.87	ND	72.87
0.04	3.52	ND	4.29
0.33	0.01	ND	6.86
14.69	0.16	ND	308.65
0.01	0.03	ND	13.36
0.03	1556.72	ND	1557.34
15.10	2326.79	0.00	2657.60

ND = No data available.

MT = Metric tonne

0

Storage Tank Emissions do not include working and breathing since TANKS 4.09D only calculates VOC emissions.

POTENTIAL GHG EMISSIONS BASED ON 8760 HOURS FOR HEATERS, GENERATORS, ENGINES AND FLARES/THERMAL OXIDIZERS

Company: Summit Gas Gathering Facility Name: River Bend Dehydration Site Facility Location: Uintah County, Utah

GHG Mandatory Reporting Regulations, Combustion Sources (Subpart C, 40 CFR Part 98)

Summa	ry	
Engines CO ₂ e =	0.0	tons/yr
Heaters/Boilers CO2e =	2114.0	tons/yr
Total CO ₂ e =	2114.0	tons/yr
Reporting required ?	No	

CO2e = CO2 equivalents

Note: Reporting Threshold = 25,000 tons/yr CO2e

						_					Spe	ecies	
						, I		Species		CO2	CH4	N ₂ O	CO2e
En	igines		R	ating		BFSC	CO2	CH4	N ₂ O	COze	COze	CO2e	Total
Source	Model	Fuel	(hp)	(MMbtu/hr)	Hours	Btu/(hp-hr)		metric tons			metri	c tons	
						8240	0.00	0.00	0.00	0.00	0.00	0.00	0.00
							0.00	0.00	0.00	0.00	0.00	0.00	0.00
		Totals	0	0.00		Totals	0.00	0.00	0.00	0.00	0.00	0.00	

Engines GHG Emissions Total= 0.0 CO2e Total= 0.0 metric tons

CO₂e

0.18

0.56

0.05 0.05

0.00

0.00

metric tons

Species							
02	CH4	N ₂ O	CO ₂ e				

metric tons

CO₂e

0.27

0.83

0.07

0.07

0.00

0.00

1.23

Total

464.91

1416.59

116.23

116.23

0.00

0.00

CO ₂		Species		Γ						
CO2e	N ₂ O	CH4	CO2	-		ing	Rat		aters	Boilers/He
		metric tons			Hours	(MMbtu/hr)	(hp)	Fuel	Model	Source
464.46	0.00	0.01	464.46		8760	1.000	-	Natural Gas	-	Heater (Dehy 1)
1415.20	0.00	0.03	1415.20		8760	3.047	-	Natural Gas	-	Thermal Oxidizer
116.11	0.00	0.00	116.11		8760	0.250	-	Natural Gas	-	Tank Heater #1
116.11	0.00	0.00	116.11		8760	0.250	-	Natural Gas	-	Tank Heater #2
0.00	0.00	0.00	0.00				-	Natural Gas	-	
0.00	0.00	0.00	0.00							
2111.88	0.00	0.04	2111.88	Totals		4.547	Total			

0.84 CO2e Totai= 2114.0 metric tons

Engines GHG Emissions Total= 2111.93 metric tons

> Buys & Associates, Inc. 300 East Mineral Ave., Ste 10 Littleton CO 80122 ph. 303-781-8211

63 12

Natural Ga	5			
Emission Factor (CO ₂) =	53.02	kg CO ₂ /MMBtu	From 40 CFR Part 98, Subpart C, Table C-1	
Emission Factor (CH ₄) =	0.001	kg CO ₂ /MMBtu	From 40 CFR Part 98, Subpart C, Table C-2	
Emission Factor (N ₂ O) =	0.0001	kg CO ₂ /MMBtu	From 40 CFR Part 98, Subpart C, Table C-2	1 metric ton = 1000 kg = 2,200 lbs
HHV (Natural Gas) =	1106	BTU/scf		

	Global Warming Potentials]	
CO2 =	1	From 40 CFR Part 98, Subpart A, Table A-1	-
CH4 =	21	From 40 CFR Part 98, Subpart A, Table A-1	
N ₂ O =	310	From 40 CFR Part 98, Subpart A, Table A-1	

¹CO₂e Emissions (metric tons) = 0.001 (metric ton/kg) X Fuel (scf/yr) X HHV (MMBtu/scf) X Emission Factor (natural Gas) (kg CO₂/MMBtu) X Global Warming Potentials Operational Factors from Newfield operational data

Engines Total (CO₂e) = CO₂ emissions + CH₄ (CO₂e) + N₂O (CO2e) Heaters Total (CO₂e) = CO₂ emissions + CH₄ (CO₂e) + N₂O (CO2e)

Generator Micro-Turbine Emissions

Company:	Summit Gas Gathering
Facility Name:	River Bend Dehydration Site
Facility Location:	Uintah County, Utah

EMISSION POINTS: Capstone Model C65NG Standard MicroTurbine

Engine Make/Model	Capstone Mo	del C65NG Standard MicroTurbine
Site kWe Rating	65	kWe
Heating Value	1106	Btu/Scf
Operating Hours	8760	hrs/yr

			Emissio	on Rate	Emission Factor
Poilutant		Emission Factor	(lb/hr)	(tpy)	Reference
NOx	0.46	Ib/MWhe	0.03	0.13	[1]
со	6.00	lb/MWhe	0.18	0.79	[1]
VOC/NMHC	0.10	lb/MWhe	0.00	0.01	[1]
CO ₂ *	610.00	lb/MWh	18.30	72.87	[1]

[1] Capstone Mfg. Emission Factors

*CO2 emissions are expressed in Metric tonnes per year; pounds per hour X hours/year X (1 MT/2200 pounds)

CALCULATION FORMULAS	
lb/hr = (lb/10 ⁶ Watts-hr)*(site Watt rating 10 ³ Watts)	
tons/yr= (lb/hr)*(8760 hrs/yr)* (1 ton/2000lb)	

Technical Reference

Capstone MicroTurbineTM Systems Emissions

Summary

Capstone MicroTurbine[™] systems are inherently clean and can meet some of the strictest emissions standards in the world. This technical reference is to provide customers with information that may be requested by local air permitting organizations or to compare air quality impacts of different technologies for a specific project. The preferred units of measure are "output based"; meaning that the quantity of a particular exhaust emission is reported relative to the useable output of the microturbine – typically in pounds per megawatt hour for electrical generating equipment. This technical reference also provides the volumetric measurement in parts per million, which is still used by many people. A conversion between several common units is also provided.

Maximum Exhaust Emissions at ISO Conditions

Table 1 below summarizes the exhaust emissions at full power and ISO conditions for different Capstone microturbine models. Note that the fuel can have a significant impact on certain emissions. For example landfill and digester gas can be made up of a wide variety of fuel elements and impurities, and typically contains some percentage of carbon dioxide (CO₂). This CO₂ dilutes the fuel, makes complete combustion more difficult, and results in higher carbon monoxide emissions (CO) than for pipeline-quality natural gas.

Model	Fuel	NOx	CO	VOC (5)
C30 NG	Natural Gas ⁽¹⁾	.64	1.7	.22
C30 MBTU	Landfill Gas ⁽²⁾	.64	22	12.4
C30 MBTU	Digester Gas ⁽³⁾	.64	22	12.4
C30 Liquid	Diesel #2 ⁽⁴⁾	2.6	.41	.23
C65 NG Standard	Natural Gas ⁽¹⁾	.46	6.0	.10
C65 NG Low NOx	Natural Gas ⁽¹⁾	.17	6.0	.10
C65 NG CARB	Natural Gas ⁽¹⁾	.17	.24	.05
CR65 Landfill	Landfill Gas ⁽²⁾	.50	6.0	.10
CR65 Digester	Digester Gas ⁽³⁾	.50	6.0	.10
C200 NG	Natural Gas ⁽¹⁾	.43	.26	.10
C200 NG CARB	Natural Gas ⁽¹⁾	.14	.20	.04
CR200 Digester	Digester Gas ⁽³⁾	.50	6.0	.10

Table 1. Emission for Different Capstone Microturbine N	lodels in [ib/MWhe]
---	---------------------

Notes:

(1) Emissions for standard natural gas at 1,000 BTU/scf (HHV)

(2) Emissions for surrogate gas containing 42% natural gas, 39% CO2, and 19% Nitrogen

(3) Emissions for surrogate gas containing 63% natural gas and 37% CO2

(4) Emissions for Diesel #2 according to ASTM D975-07b

(5) Expressed as Hexane

410065 Rev. A (February 2008)

Page 1 of 7

Table 2 provides the same output-based information shown in Table 1, but expressed in grams per horsepower hour (g/hp-hr).

Model	Fuel	NOx	CO	VOC ⁽⁵⁾
C30 NG	Natural Gas ⁽¹⁾	.22	.60	.08
C30 MBTU	Landfill Gas ⁽²⁾	.22	7.4	4.2
C30 MBTU	Digester Gas ⁽³⁾	.22	7.4	4.2
C30 Liquid	Diesel #2 ⁽⁴⁾	.90	.14	.08
C65 NG Standard	Natural Gas ⁽¹⁾	.16	2.0	.03
C65 NG Low NOx	Natural Gas ⁽¹⁾	.06	2.0	.03
C65 NG CARB	Natural Gas ⁽¹⁾	.06	.08	.02
CR65 Landfill	Landfill Gas (2)	.17	2.0	.03
CR65 Digester	Digester Gas ⁽³⁾	.17	2.0	.03
C200 NG	Natural Gas ⁽¹⁾	.15	.09	.03
C200 NG CARB	Natural Gas ⁽¹⁾	.05	.07	.02
CR200 Digester	Digester Gas ⁽³⁾	.17	2.0	.34

Table 2. Emission for Different Capstone Microturbine Models in [g/hp-hr]

Notes: - same as for Table 1

Emissions may also be reported on a volumetric basis, with the most common unit of measurement being parts per million. This is typically a measurement that is corrected to specific oxygen content in the exhaust and without considering moisture content. The abbreviation for this unit of measurement is "ppmvd" (parts per million by volume, dry) and is corrected to 15% oxygen for electrical generating equipment such as microturbines. The relationship between an output based measurement like pounds per MVVh and a volumetric measurement like ppmvd depends on the characteristics of the generating equipment and the density of the criteria pollutant being measured. Table 3 expresses the emissions in ppmvd at 15% oxygen for the Capstone microturbine models shown in Table 1. Note that raw measurements expressed in ppmv will typically be lower than the corrected values shown in Table 3

The emissions stated in Tables 1, 2 and 3 are guaranteed by Capstone for new microturbines during the standard warranty period. They are also the expected emissions for a properly maintained microturbine according to manufacturer's published maintenance schedule for the useful life of the equipment.

410065 Rev. A (February 2008)

Model	Fuel	NOx	CO	VOC (5)
C30	Natural Gas ⁽¹⁾	9	40	9
C30	Landfill Gas ⁽²⁾	9	500	500
C30	Digester Gas ⁽³⁾	9	500	500
C30	Diesel #2 ⁽⁴⁾	35	9	9
C65 Standard	Natural Gas ⁽¹⁾	9	190	6
C65 Low NOx	Natural Gas ⁽¹⁾	4	180	6
C65 CARB	Natural Gas ⁽¹⁾	4	8	3
CR65	Landfill Gas (2)	10	190	6
CR65	Digester Gas ⁽³⁾	10	190	6
C200	Natural Gas ⁽¹⁾	9	180	9
C200 CARB	Natural Gas ⁽¹⁾	4	8	3
CR200	Digester Gas (3)	10	190	6

Table 3.	Emission	for Different	Capstone	Microturbine	Models in	[bymqq] r
----------	-----------------	---------------	----------	--------------	-----------	-----------

Notes: same as Table 1

Emissions at Full Power but Not at ISO Conditions

The maximum emissions in Tables 1, 2 and 3 are at full power under ISO conditions. These levels are also the expected values at full power operation over the published allowable ambient temperature and elevation ranges.

Emissions at Part Power

Capstone microturbines are designed to maintain combustion stability and low emissions over a wide operating range. Capstone microturbines utilize multiple fuel injectors, which are switched on or off depending on the power output of the turbine. All injectors are on when maximum power is demanded, regardless of the ambient temperature or elevation. As the load requirements of the microturbine are decreased, injectors will be switched off to maintain stability and low emissions. However, the emissions relative to the lower power output may increase. This effect differs for each microturbine model.

410065 Rev. A (February 2008)

Emissions Calculations for Permitting

Air Permitting agencies are normally concerned with the maximum amount of a given pollutant being emitted per unit of time (for example pounds per day of NOx). The simplest way to make this calculation is to use the maximum microturbine full electrical power output (expressed in MW) multiplied by the emissions rate in pounds per MWhe times the number of hours per day. For example, the C65 CARB microturbine operating on natural gas would have a NOx emissions rate of:

NOx = .17 X (65/1000) X 24 = .27 pounds per day

This would be representative of operating the equipment full time, 24 hours per day, at full power output, 65 kWe.

As a general rule, if local permitting is required, use the published agency levels as the stated emissions for the permit and make sure that this permitted level is above the calculated values in this application guide.

Consideration of Useful Thermal Output

Capstone microturbines are often deployed where their clean exhaust can be used to provide heating or cooling, either directly or using hot water or other heat transfer fluids. In this case, the local permitting or standards agencies will usually consider the emissions from traditional heating sources as being displaced by the useful thermal output of the microturbine exhaust energy. This accounts for the increased useful output of the microturbine, and decreases the relative emissions of the combined heat and power system. For example, the CARB version C65 ICHP system with integral heat recovery can achieve a total system efficiency of 70% or more, depending on inlet water temperatures and other installation specific characteristics. The efficiency of the CARB version C65 microturbine is 28% at ISO conditions. This means that the total NOx output based emissions, including the captured thermal value, is the electric-only emissions times the ratio of electric efficiency divided by total system efficiency:

NOx = .17 X 28/70 = .068 pounds per MWh (based on total system output)

This is typically much less than the emissions that would result from providing electric power using traditional central power plants, plus the emissions from a local hot water heater or boiler. In fact microturbine emissions are so low compared with traditional hot water heaters that installing a Capstone microturbine with heat recovery can actually decrease the local emissions of NOx and other criteria pollutants, without even considering the elimination of emissions from a remote power plant.

Greenhouse Gas Emissions

Many gasses are considered "greenhouse gasses", and agencies have ranked them based on their global warming potential (GWP) in the atmosphere compared with carbon dioxide (CO₂), as well as their ability to maintain this effect over time. For example, methane is a greenhouse gas with a GWP of 21. Criteria pollutants like NOx and organic compounds like methane are monitored by local air permitting authorities, and are subject to strong emissions controls. So even though some of these criteria pollutants can be even more troublesome for global warming than CO₂, they are released in small quantities – especially from Capstone

410065 Rev. A (February 2008)

Page 4 of 7

microturbines. So the major contributor of concern is carbon dioxide, or CO₂. Emissions of CO₂ depend on two things:

- 1. Carbon content in the fuel
- 2. Efficiency of converting fuel to useful energy

It is for these reasons that many local authorities are focused on using clean fuels (for example natural gas compared with diesel fuel), achieving high efficiency using combined heat and power systems, and displacing emissions from traditional power plants using renewable fuels like waste landfill and digester gasses.

Table 5 shows the typical CO₂ emissions from different Capstone microturbine models at full power and ISO conditions and for different fuels. Theses values are expressed on an output basis, as is done for criteria pollutants in Table 1. The table shows the pounds per megawatt hour based on electric power output only, as well as considering total useful output in a CHP system with total 70% efficiency (LHV). As for criteria pollutants, the relative quantity of CO₂ released is substantially less when useful thermal output is also considered in the measurement. As a comparison, coal fired central power plants account for 50% of the electric generation in the US, with an average CO₂ emissions rate of 2,138 pounds per megawatt hour according to Environmental Protection Agency data. Note that any of the Capstone models noted below emit less CO₂, with or without consideration for the useful thermal energy captured with a combined heat and power application.

Model	Fuel	C	02
		Electric Only	70% Total CHP
C30	Natural Gas ⁽¹⁾	1,645	610
C30	Landfill Gas (2)	1,645	610
C30	Digester Gas ⁽³⁾	1,645	610
C30	Diesel #2 ⁽⁴⁾	2,100	750
C65 Standard	Natural Gas ⁽¹⁾	1,475	610
C65 Low NOx	Natural Gas ⁽¹⁾	1,525	610
C65 CARB	Natural Gas ⁽¹⁾	1,525	610
C65	Landfill Gas (2)	1,475	610
C65	Digester Gas ⁽³⁾	1,475	610
C200	Natural Gas ⁽¹⁾	1,295	610
C200 CARB	Natural Gas ⁽¹⁾	1,295	610
CR200	Digester Gas ⁽³⁾	1,295	610

Table 5. CO₂ Emission for Capstone Microturbine Models in [lb/MWh]

410065 Rev. A (February 2008)

Page 5 of 7

Useful Conversions

The conversions shown in Table 5 can be used to obtain other units of emissions outputs. These are approximate conversions.

From	Multiply By	To Get
lb/MWh	0.338	g/bhp-hr
g/bhp-hr	2.96	lb/MWh
lb	0.454	kg
kg	2.20	lb
kg	1,000	g
hp (electric)	746	W
W	0.00134	hp (electric)
MW	1,000,000	W
W	0.000001	MW

Definitions

- ISO conditions are defined as: 15 °C (59 °F), 60% relative humidity, and sea level pressure of 101.3 kPa (14.696 psia).
- HHV: Higher Heating Value
- LHV: Lower Heating Value
- kWth: Kilowatt (thermal)
- kW_e : Kilowatt (electric)
- MWh: Megawatt-hour
- bhp-hr: brake horsepower-hour
- Scf: Standard cubic feet (standard references ISO temperature and pressure)
- SCFM: Standard Cubic Feet per Minute (standard references ISO temperature and pressure)

Capstone Contact Information

If questions arise regarding this Application Guide, please contact Capstone Turbine Corporation for assistance and information:

Capstone Applications

Toll Free Telephone: (866) 4-CAPSTONE or (866) 422-7786 Fax: (818) 734-5385 E-mail: applications@capstoneturbine.com

Capstone Service

Capstone Technical Support

Toll Free Telephone: (877) 282-8966 Service Telephone: (818) 407-3600 • Fax: (818) 734-1080 E-mail: service@capstoneturbine.com

Capstone Technical Support (Japan)

Service Telephone: (818) 407-3700 • Fax: (818) 734-1080 E-mail: <u>servicejapan@capstoneturbine.com</u>

410065 Rev. A (February 2008)

Capstone Introduces the C65 Energy Systems

C65 & C65-IC More power & C65-ICHP: Better fuel efficiency too Even lower NOx emissions Same compact dimensions

In 2006, Capstone Turbine introduces a significant improvement to the world's most popular line of microturbine energy systems. Replacing the C60 product, the new C65 offers greater electrical output, more heat energy, higher fuel efficiency, heavier-duty power electronics, and < 10-sec. fast transfer on dual-mode units, all with the same dimensions, weights and other advantages of the original:

- · Just one moving part, no gearbox, no radiator, etc.
- * No oil, lubricants, coolants or other hazmats
- Quiet, small footprint, light weight, vibration-free
- 10% federal tax credit; other incentive programs
- · Cleaner and more fuel efficient power and heat
- · 80% CHP efficiency: measured at end-user loads
- As easy as it gets interconnect and air permitting
- Integrated synchronizing & load-sharing
- · Built-in capability to array up to 20 units as one
- · Indoor, outdoor or rooftop installation
- · Easy integration into energy management systems
- · Optional remote monitoring, dispatch, diagnostics
- · Made in USA

www.microturbine.com toll-free 866-4-Capstone (International +818-407-3770)

2005 Capstone Turbine Corp[®], the world's only USA owned and operated microturbine manufacture

C65 & C65-ICHP MicroTurbine Performance Datasheet

Electrical Performance		a de la companya de l
×	Grid Connect	Stand Alone
et Power Output	65 kW	65 kW
Net Electrical Efficiency	29% LHV	29% LHV
Net kVA Output	65 kVA	83 kVA max at 480V
/oltage	380 to 480 VAC	380 to 480 VAC
/oltage Output Connection	3 phase	3 phase
requency	50 or 60 Hz	10-60 Hz (programmable)
Current	100A max. steady state	125A max. steady state*
Electrical Output Type	Inverter	Inverter
HD standard	IEEE 519 for Current	IEEE 519 for Voltage
Fuel Input Reguirements		
Natural Gas	875 to 1,275 BTU/scf [HI	HV1
Fuel Inlet Pressure	75 psig	×
Fuel Flow at Full Power	765,000 BTU/hr [LHV]; 8	42,000 BTU/hr [HHV]
Net Heat Rate	11,800 BTU/kWh [LHV]	
Generator Heat Rate	11,000 BTU/kWh [LHV]	N
Exhaust Output		
NOx Emissions	<5ppmV @ 15% O2	
Exhaust Temperature	588°F (309°C)	Since to the
Exhaust Mass Flow Rate	1.08 lbm/s (0.49 kg/s)	· · · · · · · · · · · · · · · · · · ·
Exhaust Energy Output	561,000 BTU/hr	×
C65-ICHP Thermal Output***	20.900 Billion	
Copper Core Integrated Heat	Hot Water Output	380,000 BTU/hr (112kW
Recovery Module	Total System Efficiency	80%
Stainless Steel Core Integrated	Hot Water Output	265,000 BTU/hr (78kW)
Heat Recovery Module	Total System Efficiency	64%
Dimensions & Weights	Total Oystern Emolency	
Simensions & Weights	C65	C65-ICHP
Width x Depth x Height	30 x 77 x 83 inches	30 x 77 x 94 inches
Weight: Grid Connect Model	1,671 lbs (758 kg)	2,200 lbs (1,000 kg)
Dual Mode Model	2,471 lbs (1,121 kg)	3,000 lbs (1,364 kg)
Certifications	2,771105 (1,121 Ny)	1 0,000 lbs (1,004 kg)
Built in accordance with UL 2200 a	and LU 1744 /linking a second	
Sum of accordance with UK 7700 3	and UL1/41 (IISting Dendi	id), and meets statewide

Models are available with optional CE Marking. Certification to California Air Resources Board Emissions requirements is in process.

* With linear load.

** Optional external fuel gas boosters are available for inlet gas pressures from 0.2 to 15.0 psig.

*** Values are for 40 gpm (2.5 l/s) water flow rate: copper core version with 140°F (60°C) inlet water; stainless steel version (primarily for chlorinated water) with 85°F (30°C) inlet water.

Specifications are not warrantied and are subject to change without notice. Warrantied specifications are documented separately.

330200-001 Rev A December, 2005

PIG RECEIVER EMISSIONS

Company: Summit Gas Gathering Facility Name: River Bend Dehydration Site Facility Location: Uintah County, Utah

GAS	MOLECULAR		COMPONENT	COMPONENT	COMPONENT
COMPONENT	WEIGHT	Weight	FLOW RATE	FLOW RATE	FLOW RATE
(Wet Gas)	(lb/lb-mole)	Fraction	(Mscf)	(lb/yr)	(tons/yr)
Methane	16.043	0.775	14.037	593.398	0.297
Ethane	30.07	0.103	1.872	148.356	0.074
Propane	44.097	0.050	0.903	104.958	0.052
i-Butane	58.123	0.013	0.243	37.232	0.019
n-Butane	58.123	0.015	0.277	42.354	0.021
i-Pentane	72.15	0.008	0.136	25.922	0.013
n-Pentane	72.15	0.005	0.098	18.702	0.009
Hexanes	86.177	0.007	0.128	29.136	0.015
Heptanes	100.204	0.003	0.050	13.097	0.007
Octanes	114.231	0.001	0.017	4.988	0.002
Nonanes	128.258	0.000	0.007	2.379	0.001
Decanes +	142.285	0.000	0.002	0.575	0.000
Benzene	78.12	0.001	0.012	2.412	0.001
Toluene	92.13	0.001	0.010	2.543	0.001
Ethylbenzene	106.16	0.000	0.000	0.087	0.000
Xylenes	106.16	0.000	0.003	0.728	0.000
n-Hexane	86.177	0.003	0.047	10.607	0.005
Helium	4.003	0.000	0.000	0.000	0.000
Nitrogen	28.013	0.006	0.105	7.767	0.004
Carbon Dioxide	44.01	0.009	0.154	17.844	0.009
Oxygen	32	0.000	0.000	0.000	0.000
Hydrogen Sulfide	34.08	0.000	0.000	0.000	0.000
VOC SUBTOTAL		0.107	1.932	295.720	0.148
HAP SUBTOTAL		0.004	0.072	16.377	0.008
TOTAL		1.000	18.100	1063.085	0.532

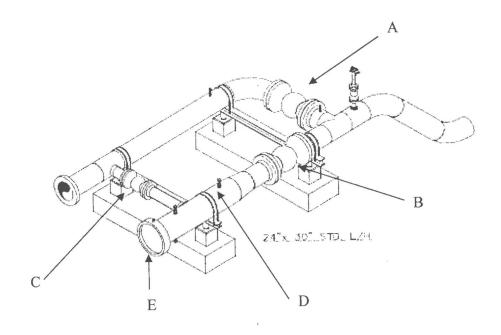
PIG SPECIFICATIONS	Receiver #1	Receiver #2	Receiver #3	
FIG OFECHICATIONS				units
Pig Section Circumference :	3.142	2.618	0.785	feet
Pig Section Diameter :	1.000	0.833	0.250	feet
Pig Section Length :	6.0	1.302	2.458	feet
Pig Section Receiver Volume :	4.712	0.710	0.121	actual ft ³
Average Pipeline Pressure :	800	800	800	lb/ft ²
Pig Volume corrected for Std Conditions(14.7 psia) :	256.457	38.649	6.567	scf/event
Number of activities :		60		per year
Number of receivers :	1	1	1	
Total events :	60	60	60	per year
Total Annual Release Volume (per section) :	15387.393	2318.943	394.035	scf/yr
Total Volume :	18.100	Mscf/year		

Pipeline Pressure provided by client

Wet Gas composition used for calculations

Emissions (tpy) = Volume released (Mscf/yr) x Weight Fraction x 1000 (scf/Mscf) x 1/379.45 (lb-mol/scf) x MW (lb/mol) / 2000 (lb/ton)

4


SGG ROOSEVELT – PIPELINE PIGGING PROCEDURES

PIG LAUNCHING

- 1. Close valves on launch tubes (B&C) and depressurize tube with a blowdown valve (D).
 - a. Gas within the pig launcher is emitted to the environment.
- 2. Open the pig barrel lid (E) and insert pig into launcher. Close lid (E).
 - a. Pig barrel is at atmospheric pressure.
- 3. Open equalizer valve (C) to pressure pig on the back side.
 - a. Gas is contained in the gathering system.
- 4. Close bypass valve (A) and open main valve (B) to allow pig to travel down the pipeline.
 - a. Gas is contained within the gathering system.
- 5. Once pigging is complete close equalizer valve (C) and main valve (B). Open bypass valve (A) to continue flowing gas within the gathering system.
 - a. Gas is contained within the gathering system.

PIG RECEIVING

- 1. Open pig receiver main valve (B) to allow pig to enter pig receiver tube.
- 2. Open equalizer valve (C) to allow gas and fluid through the pig receiver.
- 3. Close main throughput valve (A) to divert pig into receiver.
 - a. Gas and fluid collected during the pigging operation flows through the receiver and is carried to the existing station scrubber.
 - b. Gas flows through the scrubber and remains within the gathering system.
 - c. Fluids collected during the pigging operation flow from the scrubber to the existing onsite storage tank.
- 4. Once the pig has been recovered, open the main throughput valve (A), close equalizer valve (C), and close main valve (B).
 - a. Gas is contained within the gathering system.
- 5. Blow down the pig receiver using the blowdown valve (D).
- a. Gas within the pig receiver is emitted to the environment.
- 6. Open the pig barrel lid (E) and extract pig.
 - a. Pig barrel is at atmospheric pressure.
 - b. Excess fluids left in the pig receiver barrel are recovered in a portable catch basin.

NATURAL GAS FUELED HEATER EMISSIONS

Company: Summit Gas Gathering Facility Name: River Bend Dehydration Site Facility Location: Uintah County, Utah

	HEATER	HEATER	FUEL	HOURS OF	FUEL	N	Ox	(0
SOURCE DESCRIPTION	SIZE (MBtu/hr)	EFFICIENCY	HEAT VALUE (Btu/scf)	OPERATION (hrs/year)	USAGE (MMscf/yr)	EF AP-42 ¹ Ib/MMscf	EMISSIONS (tons/yr)	EF AP-42 ¹ Ib/MMscf	EMISSIONS (tons/yr)
TEG Dehy Glycol Reboiler Heater #1	1000	0.8	1106	8760	9.899	100.0	0.54	84.0	0.45
Tank Heater #1	250	0.8	1106	8760	2.475	100.0	0.13	84.0	0.11
Tank Heater #2	250	0.8	1106	8760	2.475	100.0	0.13	84.0	0.11
		1		TOTALS	14.849		0.800		0.670

	TOC		VOC	PM	110	Formaldehyde	
SOURCE	EF AP-42 ² Ib/MMscf	EMISSIONS (tons/yr)	EMISSIONS (tons/yr)	EF AP-42 ² Ib/MMscf	EMISSIONS (tons/yr)	EF AP-42 ³ Ib/MMscf	EMISSIONS (tons/yr)
TEG Dehy Glycol Reboiler Heater #1	11.0	0.06	0.06	7.6	0.04	7.50E-02	0.0004
Tank Heater #1	11.0	0.01	0.01	7.6	0.01	7.50E-02	0.0001
Tank Heater #2	11.0	0.01	0.01	7.6	0.01	7.50E-02	0.0001
	TOTALS	0.08	0.08		0.06		0.00

Criteria emissions rounded to the nearest 1/100 of a ton, VOC/HAP rounded to 1/1000 of a ton.

EF AP-42¹ = emission factor from AP-42 Table 1.4-1, Small Boilers <100 MMbtu/hr (EPA 7/98), Standard = 1,020 Btu/scf

 $EF AP-42^2 = emission factor from AP-42 Table 1.4-2$ (EPA 7/98)

 $EF AP-42^3$ = emission factor from AP-42 Table 1.4-2 (EPA 7/98)

Fuel Consumption (MMscf/yr) = Heater Size (MBtu/hr) * 1,000 (Btu/MBtu) * Hours of Operation (hrs/yr) Fuel Heat Value (Btu/scf) * 1,000,000 (scf/MMscf) * Heater Efficiency

NOx/CO/TOC Emissions (tons/yr) = AP-42 EF (lbs/MMscf) * Fuel Consumption (MMscf/yr) * (Fuel Heat Value/ Standard Fuel Heat Value) / 2,000 (lbs/ton) -Standard Fuel Heat Value, Natural Gas (AP-42, 7/98, p1.4-5) = 1,020 Btu/scf

VOC emissions assumed equal to TOC emissions

POTENTIAL UNCONTROLLED EMISSIONS

Company: Summit Gas Gathering Facility Name: River Bend Dehydration Site Facility Location: Uintah County, Utah

> Unit: TEG Dehydrator - RBD-1 Rating: 45.0 MMscf/day total; 45015 Pump

Unit	Gas Flow								Total	Total		
Description	Rate	VOCs	Benzene	Toluene	Ethylbenzene	Xylenes	N-Hexane	224-TMP	HAPs	BTEX	CO2	Methane
	(MMscf/day)	(tons/yr)	(tons/yr)	(tons/yr)	(tons/yr)	(tons/yr)	(tons/yr)	(tons/yr)	(tons/yr)	(tons/yr)	(MT/yr)*	(MT/yr)*
Dehy w/45015 pump	45.0	137.5587	27.6692	35.1531	1.3639	15.3322	2.3678	0.1657	82.0519	79.5184	3.2014	3.3481
Flash Separator		22.0223	0.2460	0.1976	0.0044	0.0334	0.6294	0.0427	1.1534	0.4814	2.9306	38.5073
TOTAL		159.581	27.915	35.351	1.368	15.366	2.997	0.208	83.205	80.000	6.132	41.855

POTENTIAL CONTROLLED EMISSIONS

Unit	Gas Flow								Total	Total		
Description	Rate	VOCs	Benzene	Toluene	Ethylbenzene	Xylenes	N-Hexane	224-TMP	HAPs	BTEX	CO2	Methane
	(MMscf/day)	(tons/yr)	(tons/yr)	(tons/yr)	(tons/yr)	(tons/yr)	(tons/yr)	(tons/yr)	(tons/yr)	(tons/yr)	(MT/yr)*	(MT/yr)*
Dehy w/45015 pump	45.0	1.3756	0.2767	0.3515	0.0136	0.1533	0.0237	0.0017	0.8205	0.7952	3.2014	0.0335
Flash Separator**		0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000
TOTAL		1.376	0.277	0.352	0.014	0.153	0.024	0.002	0.821	0.795	3.201	0.033

Dehydrator still vent controlled 99% through the use of a thermal oxidizer (see attached information)

*CO₂ and Methane emissions are expressed in metric tons per GHG requirements.

** Flash gas separator is routed to two places: any liquids go to the bullet tank onsite; gas is routed to a suction line and sent off-site to the Tap 1 Compressor Station.

Page: 1 GRI-GLYCalc VERSION 4.0 - SUMMARY OF INPUT VALUES Case Name: Summit Gas Gathering - River Bend Dehy Site File Name: Y:\Utah\River Bend Dehy Site\Buys RB Dehy TV Application\River Bend Dehydrator emissions rev 1 Jan 13 2011.ddf Date: January 14, 2011 DESCRIPTION: Description: 45 MMscfd with flash tank and thermal oxidizer 45015 glycol pump (electric) PTE uncontrolled and controlled Annual Hours of Operation: 8760.0 hours/yr WET GAS: _____ Temperature: 99.00 deg. Pressure: 800.00 psig 99.00 deg. F Wet Gas Water Content: Saturated Component Conc. (vol %) Carbon Dioxide 0.3567 Nitrogen 0.3832 Methane 89.2649 Ethane 6.3525 Propane 2.0898
 Isobutane
 0.4267

 n-Butane
 0.4854

 Isopentane
 0.1928

 n-Pentane
 0.1391

 n-Hexane
 0.0553
 Cyclohexane 0.0280 Other Hexanes 0.0910 Heptanes 0.0505 Methylcyclohexane 0.0329 2,2,4-Trimethylpentane 0.0037 Benzene 0.0153 Toluene 0.0116 Toluene Ethylbenzene 0.0003 Xylenes 0.0025 C8+ Heavies 0.0178 DRY GAS: Flow Rate: 45.0 MMSCF/day Water Content: 7.0 lbs. H2O/MMSCF

LEAN GLYCOL:

Page: 2

Glycol Type: TEG Water Content: 1.5 wt% H2O Flow Rate: 7.5 gpm

PUMP:

Glycol Pump Type: Electric/Pneumatic

FLASH TANK:

Flash Control: Recycle/recompression Temperature: 120.0 deg. F Pressure: 60.0 psig

REGENERATOR OVERHEADS CONTROL DEVICE:

Control Device:	Combustion Device
Destruction Efficiency:	99.0 %
Excess Oxygen:	13.8 %
Ambient Air Temperature:	52.0 deg. F

GRI-GLYCalc VERSION 4.0 - EMISSIONS SUMMARY

Case Name: Summit Gas Gathering - River Bend Dehy Site File Name: Y:\Utah\River Bend Dehy Site\Buys RB Dehy TV Application\River Bend Dehydrator emissions_rev 1_Jan 13_2011.ddf Date: January 14, 2011

CONTROLLED REGENERATOR EMISSIONS

Component	lbs/hr	lbs/day	tons/yr
Methane	0.0084	0.202	0.0368
Ethane	0.0104	0.250	0.0456
Propane	0.0144	0.345	0.0629
Isobutane	0.0067	0.161	0.0293
n-Butane	0.0113	0.272	0.0497
Isopentane	0.0060	0.143	0.0261
n-Pentane	0.0060	0.143	0.0261
n-Hexane	0.0054	0.130	0.0237
Cyclohexane	0.0140	0.336	0.0614
Other Hexanes	0.0064	0.153	0.0280
Heptanes	0.0117	0.281	0.0512
Methylcyclohexane	0.0213	0.510	0.0931
2,2,4-Trimethylpentane	0.0004	0.009	0.0017
Benzene	0.0632	1.516	0.2767
Toluene	0.0803	1.926	0.3515
Ethylbenzene	0.0031	0.075	0.0136
Xylenes	0.0350	0.840	0.1533
C8+ Heavies	0.0291	0.697	0.1273
Total Emissions	0.3329	7.989	1.4581
Total Hydrocarbon Emissions	0.3329	7.989	1.4581
Total VOC Emissions	0.3141	7.537	1.3756
Total HAP Emissions	0.1873	4.496	0.8205
Total BTEX Emissions	0.1815	4.357	0.7952

UNCONTROLLED REGENERATOR EMISSIONS

Component	lbs/hr	lbs/day	tons/yr
Methane	0.8408	20.180	3.6829
Ethane	1.0419	25.007	4.5637
Propane	1.4362	34.468	6.2904
Isobutane	0.6700	16.079	2.9344
n-Butane	1.1344	27.227	4.9688
Isopentane	0.5952	14.285	2.6070
n-Pentane	0.5956	14.295	2.6089
n-Hexane	0.5406	12.974	2.3678
Cyclohexane	1.4013	33.631	6.1377
Other Hexanes	0.6388	15.331	2.7980
Heptanes	1.1692	28.062	5.1213
Methylcyclohexane	2.1262	51.028	9.3126
2,2,4-Trimethylpentane	0.0378	0.908	0.1657
Benzene	6.3172	151.612	27.6692

Toluene	8.0258	192.620	Page: 2 35.1531
Ethylbenzene	0.3114	7.474	1.3639
Xylenes	3.5005	84.012	15.3322
C8+ Heavies	2.9058	69.740	12.7275
Total Emissions	33.2889	798.933	145.8053
Total Hydrocarbon Emissions	33.2889	798.933	145.8053
Total VOC Emissions	31.4061	753.746	137.5587
Total HAP Emissions	18.7333	449.600	82.0519
Total BTEX Emissions	18.1549	435.717	79.5184

FLASH GAS EMISSIONS

Note: Flash Gas Emissions are zero with the Recycle/recompression control option.

FLASH TANK OFF GAS

Component	lbs/hr	lbs/day	tons/yr
Methane	9.6708	232.098	42.3580
Ethane	3.3775	81.061	14.7930
Propane	2.0640	49.536	9.0403
Isobutane	0.6292	15.101	2.755
n-Butane	0.8043	19.304	3.5230
Isopentane	0.3627	8.705	1.588
n-Pentane	0.2901	6.962	1.270
n-Hexane	0.1437	3.448	0.629
Cyclohexane	0.0951	2.281	0.416
Other Hexanes	0.2251	5.403	0.986
Heptanes	0.1500	3.601	0.657
Methylcyclohexane	0.1109	2.662	0.485
2,2,4-Trimethylpentane	0.0098	0.234	0.042
Benzene	0.0562	1.348	0.246
Toluene	0.0451	1.083	0.197
Ethylbenzene	0.0010	0.024	0.004
Xylenes	0.0076	0.183	0.033
C8+ Heavies	0.0331	0.794	0.144
Total Emissions	18.0762	433.829	79.173
Total Hydrocarbon Emissions	18.0762	433.829	79.173
Total VOC Emissions	5.0279	120.670	22.022
Total HAP Emissions	0.2633	6.320	1.153
Total BTEX Emissions	0.1099	2.638	0.481

2

GRI-GLYCalc VERSION 4.0 - AGGREGATE CALCULATIONS REPORT

Case Name: Summit Gas Gathering - River Bend Dehy Site File Name: Y:\Utah\River Bend Dehy Site\Buys RB Dehy TV Application\River Bend Dehydrator emissions_rev 1_Jan 13_2011.ddf Date: January 14, 2011

DESCRIPTION:

Description: 45 MMscfd with flash tank and thermal oxidizer 45015 glycol pump (electric) PTE uncontrolled and controlled

Annual Hours of Operation: 8760.0 hours/yr

EMISSIONS REPORTS:

CONTROLLED REGENERATOR EMISSIONS

Component	lbs/hr	lbs/day	tons/yr
Methane	0.0084	0.202	0.0368
Ethane	0.0104	0.250	0.0456
Propane	0.0144	0.345	0.0629
Isobutane	0.0067	0.161	0.0293
n-Butane	0.0113	0.272	0.0497
Isopentane	0.0060	0.143	0.0261
n-Pentane	0.0060	0.143	0.0261
n-Hexane	0.0054	0.130	0.0237
Cyclohexane	0.0140	0.336	0.0614
Other Hexanes	0.0064	0.153	0.0280
Heptanes	0.0117	0.281	0.0512
Methylcyclohexane	0.0213	0.510	0.0931
2,2,4-Trimethylpentane	0.0004	0.009	0.0017
Benzene	0.0632	1.516	0.2767
Toluene	0.0803	1.926	0.3515
Ethylbenzene	0.0031	0.075	0.0136
Xylenes	0.0350	0.840	0.1533
C8+ Heavies	0.0291	0.697	0.1273
Total Emissions	0.3329	7.989	1.4581
Total Hydrocarbon Emissions	0.3329	7.989	1.4581
Total VOC Emissions	0.3141	7.537	1.3756
Total HAP Emissions	0.1873	4.496	0.8205
Total BTEX Emissions	0.1815	4.357	0.7952

UNCONTROLLED REGENERATOR EMISSIONS

Component	lbs/hr	lbs/day	tons/yr
Methane	0.8408	20.180	3.6829
Ethane	1,0419	25.007	4.5637

Propane Isobutane n-Butane	1.4362 0.6700 1.1344	34.468 16.079 27.227	Page: 2 6.2904 2.9344 4.9688
Isopentane	0.5952	14.285	2.6070
n-Pentane	0.5956	14.295	2.6089
n-Hexane	0.5406	12.974	2.3678
Cyclohexane	1.4013	33.631	6.1377
Other Hexanes	0.6388	15.331	2.7980
Heptanes	1.1692	28.062	5.1213
Methylcyclohexane	2.1262	51.028	9.3126
2,2,4-Trimethylpentane	0.0378	0.908	0.1657
Benzene	6.3172	151.612	27.6692
Toluene	8.0258	192.620	35.1531
Ethylbenzene	0.3114	7.474	1.3639
Xylenes	3.5005	84.012	15.3322
C8+ Heavies	2.9058	69.740	12.7275
Total Emissions	33.2889	798.933	145.8053
Total Hydrocarbon Emissions	33.2889	798.933	145.8053
Total VOC Emissions	31.4061	753.746	137.5587
Total HAP Emissions	18.7333	449.600	82.0519
Total BTEX Emissions	18.1549	435.717	79.5184

FLASH GAS EMISSIONS

Note: Flash Gas Emissions are zero with the Recycle/recompression control option.

FLASH TANK OFF GAS

Component	lbs/hr	lbs/day	tons/yr
Methane	9.6708	232.098	42.3580
Ethane	3.3775	81.061	14.7936
Propane	2.0640	49.536	9.0403
Isobutane	0.6292	15.101	2.7559
n-Butane	0.8043	19.304	3.5230
Isopentane	0.3627	8.705	1.5887
n-Pentane	0.2901	6.962	1.2706
n-Hexane	0.1437	3.448	0.6294
Cyclohexane	0.0951	2.281	0.4163
Other Hexanes	0.2251	5.403	0.9860
Heptanes	0.1500	3.601	0.6571
Methylcyclohexane	0.1109	2.662	0.4858
2,2,4-Trimethylpentane	0.0098	0.234	0.0427
Benzene	0.0562	1.348	0.2460
Toluene	0.0451	1.083	0.1976
Ethylbenzene	0.0010	0.024	0.0044
Xylenes	0.0076	0.183	0.0334
C8+ Heavies	0.0331	0.794	0.1449
Total Emissions	18.0762	433.829	79.1739

Page: 3

Total Hydrocarbon	Emissions	18.0762	433.829	79.1739
Total VOC	Emissions	5.0279	120.670	22.0223
Total HAP	Emissions	0.2633	6.320	1.1534
Total BTEX	Emissions	0.1099	2.638	0.4814

EQUIPMENT REPORTS:

COMBUSTION DEVICE

Ambient	Temperature:	52.00 deg.	F

		-				
	Exce	ess	Oxygen:	13.80	00	
Comb	ustion H	Effi	iciency:	99.00	010	
Supplemental	Fuel Re	equi	irement:	1.86e-001	MM	BTU/hr

Component	Emitted	Destroyed
Methane	1.00%	99.00%
Ethane	1.00%	99.00%
Propane	1.00%	99.00%
Isobutane	1.00%	99.00%
n-Butane	1.00%	99.00%
Isopentane	1.00%	99.00%
n-Pentane	1.00%	99.00%
n-Hexane	1.00%	99.00%
Cyclohexane	1.00%	99.00%
Other Hexanes	1.00%	99.00%
Heptanes	1.00%	99.00%
Methylcyclohexane	1.00%	99.00%
2,2,4-Trimethylpentane	1.00%	99.00%
Benzene	1.00%	99.00%
Toluene	1.00%	99.00%
Ethylbenzene	1.00%	99.00%
Xylenes	1.00%	99.00%
C8+ Heavies	1.00%	99.00%

ABSORBER

NOTE: Because the Calculated Absorber Stages was below the minimum allowed, GRI-GLYCalc has set the number of Absorber Stages to 1.25 and has calculated a revised Dry Gas Dew Point.

Calculated Absorber Stages: Calculated Dry Gas Dew Point:	1.25 4.21	lbs. H2O/MMSCF
Temperature: Pressure: Dry Gas Flow Rate: Glycol Losses with Dry Gas: Wet Gas Water Content:	800.0 45.0000 0.4848	MMSCF/day

Page: 4 Calculated Wet Gas Water Content: 66.86 lbs. H2O/MMSCF Calculated Lean Glycol Recirc. Ratio: 3.83 gal/lb H2O

Component	Remaining in Dry Gas	Absorbed in Glycol
Water	6.28%	93.728
Carbon Dioxide	99.80%	0.208
Nitrogen	99.98%	0.028
Methane	99.99%	0.018
Ethane	99.95%	0.058
Propane	99.92%	0.08%
Isobutane	99.89%	0.11%
n-Butane	99.86%	0.14%
Isopentane	99.86%	0.14%
n-Pentane	99.82%	0.18%
n-Hexane	99.718	0.29%
Cyclohexane	98.728	1.28%
Other Hexanes	99.788	0.22%
Heptanes	99.478	0.53%
Methylcyclohexane	98.608	1.40%
2,2,4-Trimethylpentane	99.77%	0.23%
Benzene	89.21%	10.79%
Toluene	84.72%	15.28%
Ethylbenzene	80.16%	19.84%
Xylenes	73.25%	26.75%
C8+ Heavies	98.04%	1.96%

FLASH TANK

Flash Contr Flash Temperatu Flash Pressu	ire: 120	
Component		Removed in Flash Gas
Carbon Dioxide Nitrogen Methane	99.98% 52.21% 7.72% 8.00% 23.58%	47.79% 92.28% 92.00%
n-Butane Isopentane	41.03% 51.57% 58.51% 62.32% 67.41%	48.43% 41.49% 37.68%
n-Hexane Cyclohexane Other Hexanes Heptanes Methylcyclohexane	79.118 93.858 74.208 88.688 95.248	25.80%
2,2,4-Trimethylpentane Benzene	79.81% 99.16%	20.19% 0.84%

85

		Page:	5
Toluene	99.49%	0.51%	
Ethylbenzene	99.71%	0.298	
Xylenes	99.81%	0.19%	
C8+ Heavies	99.01%	0.99%	

REGENERATOR

No Stripping Gas used in regenerator.

Component	Remaining in Glycol	Distilled Overhead
Water	34.98%	65.02%
Carbon Dioxide	0.00%	100.00%
Nitrogen	0.00%	100.00%
Methane	0.00%	100.00%
Ethane	0.00%	100.00%
Propane	0.00%	100.00%
Isobutane	0.00%	100.00%
n-Butane	0.00%	100.00%
Isopentane	0.80%	99.20%
n-Pentane	0.74%	99.26%
n-Hexane	0.63%	99.37%
Cyclohexane	3.41%	96.59%
Other Hexanes	1.35%	98.65%
Heptanes	0.56%	99.44%
Methylcyclohexane	4.20%	95.80%
2,2,4-Trimethylpentane	1.88%	98.12%
Benzene	5.04%	94.96%
Toluene	7.94%	92.06%
Ethylbenzene	10.44%	89.56%
Xylenes	12.94%	87.06%
C8+ Heavies	12.14%	87.86%

STREAM REPORTS:

WET GAS STREAM

Temperature: 99.00 deg. F Pressure: 814.70 psia Flow Rate: 1.88e+006 scfh Component Conc. Loading (vol%) (lb/hr) Water 1.41e-001 1.26e+002 Carbon Dioxide 3.56e-001 7.76e+002 Nitrogen 3.83e-001 5.31e+002 Methane 8.91e+001 7.08e+004 Ethane 6.34e+000 9.44e+003

Propane 2.09e+000 4.56e+003 Isobutane 4.26e-001 1.23e+003 n-Butane 4.85e-001 1.39e+003 Isopentane 1.93e-001 6.88e+002 n-Pentane 1.39e-001 4.96e+002 n-Hexane 5.52e-002 2.36e+002 Cyclohexane 2.80e-002 1.16e+002 Other Hexanes 9.09e-002 3.88e+002 Heptanes 5.04e-002 2.50e+002 Methylcyclohexane 3.29e-002 1.60e+002 2,2,4-Trimethylpentane 3.69e-003 2.09e+001 Benzene 1.53e-002 5.91e+001 Toluene 1.16e-002 5.28e+001 Ethylbenzene 3.00e-004 1.57e+000 Xylenes 2.50e-003 1.31e+001 C8+ Heavies 1.78e-002 1.50e+002 Total Components 100.00 9.15e+004

DRY GAS STREAM

Temperature: 99.00 deg. F Pressure: 814.70 psia Flow Rate: 1.88e+006 scfh Conc. Loading (vol%) (lb/hr) Component Water 8.86e-003 7.89e+000 Carbon Dioxide 3.56e-001 7.74e+002 Nitrogen 3.83e-001 5.30e+002 Methane 8.93e+001 7.08e+004 Ethane 6.35e+000 9.44e+003 Propane 2.09e+000 4.55e+003 Isobutane 4.26e-001 1.22e+003 n-Butane 4.85e-001 1.39e+003 Isopentane 1.93e-001 6.87e+002 n-Pentane 1.39e-001 4.95e+002 n-Hexane 5.51e-002 2.35e+002 Cyclohexane 2.76e-002 1.15e+002 Other Hexanes 9.08e-002 3.87e+002 Heptanes 5.02e-002 2.49e+002 Methylcyclohexane 3.24e-002 1.57e+002 2,2,4-Trimethylpentane 3.69e-003 2.08e+001 Benzene 1.37e-002 5.27e+001 Toluene 9.83e-003 4.48e+001 Ethylbenzene 2.41e-004 1.26e+000 Xylenes 1.83e-003 9.61e+000 C8+ Heavies 1.75e-002 1.47e+002 ______ Total Components 100.00 9.13e+004

LEAN GLYCOL STREAM

_____ Temperature: 99.00 deg. F Flow Rate: 7.49e+000 gpm Component Conc. Loading (wt%) (lb/hr) TEG 9.84e+001 4.15e+003 Water 1.50e+000 6.33e+001 Carbon Dioxide 3.65e-012 1.54e-010 Nitrogen 2.06e-013 8.70e-012 Methane 8.37e-018 3.53e-016 Ethane 4.94e-008 2.09e-006 Propane 3.38e-009 1.42e-007 Isobutane 9.24e-010 3.90e-008 n-Butane 1.14e-009 4.81e-008 Isopentane 1.14e-004 4.81e-003 n-Pentane 1.05e-004 4.45e-003 n-Hexane 8.15e-005 3.44e-003 Cyclohexane 1.17e-003 4.95e-002 Other Hexanes 2.07e-004 8.73e-003 Heptanes 1.57e-004 6.63e-003 Methylcyclohexane 2.21e-003 9.32e-002 2,2,4-Trimethylpentane 1.72e-005 7.24e-004 Benzene 7.95e-003 3.35e-001 Toluene 1.64e-002 6.93e-001 Ethylbenzene 8.60e-004 3.63e-002 Xylenes 1.23e-002 5.21e-001 C8+ Heavies 9.51e-003 4.01e-001 ______ Total Components 100.00 4.22e+003 RICH GLYCOL STREAM _____ Temperature: 99.00 deg. F Pressure: 814.70 psia Flow Rate: 7.84e+000 gpm NOTE: Stream has more than one phase. Conc. Loading (wt%) (lb/hr) Component TEG 9.46e+001 4.15e+003 Water 4.12e+000 1.81e+002 Carbon Dioxide 3.51e-002 1.54e+000 Nitrogen 1.98e-003 8.71e-002 Methane 2.40e-001 1.05e+001 Ethane 1.01e-001 4.42e+000 Propane 7.98e-002 3.50e+000 Isobutane 2.96e-002 1.30e+000 n-Butane 4.42e-002 1.94e+000 Isopentane 2.19e-002 9.63e-001

> n-Pentane 2.03e-002 8.90e-001 n-Hexane 1.57e-002 6.88e-001 Cyclohexane 3.52e-002 1.55e+000

Heptanes 1.67e-001 1.17e+000 Methylcyclohexane 3.09e-001 2.13e+000 2,2,4-Trimethylpentane 4.73e-003 3.78e-002 Benzene 1.15e+000 6.32e+000 Toluene 1.24e+000 8.03e+000 Ethylbenzene 4.19e-002 3.11e-001 Xylenes 4.71e-001 3.50e+000 C8+ Heavies 2.44e-001 2.91e+000 Total Components 100.00 1.52e+002

COMBUSTION DEVICE OFF GAS STREAM

Temperature: 1000.00 deg. F Pressure: 14.70 psia Flow Rate: 1.72e+000 scfh		¥
Component		Loading (lb/hr)
Ethane Propane Isobutane	1.16e+001 7.66e+000 7.20e+000 2.55e+000 4.32e+000	1.04e-002 1.44e-002 6.70e-003
	1.83e+000 1.39e+000 3.68e+000	5.96e-003 5.41e-003 1.40e-002
Methylcyclohexane 2,2,4-Trimethylpentane Benzene		2.13e-002 3.78e-004 6.32e-002
Ethylbenzene Xylenes C8+ Heavies	7.29e+000	3.50e-002
Total Components	100.00	3.33e-001

Page: 10

QUESTAR APPLIED TECHNOLOGY

1210 D. Street, Rock Springs, Wyoming 82901 (307) 352-7292

LIMS ID: N/A Description: River Bend Dehy Inlet Analysis Date/Time: 6/27/2010 7:41 AM Field: **River Bend** Analyst Initials: PRP ML#: **XTO /Summit Gas** Instrument ID: Instrument 1 GC Method: Quesbtex Data File: QPC32.D Date Sampled: 6/22/2010 Mol% Wt% LV% Component Methane 89.2649 77.5483 83,8190 Ethane 6.3525 10.344 9.4371 3.1919 Propane 2.0898 4.9901 Isobutane 0.4267 1.343 0.7737 n-Butane 0.4854 1.5276 0.8482 Neopentane 0.0072 0.028 0.0152 0.3766 Isopentane 0.1856 0.7252 n-Pentane 0.5433 0.2792 0.1391 0.0364 0.0180 2,2-Dimethylbutane 0.0078 2,3-Dimethylbutane 0.0146 0.0682 0.0332 2-Methylpentane 0.0440 0.2055 0.1013 3-Methylpentane 0.0246 0.1147 0.0556 0.258 0.1260 n-Hexane 0.0553 Heptanes 0.1420 0.7061 0.2982 0.0383 Octanes 0.0139 0.0857 Nonanes 0.0056 0.0359 0.0149 Decanes plus 0.0011 0.0087 0.0038 Nitrogen 0.3832 0.5813 0.2329 **Carbon Dioxide** 0.3567 0.85 0.3369 Oxygen 0.0000 0 0.0000 0 0.0000 Hydrogen Sulfide 0.0000 Total 100.0000 100.0000 100.0000 Clobal Properties Units Gross BTU/Real CF 1130.4 BTU/SCF at 60°F and 14.73 psia Sat.Gross BTU/Real CF BTU/SCF at 60°F and 14.73 psia 1111.9 Gas Compressibility (Z) 0.9973 Specific Gravity 0.6393 air=1 Avg Molecular Weight 18.467 gm/mole Propane GPM 0.572736 gal/MCF **Butane GPM** 0.291913 gal/MCF Gasoline GPM 0.234014 gal/MCF 26# Gasoline GPM 0.387450 gal/MCF **Total GPM** 1.099463 gal/MCF Base Mol% 100.182 %v/v °F Sample Temperature: 99 Sample Pressure: 1000 psig

Reviewed By:

Component	Mol%	Wt%	LV%
Benzene	0.0153	0.0649	0.0238
Toluene	0.0116	0.0578	0.0215
Ethylbenzene	0.0003	0.0015	0.0006
M&P Xylene	0.0022	0.0128	0.0048
O-Xylene	0.0003	0.0018	0.0006
2,2,4-Trimethylpentane	0.0037	0.0229	0.0103
Cyclopentane	0.0000	0	0.0000
Cyclohexane	0.0280	0.1277	0.0528
Methylcyclohexane	0.0329	0.1748	0.0732
Description:	River Bend Deh	y Inlet	

GRI GlyCalc Information

Component	Mol%	Wt%	LV%	
Carbon Dioxide	0.3567	0.85	0.3369	a farfafarfini yn sen
Hydrogen Sulfide	0.0000	0	0.0000	
Nitrogen	0.3832	0.5813	0.2329	
Methane	89.2649	77.5483	83.8190	
Ethane	6.3525	10.344	9.4371	
Propane	2.0898	4.9901	3.1919	
Isobutane	0.4267	1.343	0.7737	
n-Butane	0.4854	1.5276	0.8482	
Isopentane	0.1928	0.7532	0.3918	
n-Pentane	0.1391	0.5433	0.2792	
Cyclopentane	0.0000	0	0.0000	
n-Hexane	0.0553	0.258	0.1260	
Cyclohexane	0.0280	0.1277	0.0528	
Other Hexanes	0.0910	0.4248	0.2081	
Heptanes	0.0505	0.2580	0.1166	
Methylcyclohexane	0.0329	0.1748	0.0732	
2,2,4 Trimethylpentane	0.0037	0.0229	0.0103	
Benzene	0.0153	0.0649	0.0238	
Toluene	0.0116	0.0578	0.0215	
Ethylbenzene	0.0003	0.0015	0.0006	
Xylenes	0.0025	0.0146	0.0054	
C8+ Heavies	0.0178	0.1142	0.0510	
Subtotal	100.0000	100.0000	100.0000	
Oxygen	0.0000	0	0.0000	
Total	100.0000	100.0000	100.0000	

FLASH TANK EMISSIONS

Company: Summit Gas Gathering Facility Name: River Bend Dehydration Site Facility Location: Uintah County, Utah

GAS MOLECULAR MOLE RELATIVE WEIGHT COMPONENT COMPONENT COMPONENT COMPONENT WEIGHT PERCENT MOLE WEIGHT PERCENT FLOW RATE FLOW RATE FLOW RATE (lb/lb-mole) (lb/lb-mole) (Mscf/day) (lb/hr) Methane 16.043 30.4601 4.886713843 0.08224227 14.19581873 0.144866876 17.83491405 Ethane 30.07 20,4171 6.13942197 0.05512617 0.182003471 44.097 Propane 19.045 8.39827365 24.39683889 0.0514215 0.248967242 i-Butane 58.123 5.6218 3.267558814 9.492201527 0.01517886 0.096866944 3.735274595 n-Butane 58.123 6.4265 10.85090774 0.01735155 0.110732402 72.15 2.3103 1.66688145 4.842261623 0.00623781 0.049414784 i-Pentane n-Pentane 72.15 1.5685 1,13167275 3.287489657 0.00423495 0.033548495 86.177 0.5429 0.467854933 1.359110444 0.00146583 0.013869583 Hexanes Heptanes 100.204 0.6502 0.651526408 1.892672884 0.00175554 0.019314533 114.231 Octanes 0 0 0 0 128.258 0.0172 0.022060376 0.064085009 0.00004644 0.000653981 Nonanes Decanes + 142.285 0.1261 0.179421385 0.521216003 0.00034047 0.005318956 Benzene 78.12 0.1217 0.09507204 0.276182623 0.00032859 0.002818415 Toluene 92.13 0 0 0 0 0 0 Ethylbenzene 106.16 0 0 0 0 **Xylenes** 106.16 0 0 0 0 0 n-Hexane 86.177 0.2414 0.208031278 0.604327245 0.00065178 0.006167098 4.003 Helium 0 0 0 0 0 Nitrogen 28.013 11.9137 3.337384781 9.695044747 0.03216699 0.098936938 Carbon Dioxide 44.01 0.5373 0.23646573 0.686928833 0.00145071 0.007010038 32 Oxygen 0 0 0 0 0 Hydrogen Sulfide 34.08 0 0 0 0 0 VOC SUBTOTAL 36.6716 19.82362768 57.58729364 0.09901332 0.587672432

0.303103318

34.423614

Gas Vented: Days of Operation:

HAP SUBTOTAL

TOTAL

0.27 Mscf/day 365 days/year

0.3631

99.9998

31.2 barrels of Oil

0.00098037

0.26999946

0.880509867

100

8.6 Gas to Oil Ratio in Cubic Feet Gas to Barrel of Oil/Water

0.008985513

1.020489756

(tons/yr)

0.634516916

0.797175202

1.090476519

0.424277216

0.48500792

0.216436753

0.146942409

0.060748773

0.084597654

0.002864437

0.023297027

0.012344659

0.027011888

0.433343791

0.030703968

2.574005254

0.039356547 4.469745132

0

0

0

0

0

0

See attached flash gas analysis, including API Gravity and Reid Vapor Pressure

MITCHELL ANALYTICAL LABORATORY

2638 Faudree Odessa, Texas 79765-8538 561-5579

Gas Analysis

Company	Hy-Bon	Sample Press	60.0
Producer		Sample Temp	0.0
Lease	RIVERBEND DEHY	Date Sampled	11/04/2010
Station #	N/A	Sampled by	RF
Cylinder #.		Field Gravity.	0.0000
Date Run	11/09/2010	Analyzed by	DAVID
Lab Ref #	10-NOV-61433	Field H2S	0.0000

Physical Constants per GPA 2145-09 Calculations per GPA 2172-86 @ 14.65 psia & 60.0 Deg. F.

	MOL %	GPM (Ideal)	BTU (Ideal Dry)
Nitrogen	11,914	0.000	(ideal Diy) 0.0
Methane	30.460	0.000	307.6
CO2	0.537	0.000	0.0
Ethane	20.417	5.446	361.3
H2S	0.000	0.000	0.0
Propane	19.045	5.233	479.2
Iso-Butane	5.622	1,835	182.8
N-Butane	6.427	2.021	209.7
Iso-Pentane	2.310	0.843	92.4
N-Pentane	1.568	0.567	62.9
2,2-DMB	0.000	0.000	0.0
2-Me-C5	0.000	0.000	0.0
3-Me-C5	0.000	0.000	0.0
Hexanes +	1.700	0.752	89.7
		and the particular methods are served	
TOTALS	100.000	16.697	1780.1
GROSS HEATING VALUE	@ 14.65 PSIA	GASOLINE	CONTENT (GPM/Real)

Dry	Wet			Ethane & Heavier	16.851
1796	1767	BTU/Real Cu.Ft.		Propane & Heavier	11.355
1.1993	1.1903	Specific Gravity	(Real)	Butane & Heavier	6.073
1780	1750	BTU/Ideal Cu.Ft.		Pentane & Heavier	2.182
1.1888	1.1788	Specific Gravity	(Ideal)		

Z Factor : 0.9909

.

MITCHELL ANALYTICAL LABORATORY

2638 Faudree Odessa, Texas 79765-8538 561-5579

Extended Gas Analysis

		A01 844 9739	
Company	Hy-Bon	Sample Press	60.0
Producer		Sample Temp	
Lease	RIVERBEND DEHY	Date Sampled	11/04/2010
Station #	N/A	Sampled by	RF
		Field Gravity.	0.0000
Date Run	11/09/2010	Analyzed by	DAVID
Lab Ref #	10-NOV-61433	Field H2S	0.0000

Physical Constants per GPA 2145-09 Calculations per GPA 2172-86 @ 14.65 psia & 60.0 Deg. F.

		Mole %	Weight %
Nitrogen		11.9137	9.7400
Methane	C-1	30.4601	14.2617
Carbon Dioxide		0.5373	0.6901
Ethane	C-2	20.4171	17.9177
Hydrogensulfide		0.0000	0.0000
Propane	C-3	19.0450	24.5102
Iso-Butane		5.6218	9.5364
n-Butane	C-4	6.4265	10.9014
Isopentane	A States	2.3103	4.8649
n-Pentane	C-5	1.5685	3.3027
Neo-Hexane		0.0515	0.1213
Cyclopentane	CP	0.1222	0.2341
2-Methylpentane	2-MP	0.2365	0.5568
3-Methylpentane	3-MP	0.1327	0.3124
n-Hexane	C-6	0.2414	0.5683
Methylcyclopentane	MCP	0.1270	0.2920
Benzene		0.1217	0.2596
Cyclohexane	CH	0.1771	0.4072
2-Methylhexane		0.0360	0.0985
3-Methylhexane		0.0323	0.0885
Dimethylcyclopentanes	DMCP	0.0448	0.1203
Heptanes		0.0342	0.0936
n-Heptane	C-7	0.0466	0.1276
Methylcyclohexane	MCH	0.1522	0.4083
Toluene		0.0000	0.0000
Octanes		0.0000	0.0000
n-Octane	C-8	0.0000	0.0000
Ethylbenzene		0.0000	0.0000
P-M-Xylene		0.0000	0.0000
O-Xylene		0.0000	0.0000
Nonanes	a 0	0.0151	0.0531
n-Nonane	C-9	0.0021	0.0074

Continues....

Hy-Bon

MITCHELL ANALYTICAL LABORATORY 2638 Faudree

2638 Faudree Odessa, Texas 79765-8538 561-5579

Extended Gas Analysis (Page 2)

		Mole %	Weight %
Decanes n-Decane Decane+	C-10	0.0167 0.0168 0.0926	0.0649 0.0655 0.3953
TOTALS		100.0000	100.0000

Dry	Wet		
1796	1772	BTU/Real	Cu.Ft.
1780	1750	BTU/Ideal	Cu.Ft.

.

Specific Gravity (Real) : 1.1993

Lab Ref #.. 10-NOV-61433

.

.

CAPROCK LABORATORIES, INC. 3312 BANKHEAD HIGHWAY MIDLAND, TEXAS 79701 432.689.7252 CAPROCKLAB.COM

CHROMATOGRAPHIC ANALYSIS

1010042 COMPANY: HYBON JOB #: SAMPLE ID: FLASH GAS SAMPLE #: 1010042HYB07 20101005 DATE ON: SAMPLE TYPE: SPOT 20101005 RIVER BEND DEHY DATE OFF: STATION: BASE PRESSURE, PSIA: TIME ON: 14.650 TIME OFF: RANAREX GRAVITY: CLIENT SAMPLE PRESS., psig: SAMPLED BY: 000001 GAS TEMP. F: CYLINDER #: SAMPLE USE *: A ANALYSIS DATE: 20101012 ANALYSIS COMMENTS: CYLINDER FULL OF WATER, NO LIQUID HYDROCARBONS COMPONENT MOLE % GPM

HYDROGEN SULFIDE	0.0000	
NITROGEN	1.4476	
OXYGEN	0.1967	
METHANE	86.8542	
CARBON DIOXIDE	0.4523	
ETHANE	6.3659	1.6932
PROPANE	2.2056	0.6044
ISO-BUTANE	0.5277	0.1717
N-BUTANE	0.6320	0.1982
ISO-PENTANE	0.2952	0.1074
N-PENTANE	0.2447	0.0881
HEXANES	0.2945	0.1205
HEPTANES +	0.4836	0.2219
TOTAL	100.0000	3.2054

HEATING VALUE BTU DRY BTU SATURATED	1141.5 1121.7	9
COMPRESSIBILITY, Z	0.9971	
RELATIVE DENSITY	0.6660	
AVE. MOLE WEIGHT	19.2903	
H2S, TUTWEILER, GR./100 C	CUBIC FEET	0.0

BASE CONDITIONS, 14.65 PSIA @ 60 DEGREES FAHRENHEIT

2.2106

* A = ACCOUNTABLE, O = OPERATIONAL

26 # GASOLINE

CAPROCK LABORATORIES, INC. 3312 BANKHEAD HIGHWAY MIDLAND, TEXAS 79701 432.689.7252 CAPROCKLAB.COM

CHROMATOGRAPHIC ANALYSIS

COMPANY: SAMPLE ID: SAMPLE TYPE: STATION: BASE PRESSURE,PSIA: RANAREX GRAVITY: SAMPLE PRESS.,psig: GAS TEMP. F: ANALYSIS DATE: ANALYSIS COMMENTS:			JOB #: SAMPLE #: DATE ON: DATE OFF: TIME ON: TIME OFF: SAMPLED BY: CYLINDER #: SAMPLE USE * : LIQUID HYDROCA	A
COMPONENT	MOLE %	GPM		
HYDROGEN SULFIDE NITROGEN OXYGEN METHANE CARBON DIOXIDE ETHANE PROPANE ISO-BUTANE N-BUTANE ISO-PENTANE N-PENTANE HEXANES HEPTANES + TOTAL	0.0000 0.7210 0.0000 87.6696 0.4566 6.4256 2.2263 0.5326 0.6379 0.2980 0.2470 0.2973 0.4881	1.7091 0.6101 0.1733 0.2000 0.1084 0.0890 0.1216 0.2239 3.2354	4	
HEATING VALUE BTU DRY BTU SATURATED	1152.2 1132.2			
COMPRESSIBILITY, Z	0.9970			
RELATIVE DENSITY	0.6629			
AVE. MOLE WEIGHT	19.2005			
H2S, TUTWEILER, GR./10	0 CUBIC FEET	0.0		
26 # GASOLINE	2.2232			

BASE CONDITIONS, 14.65 PSIA @ 60 DEGREES FAHRENHEIT

* A = ACCOUNTABLE, O = OPERATIONAL

CAPROCK LABORATORIES, INC. 3312 BANKHEAD HIGHWAY MIDLAND, TEXAS 79701 (432)689-7252, CAPROCKLAB.COM

COMPANY: SAMPLE ID: SAMPLE TYPE:	HYBON FLASH GAS SPOT		JOB #: SAMPLE #: DATE ON:	1010042 1010042HYB07EA 20101005
STATION: SAMPLE PRESS.,psig:	RIVER BEND	DEHY	TIME ON: SAMPLED BY:	CLIENT
GAS TEMP. F:			CYLINDER #:	N/A
ANALYSIS DATE:	20101012		OTENDER.	
ANALYSIS COMMENTS:				
	MPOSITIONAL	ANALYSIS OF	NATURAL GAS	
COMPONENT	MOLE %	WEIGHT %	CALCULATED PARAM	ETERS
HYDROGEN SULFIDE	0.0000	0.0000	TOTAL ANALYSI	S SUMMARY
NITROGEN	0.7210	1.0416		
OXYGEN	0.0000	0.0000	AVE MOLE WT	19.3899
METHANE	87.6696	72.5323	SP GRAV, 60F/60	0.3227
CARBON DIOXIDE	0.4566	1.0364	API GRAVITY	307.0
ETHANE	6.4256	9.9645	REL DENS, AIR=1	0.6695
PROPANE	2.2263	5.0630	VAPOR PRESS PSIA	4439.90
ISO-BUTANE	0.5326	1.5965		
N-BUTANE	0.6379	1.9121	C6+ SUMMARY	
ISO-PENTANE	0.2980	1.1088		
N-PENTANE (C-5)	0.2470	0.9191	AVE MOLE WT	119.1347
2,2 DIMETHYL BUTANE	0.0021	0.0093	SP GRAV, 60F/60	0.7401
CYCLOPENTANE	0.0260	0.0940	API GRAVITY	59.7
2-METHYLPENTANE	0.0356	0.1582	LBS/GAL	5.921
3-METHYLPENTANE	0.0294	0.1307	REL DENS, AIR=1	4.1133
N-HEXANE (C-6)	0.0520	0.2311	VAPOR PRESS PSIA	2.38
METHYLCYCLOPENTANES	0.0816	0.3542		
BENZENE	0.0080	0.0322	BTEX SUMMARY	
CYCLOHEXANE	0.0625	0.2713		
2-METHYLHEXANE	0.0055	0.0284	WT % BENZENE	0.0322
3-METHYLHEXANE	0.0089	0.0460	WT % TOLUENE	0.0413
DIMETHYLCYCLOPENTANES		0.1874	WT % E BENZENE	0.0170
HEPTANES	0.0066	0.0341	WT % XYLENES	0.0454
N-HEPTANE (C-7)	0.0172	0.0889		
METHYLCYCLOHEXANE	0.0399	0.1979		
TOLUENE	0.0087	0.0413		
2,2,4 TRIMETHYLPENTANE	0.0006	0.0035	\bigcirc	0
OCTANES	0.0614	0.3617		JV.+1 /1
N-OCTANE (C-8)	0.0174	0.1025	ANALYST	r fullebat
ETHYL BENZENE	0.0031	0.0170		PRITCHARD
P-M-XYLENE	0.0059	0.0323		IANAGER
O-XYLENE	0.0024	0.0131		
NONANES	0.0529	0.3499		
N-NONANE (C-9)	0.0091	0.0602		\mathbb{E}
DECANES	0.0460	0.3375		
N-DECANE (C-10) UNDECANES	0.0081	0.0594		
N-UNDECANES	0.0339 0.0075	0.2733		
DODECANE PLUS	0.0075	0.0605 1.2498		
DODEONIE I LOO	0.1101	1.2430		
TOTAL	100.0000	100.0000		

TOTAL

100.0000

100.0000

100

CAPROCK LABORATORIES, INC.

3312 BANKHEAD HIGHWAY MIDLAND, TEXAS 79701 (432)689-7252, CAPROCKLAB.COM

COMPANY: HYBON SAMPLE ID.: AS NOTED JOB NUMBER:1010042DATE RECEIVED:October 08, 2010DATE REPORTED:October 20, 2010REPORTED TO:Butch Gidney

SUMMARY OF STOCK TANK OIL ANALYSIS

SAMPLE IDENTIFICATION	LAB NUMBER	GRAVITY, API @ 60 F	REID VAPOR PRESSURE, PSIG
Riverbend Dehy, G-62	10042-01	59.7	7.75

Methods: API Gravity - ASTM D287 Reid Vapor Pressure - ASTM D323 Sample: Stock Tank Oil

Analyst:

James L. Pritchard, Lab Manager

STOCK TANK WORKING AND BREATHING EMISSIONS

Company: Summit Gas Gathering Facility Name: River Bend Dehydration Site Facility Location: Uintah County, Utah

TANK DESCRIPTION	WORKING LOSSES	BREATHING LOSSES	VOC LOSSES	TOTAL LOSSES
	(lbs/yr)	(lbs/yr)	(lbs/yr)	(tons/yr)
400-bbl storage tank #1	1293.12	7138.83	8431.95	4.22
400-bbl storage tank #2	1293.12	7138.83	8431.95	4.22
TOTAL	2586.24	14277.66	16863.9	8.43

EPA TANKS 4.09D used to calculate emissions; please see attached documentation.

TANKS 4.0.9d Emissions Report - Detail Format Detail Calculations (AP-42)

Summit Gas Gathering - River Bend Site - Vertical Fixed Roof Tank

Annual Emission Calcaulations	
Standing Losses (Ib):	7,138 8284
Vapor Space Volume (cu ft):	1,149.8229
Vapor Density (Ib/cu ft):	0.0414
Vapor Space Expansion Factor:	1.1513
Vented Vapor Seturation Factor.	0.3572
Tank Vapor Space Volume:	
Vapor Space Volume (cu ft):	1,149 8229
Tank Diameter (ft).	12.0000
Vapor Space Outage (ft):	10.1667
Tank Shell Height (ft)	20 0000
Average Liquid Height (ft):	10.0000
Roof Outage (ft):	0.1667
Roof Outage (Cone Roof)	0.4007
Roof Outage (ft):	0.1667
Roof Height (ft):	0.5000
Roof Slope (ft/ft): Shell Radius (ft):	6.0000
Vapor Density	
Vapor Density (Ib/cu ft):	0.0414
Vapor Molecular Weight (Ib/Ib-mole).	68.0000
Vapor Pressure at Daily Average Liquid	3 3397
Surface Temperature (psia):	511 6700
Daily Avg. Liquid Surface Temp (deg. R): Daily Average Ambient Temp. (deg. F):	52 9333
Ideal Gas Constant R	
(psia cuft / (lb-mol-deg R)):	10.731
Liquid Bulk Temperature (deg R):	511 6700
Tank Paint Solar Absorptance (Shell):	0.5400
Tank Paint Solar Absorptance (Roof)	0.5400
Daily Total Solar Insulation Factor (Btu/soft day):	1,578 3125
Vapor Space Expansion Factor	
Vapor Space Expansion Factor.	1.1513
Daily Vapor Temperature Range (deg R):	80 0000
Daily Vapor Pressure Range (psia)	8 9835
Breather Vent Press Setting Range(psia): Vapor Pressure at Daily Average Liquid	0.0000
Surface Temperature (psia):	3.3397
Vapor Pressure at Daily Minimum Liquid	3.3357
Surface Temperature (psia):	2.5895
Vapor Pressure at Daily Maximum Liquid	2.3033
Surface Temperature (psia):	11,5730
Daily Avg. Liquid Surface Temp. (deg R).	511.6700
Daily Min. Liquid Surface Temp. (deg R).	499 6700
Daily Max. Liquid Surface Temp. (deg R):	579.6700
Daily Ambient Temp. Range (deg R).	25 6333
Vented Vapor Saturation Factor	S. Andrews
Vented Vapor Saturation Factor:	0.3572
Vapor Pressure at Daily Average Liquid	_ 9.5015
Surface Temperature (psia): Vapor Space Outage (ft):	3 3397 10.1667
Working Losses (Ib):	1,293.1219 68.0000
Vapor Molecular Weight (Ib/Ib-mole): Vapor Pressure at Daily Average Liquid	00.0000
Surface Temperature (psia):	3.3397
Annual Net Throughput (gal/yr):	239,148.0000
Annual Tumovers:	14.4959
Turnover Factor	1,0000
Maximum Liquid Volume (gal):	16,497.5776
Maximum Liquid Height (ft):	19.5000
Tank Diameter (R):	12 0000
Working Loss Product Factor:	1 0000
Total Losses (lb).	8,431.9503

TANKS 4.0.9d Emissions Report - Detail Format Individual Tank Emission Totals

Emissions Report for: Annual

Summit Gas Gathering - River Bend Site - Vertical Fixed Roof Tank

	Losses(lbs)		
Components	Working Loss	Breathing Loss	Total Emissions
Gasoline (RVP 7.8)	1,293.12	7,138.83	8,431.95

UNCONTROLLED CONDENSATE TRUCK LOADING EMISSIONS

Company: Summit Gas Gathering Facility Name: River Bend Dehydration Site Facility Location: Uintah County, Utah

AP - 42, Chapter 5.2

L_L = 12.46 x S x P x M / T Emissions = L_L * Throughput

TABLE 1. Emission factors are calculated utilizing AP-42 equations and data from EPA TANKS 4.09 LL is converted to tpy VOC emissions per barrel of production per

L_L = Loading Loss Emission Factor (lbs VOC/1000 gal Loaded)

S = Saturation Factor (0.6 For Submerged Loading - Dedicated Service)

P = True Vapor Pressure of the Loaded Liquid (psi)

M = Vapor Molecular Weight of the Loaded Liquid (lbs/lbmol)

T = Temperature of Loaded Liquid (°R)

											V/e/c,
LOCATO	(A) (A) (A)	5 - C	TEVE (CSI)	2. de 2. 1			L. A. Maine	ا تارەق ا	Liew Welley Stole 101-1	المعالية والمعالية والمعالية	1.01/J * ***
Truck Loading	12.46	0.6	10	68	511.68	9.9353	0.0099	0.4173	7.62E-02	31.20	2.3760

Buys & Associates, Inc. 300 East Mineral Ave., Ste 10 Littleton CO 80122 ph. 303-781-8211

40

NATURAL GAS COMPOSITION

Company: Summit Gas Gathering Facility Name: River Bend Dehydration Site Facility Location: Uintah County, Utah

Fuel Type:	Natural Gas	1
Heat Value (wet):	1106	Btu/scf

C1-C2 Wt. Fraction: 0.878923596 VOC Wt. Fraction: 0.106762688 Non-HC Wt. Fraction: 0.014313716 Total: 1

COMPONENT	MOLE	COMPONENT	NET	WEIGHT	GROSS	NET DRY	LOWER	NET LOW
	PERCENT	MOLE	MOLE	FRACTION	HEATING	HEATING	HEATING	HEATING
8		WEIGHT	WEIGHT		VALUE	VALUE	VALUE	VALUE
		(lb/lb-mole)	(lb/lb-mole)		(BTU/scf)	(BTU/scf)	(BTU/scf)	(BTU/scf)
Methane	89.2649	16.043	14.32076791	0.775484458	1010	901.57549	910	812.31059
Ethane	6.3525	30.07	1.91019675	0.103439138	1769.8	112.426545	1618	102.78345
Propane	2.0898	44.097	0.921539106	0.0499023	2516.2	52.5835476	2316	48.399768
i-Butane	0.4267	58.123	0.248010841	0.013430045	3252.1	13.8767107	3005	12.822335
n-Butane	0.4854	58.123	0.282129042	0.015277581	3262.4	15.8356896	3013	14.625102
i-Pentane	0.1928	72.15	0.1391052	0.007532691	4000.9	7.7137352	3698	7.129744
n-Pentane	0.1391	72.15	0.10036065	0.005434633	4008.8	5.5762408	3708	5.157828
Hexanes+	0.1519	86.177	0.130902863	0.007088526	4756.2	7.2246678	4404	6.689676
Heptanes	0.0505	100.204	0.05060302	0.002740206	5502.5	2.7787625	5100	2.5755
Octanes	0.0148	114.231	0.016906188	0.000915488	6249.1	0.9248668		0
Nonanes	0.0056	128.258	0.007182448	0.000388937	6996.4	0.3917984		0
Decanes	0.0011	142.285	0.001565135	8.47537E-05	7743.2	0.0851752		0
Benzene	0.0153	78.12	0.01195236	0.000647233	3715.5	0.5684715		0
Toluene	0.0116	92.13	0.01068708	0.000578716	4444.6	0.5155736		0
Ethylbenzene	0.0003	106.16	0.00031848	1.7246E-05	5191.5	0.0155745		0
Xylenes	0.0025	106.16	0.002654	0.000143717	5183.5	0.1295875		0
n-Hexane	0.0553	86.177	0.047655881	0.002580615	4756.2	2.6301786		0
Helium	0.0000	4.003	0	0	0	0	0	0
Nitrogen	0.3832	28.013	0.107345816	0.005812887	0	0	0	0
Carbon Dioxide	0.3567	44.01	0.15698367	0.008500829	0	0	0	0
Oxygen	0.0000	32	0	0	0	0	0	0
Hydrogen Sulfide	0.0000	34.08	0	0	637.1	0	588	0
TOTAL	100.0000		18.46686644	1		1124.852615		1012.49399

Relative Mole Weight (lb/lb-mole) = [Mole Percent * Molecular weight (lb/bl-mole)] / 100

Weight Fraction =

Net Mole Weight / Total Mole Weight

FUGITIVE EMISSIONS

Company: Summit Gas Gathering Facility Name: River Bend Dehydration Site Facility Location: Uintah County, Utah

Estimated Factors* %NMNEVOC Hours of Emissions Components Count Operation lb/hr/component Weight lb/year tons/year Valves Gas/Vapor 300 8760 0.00992000 10.68% 2783.27764 1.39164 Light Oil 100 8760 4818.00000 2.40900 0.00550000 100.00% Heavy Oil 0.00000 0.00000 0 8760 0.00001900 100.00% Water/Light Oil 50 8760 100.00% 94.60800 0.04730 0.00021600 Pumps Gas/Vapor 6 8760 0.01484 0.00529000 10.68% 29.68455 Light Oil 3 0.37659 8760 753.18480 0.02866000 100.00% Heavy Oil 0 8760 100.00% 0.00000 0.00000 0.00113000 Water/Light Oil 3 8760 0.00005300 100.00% 1.39284 0.00070 Flanges Gas/Vapor 650 8760 0.00086000 10.68% 522.79980 0.26140 Light Oil 0.07983 75 8760 0.00024300 100.00% 159.65100 Heavy Oil 0 8760 0.00000 0.0000086 100.00% 0.00000 Water/Light Oil 0.00136 50 8760 0.00000620 100.00% 2.71560 **Open-ended Lines** Gas/Vapor 15 8760 0.00441000 10.68% 61.86620 0.03093 Light Oil 0.00000 0 8760 0.00309000 100.00% 0.00000 Heavy Oil 0 8760 100.00% 0.00000 0.00000 0.00030900 Water/Light Oil 5 8760 0.00055000 100.00% 24.09000 0.01205 Connectors Gas/Vapor 250 8760 0.00044000 10.68% 102.87653 0.05144 Light Oil 0 8760 0.00046300 100.00% 0.00000 0.00000 Heavy Oil 0.00000 0 8760 0.00001700 100.00% 0.00000 Water/Light Oil 50 8760 0.00024300 100.00% 106.43400 0.05322

Other: Compressors, relief valves, process drains, diaphragms, dump arms, hatches, instruments, meters, polished rods, and vents

Gas/Vapor	30	8760	0.01940000	10.68%	544.31035	0.27216
Light Oil	0	8760	0.01650000	100.00%	0.00000	0.00000
Heavy Oil	0	8760	0.00006800	100.00%	0.00000	0.00000
Water/Light Oil	5	8760	0.03090000	100.00%	1353.42000	0.67671

*NOTE - emission factors based on Table 2-4 of U.S. EPA's 1995 Protocol for Equipment Leak Emission Estimates.

5.68
1.30

Fugitive HAP Emissions Totals - Gas/Vapor

	wt% in gas	Total VOC wt %	Total Fugitive VOC tpy	Total tpy for HAP	Total lb/hr for HAP
Benzene	0.0647%	10.68%	1.75	0.011	0.002
Toluene	0.0579%	10.68%	1.75	0.009	0.002
Xylene	0.0144%	10.68%	1.75	0.002	0.001
n-Hexane	0.2581%	10.68%	1.75	0.042	0.010
E-benzene	0.0017%	10.68%	1.75	0.000	0.000

	and the second	A CONTRACTOR OF A CONTRACTOR O	Contraction of the local division of the loc	the state of the s	
TOTAL Fugitive HAP's		0.065		0.015	
Barger and the state of the sta				N	No. of Concession, Name

Fugitive HAP Emissions Totals - Light Oil and Water

	wt% in gas	Total VOC wt %	Total Fugitive VOC tpy	Total tpy for HAP	Total lb/hr for HAP
Benzene	0.2762%	100.00%	3.93	0.011	0.002
Toluene	0.0000%	100.00%	3.93	0.000	0.000
Xylene	0.0000%	100.00%	3.93	0.000	0.000
n-Hexane	0.6043%	100.00%	3.93	0.024	0.005
E-benzene	0.0000%	100.00%	3.93	0.000	0.000

TOTAL Fugitive HAP's	0.035	0.008
		and the second sec

FUGITIVE CO₂ EMISSIONS

Company: Summit Gas Gathering Facility Name: River Bend Dehydration Site Facility Location: Uintah County, Utah

		Estimated Components	Hours of	Factors*	%NMNEVOC	Em	issions
		Count	Operation	lb/hr/component	Weight	lb/year	metric tons/year
Valves							
	Gas/Vapor	300	6760	0.00992000	0.85%	221.61457	0.10073
	Light Oil	100	8760	0.00550000	0.00%	0.00000	0.00000
	Heavy Oil	0	8760	0.00001900	0.00%	0.00000	0.00000
	Water/Light Oil	50	8760	0.00021600	0.00%	0.00000	0.00000
Pumps							
	Gas/Vapor	6	8760	0.00529000	0.85%	2.36359	0.00107
	Light Oil	3	8760	0.02866000	0.00%	0.00000	0.00000
	Heavy Oil	0	8760	0.00113000	0.00%	0.00000	0.00000
	Water/Light Oil	3	8760	0.00005300	0.00%	0.00000	0.00000
Flanges							
	Gas/Vapor	650	8760	0.00086000	0.85%	41.62720	0.01892
	Light Oil	75	8760	0.00024300	0.00%	0.00000	0.00000
	Heavy Oil	0	8760	0.0000086	0.00%	0.00000	0.00000
	Water/Light Oil	50	8760	0.0000620	0.00%	0.00000	0.00000
Open-end	ded Lines						
	Gas/Vapor	15	8760	0.00441000	0.85%	4.92601	0.00224
	Light Oil	0	8760	0.00309000	0.00%	0.00000	0.00000
	Heavy Oil	0	8760	0.00030900	0.00%	0.00000	0.00000
	Water/Light Oil	5	8760	0.00055000	0.00%	0.00000	0.00000
Connecto	ors						
	Gas/Vapor	250	8760	0.00044000	0.85%	8.19140	0.00372
	Light Oil	0	6760	0.00046300	0.00%	0.00000	0.00000
	Heavy Oil	0	8760	0.00001700	0.00%	0.00000	0.00000
	Water/Light Oil	50	8760	0.00024300	0.00%	0.00000	0.00000

Other: Compressors, relief valves, process drains, diaphragms, dump arms, hatches, instruments, meters, polished rods, and vents

Gas/Vapor	30	8760	0.01940000	0.85%	43.33995	0.01970
Light Oil	0	8760	0.01650000	0.00%	0.00000	0.00000
Heavy Oil	0	6760	0.00006800	0.00%	0.00000	0.00000
Water/Light Oil	5	8760	0.03090000	0.00%	0.00000	0.00000

*NOTE - emission factors based on Table 2-4 of U.S. EPA's 1995 Protocol for Equipment Leak Emission Estimates.

Total in metric tonnes/year

0.15

FUGITIVE METHANE EMISSIONS

Company: Summit Gas Gathering

Facility Name: River Bend Dehydration Site

Facility Location: Uintah County, Utah

		Estimated Components	Hours of	Factors*	%METHANE	Emiss	sions
		Count	Operation	lb/hr/component	Weight	lb/year	metric tons/year
Valves							
	Gas/Vapor	300	8760	0.00992000	77.55%	20216.69370	9.18941
	Light Oil	100	8760	0.00550000	0.00%	0.00000	0.00000
	Heavy Oil	0	8760	0.00001900	0.00%	0.00000	0.00000
	Water/Light Oil	50	8760	0.00021600	0.00%	0.00000	0.00000
Pumps							
	Gas/Vapor	6	8760	0.00529000	77.55%	215.61756	0.09801
	Light Oil	3	8760	0.02866000	0.00%	0.00000	0.00000
	Heavy Oil	0	8760	0.00113000	0.00%	0.00000	0.00000
	Water/Light Oil	3	8760	0.00005300	0.00%	0.00000	0.00000
Flanges							
	Gas/Vapor	650	8760	0.00086000	77.55%	3797.42331	1.72610
	Light Oil	75	8760	0.00024300	0.00%	0.00000	0.00000
	Heavy Oil	0	8760	0.0000086	0.00%	0.00000	0.00000
	Water/Light Oil	50	8760	0.00000620	0.00%	0.00000	0.00000
Open-en	ded Lines						
	Gas/Vapor	15	8760	0.00441000	77.55%	449.37308	0.20426
	Light Oil	0	8760	0.00309000	0.00%	0.00000	0.00000
	Heavy Oil	0	8760	0.00030900	0.00%	0.00000	0.00000
	Water/Light Oil	5	8760	0.00055000	0.00%	0.00000	0.00000
Connecto	ors						
	Gas/Vapor	250	8760	0.00044000	77.55%	747.25682	0.33966
	Light Oil	0	8760	0.00046300	0.00%	0.00000	0.00000
	Heavy Oil	0	8760	0.00001700	0.00%	0.00000	0.00000
	Water/Light Oil	50	8760	0.00024300	0.00%	0.00000	0.00000

Other: Compressors, relief valves, process drains, diaphragms, dump arms, hatches, instruments, meters, polished rods, and vents

Gas/Vapor	30	8760	0.01940000	77.55%	3953.66792	1.79712
Light Oil	0	8760	0.01650000	0.00%	0.00000	0.00000
Heavy Oil	0	8760	0.00006800	0.00%	0.00000	0.00000
Water/Light Oil	5	8760	0.03090000	0.00%	0.00000	0.00000

*NOTE - emission factors based on Table 2-4 of U.S. EPA's 1995 Protocol for Equipment Leak Emission Estimates.

Total in metric tonnes/year 13.35

Thermal Oxidizer Emission Calculations

Company:	Summit Gas Gathering
Facility Name:	River Bend Dehydration Site
Facility Location:	Uintah County, Utah

Flare Heat Input Capacity
Flare Heat Input Capacity
Operating Time

2.955 MMBtu/hr 64.11 Mscf/day 8,760 hr/yr

(Dehydrator emissions only routed to thermal oxidizer)

Pollutant	(A) Emission Factor ¹ (Ib/MMBtu)	(B) = (A)x MMBtu/hr Potential Emission Rate (Ibs/hr)	(C) = (B)xOT Potential Emission Rate (Ibs/year)	(D) = (C)/2000 Potential Emission Rate (tons/year)			
Particulate Matter (PM)	Negligible, Smokeless Design						
Particulate Matter (PM ₁₀)		Negligible, Sm	okeless Design				
Nitrogen Oxides (NO _x)	0.068	0.20	1760.13	0.88			
Sulfur Oxides (SO _x)		None; no H ₂ S p	resent in fuel gas				
Carbon Monoxide (CO)	0.37	1.09	9577.20	4.79			
Volatile Organic Compounds (VOC)							

¹Emission Factors for Waste Gas from AP-42 Tables 13.5-1 and 13.5-2 (9/91) in lb/MMBtu

Buys & Associates, Inc. 300 East Mineral Ave., Ste 10 Littleton CO 80122 ph. 303-781-8211

.

į

~~

Pilot Emissions (One pilot)

Total Heat Input Capacity of Pilot ²	0.092180015	MMBtu/hr
Heating Value	1106	Btu/scf
Operating Time	8760	hr/yr
Total Natural Gas Usage	0.0001	MMscf/hr
2		

² Pilot light heat input based on 2Mscf/day based on client direction.

Pollutant	(A) Emission Factor (Ib/MMscf)	(B) = (A)x MMscf/hr Potential Emission Rate (Ibs/hr)	(C) = (B)xOT Potential Emission Rate (Ibs/year)	(D) = (C)/2000 Potential Emission Rate (tons/year)
Particulate Matter (PM) ³	7.6	0.0006	5.5480	0.0028
Particulate Matter (PM ₁₀) ³	7.6	0.0006	5.5480	0.0028
Nitrogen Oxides (NO _x) ⁴	100	0.0083	73.0000	0.0365
Sulfur Dioxide (SO ₂) ³	0.6	0.0001	0.4380	0.0002
Carbon Monoxide (CO) ⁴	84	0.0070	61.3200	0.0307
Volatile Organic Compounds (VOC) ³	5.5	0.0005	4.0150	0.0020
HAPs ³	0.0805	0.0000	0.0588	0.0000

.

³Emission Factors from AP-42 Tables 1.4-1, 1.4-2, 1.4-3, and 1.4-4 (7/98) and adjusted accordingly ⁴Emission Factors from AP-42 Table 13.5-1 guidance issued in September 1991.

Total Thermal Oxidizer Emissions

Pollutant	Total Potential Emission Rate (tons/year)			
Particulate Matter (PM)	0.0028			
Particulate Matter (PM ₁₀)	0.0028			
Nitrogen Oxides (NO _x)	0.9166			
Sulfur Dioxide (SO ₂)	0.0002			
Carbon Monoxide (CO)	4.8193			
Volatile Organic Compounds (VOC)	0.0020			

Buys & Associates, Inc. 300 East Mineral Ave., Ste 10 Littleton CO 80122 ph. 303-781-8211

4

2300 South Main Street Fort Worth, Texas 76110 (817)924-9991 www.irsvc.com

January 27, 2010 Danien Jones

XTO Energy Roosevelt Field Office 133 East 1000 North Roosevelt, Utah 84066

Commissioning Certificate

This certificate confirms the successful Commissioning and Operation for the Thermal Oxidizer at the location listed below.

Location:	Roosevelt Field, Utah
Site:	River Bend
Serial Number:	29086
Commissioning Date:	01/15/2010
Operating Range:	1400 - 1800 °F
Heating Set Point:	1450 °F
Cooling Set Point:	1500 °F
DRE %:	≥95.0%

Mike Riddell V.P. Sales Thermal Oxidizer Division

EnviroTherm

2300 South Main Street Fort Worth, Texas 76110 (817)924-9991 www.irsvc.com

January 30, 2010 Craig Allison

XTO Energy 810 Houston Street Fort Worth, TX 76102

Thermal Oxidizer Design Analysis

This certificate confirms the successful Commissioning, Operation, and Design analysis for the Thermal Oxidizer at the location listed below.

Field: Roosevelt Field, Utah

Site: River Bend

Serial Number: 29086

Commissioning Date: 01/15/10

Waste Stream: (1)

Regenerator Overhead Stream (SCFH): 4.09e+002

BTU Value (BTU/CF) (5): 905 BTU/ft

Temperature: 212 deg. F

	2 33 101010 EDV 9 101 1	CONTRACTOR AND A
Component	Conc.	Loading
(vol%)	(lb/hr)	(lb/hr)
Water	7.41e+001	1.44e+001
Carbon Dioxide	1.30e+000	6.19e-001
Nitrogen	2.11e-002	6.36e-003
Methane	1.99e+000	3.43e-001
Ethane	1.37e+000	4.45e-001
Propane	1.14e+000	5.44e-001

Isobutane n-Butane Isopentane	4.71e-001 8.80e-001 3.86e-001	2.95e-001 5.51e-001 3.00e-001
n-Pentane	4.22e-001	3.28e-001
n-Hexane	2.78e-001	2.59e-001
Cyclohexane	1.02e+001	9.22e-001
Other Hexanes	3.29e-001	3.05e-001
Heptanes	5.51e-001	5.95e-001
Methycyclohexane	9.15e-001	9.69e-001
2,2,4-Trimethylpentane	9.33e-003	1.15e-002
Benzene	8.71e+000	7.33e+000
Toluene	5.47e+000	5.43e+000
Xylenes	5.81e-001	6.65e-001
C8+ Heavies	3.42e-002	6.28e-002
Total Components	100	3.44e+001

Combustion Chamber Design:

Average Combustion Chamber Temperature (Deg F) (2): 1450 Minimum Combustion Chamber Temperature (Deg F) (3): 1300 Combustion Air Max Volume (SCFH) (6): 60,000 Burner Gas Average Firing Rate (SCFH) (7): 1,200 Waste Stream Volume (SCFH) (1): 409 Total Mass Volume (SCFH): 61,609 Adjusted Mass Volume to 1450F (ACFH): 221,792.4 Combustion Chamber ID (IN): 28 Combustion Chamber OD (IN): 36 Combustion Gas Velocity at Max Firing Rate (FT/SEC) (6): 28.8304 Stack Height (FT): 20 Retention Time at Max Firing Rate (SEC) (6): 0.6937 Estimated DRE (%): \geq 95.0

117

Combustion Gas Constituent Concentrations: (4)

O2(%vd): 13.8 CO2(%vd): 3.7 NOx (ppmvd): 32.6 CO (ppmvd): 0.8

Mike Riddell

V.P. EnviroTherm Environmental Products Division

a division of Industrial Refractory Services Inc.

- (1) Waste Steam data was provided from XTO Energy using GRI-GLYCalc Version 4.0 simulations.
- (2) Average Combustion Chamber temperature is measured one pipe dia. from the top of the stack.
- (3) The minimum combustion chamber temperature is derived from the Auto-Ignition Temperature required to ignite the constituent fuels without a spark or flame.
- (4) The combustion gas constituent concentrations are derived from actual performance test data collected from Thermal Oxidizers of the same design and similar waste gas input.
- (5) The BTU value is derived using the Mol% and the HHV of each constituent to determine the HHV of the mixture.
- (6) Max Firing Rate is achieved when the combustion air blower is running at full speed (60 Hz).
- (7) Burner Average Firing Rate is archived once the system has reached its operating temperature and the waste stream is providing BTU heat source.

119

	ECL	HPSE	164	
	C. Incasalina T	han mer badastur a		
	A REQUEST (Please submit some		ner de foeteringen van de Deels	
	utal refreziony Services			
Site together september go Application There	nal Ökidzer	-		
	ROHV			
	nd Gas			1
Process temperature	J400*F			
Contribution of temperature Predicularing overs, process	ing straight or many sheat of burnal	N#		
Barrier firing antar goment Application teing rate	Melsoniel 2 Ministrativ		······	
X N	x co		Citranspauriy	
Barrange .	ana ang ang ang ang ang ang ang ang ang	valizityi		
Parrit conditions areas a	nich the equipment will speech			
	- ·	······		
How should eministrate be	Mateo? parts por millions cannotade to 3% Oct		Barrillon Bas	
the second		d	Ofweathing	
I his is a request for				
X Estim	Nið óf þófinillansa	Requested by	Minus Rindrell	
-		Citice:	IR 3hc.	
		Gane.	5/19/2009	
EMISSIONS DAT	A crocker black out by Ecologies Horner Of	Nov)		×
NU.: 00 PPN @ 81	02			
co da PPM @ 2	5 O2			
	lindian Velocity Tube 1.2 X NOX			
X Em			*	
Guar	artaoc "	8	Dave Post	
		By. Date:		
•	actived "There Combustion Emissions G	ander Antel Neur" Proc. Innerste		
* For guaternam, see at				
• For guiddenness, and att				
• For guadantiesm, and att				
Υ Γοr gust/srooms. see str	Eclipse, Inc. 1655 Tel: 313	577 3031 Fr	- Rockford, IL 61103 USA ** 815-977-9986	
• Γor ganderσam, and att	Eclipse, inc. 1665 Tel: 213	Einwood Rd. 977 3031 Fr: www.4clipsen	x. 815-977-3388	
ΥΓοι gan/hirthann, ann abr	Eclipse, Inc. 1565 Tel: 315	577 3031 Fr	x. 815-977-3388	
• Γor gandernam, see atr	Eclipse, Inc. 1665 Tel: 213	577 3031 Fr	x. 815-977-3388	
• Γor gundernum, see atr	Eclipse, Inc. 1565 Tel: ats	577 3031 Fr	x. 815-977-3388	
• For gunthernom, and at	Eclipse, Inc. 1565 Tel: a15	577 3031 Fr	x. 815-977-3388	
Υ Γοr gandernam, soo atr	Eclipse, inc. 1665 Tel: 213	577 3031 Fr	x. 815-977-3388	
* For gandernam, see at	Eclipes, Inc. 1665 Tel: ats	577 3031 Fr	x. 815-977-3388	

ALL WELLSITES JANUARY 2011 UNCONTROLLED POTENTIAL TO EMIT SUMMARY

Company: Summit Gas Gathering Facility Name: ALL WELLSITES (RBU 6-15E and 7-15E) Facility Location: Uintah County, Utah

	NOx		CO VOC		PM ₁₀		HAPs			
Source	lb/hr	ton/yr	lb/hr	ton/yr	lb/hr	ton/yr	lb/hr	ton/yr	lb/hr	ton/yr
All RBU 6-15E Emission Sources	0.05	0.22	0.04	0.19	3.20	14.04	0.00	0.01	0.84	3.70
All RBU 7-15E Emission Sources	0.04	0.18	0.04	0.16	2.69	11.76	0.00	0.01	0.55	2.43
Totals	0.09	0.40	0.08	0.35	5.89	25.80	0.00	0.02	1.40	6.13

^{*} Dehy HAP emissions include n-Hexane and 2,2,4 - Trimethylpentane (TMP)

	Benzene		Tolu	Toluene Ethylbenzene		Xylene		N-Hexane		
Source	lb/hr	ton/yr	lb/hr	ton/yr	lb/hr	ton/yr	lb/hr	ton/yr	lb/hr	ton/yr
All RBU 6-15E Emission Sources	0.23	0.99	0.37	1.61	0.02	0.07	0.19	0.81	0.04	0.20
All RBU 7-15E Emission Sources	0.16	0.68	0.23	1.02	0.01	0.04	0.11	0.47	0.04	0.19
Totals	0.38	1.67	0.60	2.63	0.02	0.11	0.29	1.29	0.09	0.39

	2,2,4	TMP	Formaldehyde		
Source	lb/hr	ton/yr	lb/hr	ton/yr	
All RBU 6-15E Emission Sources	0.00	0.02	0.00	0.01	
All RBU 7-15E Emission Sources	0.00	0.02	0.00	0.00	
Totals	0.01	0.04	0.00	0.01	

20

RBU 6-15E WELLSITE JANUARY 2011 UNCONTROLLED POTENTIAL TO EMIT SUMMARY

Company:	Summit Gas Gathering
Facility Name:	RBU 6-15E
Facility Location:	Uintah County, Utah

	NC	Dx	С	0	V	00	PN	N ₁₀	HA	Ps
Source	lb/hr	ton/yr	lb/hr	ton/yr	lb/hr	ton/yr	lb/hr	ton/yr	lb/hr	ton/yr
Wellsite Condensate Truck Loading	-	-	_	-	0.00	0.00	_	-	-	-
Wellsite heaters	0.05	0.22	0.04	0.19	0.00	0.02	0.00	0.01	0.00	0.00
0.18 MMscfd dehydrator - RBU 6-15E D	-	-	-	-	2.31	10.11	-	-	0.83	3.63
Fugitive Emissions - RBU 6-15E F-1	-	-	-	-	0.89	3.88	-	-	0.02	0.07
Total Storage Tank Emissions		-	-	-	0.01	0.03	-	-	0.00	0.00
Totals	0.05	0.22	0.04	0.19	3.20	14.04	0.00	0.01	0.84	3.70

^{*}Dehy HAP emissions include n-Hexane and 2,2,4 - Trimethylpentane (TMP)

	Benz	zene	Toluene Ethylbenzene Xylene		ene	N-Hexane				
Source	lb/hr	ton/yr	lb/hr	ton/yr	lb/hr	ton/yr	lb/hr	ton/yr	lb/hr	ton/yr
Wellsite Condensate Truck Loading	-	-	-	-	-	-	-	-	Ξ	-
Wellsite heaters	-	-	-	-	-	-	-	-	-	-
0.18 MMscfd dehydrator - RBU 6-15E	0.22	0.98	0.36	1.60	0.01	0.06	0.18	0.80	0.04	0.16
Fugitive Emissions - RBU 6-15E F-1	0.00	0.01	0.00	0.01	0.00	0.00	0.00	0.01	0.01	0.03
Total Storage Tank Emissions	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00
Totals	0.23	0.99	0.37	1.61	0.02	0.07	0.19	0.81	0.04	0.20

	2,2,4	TMP	Formaldehyde		
Source	lb/hr	ton/yr	lb/hr	ton/yr	
Wellsite Condensate Truck Loading	-	- 1	_	-	
Wellsite heaters	-	-	0.00	0.01	
0.18 MMscfd dehydrator - RBU 6-15E D	0.00	0.02	-	-	
Fugitive Emissions - RBU 6-15E F-1	0.00	0.00	-	-	
Total Storage Tank Emissions	: - :	-	-	-	
Totals	0.00	0.02	0.00	0.01	

RBU 7-15E WELLSITE JANUARY 2011 UNCONTROLLED POTENTIAL TO EMIT SUMMARY

Company:	Summit Gas Gathering
Facility Name:	RBU 7-15E
Facility Location:	Uintah County, Utah

	NC	Dx	С	0	V	00	PI	W10	HA	\Ps [`]
Source	lb/hr	ton/yr								
Wellsite Condensate Truck Loading	-	-	-	-	0.00	0.00	-	-	-	-
Wellsite heaters	0.04	0.18	0.04	0.16	0.00	0.02	0.00	0.01	0.00	0.00
0.10 MMscfd dehydrator - RBU 7-15E D-	-	-	-	-	1.79	7.84	-	-	0.54	2.36
Fugitive Emissions - RBU 7-15E F-1	-	-	-	-	0.89	3.88	-	-	0.02	0.07
Total Storage Tank Emissions	-	-	-	-	0.01	0.03	-	-	0.00	0.00
Totals	0.04	0.18	0.04	0.16	2.69	11.76	0.00	0.01	0.55	2.43

[•] Dehy HAP emissions include n-Hexane and 2,2,4 - Trimethylpentane (TMP)

	Benz	Benzene		Toluene		Ethylbenzene		Xylene		N-Hexane	
Source	lb/hr	ton/yr	lb/hr	ton/yr	lb/hr	ton/yr	lb/hr	ton/yr	lb/hr	ton/yr	
Wellsite Condensate Truck Loading	-	-	-	-	-	-	-	-	-	-	
Wellsite heaters	-	-	-	-	-	-	-	-	-	-	
0.10 MMscfd dehydrator - RBU 7-15E D-	0.15	0.67	0.23	1.00	0.01	0.04	0.11	0.47	0.04	0.16	
Fugitive Emissions - RBU 7-15E F-1	0.00	0.01	0.00	0.01	0.00	0.00	0.00	0.01	0.01	0.03	
Total Storage Tank Emissions	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	
Totals	0.16	0.68	0.23	1.02	0.01	0.04	0.11	0.47	0.04	0.19	

[2,2,4	TMP	Formaldehyde		
Source	lb/hr ton/yr		lb/hr	ton/yr	
Wellsite Condensate Truck Loading	-	-	_	-	
Wellsite heaters	-	-	0.00	0.00	
0.10 MMscfd dehydrator - RBU 7-15E D-	0.00	0.02	-	-	
Fugitive Emissions - RBU 7-15E F-1	0.00	0.00	-	-	
Total Storage Tank Emissions	-	-	-	-	
Totals	0.00	0.02	0.00	0.00	

GHG RBU 6-15E WELLSITE EMISSIONS SUMMARY

Company: Summit Gas Gathering Facility Name: RBU 6-15E Facility Location: Uintah County, Utah

UNCONTROLLED GHG EMISSIONS

123

SOURCE	CH₄	CO ₂	N ₂ O	CO ₂ Equivalents	[CH₄	CO ₂	N ₂ O	CO ₂ Equivalents
DESCRIPTION	MT/yr*	MT/yr*	MT/yr*	MT/yr*		Tons/yr	Tons/yr	Tons/yr	Tons/yr
Wellsite Condensate Truck Loading	ND	ND	ND	ND	ľ	ND	ND	ND	ND
Wellsite heaters	0.00	197.39	0.00	197.59		0.00	217.13	0.00	217.35
0.18 MMscfd dehydrator - RBU 6-15E D-	1.64	0.09	ND	34.49		1.80	0.10	ND	37.94
Fugitive Emissions - RBU 6-15E F-1	7.07	0.08	ND	148.63		7.78	0.08	ND	163.49
Total Storage Tank Emissions	0.05	0.00	ND	1.05		0.05	0.00	ND	1.15
TOTAL EMISSIONS	8.77	197.56	0.00	381.75		9.64	217.32	0.00	419.93

GHG RBU 7-15E WELLSITE EMISSIONS SUMMARY

Company: Summit Gas Gathering Facility Name: RBU 7-15E Facility Location: Uintah County, Utah

UNCONTROLLED GHG EMISSIONS

SOURCE	CH₄	CO ₂	N ₂ O	CO ₂ Equivalents
DESCRIPTION	MT/yr*	MT/yr*	MT/yr*	MT/yr*
Wellsite Condensate Truck Loading	ND	ND	ND	ND
Wellsite heaters	0.00	162.56	0.00	197.59
0.10 MMscfd dehydrator - RBU 7-15E D-1	1.80	0.09	ND	37.83
Fugitive Emissions - RBU 6-15E F-1	7.07	0.08	ND	148.63
Total Storage Tank Emissions	0.05	0.00	ND	1.05
TOTAL EMISSIONS	8.92	162.73	0.00	385.09

CH₄	CH ₄ CO ₂		CO ₂ Equivalents
Tons/yr	Tons/yr	Tons/yr	Tons/yr
ND	ND	ND	ND
0.00	178.82	0.00	217.35
1.98	0.10	ND	41.61
7.78	0.08	ND	163.49
0.05	0.00	ND	1.15
9.81	179.00	0.00	423.60

Buys & Associates, Inc. 300 East Mineral Ave., Ste 10 Littleton CO 80122 ph. 303-781-8211

24

POTENTIAL GHG EMISSIONS BASED ON 8760 HOURS FOR HEATERS, GENERATORS, ENGINES AND FLARES/THERMAL OXIDIZERS

Company: Summit Gas Gathering Facility Name: RBU 6-15E Facility Location: Uintah County, Utah

GHG Mandatory Reporting Regulations, Combustion Sources (Subpart C, 40 CFR Part 98)

Summa	ry	
Engines CO ₂ e =	0.0	tons/yr
Heaters/Boilers CO2e =	360.3	tons/y
Total CO ₂ e =	360.3	tons/y
Reporting required ?	No	

Note: Reporting Threshold = 25,000 tons/yr CO2e

											Spe	ecies
								Species		CO ₂	CH4	N ₂ O
Engines			Rating		BFSC	CO ₂ CH ₄	N ₂ O	CO ₂ e	COze	COze		
Source	Model	Fuel	(hp)	(MMbtu/hr)	Hours	Btu/(hp-hr)		metric tons			metri	ic tons
						8240	0.00	0.00	0.00	0.00	0.00	0.00
			A 445644				0.00	0.00	0.00	0.00	0.00	0.00
		Totals	0	0.00		Totals	0.00	0.00	0.00	0.00	0.00	0.00

Engines GHG Emissions Total= 0.0 metric tons

CO2e Total= 0.0 metric tons

Species

						ſ		Species		CO2	CH4	N ₂ O	CO2e
Boilers/Heaters Rating		ing		Γ	CO2	CH4	N ₂ O	CO ₂ e	CO2e	CO2e	Total		
Source	Model	Fuel	(hp)	(MMbtu/hr)	Hours			metric tons			metric	c tons	
6-15E Dehy Reboiler	-	Natural Gas	-	0.100	8760		46.45	0.00	0.00	46.45	0.02	0.03	46.49
7-15E Dehy Reboiler	-	Natural Gas	-	0.100	8760		46.45	0.00	0.00	46.45	0.02	0.03	46.49
6-15E Tank Heater	-	Natural Gas		0.250	8760		116.11	0.00	0.00	116.11	0.05	0.07	116.23
6-15E Separator Heater	-	Natural Gas	-	0.075	8760		34.83	0.00	0.00	34.83	0.01	0.02	34.87
7-15E Separator Heater	-	Natural Gas	-	0.250	8760		116.11	0.00	0.00	116.11	0.05	0.07	116.23
							0.00	0.00	0.00	0.00	0.00	0.00	0.00
			Total	0.775		Totals	359.95	0.01	0.00	359.95	0.14	0.21	

Engines GHG Emissions Total= 359.96 metric tons

CO2e Total= 360.3 metric tons

Buys & Associates, Inc. 300 East Mineral Ave., Ste 10 Littleton CO 80122 ph. 303-781-8211

CO2e Total 0.00 0.00

2

Natural Gas			7	
Emission Factor (CO ₂) =	53.02	kg CO ₂ /MMBtu	From 40 CFR Part 98, Subpart C, Table C-1	
Emission Factor (CH ₄) =	0.001	kg CO ₂ /MMBtu	From 40 CFR Part 98, Subpart C, Table C-2	
Emission Factor (N ₂ O) =	0.0001	kg CO ₂ /MMBtu	From 40 CFR Part 98, Subpart C, Table C-2	1 metric ton = 1000 kg = 2,200 lbs
HHV (Natural Gas) =	1095	BTU/scf		

	Global Warming Potentials		
CO ₂ =	1	From 40 CFR Part 98, Subpart A, Table A-1	
CH4 =	21	From 40 CFR Part 98, Subpart A, Table A-1	
N ₂ O =	310	From 40 CFR Part 98, Subpart A, Table A-1	

¹CO₂e Emissions (metric tons) = 0.001 (metric ton/kg) X Fuel (scf/yr) X HHV (MMBtu/scf) X Emission Factor (natural Gas) (kg CO₂/MMBtu) X Global Warming Potentials Operational Factors from Newfield operational data

RBU 6-15E and 7-15E WELLSITE NATURAL GAS FUELED HEATER EMISSIONS

Company: Summit Gas Gathering Facility Name: RBU 6-15E and 7-15E Facility Location: Uintah County, Utah

	HEATER	HEATER	FUEL	HOURS OF	FUEL	NOx		СО	
SOURCE DESCRIPTION	SIZE (MBtu/hr)	EFFICIENCY	HEAT VALUE (Btu/scf)	OPERATION (hrs/year)	USAGE (MMscf/yr)	EF AP-42 ¹ Ib/MMscf	EMISSIONS (tons/yr)	EF AP-42 ¹ lb/MMscf	EMISSIONS (tons/yr)
6-15E TEG Dehy Glycol Reboiler	100	0.8	1106	8760	0.990	100.0	0.05	84.0	0.05
7-15E TEG Dehy Glycol Reboiler	100	0.8	1106	8760	0.990	100.0	0.05	84.0	0.05
6-15E Tank Heater	250	0.8	1106	8760	2.475	100.0	0.13	84.0	0.11
6-15E Separator Heater	75	0.8	1106	8760	0.742	100.0	0.04	84.0	0.03
7-15E Separator Heater	250	0.8	1106	8760	2.475	100.0	0.13	84.0	0.11
				TOTALS	7.672		0.400		0.350

	T	00	VOC	PM	10	Formaldehyde		
SOURCE DESCRIPTION	EF AP-42 ² lb/MMscf	EMISSIONS (tons/yr)	EMISSIONS (tons/yr)	EF AP-42 ² lb/MMscf	EMISSIONS (tons/yr)	EF AP-42 ³ Ib/MMscf	EMISSIONS (tons/yr)	
6-15E TEG Dehy Glycol Reboiler	11.0	0.01	0.01	7.6	0.00	7.50E-02	0.0000	
7-15E TEG Dehy Glycol Reboiler	11.0	0.01	0.01	7.6	0.00	7.50E-02	0.0000	
6-15E Tank Heater	11.0	0.01	0.01	7.6	0.01	7.50E-02	0.0001	
6-15E Separator Heater	11.0	0.00	0.00	7.6	0.00	7.50E-02	0.0000	
7-15E Separator Heater	11.0	0.01	0.01	7.6	0.01	7.50E-02	0.0001	
	TOTALS	0.04	0.04		0.02		0.00	

Criteria emissions rounded to the nearest 1/100 of a ton, VOC/HAP rounded to 1/1000 of a ton.

EF AP-42¹ = emission factor from AP-42 Table 1.4-1, Small Boilers <100 MMbtu/hr (EPA 7/98), Standard = 1,020 Btu/scf

 $EF AP-42^2$ = emission factor from AP-42 Table 1.4-2 (EPA 7/98)

EF AP- 42^3 = emission factor from AP-42 Table 1.4-2 (EPA 7/98)

Fuel Consumption (MMscf/yr) = Heater Size (MBtu/hr) * 1,000 (Btu/MBtu) * Hours of Operation (hrs/yr) Fuel Heat Value (Btu/scf) * 1,000,000 (scf/MMscf) * Heater Efficiency

NOx/CO/TOC Emissions (tons/yr) = AP-42 EF (lbs/MMscf) * Fuel Consumption (MMscf/yr) * (Fuel Heat Value/ Standard Fuel Heat Value) / 2,000 (lbs/ton) -Standard Fuel Heat Value, Natural Gas (AP-42, 7/98, p1.4-5) = 1,020 Btu/scf

VOC emissions assumed equal to TOC emissions

POTENTIAL UNCONTROLLED EMISSIONS

Company: Summit Gas Gathering Facility Name: 6-15E Wellsite Facility Location: Uintah County, Utah

> Unit: TEG Dehydrator at 6-15E wellsite Rating: 0.2 MMscf/day total; 4015 Pump at maximum glycol pump rate

Unit	Gas Flow								Total	Total		
Description	Rate	VOCs	Benzene	Toluene	Ethylbenzene	Xylenes	N-Hexane	224-TMP	HAPs	BTEX	CO ₂	Methane
	(MMscf/day)	(tons/yr)	(tons/yr)	(tons/yr)	(tons/yr)	(tons/yr)	(tons/yr)	(tons/yr)	(tons/yr)	(tons/yr)	(MT/yr)*	(MT/yr)*
Dehy w/4015 pump	0.18	10.11	0.9844	1.5964	0.0647	0.8033	0.1625	0.0218	3.6331	3.4488	0.0912	1.6380
TOTAL		10.110	0.984	1.596	0.065	0.803	0.163	0.022	3.633	3.449	0.091	1.638

*CO2 and Methane emissions are expressed in metric tons per GHG requirements.

17.0

GRI-GLYCalc VERSION 4.0 - EMISSIONS SUMMARY

Case Name: Summit Gas Gathering - 6-15E Wellsite Dehy File Name: Y:\Utah\River Bend Dehy Site\Buys RB Dehy TV Application\6-15E Wellsite Dehydrator emissions rev 1 Jan 2011.ddf Date: January 13, 2011

UNCONTROLLED REGENERATOR EMISSIONS

Component	lbs/hr	lbs/day	tons/yr
Methane	0.4114	9.874	1.8020
Ethane	0.0911	2.185	0.3988
Propane	0.0732	1.758	0.3208
Isobutane	0.0325	0.780	0.1424
n-Butane	0.0483	1.160	0.2117
Isopentane	0.0337	0.810	0.1478
n-Pentane	0.0308	0.739	0.1349
n-Hexane	0.0371	0.890	0.1625
Cyclohexane	0.0917	2.201	0.4016
Other Hexanes	0.0422	1.012	0.1847
Heptanes	0.1410	3.383	0.6174
Methylcyclohexane	0.2119	5.085	0.9281
2,2,4-Trimethylpentane	0.0050	0.120	0.0218
Benzene	0.2247	5.394	0.9844
Toluene	0.3645	8.747	1.5964
Ethylbenzene Xylenes C8+ Heavies		$0.355 \\ 4.402 \\ 18.561$	0.0647 0.8033 3.3874
Total Emissions	2.8107	67.456	12.3108
Total Hydrocarbon Emissions	2.8107	67.456	12.3108
Total VOC Emissions	2.3082	55.397	10.1100
Total HAP Emissions	0.8295	19.907	3.6331
Total BTEX Emissions	0.7874	18.898	3.4488

GRI-GLYCalc VERSION 4.0 - SUMMARY OF INPUT VALUES Case Name: Summit Gas Gathering - 6-15E Wellsite Dehy File Name: Y:\Utah\River Bend Dehy Site\Buys RB Dehy TV Application\6-15E Wellsite Dehydrator emissions rev 1 Jan 2011.ddf Date: January 13, 2011 DESCRIPTION: Description: 0.18 MMscfd Max 4015 glycol pump (electric) PTE uncontrolled Annual Hours of Operation: 8760.0 hours/yr WET GAS: Temperature: 82.00 deg. F Pressure: 80.00 psig Wet Gas Water Content: Saturated Component Conc. (vol %) Carbon Dioxide 0.3143 Nitrogen 0.1221 Methane 91.2478 Ethane 5.2642 Propane 1.5975 Isobutane 0.3382 n-Butane 0.3758 Isopentane 0.1704 n-Pentane 0.1206 n-Hexane 0.0604 Cyclohexane 0.0385 ther Hexanes 0.0933 Heptanes 0.0859 Lcyclohexane 0.0565 ethylpentane 0.0055 Other Hexanes Methylcyclohexane 0.0055 2,2,4-Trimethylpentane
 Benzene
 0.0231

 Toluene
 0.0260

 Ibenzene
 0.0008

 Xylenes
 0.0095

 Heavies
 0.0496
 Ethylbenzene Xylenes C8+ Heavies DRY GAS: Flow Rate: 0.2 MMSCF/day Water Content: 7.0 lbs. H2O/MMSCF LEAN GLYCOL: _____

Page: 2

PUMP:

Glycol Pump Type: Gas Injection Gas Injection Pump Volume Ratio: 0.030 acfm gas/gpm glycol

×

GRI-GLYCalc VERSION 4.0 - AGGREGATE CALCULATIONS REPORT

Case Name: Summit Gas Gathering - 6-15E Wellsite Dehy File Name: Y:\Utah\River Bend Dehy Site\Buys RB Dehy TV Application\6-15E Wellsite Dehydrator emissions rev 1 Jan 2011.ddf Date: January 13, 2011

DESCRIPTION:

Description: 0.18 MMscfd Max 4015 glycol pump (electric) PTE uncontrolled

Annual Hours of Operation: 8760.0 hours/yr

EMISSIONS REPORTS:

UNCONTROLLED REGENERATOR EMISSIONS

Component	lbs/hr	lbs/day	tons/yr
Methane	0.4114		1.8020
Ethane	0.0911		0.3988
Propane	0.0732		0.3208
Isobutane	0.0325		0.1424
n-Butane	0.0483		0.2117
Isopentane	0.0337	0.810	0.1478
n-Pentane	0.0308	0.739	0.1349
n-Hexane	0.0371	0.890	0.1625
Cyclohexane	0.0917	2.201	0.4016
Other Hexanes	0.0422	1.012	0.1847
Heptanes	0.1410	3.383	0.6174
Methylcyclohexane	0.2119	5.085	0.9281
2,2,4-Trimethylpentane	0.0050	0.120	0.0218
Benzene	0.2247	5.394	0.9844
Toluene	0.3645	8.747	1.5964
Ethylbenzene Xylenes C8+ Heavies		$0.355 \\ 4.402 \\ 18.561$	0.0647 0.8033 3.3874
Total Emissions	2.8107	67.456	12.3108
Total Hydrocarbon Emissions	2.8107	67.456	12.3108
Total VOC Emissions	2.3082	55.397	10.1100
Total HAP Emissions	0.8295	19.907	3.6331
Total BTEX Emissions	0.7874	18.898	3.4488

EQUIPMENT REPORTS:

ABSORBER

NOTE: Because the Calculated Absorber Stages was below the minimum allowed, GRI-GLYCalc has set the number of Absorber Stages to 1.25 and has calculated a revised Dry Gas Dew Point.

5

Calculated Absorber Stages: Calculated Dry Gas Dew Point:	1.25 6.77	lbs. H2O/MMSCF
Temperature:	82.0	deg. F
Pressure:	80.0	psig
Dry Gas Flow Rate:	0.1800	MMSCF/day
Glycol Losses with Dry Gas:	0.0006	lb/hr
Wet Gas Water Content:	Saturated	
	077 60	11

Calculated	Wet Gas	Water Content:	277.68	lbs. H2O/MMSCF
Calculated Lea	n Glycol	Recirc. Ratio:	20.07	gal/lb H2O

Component	Remaining in Dry Gas	Absorbed in Glycol
Water	2.42%	97.588
Carbon Dioxide	99.26%	0.748
Nitrogen	99.96%	0.048
Methane	99.96%	0.048
Ethane	99.81%	0.198
Propane	99.57%	0.43%
Isobutane	99.26%	0.74%
n-Butane	98.98%	1.02%
Isopentane	98.71%	1.29%
n-Pentane	98.31%	1.69%
n-Hexane	96.50%	3.50%
Cyclohexane	85.80%	14.20%
Other Hexanes	97.45%	2.55%
Heptanes	91.83%	8.17%
Methylcyclohexane	80.81%	19.19%
2,2,4-Trimethylpentane	96.09%	3.91%
Benzene	37.18%	62.82%
Toluene	23.25%	76.75%
Ethylbenzene	12.26%	87.74%
Xylenes	8.25%	91.75%
C8+ Heavies	53.86%	46.14%

REGENERATOR

_

No Stripping Gas used in regenerator.

Component	Remaining in Glycol	Distilled Overhead
Water Carbon Dioxide Nitrogen Methane Ethane	65.13% 0.00% 0.00% 0.00% 0.00%	34.87% 100.00% 100.00% 100.00% 100.00%
Propane	0.00%	100.00%

Isobutane n-Butane Isopentane n-Pentane	0.00% 0.00% 0.46% 0.47%	99.54%	3
n-Hexane Cyclohexane Other Hexanes Heptanes Methylcyclohexane	0.49% 3.18% 0.96% 0.49% 3.98%	99.04% 99.51%	
2,2,4-Trimethylpentane Benzene Toluene Ethylbenzene Xylenes	1.46% 4.99% 7.89% 10.39% 12.89%	92.11% 89.61%	
C8+ Heavies	11.988	88.02%	

STREAM REPORTS:

.

WET GAS STREAM

Temperature: 82.00 deg. F Pressure: 94.70 psia Flow Rate: 7.56e+003 scfh		
Component		Loading (lb/hr)
Carbon Dioxide Nitrogen Methane	5.85e-001	2.10e+000 2.74e+000 6.77e-001 2.90e+002
Isobutane n-Butane Isopentane	1.59e+000 3.36e-001 3.74e-001 1.69e-001 1.20e-001	3.89e+000 4.32e+000 2.43e+000
Cyclohexane Other Hexanes	9.28e-002 8.54e-002	6.42e-001 1.59e+000 1.70e+000
Toluene Ethylbenzene	2.30e-002 2.58e-002	3.57e-001 4.74e-001 1.68e-002
C8+ Heavies	4.93e-002	1.67e+000
Total Components	100.00	3.62e+002

DRY GAS STREAM Temperature: 82.00 deg. F Pressure: 94.70 psia Flow Rate: 7.50e+003 scfh Component Conc. Loading (vol%) (lb/hr). _____ Water 1.43e-002 5.08e-002 Carbon Dioxide 3.12e-001 2.72e+000 Nitrogen 1.22e-001 6.77e-001 Methane 9.13e+001 2.90e+002 Ethane 5.26e+000 3.13e+001 Propane 1.59e+000 1.39e+001 Isobutane 3.36e-001 3.86e+000 n-Butane 3.73e-001 4.28e+000 Isopentane 1.68e-001 2.40e+000 n-Pentane 1.19e-001 1.69e+000 n-Hexane 5.84e-002 9.94e-001 Cyclohexane 3.31e-002 5.50e-001 Other Hexanes 9.11e-002 1.55e+000 Heptanes 7.90e-002 1.56e+000 Methylcyclohexane 4.57e-002 8.88e-001 2,2,4-Trimethylpentane 5.29e-003 1.20e-001 Benzene 8.60e-003 1.33e-001 Toluene 6.06e-003 1.10e-001 Ethylbenzene 9.82e-005 2.06e-003 Xylenes 7.85e-004 1.65e-002 C8+ Heavies 2.68e-002 9.01e-001 _____ Total Components 100.00 3.57e+002

LEAN GLYCOL STREAM

Temperature: 82.00 deg. F Flow Rate: 6.80e-001 gpm Component Conc. Loading (lb/hr) (wt%) TEG 9.90e+001 3.79e+002 Water 1.00e+000 3.83e+000 Carbon Dioxide 5.28e-013 2.02e-012 Nitrogen 7.77e-015 2.98e-014 Methane 1.13e-018 4.31e-018 Ethane 7.45e-009 2.85e-008 Propane 6.34e-010 2.43e-009 Isobutane 2.25e-010 8.61e-010 n-Butane 2.86e-010 1.09e-009 Isopentane 4.12e-005 1.58e-004 n-Pentane 3.82e-005 1.46e-004 n-Hexane 4.74e-005 1.81e-004 Cyclohexane 7.86e-004 3.01e-003

Other Hexanes 1.07e-004 4.10e-004 Heptanes 1.83e-004 7.00e-004 Methylcyclohexane 2.29e-003 8.78e-003 2,2,4-Trimethylpentane 1.94e-005 7.41e-005 Benzene 3.09e-003 1.18e-002 Toluene 8.16e-003 3.12e-002 Ethylbenzene 4.47e-004 1.71e-003 Xylenes 7.09e-003 2.71e-002 C8+ Heavies 2.75e-002 1.05e-001 Total Components 100.00 3.83e+002

Page: 5

RICH GLYCOL AND PUMP GAS STREAM

Temperature:	82.00 deg. F	
Pressure:	94.70 psia	
Flow Rate:	6.90e-001 gpm	
NOTE: Stream	has more than one	phase.

Component Conc. Loading (wt%) (lb/hr) TEG 9.77e+001 3.79e+002 Water 1.52e+000 5.88e+000 Carbon Dioxide 5.90e-003 2.29e-002 Nitrogen 2.48e-004 9.60e-004 Methane 1.06e-001 4.11e-001 Ethane 2.35e-002 9.11e-002 Propane 1.89e-002 7.32e-002 Isobutane 8.39e-003 3.25e-002 n-Butane 1.25e-002 4.83e-002 Isopentane 8.75e-003 3.39e-002 n-Pentane 7.98e-003 3.09e-002 n-Hexane 9.62e-003 3.73e-002 Cyclohexane 2.44e-002 9.47e-002 Other Hexanes 1.10e-002 4.26e-002 Heptanes 3.66e-002 1.42e-001 Methylcyclohexane 5.69e-002 2.21e-001 2,2,4-Trimethylpentane 1.31e-003 5.06e-003 Benzene 6.10e-002 2.37e-001 Toluene 1.02e-001 3.96e-001 Ethylbenzene 4.25e-003 1.65e-002 Xylenes 5.43e-002 2.11e-001 C8+ Heavies 2.27e-001 8.79e-001 Total Components 100.00 3.88e+002

REGENERATOR OVERHEADS STREAM

Temperature:	212.00	dea.	F	
Pressure:	14.70	-	-	
Flow Rate:	6.29e+001	-		
rion nate.	0.290.001	JOIN		

Conc. Loading

(vol%) (lb/hr) Water 6.86e+001 2.05e+000 Carbon Dioxide 3.13e-001 2.29e-002 Nitrogen 2.07e-002 9.60e-004 Methane 1.55e+001 4.11e-001 Ethane 1.83e+000 9.11e-002 Propane 1.00e+000 7.32e-002 Isobutane 3.37e-001 3.25e-002 n-Butane 5.01e-001 4.83e-002 Isopentane 2.82e-001 3.37e-002 n-Pentane 2.57e-001 3.08e-002 n-Hexane 2.60e-001 3.71e-002 Cyclohexane 6.57e-001 9.17e-002 Other Hexanes 2.95e-001 4.22e-002 Heptanes 8.48e-001 1.41e-001 Methylcyclohexane 1.30e+000 2.12e-001 2,2,4-Trimethylpentane 2.63e-002 4.99e-003 Benzene 1.74e+000 2.25e-001 Toluene 2.39e+000 3.64e-001 Ethylbenzene 8.39e-002 1.48e-002 Xylenes 1.04e+000 1.83e-001 C8+ Heavies 2.74e+000 7.73e-001 Total Components 100.00 4.88e+000

POTENTIAL UNCONTROLLED EMISSIONS

Company: Summit Gas Gathering Facility Name: 7-15E Wellsite Facility Location: Uintah County, Utah

> Unit: TEG Dehydrator at 7-15E wellsite Rating: 0.10 MMscf/day total; 4015 Pump at maximum glycol pump rate

Unit	Gas Flow								Total	Total		
Description	Rate	VOCs	Benzene	Toluene	Ethylbenzene	Xylenes	N-Hexane	224-TMP	HAPs	BTEX	CO ₂	Methane
	(MMscf/day)	(tons/yr)	(tons/yr)	(tons/yr)	(tons/yr)	(tons/yr)	(tons/yr)	(tons/yr)	(tons/yr)	(tons/yr)	(MT/yr)*	(MT/yr)*
Dehy w/4015 pump	0.100	7.8352	0.6697	1.0039	0.0383	0.4661	0.16	0.0215	2.3596	2.1781	0.0908	1.7970
TOTAL		7.835	0.670	1.004	0.038	0.466	0.160	0.022	2.360	2.178	0.091	1.797

*CO2 and Methane emissions are expressed in metric tons per GHG requirements.

20

Buys & Associates, Inc. 300 East Mineral Ave., Ste 10 Littleton CO 80122 ph. 303-781-8211 GRI-GLYCalc VERSION 4.0 - AGGREGATE CALCULATIONS REPORT

Case Name: Summit Gas Gathering - 7-15E Wellsite Dehy
File Name: \\10.0.1.156\clients\XTO energy - 390\390-57 Riverbend Dehy
Site\Calculations\7-15E Wellsite Dehydrator emissions.ddf
Date: January 04, 2011

DESCRIPTION:

Description: 0.1 MMscfd 4015 glycol pump PTE uncontrolled

Annual Hours of Operation: 8760.0 hours/yr

EMISSIONS REPORTS:

UNCONTROLLED REGENERATOR EMISSIONS

Component	lbs/hr	lbs/day	tons/yr
Methane	0.4103	9.846	1.7970
Ethane	0.0911	2.185	0.3988
Propane	0.0730	1.752	0.3197
Isobutane	0.0324	0.778	0.1419
n-Butane	0.0481	1.155	0.2107
Isopentane	0.0335	0.805	0.1469
n-Pentane	0.0306	0.734	0.1340
n-Hexane	0.0365	0.877	0.1600
Cyclohexane	0.0849	2.037	0.3717
Other Hexanes	0.0417	1.002	0.1828
Heptanes	0.1353	3.248	0.5928
Methylcyclohexane	0.1898	4.554	0.8311
2,2,4-Trimethylpentane	0.0049	0.118	0.0215
Benzene	0.1529	3.670	0.6697
Toluene	0.2292	5.501	1.0039
Ethylbenzene	0.0088	0.210	0.0383
Xylenes	0.1064	2.554	0.4661
C8+ Heavies	0.5808	13.939	2.5439
Total Emissions	2.2902	54.965	10.0311
Total Hydrocarbon Emissions	2.2902	54.965	10.0311
Total VOC Emissions	1.7889	42.933	7.8352
Total HAP Emissions	0.5387	12.929	2.3596
Total BTEX Emissions	0.4973	11.935	2.1781

EQUIPMENT REPORTS:

ABSORBER

NOTE: Because the Calculated Absorber Stages was below the minimum allowed, GRI-GLYCalc has set the number of Absorber Stages to 1.25 and has calculated a revised Dry Gas Dew Point.

Page: 2

Calculated Absorber Stages: Calculated Dry Gas Dew Point:	1.25 6.25	lbs. H20/MMSCF
Temperature: Pressure: Dry Gas Flow Rate: Glycol Losses with Dry Gas: Wet Gas Water Content:	80.0 0.1000 0.0003 Saturated	MMSCF/day lb/hr
Calculated Wet Gas Water Content: Calculated Lean Glycol Recirc. Ratio:		lbs. H2O/MMSCF gal/lb H2O

Component	Remaining in Dry Gas	
Water	2.23%	97.77%
Carbon Dioxide	98.68%	1.32%
Nitrogen	99.92%	0.08%
Methane	99.92%	0.08%
Ethane	99.65%	0.35%
Propane	99.23%	0.77%
Isobutane	98.68%	1.32%
n-Butane	98.17%	1.83%
Isopentane	97.70%	2.30%
n-Pentane	96.98%	3.02%
n-Hexane	93.80%	6.208
Cyclohexane	76.38%	23.628
Other Hexanes	95.46%	4.548
Heptanes	85.89%	14.118
Methylcyclohexane	69.11%	30.898
2,2,4-Trimethylpentane	93.08%	6.92%
Benzene	23.20%	76.80%
Toluene	13.27%	86.73%
Ethylbenzene	6.55%	93.45%
Xylenes	4.33%	95.67%
C8+ Heavies	37.76%	62.24%

REGENERATOR

No Stripping Gas used in regenerator.

Component	Remaining in Glycol	Distilled Overhead
Water Carbon Dioxide Nitrogen Methane Ethane	77.028 0.008 0.008 0.008 0.008 0.008	22.98% 100.00% 100.00% 100.00% 100.00%
Propane Isobutane n-Butane Isopentane n-Pentane	0.00% 0.00% 0.46% 0.47%	100.00% 100.00% 100.00% 99.54% 99.53%
n-Hexane Cyclohexane Other Hexanes Heptanes Methylcyclohexane	0.49% 3.18% 0.96% 0.49% 3.98%	99.51% 96.82% 99.04% 99.51% 96.02%
2,2,4-Trimethylpentane	1.46%	98.54%

		Page:	3
Benzene	4.99%	95.01%	
Toluene	7.88%	92.12%	
Ethylbenzene	10.38%	89.62%	
Xylenes	12.88%	87.12%	
at 12 100 1			
C8+ Heavies	11.94%	88.06%	

STREAM REPORTS:

WET GAS STREAM

Temperature: 82.00 deg. F Pressure: 94.70 psia Flow Rate: 4.20e+003 scfh

Flow Rate: 4.20e+003 scfh		
Component	Conc. (vol%)	2
Carbon Dioxide Nitrogen Methane	5.85e-001 3.12e-001 1.21e-001 9.07e+001 5.23e+000	1.52e+000 3.77e-001 1.61e+002
Isobutane n-Butane Isopentane	1.59e+000 3.36e-001 3.74e-001 1.69e-001 1.20e-001	2.16e+000 2.40e+000 1.35e+000
Cyclohexane Other Hexanes	9.28e-002 8.54e-002	3.57e-001 8.85e-001 9.48e-001
Toluene Ethylbenzene	2.30e-002 2.58e-002	1.99e-001 2.64e-001 9.35e-003
C8+ Heavies	4.93e-002	9.30e-001
Total Components	100.00	2.01e+002

DRY GAS STREAM

Temperature: 82.00 deg. F Pressure: 94.70 psia Flow Rate: 4.17e+003 scfh Component Conc. Loading (vol%) (lb/hr) Water 1.32e-002 2.61e-002 Carbon Dioxide 3.11e-001 1.50e+000 Nitrogen 1.22e-001 3.76e-001 Methane 9.14e+001 1.61e+002 Ethane 5.26e+000 1.74e+001 Propane 1.59e+000 7.70e+000

Page: 4

Isobutane 3.35e-001 2.14e+000 n-Butane 3.70e-001 2.36e+000 Isopentane 1.67e-001 1.32e+000 n-Pentane 1.17e-001 9.29e-001 n-Hexane 5.68e-002 5.38e-001 Cyclohexane 2.95e-002 2.72e-001 Other Hexanes 8.93e-002 8.45e-001 Heptanes 7.40e-002 8.14e-001 Methylcyclohexane 3.91e-002 4.22e-001 2,2,4-Trimethylpentane 5.13e-003 6.44e-002 Benzene 5.37e-003 4.61e-002 Toluene 3.46e-003 3.50e-002 Ethylbenzene 5.26e-005 6.13e-004 Xylenes 4.13e-004 4.81e-003 C8+ Heavies 1.88e-002 3.51e-001 _____ Total Components 100.00 1.98e+002

LEAN GLYCOL STREAM

_____ _____ Temperature: 82.00 deg. F Flow Rate: 6.80e-001 gpm Conc. Loading (wt%) (1b/hr) Component _____ TEG 9.90e+001 3.79e+002 Water 1.00e+000 3.83e+000 Carbon Dioxide 5.27e-013 2.02e-012 Nitrogen 7.80e-015 2.99e-014 Methane 1.12e-018 4.31e-018 Ethane 7.46e-009 2.86e-008 Propane 6.31e-010 2.42e-009 Isobutane 2.24e-010 8.59e-010 n-Butane 2.84e-010 1.09e-009 Isopentane 4.09e-005 1.57e-004 n-Pentane 3.79e-005 1.45e-004 n-Hexane 4.66e-005 1.79e-004 Cyclohexane 7.27e-004 2.78e-003 Other Hexanes 1.06e-004 4.06e-004 Heptanes 1.75e-004 6.72e-004 Methylcyclohexane 2.05e-003 7.86e-003 2,2,4-Trimethylpentane 1.90e-005 7.29e-005 Benzene 2.10e-003 8.03e-003 Toluene 5.12e-003 1.96e-002 Ethylbenzene 2.65e-004 1.01e-003 Xylenes 4.11e-003 1.57e-002 C8+ Heavies 2.06e-002 7.87e-002 Total Components 100.00 3.83e+002

RICH GLYCOL AND PUMP GAS STREAM

Temperature: 82.00 deg. F Pressure: 94.70 psia Flow Rate: 6.87e-001 gpm NOTE: Stream has more than one phase.

Component

Conc. Loading

	(wt%)	(lb/hr)	Page:	5
Water Carbon Dioxide Nitrogen	9.81e+001 1.29e+000 5.91e-003 2.48e-004 1.06e-001	4.97e+000 2.28e-002 9.57e-004		
Propane Isobutane	2.36e-002 1.89e-002 8.39e-003 1.24e-002 8.72e-003	7.30e-002 3.24e-002 4.81e-002		
n-Hexane Cyclohexane Other Hexanes		3.67e-002 8.76e-002 4.21e-002		
	1.29e-003 4.16e-002 6.44e-002	4.98e-003 1.61e-001 2.49e-001		
C8+ Heavies		6.60e-001		
Total Components	100.00	5.00e+00Z		

REGENERATOR OVERHEADS STREAM

Temperature: 212.00 deg. F Pressure: 14.70 psia Flow Rate: 4.20e+001 scfh		
Component		Loading (lb/hr)
Water Carbon Dioxide Nitrogen Methane	5.73e+001	1.14e+000 2.28e-002 9.57e-004 4.10e-001
Isobutane n-Butane Isopentane	1.50e+000 5.04e-001 7.48e-001 4.20e-001 3.83e-001	3.24e-002 4.81e-002 3.35e-002
Cyclohexane Other Hexanes	4.37e-001 1.22e+000	8.49e-002 4.17e-002 1.35e-001
Toluene Ethylbenzene	1.77e+000 2.25e+000	1.53e-001 2.29e-001 8.75e-003
C8+ Heavies Total Components		

QUESTAR APPLIED TECHNOLOGY

1210 D. Street, Rock Springs, Wyoming 82901 (307) 352-7292

LIMS ID:	N/A		Description:	RBU 6-18 F
Analysis Date/Time:	8/3/2010	12:47 PM		Natural Buttes
Analyst Initials:	AST		ML#:	хто
Instrument ID:	Instrument 1		GC Method:	Quesbtex
Data File:	QPC23.D			
Date Sampled:	7/30/2010			
Component	Mol%		Wt9	6 LV%
Methane	91.2478		80.6806	86.3833
Ethane	5.2642		8.7242	7.8843
Propane	1.5975		3.8824	2.4600
sobutane	0.3382		1.0833	0.6182
n-Butane	0.3758		1.2040	0.6622
Neopentane	0.0057		0.0228	0.0123
Isopentane	0.1647		0.6550	0.3370
n-Pentane	0.1206		0.4795	0.2440
2,2-Dimethylbutane	0.0078		0.0369	0.0181
2,3-Dimethylbutane	0.0152		0.0724	0.0349
2-Methylpentane	0.0440		0.2092	0.1021
3-Methylpentane	0.0263		0.1249	0.0600
n-Hexane	0.0604		0.2868	0.1387
Heptanes	0.2355		1.2033	0.5053
Octanes	0.0364		0.2282	0.1008
Nonanes	0.0207		0.1337	0.0551
Decanes plus	0.0028		0.0220	0.0096
Nitrogen	0.1221		0.1885	0.0748
Carbon Dioxide	0.3143		0.7623	0.2993
Oxygen	0.0000		0.0000	0.0000
Hydrogen Sulfide	0.0000		0.0000	0.0000
Total	100.0000		100.0000	100.0000
d an a she child a sa		Units		
Gross BTU/Real CF	1118.1			60°F and14.73 psia
Sat.Gross BTU/Real CF			BTU/SCF at 0	60°F and14.73 psia
Gas Compressibility (Z)	0.9974			
Specific Gravity	0.6281		air=1	
Avg Molecular Weight	18.144		gm/mole	
Propane GPM	0.437815		gal/MCF	
Butane GPM	0.228562		gal/MCF	
Gasoline GPM	0.262546		gal/MCF	
26# Gasoline GPM	0.381545		gai/MCF	
Total GPM	0.929749		gal/MCF	
Base Mol%	99.499		%v/v	
Sample Temperature:	82		°F	
Sample Pressure:	80		psig	

Reviewed By:

Buys & Associates, Inc. 300 East Mineral Ave., Ste 10 Littleton CO 80122 ph. 303-781-8211

14'

Component	Mol%	Wt%	LV%
Benzene	0.0231	0.0993	0.0361
Toluene	0.0260	0.1318	0.0486
Ethylbenzene	0.0008	0.0046	0.0017
M&P Xylene	0.0086	0.0504	0.0186
O-Xylene	0.0009	0.0051	0.0019
2,2,4-Trimethylpentane	0.0055	0.0348	0.0155
Cyclopentane	0.0000	0	0.0000
Cyclohexane	0.0385	0.1787	0.0733
Methylcyclohexane	0.0565	0.3059	0.1270
Description:	RBU 6-18 F		

GRI GlyCalc Information

Component	Mol%	Wt%	LV%	
Carbon Dioxide	0.3143	0.7623	0.2993	
Hydrogen Sulfide	0.0000	0.0000	0.0000	
Nitrogen	0.1221	0.1885	0.0748	
Methane	91.2478	80.6806	86.3833	
Ethane	5.2642	8.7242	7.8843	
Propane	1.5975	3.8824	2.4600	
Isobutane	0.3382	1.0833	0.6182	
n-Butane	0.3758	1.2040	0.6622	
Isopentane	0.1704	0.6778	0.3493	
n-Pentane	0.1206	0.4795	0.2440	
Cyclopentane	0.0000	0.0000	0.0000	
n-Hexane	0.0604	0.2868	0.1387	
Cyclohexane	0.0385	0.1787	0.0733	
Other Hexanes	0.0933	0.4434	0.2151	
Heptanes	0.0859	0.4528	0.2048	
Methylcyclohexane	0.0565	0.3059	0.1270	
2,2,4 Trimethylpentane	0.0055	0.0348	0.0155	
Benzene	0.0231	0.0993	0.0361	
Toluene	0.0260	0.1318	0.0486	
Ethylbenzene	0.0008	0.0046	0.0017	
Xylenes	0.0095	0.0555	0.0205	
C8+ Heavies	0.0496	0.3238	0.1433	
Subtotal	100.0000	100.0000	100.0000	
Oxygen	0.0000	0.0000	0.0000	
Total	100.0000	100.0000	100.0000	

Buys & Associates, Inc. 300 East Mineral Ave., Ste 10 Littleton CO 80122 ph. 303-781-8211

WELLSITE FLASH TANK EMISSIONS

Company: Summit Gas Gathering Facility Name: Each wellsite Facility Location: Uintah County, Utah

GAS	MOLECULAR	MOLE	RELATIVE	WEIGHT	COMPONENT	COMPONENT	COMPONENT
COMPONENT	WEIGHT	PERCENT	MOLE WEIGHT	PERCENT	FLOW RATE	FLOW RATE	FLOW RATE
	(lb/lb-mole)		(lb/lb-mole)		(Mscf/day)	(lb/hr)	(tons/yr)
Methane	16.043	70.9793	11.3872091	50.91175044	0.00709793	0.012502755	0.054762066
Ethane	30.07	7.6613	2.30375291	10.29998591	0.00076613	0.00252944	0.011078946
Propane	44.097	2.6969	1.189251993	5.317097469	0.00026969	0.001305757	0.005719215
i-Butane	58.123	0.6654	0.386750442	1.729145554	0.00006654	0.000424638	0.001859916
n-Butane	58.123	0.7914	0.459985422	2.056576182	0.00007914	0.000505048	0.002212109
i-Pentane	72.15	0.3659	0.26399685	1.180319218	0.00003659	0.000289859	0.001269584
n-Pentane	72.15	0.3261	0.23528115	1.051932487	0.00003261	0.00025833	0.001131487
Hexanes	86.177	0.3626	0.312477802	1.39707559	0.00003626	0.00034309	0.001502733
Heptanes	100.204	0.2103	0.210729012	0.942160873	0.00002103	0.000231373	0.001013414
Octanes	114.231	0.2137	0.244111647	1.091413282	0.00002137	0.000268026	0.001173954
Nonanes	128.258	0.1666	0.213677828	0.95534491	0.00001666	0.000234611	0.001027595
Decanes +	142.285	0.569	0.80960165	3.61969617	0.0000569	0.000888914	0.003893444
Benzene	78.12	0.01	0.007812	0.034927135	0.000001	8.5773E-06	3.75686E-05
Toluene	92.13	0.0235	0.02165055	0.096798732	0.00000235	2.37715E-05	0.000104119
Ethylbenzene	106.16	0.0082	0.00870512	0.038920239	0.0000082	9.55792E-06	4.18637E-05
Xylenes	106.16	0.0222	0.02356752	0.105369427	0.00000222	2.58763E-05	0.000113338
n-Hexane	86.177	0.0648	0.055842696	0.249670431	0.0000648	6.13133E-05	0.000268552
Helium	4.003	0	0	0	0	0	0
Nitrogen	28.013	14.4447	4.046393811	18.09126276	0.00144447	0.004442798	0.019459455
Carbon Dioxide	44.01	0.4221	0.18576621	0.830553197	0.00004221	0.000203965	0.000893366
Oxygen	32	0	0	0	0	0	0
Hydrogen Sulfide	34.08	0	0	0	0	0	0
VOC SUBTOTAL		6.4966	4.443441682	19.8664477	0.00064966	0.004878743	0.021368893
HAP SUBTOTAL		0.1287	0.117577886	0.525685964	0.00001287	0.000129096	0.000565442
TOTAL		100.0040	22.36656371	100	0.0100004	0.0245577	0.107562726

Gas Vented: Days of Operation:

.

0.01 Mscf/day 365 days/year 1 barrels of Oil/Produced Water 4.0553 Gas to Oil Ratio in Cubic Feet Gas to Barrel of Oil/Water

See attached flash gas analysis for nearby well RBU 2-16E, including gas to oil ratio, API Gravity and Reid Vapor Pressure

Buys & Associates, Inc. 300 East Mineral Ave., Ste 10 Littleton CO 80122 ph. 303-781-8211

TANKS 4.0.9d Emissions Report - Detail Format Tank Indentification and Physical Characteristics

Identification

User Identification: City: State: Company: Type of Tank: Description:	Summit Gas Gathering - 6-15E Wellsite Utah Summit Gas Gathering Vertical Fixed Roof Tank 400-bbl storage tank Produced water and condensate Shared Tank - 1 gallon/day condensate, 2 bpd Prod Water.
Tank Dimensions Shell Height (ft): Diameter (ft): Liquid Height (ft) : Avg. Liquid Height (ft): Volume (gallons): Turnovers: Net Throughput(gal/yr): Is Tank Heated (y/n):	20.00 12.00 19.50 10.00 16,497.58 0.02 365.00 Y
Paint Characteristics Shell Color/Shade: Shell Condition Roof Color/Shade: Roof Condition:	Gray/Light Good Gray/Light Good
Roof Characteristics Type: Height (ft) Radius (ft) (Dome Roof)	Dome 0.13 12.00
Breather Vent Settings Vacuum Settings (psig): Pressure Settings (psig)	0.00 0.00

Meterological Data used in Emissions Calculations: Grand Junction, Colorado (Avg Atmospheric Pressure = 12.37 psia)

2 ,...0

TANKS 4.0.9d Emissions Report - Detail Format Liquid Contents of Storage Tank

Summit Gas Gathering - 6-15E Wellsite - Vertical Fixed Roof Tank

Mixture/Component	Month		ily Liquid S perature (de Min.		Liquid Bulk Temp (deg F)	Vapo Avg.	or Pressure Min.	(psia) Max.	Vapor Mol. Weight.	Liquid Mass Fract.	Vapor Mass Fract.	Moi. Weight	Basis for Vapor Pressure Calculations
Crude oil (RVP 5)	All	0.00	0.00	0.00	0.00	0.7594	0.7594	0.7594	50.0000	ar all - Alan ang alan ang alan an		207.00	Option 4: RVP=5

TANKS 4.0.9d Emissions Report - Detail Format Detail Calculations (AP-42)

Summit Gas Gathering - 6-15E Wellsite - Vertical Fixed Roof Tank

Annual Emission Calcaulations	
Standing Losses (Ib):	0.0000
Vapor Space Volume (cu ft):	1,138.0430
Vapor Density (lb/cu ft):	0.0077
Vapor Space Expansion Factor:	0.0000
Vented Vapor Saturation Factor:	0.7117
Tank Vapor Space Volume:	
Vapor Space Volume (cu ft):	1,138.0430
Tank Diameter (ft):	12.0000
Vapor Space Outage (ft):	10.0625
Tank Shell Height (ft):	20.0000
Average Liquid Height (ft):	10.0000
Roof Outage (ft):	0.0625
Roof Outage (Dome Roof)	0.0005
Roof Outage (ft):	0.0625
Dome Radius (ft):	12.0000
Shell Radius (ft):	6.0000
Vapor Density	0.0077
Vapor Density (lb/cu ft): Vapor Molecular Weight (lb/lb-mole):	50.0000
Vapor Pressure at Daily Average Liquid	50.0000
Surface Temperature (psia):	0.7594
Daily Avg. Liquid Surface Temp. (deg. R):	459.6700
Daily Average Ambient Temp. (deg. F):	52.9333
Ideal Gas Constant R	01.0000
(psia cuft / (lb-mol-deg R)):	10.731
Liquid Bulk Temperature (deg. R):	459.6700
Tank Paint Solar Absorptance (Shell):	0.5400
Tank Paint Solar Absorptance (Roof):	0.5400
Daily Total Solar Insulation	
Factor (Btu/sqft day):	1,578.3125
apor Space Expansion Factor	
Vapor Space Expansion Factor:	0.0000
Daily Vapor Temperature Range (deg. R):	0.0000
Daily Vapor Pressure Range (psia):	0.0000
Breather Vent Press. Setting Range(psia):	0.0000
Vapor Pressure at Daily Average Liquid	
Surface Temperature (psia):	0.7594
Vapor Pressure at Daily Minimum Liquid	12 March 1
Surface Temperature (psia):	0.7594
Vapor Pressure at Daily Maximum Liquid	0.7604
Surface Temperature (psia):	0.7594
Daily Avg. Liquid Surface Temp. (deg R):	459.6700
Daily Min. Liquid Surface Temp. (deg R):	459.6700
Daily Max. Liquid Surface Temp. (deg R):	459.6700
Daily Ambient Temp. Range (deg. R):	25.6333
/ented Vapor Saturation Factor	and there are a
Vented Vapor Saturation Factor	0.7117
Vapor Pressure at Daily Average Liquid:	
Surface Temperature (psia):	0.7594
Vapor Space Outage (ft):	10.0625
Vorking Losses (Ib):	0.2475
torking Loads (ID).	0.2475

Vapor Molecular Weight (Ib/lb-mole):	50.0000
Vapor Pressure at Daily Average Liquid	
Surface Temperature (psia):	0.7594
Annual Net Throughput (gal/yr.):	365.0000
Annual Turnovers:	0.0221
Tumover Factor:	1.0000
Maximum Liquid Volume (gal):	16,497.5776
Maximum Liquid Height (ft):	19.5000
Tank Diameter (ft):	12.0000
Working Loss Product Factor:	0.7500
Total Losses (Ib):	0.2475

TANKS 4.0.9d Emissions Report - Detail Format Individual Tank Emission Totals

Emissions Report for: Annual

Summit Gas Gathering - 6-15E Wellsite - Vertical Fixed Roof Tank

	Losses(lbs)								
Components	Working Loss	Breathing Loss	Total Emissions						
Crude oil (RVP 5)	0.25	0.00	0.25						

TANKS 4.0 Report

.

TANKS 4.0.9d Emissions Report - Detail Format Tank Indentification and Physical Characteristics

Identification

User Identification: City: State: Company: Type of Tank: Description:	Summit Gas Gathering - 7-15E Wellsite Utah Summit Gas Gathering Vertical Fixed Roof Tank One 300-bbl storage tank Shares produced water and condensate 1 bpd water; 1 quart per day condensate. Uncontrolled; Actual production
Tank Dimensions Shell Height (ft): Diameter (ft): Liquid Height (ft) : Avg. Liquid Height (ft): Volume (gallons): Turnovers: Net Throughput(gal/yr): Is Tank Heated (y/n):	15.00 12.00 14.50 8.00 12,267.43 0.01 91.25
Paint Characteristics Shell Color/Shade: Shell Condition Roof Color/Shade: Roof Condition:	Gray/Light Good Gray/Light Good
Roof Characteristics Type: Height (ft) Radius (ft) (Dome Roof)	Dome 0.13 12.00
Breather Vent Settings Vacuum Settings (psig): Pressure Settings (psig)	0.00 0.00

Meterological Data used in Emissions Calculations: Grand Junction, Colorado (Avg Atmospheric Pressure = 12.37 psia)

TANKS 4.0.9d Emissions Report - Detail Format Liquid Contents of Storage Tank

Summit Gas Gathering - 7-15E Wellsite - Vertical Fixed Roof Tank

	na na mandra na Analonna ang marang		ily Liquid S perature (d	eg F)	Liquid Bulk Temp	Vapo	r Pressure		Vapor Mol.	Liquid Mass	Vapor Mass	Mol.	Basis for Vapor Pressure
Mixture/Component	Month	Avg	Min.	Max.	(deg F)	Avg.	Min.	Max.	Weight.	Fract	Fract.	Weight	Calculations
Crude oil (RVP 5)	All	0.00	0.00	0.00	0.00	0.7594	0.7594	0.7594	50.0000		2.460 AT	207.00	Option 4: RVP=5

2.

.

¢

TANKS 4.0.9d Emissions Report - Detail Format Detail Calculations (AP-42)

Summit Gas Gathering - 7-15E Wellsite - Vertical Fixed Roof Tank

Annual Emission Calcaulations	
Standing Losses (Ib):	0.0000
Vapor Space Volume (cu ft):	798.7510
Vapor Density (lb/cu ft):	0.0077
Vapor Space Expansion Factor:	0.0000
Vented Vapor Saturation Factor.	0.7787
Tank Vapor Space Volume:	700 7540
Vapor Space Volume (cu ft):	798.7510
Tank Diameter (ft):	12.0000
Vapor Space Outage (ft):	7.0625
Tank Shell Height (ft):	
Average Liquid Height (ft):	8.0000 0.0625
Roof Outage (ft):	0.0625
Roof Outage (Dome Roof)	0.0005
Roof Outage (ft):	0.0625
Dome Radius (ft):	6,0000
Shell Radius (ft):	0.0000
Vapor Density	0.0077
Vapor Density (lb/cu ft): Vapor Molecular Weight (lb/lb-mole):	50,0000
Vapor Pressure at Daily Average Liquid	50.0000
Surface Temperature (psia):	0.7594
Daily Avg. Liquid Surface Temp. (deg. R):	459.6700
Daily Average Ambient Temp. (deg. F):	52,9333
Ideal Gas Constant R	02.0000
(psia cuft / (lb-mol-deg R)):	10,731
Liquid Bulk Temperature (deg. R):	459.6700
Tank Paint Solar Absorptance (Shell):	0.5400
Tank Paint Solar Absorptance (Roof):	0,5400
Daily Total Solar Insulation	
Factor (Btu/sqft day):	1,578.3125
Vapor Space Expansion Factor	
Vapor Space Expansion Factor:	0.0000
Daily Vapor Temperature Range (deg. R):	0.0000
Daily Vapor Pressure Range (psia):	0.0000
Breather Vent Press. Setting Range(psia):	0.0000
Vapor Pressure at Daily Average Liquid	
Surface Temperature (psia):	0.7594
Vapor Pressure at Daily Minimum Liquid	
Surface Temperature (psia):	0.7594
Vapor Pressure at Daily Maximum Liquid	
Surface Temperature (psia):	0.7594
Daily Avg. Liquid Surface Temp. (deg R):	459.6700
Daily Min. Liquid Surface Temp. (deg R):	459.6700
Daily Max. Liquid Surface Temp. (deg R): Daily Ambient Temp. Range (deg. R):	459.6700 25.6333
Vented Vapor Saturation Factor	
Vented Vapor Saturation Factor	0.7787
	0.7787
Vapor Pressure at Daily Average Liquid: Surface Temperature (psia):	0,7594
Surface Temperature (psia): Vapor Space Outage (ff):	7.0625
Vapor Space Outage (ft):	7.0025
Working Losses (lb):	0.0619
· · · · · · · · · · · · · · · · · · ·	2.0010

Vapor Molecular Weight (Ib/Ib-mole):	50.0000
Vapor Pressure at Daily Average Liquid	
Surface Temperature (psia):	0.7594
Annual Net Throughput (gal/yr.):	91.2500
Annual Tumovers:	0.0074
Tumover Factor:	1.0000
Maximum Liquid Volume (gal):	12,267,4295
Maximum Liquid Height (ft):	14.5000
Tank Diameter (ft):	12.0000
Working Loss Product Factor:	0.7500
otal Losses (lb):	0.0619

TANKS 4.0.9d Emissions Report - Detail Format Individual Tank Emission Totals

Emissions Report for: Annual

Summit Gas Gathering - 7-15E Wellsite - Vertical Fixed Roof Tank

		Losses(lbs)	
Components	Working Loss	Breathing Loss	Total Emissions
Crude oil (RVP 5)	0.06	0.00	0.06

s s

WELLSITE UNCONTROLLED CONDENSATE TRUCK LOADING EMISSIONS

Company: Summit Gas Gathering Facility Name: RBU 6-15E Facility Location: Uintah County, Utah

AP - 42, Chapter 5.2

L_L = 12.46 x S x P x M / T Emissions = L_L * Throughput

TABLE 1. Emission factors are calculated utilizing AP-42 equations and data from EPA TANKS 4.09 LL is converted to tpy VOC emissions per barrel of production per

- L_L = Loading Loss Emission Factor (lbs VOC/1000 gal Loaded)
 - S = Saturation Factor (0.6 For Submerged Loading Dedicated Service)
 - P = True Vapor Pressure of the Loaded Liquid (psi)
 - M = Vapor Molecular Weight of the Loaded Liquid (lbs/lbmol)
 - T = Temperature of Loaded Liquid (°R)

								- 147 - S		$1 < 1 \frac{2}{2} \int_{\mathbb{T}^{d}} e_{i} s \left[1 \left(\phi_{i} \right) \right] s \right]$	(c)(c) €
Location as a location	- Reichois -		STEVER (OSI)		TRANK	, lo activitient.	. eert				i di y
Truck Loading	12.46	0.6	1.25	22.59	511.68	0.4126	0.0004	0.0173	3.16E-03	1.00	0.0032

Buys & Associates, Inc. 300 East Mineral Ave., Ste 10 Littleton CO 80122 ph. 303-781-8211

WELLSITE NATURAL GAS COMPOSITION

Company: Summit Gas Gathering Facility Name: All Wellsites Facility Location: Uintah County, Utah

Fuel Type: Natural Gas Heat Value (wet): 1095 Btu/scf

C1-C2 Wt. Fraction: VOC Wt. Fraction: Non-HC Wt. Fraction: Total: 0.893683557 0.09681167 0.009504773 1

COMPONENT	MOLE	COMPONENT	NET	WEIGHT	GROSS	NET DRY	LOWER	NET LOW
	PERCENT	MOLE	MOLE	FRACTION	HEATING	HEATING	HEATING	HEATING
		WEIGHT	WEIGHT		VALUE	VALUE	VALUE	VALUE
		(lb/lb-mole)	(lb/lb-mole)		(BTU/scf)	(BTU/scf)	(BTU/scf)	(BTU/scf)
Methane	91.2478	16.043	14.63888455	0.806476879	1010	921.60278	910	830.35498
Ethane	5.2642	30.07	1.58294494	0.087206678	1769.8	93.1658116	1618	85.174756
Propane	1.5975	44.097	0.704449575	0.038809125	2516.2	40.196295	2316	36.9981
i-Butane	0.3382	58.123	0.196571986	0.010829429	3252.1	10.9986022	3005	10.16291
n-Butane	0.3758	58.123	0.218426234	0.012033411	3262.4	12.2600992	3013	11.322854
i-Pentane	0.1704	72.15	0.1229436	0.006773137	4000.9	6.8175336	3698	6.301392
n-Pentane	0.1206	72.15	0.0870129	0.004793664	4008.8	4.8346128	3708	4.471848
Hexanes+	0.1318	86.177	0.113581286	0.006257354	4756.2	6.2686716	4404	5.804472
Heptanes	0.1424	100.204	0.142690496	0.007861021	5502.5	7.83556	5100	7.2624
Octanes	0.0316	114.231	0.036096996	0.001988635	6249.1	1.9747156		0
Nonanes	0.0207	128.258	0.026549406	0.001462644	6996.4	1.4482548		0
Decanes	0.0028	142.285	0.00398398	0.000219483	7743.2	0.2168096		0
Benzene	0.0231	78.12	0.01804572	0.000994164	3715.5	0.8582805		0
Toluene	0.026	92.13	0.0239538	0.001319649	4444.6	1.155596		0
Ethylbenzene	0.0008	106.16	0.00084928	4.6788E-05	5191.5	0.041532		0
Xylenes	0.0095	106.16	0.0100852	0.000555608	5183.5	0.4924325		0
n-Hexane	0.0604	86.177	0.052050908	0.002867558	4756.2	2.8727448		0
Helium	0.0000	4.003	0	0	0	0	0	0
Nitrogen	0.1221	28.013	0.034203873	0.00188434	0	0	0	0
Carbon Dioxide	0.3143	44.01	0.13832343	0.007620434	0	0	0	0
Oxygen	0.0000	32	0	0	0	0	0	0
Hydrogen Sulfide	0.0000	34.08	0	0	637.1	0	588	0
TOTAL	100.0000		18.15164816	1		1113.040332		997.853712

Relative Mole Weight (lb/lb-mole) = [Mole Percent * Molecular weight (lb/bl-mole)] / 100

Weight Fraction =

150

Net Mole Weight / Total Mole Weight

EACH WELLSITE FUGITIVE EMISSIONS

Company: Summit Gas Gathering Facility Name: Each Wellsite Facility Location: Uintah County, Utah

		Estimated Components	Hours of	Factors* %NMNEVOC		Emissio	ns
		Count	Operation	lb/hr/component	Weight	lb/year	tons/year
Valves							
	Gas/Vapor	150	8760	0.00992000	9.68%	1261.92850	0.63096
	Light Oil	20	8760	0.00550000	100.00%	963.60000	0.48180
	Heavy Oil		8760	0.00001900	100.00%	0.00000	0.00000
	Water/Light Oil	6	8760	0.00021600	100.00%	11.35296	0.00568
Pumps							
	Gas/Vapor	7	8760	0.00529000	9.68%	31.40404	0.01570
	Light Oil	3	8760	0.02866000	100.00%	753.18480	0.37659
	Heavy Oil		8760	0.00113000	100.00%	0.00000	0.00000
	Water/Light Oil		8760	0.00005300	100.00%	0.00000	0.00000
Flanges							
	GasNapor	300	8760	0.00086000	9.68%	218.80212	0.10940
	Light Oil	30	8760	0.00024300	100.00%	63.86040	0.03193
	Heavy Oil		8760	0.0000086	100.00%	0.00000	0.00000
	Water/Light Oil	20	8760	0.00000620	100.00%	1.08624	0.00054
Open-ende	ed Lines						
	GasNapor		8760	0.00441000	9.68%	0.00000	0.00000
	Light Oil		8760	0.00309000	100.00%	0.00000	0.00000
	Heavy Oil		8760	0.00030900	100.00%	0.00000	0.00000
	Water/Light Oil		8760	0.00055000	100.00%	0.00000	0.00000
Connector	S						
	Gas/Vapor	20	8760	0.00044000	9.68%	7.46302	0.00373
	Light Oil	20	8760	0.00046300	100.00%	81.11760	0.04056
	Heavy Oil		8760	0.00001700	100.00%	0.00000	0.00000
	Water/Light Oil	20	8760	0.00024300	100.00%	42.57360	0.02129

Buys & Associates, Inc. 300 East Mineral Ave., Ste 10 Littleton CO 80122 ph. 303-781-8211

Other: Compressors, relief valves, process drains, diaphragms, dump arms, hatches, instruments, meters, polished rods, and vents

Gas/Vapor	10	8760	0.01940000	9.68%	164.52562	0.08226
Light Oil	10	8760	0.01650000	100.00%	1445.40000	0.72270
Heavy Oil		8760	0.0006800	100.00%	0.00000	0.00000
Water/Light Oil	10	8760	0.03090000	100.00%	2706.84000	1.35342

*NOTE - emission factors based on Table 2-4 of U.S. EPA's 1995 Protocol for Equipment Leak Emission Estimates.

Total in tons/year	3.88
Total in Lb/hr	0.89

Fugitive HAP Emissions Totals - Gas/Vapor

	wt% in gas	Total VOC wt %	Total Gas Fugitive VOC tpy	Total tpy for HAP	Total Ib/hr for HAP
Benzene	0.0994%	9.68%	0.84	0.009	0.002
Toluene	0.1320%	9.68%	0.84	0.011	0.003
Xylene	0.0556%	9.68%	0.84	0.005	0.001
n-Hexane	0.2868%	9.68%	0.84	0.025	0.006
E-benzene	0.0047%	9.68%	0.84	0.000	0.000

TOTAL Fugitive HAP's	0.050	0.011
----------------------	-------	-------

Fugitive HAP Emissions Totals - Light Oil and Water

	wt% in liquid	Total VOC wt %	Total Liquid Fugitive VOC tpy	Total tpy for HAP	Total Ib/hr for HAP
Benzene	0.035%	100.00%	3.03	0.001	0.000
Toluene	0.097%	100.00%	3.03	0.003	0.001
E-benzene	0.039%	100.00%	3.03	0.001	0.000
Kylene	0.1054%	100.00%	3.03	0.003	0.001
2,2,4 TMP	0.000%	100.00%	3.03	0.000	0.000
n-Hexane	0.250%	100.00%	3.03	0.008	0.002

and the second	and the second se	
TOTAL Fugitive HAP's	0.016	0.004

EACH WELLSITE FUGITIVE METHANE EMISSIONS

Company: Summit Gas Gathering

Facility Name: Each Wellsite

.

Facility Location: Uintah County, Utah

	Estimated Components	Hours of	Factors*	%METHANE	Emiss	ions
	Count	Operation	lb/hr/component	Weight	lb/year	metric tons/year
Valves						
GasA	apor 150	8760	0.00992000	80.65%	10512.32934	4.77833
Light	Dil 20	8760	0.00550000	50.91%	490.58563	0.22299
Heavy	Oil	8760	0.00001900	0.00%	0.00000	0.00000
Water	/Light Oil 6	8760	0.00021600	50.91%	5.77999	0.00263
Pumps						
GasA			0.00529000	80.65%	261.60723	- 0.11891
Light	Dil 3	8760	0.02866000	50.91%	383.45957	0.17430
Heavy	Oil	8760	0.00113000	0.00%	0.00000	0.00000
Water	/Light Oil	8760	0.00005300	50.91%	0.00000	0.00000
Flanges						
GasA	3 = 15140		0.00086000	80.65%	1822.70226	0.82850
Light	Dil 30	8760	0.00024300	50.91%	32.51245	0.01478
Heavy		8760	0.0000086	0.00%	0.00000	0.00000
Water	/Light Oil 20	8760	0.00000620	50.91%	0.55302	0.00025
Open-ended Lines						
GasA	apor	8760	0.00441000	80.65%	0.00000	0.00000
Light	Dil	8760	0.00309000	50.91%	0.00000	0.00000
Heavy	Oil	8760	0.00030900	0.00%	0.00000	0.00000
Water	/Light Oil	8760	0.00055000	50.91%	0.00000	0.00000
Connectors						
Gas∧			0.00044000	80.65%	62.16969	0.02826
Light	Dil 20	8760	0.00046300	50.91%	41.29839	0.01877
Heavy		8760	0.00001700	0.00%	0.00000	0.00000
Water	/Light Oil 20	8760	0.00024300	50.91%	21.67496	0.00985

Other: Compressors, relief valves, process drains, diaphragms, dump arms, hatches, instruments, meters, polished rods, and vents

Gas/Vapor	10	8760	0.01940000	80.65%	1370.55907	0.62298
Light Oil	10	8760	0.01650000	50.91%	735.87844	0.33449
Heavy Oil		8760	0.00006800	0.00%	0.00000	0.00000
Water/Light Oil	10	8760	0.03090000	50.91%	1378.09963	0.62641

*NOTE - emission factors based on Table 2-4 of U.S. EPA's 1995 Protocol for Equipment Leak Emission Estimates.

Methane Total in metric tons/year	7.78		
Methane Total in Lb/hr	1.78		

Buys & Associates, Inc. 300 East Mineral Ave., Ste 10 Littleton CO 80122 ph. 303-781-8211

EACH WELLSITE FUGITIVE CO2 EMISSIONS

Company: Summit Gas Gathering Facility Name: Each Wellsite

Facility Location: Uintah County, Utah

	Estimated Hou Components		Hours of	Factors*	%CO2	Emissio	Emissions	
		Count	Operation	lb/hr/component	Weight	lb/year	metric tons/year	
Valves								
	Gas/Vapor	150	8760	0.00992000	0.76%	99.33144	0.04515	
	Light Oil	20	8760	0.00550000	0.83%	8.00321	0.00364	
	Heavy Oil		8760	0.00001900	0.00%	0.00000	0.00000	
	Water/Light Oil	6	8760	0.00021600	0.83%	0.09429	0.00004	
Pumps								
	Gas/Vapor	7	8760	0.00529000	0.76%	2.47194	0.00112	
	Light Oil	3	8760	0.02866000	0.83%	6.25560	0.00284	
	Heavy Oil		8760	0.00113000	0.00%	0.00000	0.00000	
	Water/Light Oil		8760	0.00005300	0.83%	0.00000	0.00000	
Flanges								
	Gas/Vapor	300	8760	0.00086000	0.76%	17.22279	0.00783	
×	Light Oil	30	8760	0.00024300	0.83%	0.53039	0.00024	
	Heavy Oil		8760	0.0000086	0.00%	0.00000	0.00000	
	Water/Light Oil	20	8760	0.0000620	0.83%	0.00902	0.00000	
Open-ende	d Lines							
	Gas/Vapor		8760	0.00441000	0.76%	0.00000	0.00000	
	Light Oil		8760	0.00309000	0.83%	0.00000	0.00000	
	Heavy Oil		8760	0.00030900	0.00%	0.00000	0.00000	
	Water/Light Oil		8760	0.00055000	0.83%	0.00000	0.00000	
Connectors	6							
	Gas/Vapor	20	8760	0.00044000	0.76%	0.58744	0.00027	
	Light Oil	20	8760	0.00046300	0.83%	0.67372	0.00031	
	Heavy Oil		8760	0.00001700	0.00%	0.00000	0.00000	
	Water/Light Oil	20	8760	0.00024300	0.83%	0.35360	0.00016	

Other: Compressors, relief valves, process drains, diaphragms, dump arms, hatches, instruments, meters, polished rods, and vents

Gas/Vapor	10	8760	0.01940000	0.76%	12.95047	0.00589
Light Oil	10	8760	0.01650000	0.83%	12.00482	0.00546
Heavy Oil		8760	0.00006800	0.00%	0.00000	0.00000
Water/Light Oil	10	8760	0.03090000	0.83%	22.48175	0.01022

*NOTE - emission factors based on Table 2-4 of U.S. EPA's 1995 Protocol for Equipment Leak Emission Estimates.

5

CO ₂ Total in metric tons/year	0.08
CO ₂ Total in Lb/hr	0.02

Buys & Associates, Inc. 300 East Mineral Ave., Ste 10 Littleton CO 80122 ph. 303-781-8211