

State of Arizona Air Monitoring Network Plan For the Year 2017

Arizona Department of Environmental Quality

Air Quality Division

Air Monitoring and Assessment Section

July, 2017

Final

State of Arizona Air Monitoring Network Plan for the Year 2017 Page i

1.0 INTRODUCTION	1
1.1 Executive Summary	3
1.2 Site Closures	4
1.3 New Sites Planned	4
1.4 Past Network Changes	4
1.5 Planned Network Changes	5
2.0 ADEQ PROGRAM AND NETWORK DESCRIPTIONS	6
2.1 NAAQS COMPLIANCE NETWORK	6
2.2 STATE IMPLEMENTATION PLAN (SIP) AND MAINTENANCE AREA NETWORK	6
2.3 Source-Oriented Network	7
2.4 NCORE NETWORK	7
2.5 Meteorological Network	7
2.6 Photochemical Assessment Monitoring Stations (PAMS)	7
2.7 NATIONAL AIR TOXICS TREND SITES (NATTS)	8
2.8 CHEMICAL SPECIATION NETWORK (CSN)	8
2.9 Class 1 Area Network and IMPROVE Program	8
2.10 AIRNOW REPORTING	8
2.11 URBAN HAZE NETWORK	9
2.12 E-BAM NETWORK OF PM2.5 SPECIAL PURPOSE MONITORS	9
2.13 ARIZONA / MEXICO BORDER NETWORK	9
3.0 MONITORING NETWORK EVALUATION	
3.1 Site Closures	
3.2 New Sites Planned	
3.3 Past Network Changes	
3.4 Planned Network Changes	11
4.0 ADEQ MONITORING NETWORKS	
4.1 PM _{2.5} Monitoring Network Requirements	12
4.2 PM ₁₀ Monitoring Network Requirements	
4.3 O ₃ Monitoring Network Requirements	15
4.4 Pb Monitoring Network Requirements	
4.5 SO ₂ Monitoring Network Requirements	
4.6 NO ₂ Monitoring Network Requirements	
4.7 CO Monitoring Network Requirements	
4.8 PAMS Monitoring Network Requirements	
4.9 NCORE MONITORING NETWORK REQUIREMENTS	
4.10 NATTS MONITORING NETWORK REQUIREMENTS	
4.11 CSN MONITORING NETWORK REQUIREMENTS	
4.12 SIP MONITORING NETWORK REQUIREMENTS.	
4.13 SOURCE COMPLIANCE MONITORING NETWORK REQUIREMENTS	
4.14 CLASS 1 VISIBILITY NETWORK	
4.15 URBAN HAZE MONITORING NETWORK	
4.16 METEOROLOGY MONITORING NETWORK	
5.0 QUALITY ASSURANCE	27
5.1 EPA QA REPORTS AND NETWORK PERFORMANCE	
5.2 EPA DATA REPORTS	
Appendix A – Definitions and Abbreviations	1

Table of Contents

Appendix B – Network Maps	1
Appendix C – Current Monitors by Program or Network	1
Appendix D – Site Information Data Tables	1
Appendix E – Letters to EPA	1
Appendix F – ADEQ's Air Quality Monitoring Role in Arizona	1
Appendix G – ADEQ PAMS Monitoring Implementation Network Plan	1

1.0 INTRODUCTION

This document fulfills the obligation, under the Code of Federal Regulations (CFR), Title 40, § 58.10(a), requiring the Arizona Department of Environmental Quality (ADEQ) to complete and submit to the United States Environmental Protection Agency (EPA) an annual monitoring network plan for the year 2017.

This plan informs EPA Region 9 of the monitoring activities ADEQ has implemented since July 2015, as well as activities ADEQ will undertake through December 2017. However, some changes may occur after the plan is published and approved due to unforeseen events at monitoring sites, funding changes, or changes in EPA monitoring requirements. Data from ADEQ's monitors are reported to EPA's Air Quality System (AQS) database and to EPA's public air quality information website, AirNow. In 40 CFR Part 51, EPA requires states to create, submit, and adopt State Implementation Plans (SIPs) to address the various issues and responsibilities involved with creating and implementing air quality programs. 40 CFR Part 51 Subpart J specifies that 40 CFR Part 58 Subpart C contain the requirements for establishing air quality surveillance systems to monitor ambient air quality.

Air quality surveillance systems consist of networks of monitors located at carefully selected physical locations referred to as sites or stations. The networks, sites, and monitors include:

- NAAQS (National Ambient Air Quality Standards) Compliance network or the State and Local Air Monitoring Stations Network (SLAMS) measures the criteria pollutants for demonstrating compliance to their standards
- State Implementation Plan (SIP) specific network tracks compliance in areas that are currently in nonattainment or in areas where on-going demonstration of maintenance is required
- Source-Oriented network requires several major point sources in the state to conduct ambient monitoring for criteria pollutants as outlined in their permit
- NCore (National core multipollutant monitoring stations) Network a nationwide multipollutant network that integrates several advanced measurement systems for particulates, pollutant gases, and meteorology (MET)
- Photochemical Assessment Monitoring Stations Network (PAMS) enhanced monitoring of ozone (O₃) to obtain comprehensive and representative O₃ and precursor data
- National Air Toxics Trends Station(NATTS) Network- to monitor and record the concentrations of EPA identified air toxics on a national scale
- Chemical Speciation Network (CSN) for monitoring speciated PM2.5 (particulate matter less than 2.5 microns) to determine the chemical composition of these particulates on a national scale
- The Interagency Monitoring of Protected Visual Environments (IMPROVE)Network tracks visual impairment in specified national parks and wilderness areas
- Phoenix Urban Haze Network provides State and local policy-makers and the public with information regarding the urban haze levels
- ADEQ's Smoke Management Network provide continuous, real-time particulate concentration data that is useful for making smoke management decisions related to prescribed burns and wildfire monitoring
- Arizona / Mexico Border Network to provide air quality monitoring data and air monitoring networks in rural and urban areas along the border
- Meteorological Network supports the analysis of ambient air quality data

This Annual Air Monitoring Network Plan identifies the purpose(s) of each monitor and provides evidence that both the siting and the operation of each monitor meets the requirements in 40 CFR Part 58 Appendices A, C, D, and E as follows:

- 40 CFR 58 Appendix A Quality Assurance Requirements for SLAMS, special purpose monitors (SPMs), and Prevention of Significant Deterioration (PSD) Air Monitoring
- 40 CFR 58 Appendix C Ambient Air Quality Monitoring Methodology
- 40 CFR 58 Appendix D Network Design Criteria for Ambient Air Quality Monitoring
- 40 CFR 58 Appendix E Probe and Monitoring Path Siting Criteria for Ambient Air Quality Monitoring

The results of this annual network review and planning are used to determine how well the networks are achieving their required air monitoring objectives, how well they meet data users' needs, and how they should be modified to continue meeting their objectives and data needs. Modifications can include the termination of existing stations, relocation of stations, establishment of new stations, monitoring of additional parameters, and/or changes to the sampling schedule. The annual network review and planning are performed for the purpose of improving the monitoring networks and ensuring that they provide adequate, representative, and regulatory compliant air quality data.

1.1 Executive Summary

The purpose of this executive summary is to identify the status of the ADEQ's monitoring network, demonstrate compliance with regulatory requirements, and to outline any planned or past changes to the monitoring network.

ADEQ's main monitoring objective is to measure criteria pollutants regulated under the Clean Air Act (CAA) for the National Ambient Air Quality Standards (NAAQS). ADEQ supports or operates many different state and national networks which help improve air quality in Arizona and nationwide. ADEQ continually strives to protect and enhance public health and the environment through ambient air quality monitoring.

ADEQ fulfills all the monitoring requirements as stated in 40 CFR Part 58, in any State or Local laws, and according to the EPA administrator with regards to data quality and assurance, siting and sampling criteria, annual data certification, and minimum monitoring requirements for all networks.

Past and future changes to the ambient air monitoring network as outlined in this Annual Network Plan are for the time period of July 2016 – December 2018. Any additional changes not outlined in this plan will be requested to EPA Region 9 for their approval. ADEQ may change the plans according to new rules or direction from ADEQ management or the EPA administrator and include these changes in the subsequent Annual Network Plan. Also included in the 2017 Network Plan are the plans for network modifications based on the 2015 5-Year Network Assessment. These plans are included in Table 1.5-1 and 3.4-1 and noted as such.

The 2016 Data Certification was completed on April 7th, 2017. The data certification sections of AQS were also updated reflecting ADEQ's recommendations for certifying the data.

1.2 Site Closures

Prescott College AQD – ADEQ closed the Prescott College site on December 31, 2016. See Appendix E for the site relocation request letter and approval by EPA Region 9.

Miami Ridgeline – ADEQ plans to close the Miami Ridgeline SO₂ monitor. Site access and safety have increasingly been challenging to maintain. No requirement to monitor at Miami Ridgeline for SO₂ specifically exists in the nonattainment plan. Two other sites for the SO₂ nonattainment area will remain, both of which report higher concentrations.

1.3 New Sites Planned

None

1.4 Past Network Changes

Site Name	Monitors	Date of Change	Description		
Alamo Lake	СО	9/1/16	Started CO data submittal to AQS		
Queen Valley	NOy and VOC	9/1/16	Removed PAMS equipment. No longer required to operate per 2015 O ₃ NAAQS rule.		
Miami Jones Ranch	SO ₂	11/8/16	Switched from Ecotech SO ₂ to Teledyne SO2 instrument		
Miami Townsite	SO ₂	11/16/16	Switched from Ecotech SO ₂ to Teledyne SO2 instrument		
Prescott College	O 3	12/31/16	Site Closure		
Prescott Pioneer Park	O ₃	1/1/17	Site established		
Hayden Old Jail	SO ₂	1/19/17	Switched from Ecotech SO ₂ to Teledyne SO2 instrument		
Miami Ridgeline	SO ₂	3/23/17	Switched from Ecotech SO ₂ to Teledyne SO2 instrument		
San Luis Rio Colorado Well 10	O ₃ , MET	5/8/17	ADEQ established a site in San Luis, Mexico to better understand regional O_3 around the Yuma Planning area.		

Table 1.4-1 Instrument Changes Made from July 2016 through June 2017

1.5 Planned Network Changes

Site Name	Monitors	Planned Date of Change	Description				
Miami, AZ Nonattainment area*	SO ₂	July 1, 2017	Consolidation of the three sites in Miami based on the 5-Year Network Assessment. Miami Ridgeline is planned to be removed by July 1, 2017 due to lower concentrations and safety concerns.				
JLG	NO ₂	Completed by 2018	Switch from a NOx chemoluminescent analyzer to a CAPS direct NO $_2$ analyzer as part of the 2015 O $_3$ NAAQS rule and PAMS reengineering.				
Bullhead City*	PM2.5	Starting by 2018	ADEQ plans to conduct a PM _{2.5} study using low cost sensors to be located at the current Bullhead City site starting by 2018 for a minimum of 1 year. Study area based on the 5-Year Network Assessment				
Quartzite*	PM10	Completed by 2020	ADEQ plans to conduct a PM ₁₀ study using low cost sensors to be completed by 2020. Study area based on the 5-Year Network Assessment.				
Kingman*	PM ₁₀	Completed by 2020	ADEQ plans to conduct a PM ₁₀ study using low cost sensors to be completed by 2020. Study area based on the 5-Year Network Assessment				
Benson/Willcox*	PM_{10} and $PM_{2.5}$	Completed by 2020	ADEQ plans to conduct a western Cochise County PM study using low cost sensor to be completed by 2020. Study area based on the 5-Year Network Assessment				
Statewide*	Оз	Completed by 2020	ADEQ acknowledges that O ₃ is a local, regional, and international issue resulting in significant transport into and across much of Arizona. ADEQ also recognizes the importance of providing the public education regarding O ₃ and what actions they can take to protect themselves and positively affect air quality. ADEQ will form a workgroup to determine the best course of action for O ₃ outreach. We believe it prudent to perform outreach across the state, regardless of an areas' attainment status, in order to educate and encourage the public to take actions, even if only voluntary, to help minimize their O ₃ contribution, improve air quality, and protect public health. We envision that the outreach may include coordination with other agencies and health departments inside and potentially outside of the state, education and promotion of O ₃ data and forecasting resources available both from Arizona and from neighboring states, and the promotion of voluntary public measures to decrease local O ₃ precursors. ADEQ will form the workgroup during the calendar year 2017, and implementation of the outreach program will be started by 2020.				

 Table 1.5-1 Instrument Changes Planned for July 2017 to December 2018

*These areas and pollutants of interest were identified by the 2015 5-Year Network Assessment

2.0 ADEQ PROGRAM AND NETWORK DESCRIPTIONS

ADEQ operates ambient air quality equipment for a variety of Federal and State monitoring programs. Detailed descriptions of the equipment deployed for each monitoring program are presented in Appendix C of this Network Plan. The equipment is grouped by monitoring program or network to easily compare instrument specifics. Appendix D of this Network Plan lists information on each of ADEQ's current monitoring sites, including those sites which ADEQ shares with other agencies or serves as the local site operator. General information about the monitoring programs in which ADEQ participates is described in the following sections.

2.1 NAAQS Compliance Network

ADEQ's National Ambient Air Quality Standards (NAAQS) compliance network, also called State and Local Air Monitoring Stations (SLAMS), consists of monitoring sites operated for the purpose of demonstrating compliance with the NAAQS for the "criteria" pollutants: carbon monoxide (CO), nitrogen dioxide (NO₂), sulfur dioxide (SO₂), ozone (O₃), particulate matter (PM₁₀ and PM_{2.5}), and lead (Pb). For each of these pollutants, EPA has established national air quality standards to protect public health. The criteria pollutants are measured using instruments designated by EPA as Federal Reference Methods (FRM) or Federal Equivalent Methods (FEM). 40 CFR Part 58 specifies the minimum requirements for determining NAAQS compliance, including the following network and site criteria:

- Number and types of monitors required per Metropolitan Statistical Area (MSA) by pollutant
- Objectives and spatial scales
- Sampling frequency
- Collocation
- Special NCore-related requirements
- Meteorology
- Probe location and other restrictions within a site
- Periodic performance evaluations (PE)
- Quality Assurance
- Data reporting

2.2 State Implementation Plan (SIP) and Maintenance Area Network

ADEQ maintains several air monitoring sites for the purpose of tracking compliance in areas that are currently in nonattainment for one or more of the NAAQS, and in areas where the NAAQS have been met but on-going demonstration of maintenance is required. Specific monitoring requirements for each of these areas are described in their respective SIPs and/or Maintenance Plans.

2.3 Source-Oriented Network

Several major point sources in the state are required to conduct ambient monitoring for criteria pollutants, primarily PM_{10} and SO_2 , as part of their air quality permit issued by ADEQ. ADEQ serves as the governing body for these sites and performs semi-annual and annual audits on two of the sources as found in Section 4.13 of this document.

2.4 NCore Network

EPA describes the nationwide NCore network, which is composed of approximately 70 urban and 20 rural sites, as a multipollutant network that integrates several advanced measurement systems for particulates, pollutant gases, and meteorology. Some objectives of the NCore network include:

- Tracking long-term trends of criteria and non-criteria pollutants;
- Support for long-term health assessments which contribute to ongoing reviews of the NAAQS;
- Support to scientific studies ranging across technological, health, and atmospheric process disciplines; and
- Support to ecosystem assessments recognizing that national air quality networks benefit ecosystem assessments and, in turn, benefit from data specifically designed to address ecosystem analyses.

As required by 40 CFR Part 58.13, ADEQ's NCore site, JLG Supersite, was operational by January 1, 2011. In addition to the above missions and the NCore monitoring requirements set forth in 40 CFR Part 58.13, ADEQ will use the JLG Supersite to test new technologies in various ADEQ monitoring networks. Examples include advanced communications and serial data collection, remote zero/span/precision (Z/S/P) checks and calibrations, high sensitivity instruments, and instruments that monitor additional pollutants that may be added to current CFR requirements. Additional NCore information is available from the EPA website: http://www.epa.gov/ttn/amtic/ncore/index.html

2.5 Meteorological Network

ADEQ collects meteorological data at sites throughout the state to support the analysis of ambient air quality data and to provide support for exceptional event reporting. Meteorological measurements are also required for the NCore and PAMS networks. ADEQ continues to add meteorological instrumentation to most of ADEQ's monitoring sites that were not previously equipped, and for which there are adequate facilities to support the meteorological tower and equipment. ADEQ currently meets the meteorological monitoring requirements for the NCore and PAMS networks.

2.6 Photochemical Assessment Monitoring Stations (PAMS)

Section 182(c)(1) of the 1990 Clean Air Act (CAA) Amendments requires the Administrator to promulgate rules for enhanced monitoring of O_3 that includes concurrent monitoring of O_3 , oxides of nitrogen (NO_x), total reactive nitrogen (NO_y), speciated volatile organic compounds (VOC), carbonyls, CO, and meteorology to obtain comprehensive and representative O_3 data. The principal reasons for requiring the collection of additional ambient air pollutants and meteorological data are the widespread nonattainment of the O_3 NAAQS and the need for a more comprehensive air quality database for O_3 and its precursors.

EPA issued a final rule for a reengineering of the PAMS program in October 2015 as part of the 2015 O_3 NAAQS Revision. ADEQ will continue to operate a PAMS program under this new rule at JLG Supersite, which is collocated with the JLG Supersite NCore site as required. Additional monitoring for O_3 precursors may be addressed in an enhanced monitoring plan for the Phoenix-Mesa-Scottsdale MSA.

2.7 National Air Toxics Trend Sites (NATTS)

The NATTS network was designed to monitor and record the concentrations of EPA identified air toxics on a national scale. Data from EPA's national monitoring activities are used to estimate national average concentrations for these air toxics compounds and to detect trends. Using this information, EPA, states, and local agencies can estimate changes to human exposure from air toxics. Detection of increased human toxicity risk can then be used to support changes in environmental policy. As part of the National Air Toxics Assessment (NATA) process, ambient air quality data are used to assess the national toxics inventory and long-term hazardous air pollutant (HAP) trends. ADEQ's JLG Supersite is the designated NATTS site for the Phoenix-Mesa-Scottsdale MSA, with an additional site at South Phoenix designated as an urban air toxics monitoring program (UATMP) site.

2.8 Chemical Speciation Network (CSN)

The CSN was established to meet the regulatory requirements for monitoring speciated PM_{2.5} to determine the chemical composition of these particulates. The purpose of the CSN is to determine, over a period of several years, trends in concentration levels of selected ions, metals, carbon species, and organic compounds in the PM_{2.5} samples collected at select sites throughout the country. PM_{2.5} speciation monitoring at JLG Supersite includes two CSN PM_{2.5} speciation samplers. In 2009, the URG 3000N sampler was added at JLG Supersite for collecting the carbon sample in lieu of the Met One SuperSASS, which had been used to collect all three types of filter samples, e.g. Quartz, Teflon, and Nylon. The laboratory analysis method for carbon samples collected by the URG also changed. These changes to the CSN program's monitoring and analytical design were geared toward more closely matching the carbon analytes from the CSN sampler to those collected via the IMPROVE network.

2.9 Class 1 Area Network and IMPROVE Program

The rural visibility monitoring network tracks visual impairment in specified national parks and wilderness areas. These parks and wilderness areas are called federally mandatory Class 1 areas and were designated based on an evaluation required by Congress in the 1977 Federal CAA Amendments. The evaluation, performed by the United States Forest Service (USFS) and National Park Service (NPS), reviewed the areas of parks and national forests, which were designated as wilderness before 1977, were larger than 6,000 acres, and to which visibility was an important resource for the visitor experience. Of the 156 Class 1 areas designated across the nation, 12 are located in Arizona. Nine Class 1 areas are located in USFS land and three in NPS land. EPA initiated the nationally-operated IMPROVE monitoring network in 1987, whose purpose is to characterize broad regional trends and visibility conditions using monitoring data collected in or near Class 1 wilderness areas across the United States. Ten Class 1 IMPROVE sites were originally placed in and around these Class 1 areas. Additionally, ADEQ has added five other IMPROVE sites identified as Protocol sites. Refer to section 4.14 and the map in Appendix B for additional details regarding ADEQ's Class 1 Visibility and IMPROVE networks. Additional resources can be found at http://vista.cira.colostate.edu/improve/.

2.10 AirNow Reporting

ADEQ reports near real-time data from its continuous air quality monitors to the AirNow system. The AirNow system is a set of near real-time public maps which report an Air Quality Index (AQI) for the six major air pollutants regulated by the CAA. These pollutants are: ground-level O₃, PM₁₀, PM_{2.5}, CO, SO₂, and NO₂. The purpose of the AQI is to help understand how air quality affects human health. To make it easier to understand, the AQI is divided into six color coded categories: Good, Moderate, Unhealthy for Sensitive Groups, Unhealthy, Very Unhealthy, and Hazardous. The AQI format is used by local weather forecasters, medical facilities, schools, and the general public to make health-related activity decisions based on the reported local AQI.

2.11 Urban Haze Network

The purpose of the Urban Haze Network is to provide State and Local policy-makers and the public with information regarding urban haze levels, track short-term and long-term trends, assess source contributions, and better evaluate the effectiveness of air pollution control strategies. ADEQ utilizes transmissometers, particulate monitors, and/or digital camera systems to evaluate urban visibility. More than a decade of urban visibility data has been collected for the Phoenix and Tucson area. Currently, only the Phoenix metropolitan area urban visibility is monitored using high resolution cameras. Additional details regarding ADEQ's Urban Haze Network can be found in section 4.15.

2.12 E-BAM Network of PM_{2.5} Special Purpose Monitors

Environment-proof beta attenuation monitors (E-BAM) are special purpose monitors (SPM) which provide continuous, real-time particulate PM_{2.5} concentration data that are useful for making informed smoke management decisions related to prescribed burns and wildfire monitoring. The current network is listed in Table 2.12-1. They are not classified as FRMs or FEMs and may not be used to demonstrate NAAQS compliance. ADEQ uses these monitors primarily in populated areas that could be impacted by smoke from prescribed burns and wildfires. Hourly PM_{2.5} data from the E-BAM monitors can be viewed at: http://www.phoenixvis.net/PPMmain.aspx.

Site Name	Address
Flagstaff Middle School	755 N. Bonito, Flagstaff, AZ 86001
Payson Well Site	204 W. Aero Dr., Payson, AZ 85541
Prescott Pioneer Park	1200 Commerce Dr, Prescott, AZ 86035
Sedona Fire Station AQD	310 Forest Road, Sedona, AZ, 86336
Show Low	561 E. Deuce of Clubs, Show Low, AZ 85901
Springerville	323 S. Mountain Ave., Springerville, AZ 85936
Verde Ranger Station	300 E. Highway 260, Camp Verde, AZ 86322

Table 2.12-1 Current Locations of E-BAM Monitors

2.13 Arizona / Mexico Border Network

ADEQ works with the EPA Border Program as part of the U.S. – Mexico Border Air Monitoring Working Group. This working group's primary priority is reviewing the air quality monitoring data and air monitoring networks in rural and urban areas along the border, and evaluating the adequacy of these networks. The secondary priority of this group is to identify operational and maintenance needs, plan for future capabilities, and develop recommendations to resolve any inadequacies. Through this effort, relationships between EPA, ADEQ, Secretariat of Environment and Natural Resources (SEMARNAT), and Commission for Ecology and Sustainable Development (CEDES) are expected to develop, such that data are shared across the border and capacity is built to meet the needs of the air monitoring program objectives. Starting in 2017, ADEQ placed an O₃ monitor in San Luis Rio Colorado, Mexico for the purpose of studying regional O₃.

3.0 MONITORING NETWORK EVALUATION

This section provides a summary of changes to ADEQ's monitoring networks completed since the 2016 Network Plan submission, as well as changes planned for July 2017 through December 2018. Any occurrence of unplanned changes due to emerging needs, budget constraints, or other circumstances will be documented in next year's Air Monitoring Network Plan, and ADEQ will communicate with EPA Region 9 regarding any significant changes on a case-by-case basis. ADEQ may change the plans according to new rules or direction from ADEQ management or the EPA administrator, and will include these changes in the subsequent Annual Network Plan. Also included in the 2017 Network Plan are the plans for network modifications based on the 2015 5-Year Network Assessment. These plans are included in 3.4-1 and noted as such. Below is a summary of the planned network changes.

3.1 Site Closures

Prescott College AQD – ADEQ closed the Prescott College site on December 31, 2016. See Appendix E for the site relocation request letter and approval by EPA Region 9.

Miami Ridgeline – ADEQ plans to close the Miami Ridgeline SO_2 monitor. Site access and safety have increasingly been challenging to maintain. No requirement to monitor at Miami Ridgeline for SO_2 specifically exists in the nonattainment plan. Two other sites for the SO_2 nonattainment area will remain, both of which report higher concentrations.

3.2 New Sites Planned

None

3.3 Past Network Changes

Site Name	Monitors	Date of Change	Description		
Alamo Lake	CO	9/1/16	Started CO data submittal to AQS		
Queen Valley	NOy and VOC	9/1/16	Removed PAMS equipment. No longer required to operate per 2015 O ₃ NAAQS rule.		
Miami Jones Ranch	SO ₂	11/8/16	Switched from Ecotech SO ₂ to Teledyne SO2 instrument		
Miami Townsite	SO ₂	11/16/16	Switched from Ecotech SO ₂ to Teledyne SO2 instrument		
Prescott College	O ₃	12/31/16	Site Closure		
Prescott Pioneer Park	O ₃	1/1/17	Site established		
Hayden Old Jail	SO ₂	1/19/17	Switched from Ecotech SO ₂ to Teledyne SO2 instrument		
Miami Ridgeline	SO ₂	3/23/17	Switched from Ecotech SO ₂ to Teledyne SO2 instrument		
San Luis Rio Colorado Well 10	O ₃ , MET	5/8/17	ADEQ established a site in San Luis, Mexico to better understand regional O_3 around the Yuma Planning area.		

Table 3.3-1 Instrument Changes Made from July 2016 through June 2017

3.4 Planned Network Changes

Site Name	Monitors	Planned Date of Change	Description					
Miami, AZ Nonattainment area*	SO ₂	July 1, 2017	Consolidation of the three sites in Miami based on the 5-Year Network Assessment. Miami Ridgeline is planned to be removed by July 1, 2017 due to lower concentrations and safety concerns.					
JLG	NO ₂	Completed by 2018	Switch from a NOx chemoluminescent analyzer to a CAPS direct NO $_2$ analyzer as part of the 2015 O $_3$ NAAQS rule and PAMS reengineering.					
Bullhead City*	PM2.5	Starting by 2018	ADEQ plans to conduct a PM _{2.5} study using low cost sensors to be located at the current Bullhead City site starting by 2018 for minimum of 1 year. Study area based on the 5-Year Network Assessment					
Quartzite*	PM10	Completed by 2020	ADEQ plans to conduct a PM ₁₀ study using low cost sensors to be completed by 2020. Study area based on the 5-Year Network Assessment.					
Kingman*	PM ₁₀	Completed by 2020	ADEQ plans to conduct a PM ₁₀ study using low cost sensors to be completed by 2020. Study area based on the 5-Year Network Assessment					
Benson/Willcox*	PM_{10} and $PM_{2.5}$	Completed by 2020	ADEQ plans to conduct a western Cochise County PM study using low cost sensor to be completed by 2020. Study area based on the 5-Year Network Assessment					
Statewide*	Оз	Completed by 2020	ADEQ acknowledges that O ₃ is a local, regional, and international issue resulting in significant transport into and across much of Arizona. ADEQ also recognizes the importance of providing the public education regarding O ₃ and what actions they can take to protect themselves and positively affect air quality. ADEQ will form a workgroup to determine the best course of action for O ₃ outreach. We believe it prudent to perform outreach across the state, regardless of an areas' attainment status, in order to educate and encourage the public to take actions, even if only voluntary, to help minimize their O ₃ contribution, improve air quality, and protect public health. We envision that the outreach may include coordination with other agencies and health departments inside and potentially outside of the state, education and promotion of O ₃ data and forecasting resources available both from Arizona and from neighboring states, and the promotion of voluntary public measures to decrease local O ₃ precursors. ADEQ will form the workgroup during the calendar year 2017, and implementation of the outreach program will be started by 2020					

 Table 3.4-1 Instrument Changes Planned for July 2017 to December 2018

*These areas and pollutants of interest were identified by the 2015 5-Year Network Assessment

4.0 ADEQ MONITORING NETWORKS

The minimum monitoring requirements for each pollutant are described in 40 CFR Part 58 Appendix D and are typically based on the population of urban areas. Current minimum monitoring requirements are only associated with MSAs, and there are no minimum monitoring requirements for Micropolitan Statistical Areas. Tables 4.0-1 and 4.0-2 outline metropolitan and micropolitan statistical areas in Arizona as identified by the U.S. Census Bureau.

Metropolitan Statistical Area	Area included	Population
Flagstaff	Coconino County	139,097
Lake Havasu City – Kingman	Mohave County	204,737
Phoenix – Mesa – Scottsdale	Maricopa & Pinal Counties	4,574,531
Prescott	Yavapai County	222,255
Sierra Vista – Douglas	Cochise	126,427
Tucson	Pima County	1,010,025
Yuma	Yuma County	204,275

Table 4.0-1 Metropolitan Statistical Areas (2015 Population Estimate)

Table 4.0-2 Micropolitan Statistical Areas (2015 Population Estimate)

Micropolitan Statistical Area	County	Population
Nogales	Santa Cruz	46,461
Payson	Gila	53,159
Safford	Graham & Greenlee Counties	37,666
Show Low	Navajo	108,277

4.1 PM_{2.5} Monitoring Network Requirements

ADEQ currently operates EPA-approved FEM monitors at five $PM_{2.5}$ monitoring sites. One was deployed to the Alamo Lake site and designated as the $PM_{2.5}$ monitoring network's Background site. Yuma Supersite is designated as the required $PM_{2.5}$ Transport site. The other three sites are for minimum monitoring requirements.

Several non-FEM continuous PM_{2.5} monitors are also in operation throughout the state, most of which are associated with the Smoke Management E-BAM network. See Section 2.12 for additional details on the E-BAM network.

The number of $PM_{2.5}$ samplers required in urban areas is based on population and design values. Maricopa, Pinal, and Pima Counties have delegated authority for their monitoring networks and AQS reporting. ADEQ's $PM_{2.5}$ monitoring network includes the MSAs in all other Arizona counties, as well as nonattainment areas in those counties.

Population (MSA)	Most recent 3-Yr design value ≥ 85% of any PM _{2.5} NAAQS *	Most recent 3-Yr design value <85% any PM _{2.5} NAAQS * or no Design Value Available
>1,000,000	3 monitors	2 monitors
500,000 - <1,000,000	2 monitors	1 monitors
50,000 - <500,000	1 monitors	0 monitors

Table 4.1-1 Minimum Number of PM_{2.5} Monitors Required (40 CFR 58 Appendix D)

 Table 4.1-2 ADEQ Responsible Minimum Monitoring Requirements for PM2.5 SLAMS.

 (ERM/EEM/ARM_see 40CER 58 App D Section 4.7.1 and Table D-5)

MSA	County	2015 Census Population Estimates	2014- 2016 PM _{2.5} Annual Design Value (μg/m ³)	Annual Design Value Site	2014- 2016 Daily Design Value (μg/m ³)	Daily Design Value Site	# of Required Monitors	# of Required Continuous Monitors	# of Active Continuous Monitors	# of Additional Monitors Needed
Flagstaff	Coconino	139,097	N/A	N/A	N/A	N/A	0	0	1*	0
Prescott	Yavapai	222,255	N/A	N/A	N/A	N/A	0	0	1*	0
Yuma	Yuma	204,275	6.7	Yuma Supersite	20	Yuma Supersite	0	0	1	0
Lake Havasu- Kingman	Mohave	204,737	N/A	N/A	N/A	N/A	0	0	0	0
Sierra Vista - Douglas	Cochise	126,427	5.4	Douglas Red Cross	12	Douglas Red Cross	0	0	1	0

* Continuous monitors are not FRMs, FEMs, or ARMs

Monitors required for SIP or Maintenance Plan: Nogales Post Office.

AQS Site ID	Site Name	2014-2016 24-Hour Design Value (µg/m³)	2014-2016 Annual Design Value (μg/m³)	Sample Frequency
04-003-1005	Douglas Red Cross	12	5.4	Continuous
04-012-8000	Alamo Lake ¹	8	1.8	Continuous
04-013-9997	JLG Supersite	22	7.6	Continuous
04-023-0004	Nogales Post Office	27	9.4	Continuous
04-027-8011	Yuma Supersite ²	20	6.7	Continuous

¹ Alamo Lake is designated as the Background site for the PM_{2.5} Network

² Yuma Supersite is designated as the Transport site in the PM_{2.5} Network

4.1.1 PM_{2.5} Collocation Requirements

The ADEQ $PM_{2.5}$ network is required to have collocated monitoring at one site. The Nogales Post Office site has the highest $PM_{2.5}$ design value in ADEQ's $PM_{2.5}$ network and is therefore a $PM_{2.5}$ collocated site.

Additionally, ADEQ collocates PM_{2.5} instruments at the JLG Supersite for NCore requirements.

Method Code (Instrument Type)	# of Sites	# of Primary Monitors	# of Required Collocated Monitors	# of Active Collocated Monitors
143 (Partisol 2000i)	2	0	0	0
170 (Met One BAM 1020)	5	5	1	2

4.2 PM₁₀ Monitoring Network Requirements

ADEQ operates a network of twelve PM₁₀ monitors throughout Arizona.

The number of PM₁₀ samplers required in urban areas is based on the population of the area and design values. Maricopa, Pinal, and Pima Counties have delegated authority for their monitoring networks and AQS reporting. ADEQ's PM₁₀ monitoring network includes the MSAs in all other Arizona counties, as well as nonattainment areas in those counties.

Table 4.2-1 Minimum Number of PM₁₀ Monitors Required (40 CFR 58 Appendix D)

MSA Population	High Concentration Exceeds 24-Hour NAAQS by 20% or more (>180µg/m ³)	Medium Concentration Exceeds 80% of 24-Hour NAAQS (>120µg/m ³)	Low Concentration Less than 80% of 24-Hour NAAQS (<120 µg/m ³) or no Design Value Available
>1,000,000	6-10 monitors	4-8 monitors	2-4 monitors
500,000 - <1,000,000	4-8 monitors	2-4 monitors	1-2 monitors
250,000 - <500,000	3-4 monitors	1-2 monitors	0-1 monitors
100,000 - <250,000	1-2 monitors	0-1 monitors	0 monitors

Table 4.2-2. ADEQ Responsible Minimum	Monitoring Requirements for PM ₁₀
---------------------------------------	--

MSA	County	2015 Census Population Estimates	2016 PM ₁₀ Max Concentration [μg/m ³]	Max Concentration Site	# of Required Monitors	# of Active Monitors	# of Additional Monitors Needed
Flagstaff	Coconino	139,097	N/A	N/A	0	0	0
Prescott	Yavapai	222,255	N/A	N/A	0	0	0
Yuma	Yuma	204,275	523	Yuma Supersite	1-2	1	0
Lake Havasu- Kingman	Mohave	204,737	119	Bullhead City	0	1	0
Sierra Vista - Douglas	Cochise	126,427	236	Douglas Red Cross	1-2	2	0

Monitors required for SIP or Maintenance Plan: Ajo, Bullhead City, Douglas Red Cross, Hayden Old Jail, JLG Supersite, Miami Golf Course, Miami Ridgeline, Nogales Post Office, Paul Spur Chemical Lime Plant, Payson Well Site, Rillito, and Yuma Supersite.

AQS Site ID	Site Name	2014-2016 Average Estimated Days PM ₁₀ >150μg/m ³ Including Events	2014-2016 Average Estimated Days PM ₁₀ >150 μg/m ³ Excluding Events	2016 Annual Mean Concentration (μg/m³)
04-003-0011	Paul Spur Chemical Lime Plant	1.3	1.3	14.5
04-003-1005	Douglas Red Cross	1.4	1.4	28.0*
04-007-0008	Payson Well Site	0	0	17.4
04-007-1001	Hayden Old Jail	0	0	33.4
04-007-8000	Miami Golf Course	0	0	19.1
04-012-8000	Alamo Lake	0	0	13.4
04-013-9997	JLG Supersite	0.7	0.7	30.0
04-015-1003	Bullhead City	0	0	22.1
04-019-0001	Ajo	0	0	16.2
04-019-0020	Rillito	1	1	45.3
04-023-0004	Nogales Post Office	1	1	38.2
04-027-8011	Yuma Supersite	7.9	7.9	47.8

Table 4.2-3 PM₁₀ Design Values (Estimated Exceedances) and Annual Means for ADEQ Sites

* Annual values not meeting completeness criteria

4.2.1 PM₁₀ Collocation Requirements

There are no collocation requirements for EPA-approved PM_{10} FEM monitors. ADEQ has transitioned the PM_{10} network to continuous FEM monitors.

		Table 4.2-4 P	M ₁₀ FRM/FEM Collo	cation Details
--	--	---------------	-------------------------------	----------------

Method Code	# of Sites	# of Primary Monitors	# of Required Collocated Monitors	# of Active Collocated Monitors
122 (BAM)	12	12	0	0

4.3 O₃ Monitoring Network Requirements

ADEQ operates a network of seven O₃ monitors throughout Arizona and one in San Luis, Mexico.

The minimum monitoring requirements for O_3 are based on population of the area and design values. Maricopa, Pinal, and Pima Counties have delegated authority for their monitoring networks and AQS reporting. ADEQ's O_3 monitoring network includes the MSAs in all other Arizona counties, as well as nonattainment areas in those counties.

Population (MSA)	Most recent 3 year 8-hour Design Value ≥ 85% of NAAQS (0.0595 ppm)	Most recent 3 year 8-hour Design Value <85% NAAQS (0.0595 ppm) or no Design Value available	
>10 Million	4 monitors	2 monitors	
4 – <10 Million	3 monitors	1 monitors	
350,000 – <4 Million	2 monitors	1 monitors	
50,000 - <350,000	1 monitors	0 monitors	

Table 4.3-2 Minimum Number of O₃ Monitors Required (40 CFR Part 58 Appendix D)

Table 4.3-1. ADEQ Responsible Minimum Monitoring Requirements for O₃.

(Note: Refer to section 4.1 and Table D-2 of Appendix D to 40 CFR Part 58)

MSA	County	2015 Census Population Estimates	2014-2016 O₃ 8-hr Design Value (ppb)	Design Value Site	# of Required Monitors	# of Active Monitors	# of Additional Monitors Needed
Flagstaff	Coconino	139,097	69	Flagstaff Middle School	1	1	0
Prescott	Yavapai	222,255	69	Prescott College AQD	1	1	0
Yuma	Yuma	204,275	74	Yuma Supersite	1	1	0
Lake Havasu- Kingman	Mohave	204,737	N/A	N/A	0	0	0
Sierra Vista - Douglas	Cochise	126,427	N/A	N/A	0	0	0

Monitors required for SIP or Maintenance Plan: Alamo Lake, JLG Supersite, Queen Valley, and Tonto National Monument.

Table 4.3-3 ADEQ O₃ Sites and Design Values

AQS Site ID	Site	Current Operating Schedule	2014-2016 Design Value (ppm)
04-005-1008	Flagstaff Middle School	January - December	0.069
04-007-0010	Tonto National Monument	January - December	0.071
04-012-8000	Alamo Lake	January - December	0.069
04-013-9997	JLG Supersite	January - December	0.075
04-021-8001	Queen Valley	January - December	0.071
04-025-8033	Prescott College AQD	January - December	0.069
04-025-8034	Prescott Pioneer Park	January - December	N/A*
04-027-8011	Yuma Supersite	January - December	0.074
80-026-8012	San Luis Rio Colorado Well 10	January - December	N/A*

*Sites not in operation during 2014-2016

4.4 Pb Monitoring Network Requirements

ADEQ has operates three source-oriented total suspended particulates (TSP) Hi-Vol Pb monitors throughout Arizona. Starting January 1, 2016 upon the request of EPA Region 9, ADEQ started operating an additional source

oriented SPM monitor in Hayden, AZ at a location thought to have higher concentrations than the Globe Highway site.

40 CFR Part 58 Appendix D states that at a minimum, there must be one source-oriented SLAMS site located to measure the maximum Pb concentration in ambient air resulting from each non-airport source which emits 0.50 or more tons per year and each airport source which emits 1.0 or more tons per year. Per the National Emissions Inventory (NEI) 2014, there are two non-airport sources above the 0.5 ton per year threshold. There is no longer an NCore requirement for Pb, but ADEQ will continue to report Pb data using the same PM₁₀ metals speciation sample that is used for the NATTS program.

 Table 4.4-1. ADEQ Responsible Minimum Source-Oriented Pb Monitoring above 0.5 Tons per Year (including airports)²

 (Note: Refer to section 4.5 of Appendix D to 40 CER Part 59)

Source Name	Address	Pb Emissions (tons per year)*	Max 3-Month Design Value ¹ [µg/m ³]	Design Value Date (third month, year)	# of Required Monitors	# of Active Monitors	# of Additional Monitors Needed
ASARCO LLC		1.78	0.17	June, 2014	1	2	0
Freeport McMoRan Copper and Gold Inc.		4.84	0.05	August, 2014	1	1	0

*data taken from the 2014 NEI

¹consider data from the past 3 years.

 Table 4.4-2 Pb Design Values at ADEQ Sites

AQS Site ID	Site Name	2014-2016 Design Value (μg/m³)
04-007-1002	Globe Highway	0.17
04-007-1003	Hillcrest	0.22
04-007-8000	Miami Golf Course	0.05

4.4.1 Pb Collocation Requirements

ADEQ's Pb network requires only one collocated site. The Globe Highway site located in Hayden, AZ has the highest design value in the Pb SLAMS network and is therefore the collocated site.

Table 4.4-3 Pb FRM/FEM Collocation Details

Method Code	# of Sites	# of Primary Monitors	# of Required Collocated Monitors	# of Active Collocated Monitors
191 (Pb-TSP ICP/MS)	3	3	1	1

4.5 SO₂ Monitoring Network Requirements

ADEQ operates a network of five SO_2 monitors throughout Arizona. Additionally American Smelting And Refining **CO**mpany (ASARCO) operates an SO_2 monitoring network in Gila County for permit compliance and to support SIP rule requirements.

The SO₂ monitoring requirements in 40 CFR Part 58 Appendix D are based on a Population Weighted Emissions Index (PWEI) calculated for each core-based statistical area (CBSA). CBSAs with PWEIs greater than 5,000 require at least one SO₂ monitor, PWEIs greater than 100,000 require a minimum of two SO₂ monitors, and PWEIs greater than 1,000,000 require three SO₂ monitors. There are no PWEI greater than 5,000 in Arizona, but there are other SO₂ monitors in Arizona, which are operated by Maricopa County and Pima County.

(Note: Refer to section 4.4 of Appendix D to 40 CFR Part 58)								
CBSA	County	2015 Census	2014 Total	Population Weighted # of		# of	# of	
		Population	SO ₂ 1	Emissions Index ²	Required	Active	Additional	
		Estimates	[tons/year]	[million persons-tons	Monitors	Monitors	Monitors	
				per year]			Needed	
Flagstaff	Coconino	139,097	41.3	5.7	0	0	0	
Prescott	Yavapai	222,255	2047	445.9	0	0	0	
Yuma	Yuma	204,275	32.0	6.5	0	0	0	
Lake Havasu – Kingman	Mohave	204,737	56.0	11.5	0	0	0	
Sierra Vista - Douglas	Cochise	126,427	4822	609.6	0	0	0	

¹Using 2014 NEI data

²Calculated by multiplying CBSA population and total SO₂ and dividing product by one million

Monitors required for SIP or Maintenance Plan: Hayden and Miami Planning Areas

EPA Regional Administrator-required monitors per 40 CFR 58, App. D 4.4.3: None

Table 4.5-2. ADEQ Responsible Minimum Monitoring	Requirements for Source SO ₂ Monitoring.
--	---

Source Name	SO ₂ 2014 Emissions (tons per year)	Emission Inventory Source & Data Year	Monitoring or Modeling	SO₂ Maximum Design Value (in ppb)	# of Required Monitors	# of Active Monitors	# of Additional Monitors Needed
ASARCO LLC	17,433	ADEQ 2014	Monitoring	246	1	1	0
TEP CO –	6,221	ADEQ 2014	Modeling	N/A	0	0	0
Springerville							
AEPCO –	4,812	ADEQ 2014	Modeling	N/A	0	0	0
Apache							
FMMI Inc.	4,505	ADEQ 2014	Monitoring	199	1	3	0
APS – Cholla	3,807	ADEQ 2014	Modeling	N/A	0	0	0

AQS Site ID	Site Name	2014-2016 1-Hour Design Value (ppb)
04-007-0009	Miami Ridgeline	146
04-007-0011	Miami Jones Ranch	200
04-007-0012	Miami Townsite	194
04-007-1001	Hayden Old Jail	280
04-013-9997	JLG Supersite	5

* Design value does not meet completeness criteria

4.6 NO₂ Monitoring Network Requirements

ADEQ currently operates one NO₂ monitor in Arizona located at the JLG Supersite to fulfill a PAMS requirement.

The NO₂ monitoring requirements set forth in 40 CFR Part 58 Appendix D are based on a combination of CBSA population and Annual Average Daily Traffic (AADT) counts. Two CBSAs within Arizona (Phoenix and Tucson Metro areas) contain populations requiring ambient and near-road monitoring Pima and Maricopa Counties will operate the required monitors in Tucson and Phoenix, respectively.

ADEQ will continue to monitor NO_2 at JLG Supersite as part of the NO_x measurements required by the PAMS program. See Table 4.6-1 for design values.

CBSA	2015 Census Population Estimates	2014 Max AADT Counts	# of Required Near- road Monitors	# of Active Near-road Monitors	# of Additional Near-road Monitors Needed	# of Required Area-wide Monitors	# of Active Area-wide Monitors	# of Additional Area-wide Monitors Needed
Flagstaff	139,097	41,400	0	0	0	0	0	0
Prescott	222,255	43,200	0	0	0	0	0	0
Yuma	204,275	44,500	0	0	0	0	0	0
Lake Havasu – Kingman	204,737	35,000	0	0	0	0	0	0
Sierra Vista - Douglas	126,427	28,600	0	0	0	0	0	0

Table 4.6-1. ADEQ Responsible Minimum Monitoring Requirements for NO2.

(Note: Refer to section 4.3 of Appendix D to 40 CFR Part 58)

Table 4.6-2 NO₂ Design Values at ADEQ Sites

AQS Site ID	Site Name	2014-2016 1-Hour Design Value (ppb)	2016 Annual Mean (ppb)
04-013-9997	JLG Supersite	51*	13.26

* Design values not meeting completeness criteria

4.7 CO Monitoring Network Requirements

ADEQ operates two CO monitors in Arizona. The monitor at JLG fulfills NCore as well as PAMS monitoring requirements. The CO monitor at Alamo Lake is designated a SPM for use in background modeling.

Table 4.7-1. ADEQ Responsible Minimum Monitoring Requirements for CO.

(Note: Refer to section 4.2 of Appendix D to 40 CFR Part 58)

CBSA	2015 Census Population Estimates	# of Required Near-Road Monitors	# of Active Near-Road Monitors	# of Additional Monitors Needed
Flagstaff	139,097	0	0	0
Prescott	222,255	0	0	0
Yuma	204,275	0	0	0
Lake Havasu – Kingman	204,737	0	0	0
Sierra Vista - Douglas	126,427	0	0	0

Monitors required for SIP or Maintenance Plan: JLG Supersite

AQS Site ID	Site Name	2016 CO 1-Hour Max. Value (ppm)	2016 CO 8-Hour Max. Value (ppm)
04-012-8000	Alamo Lake	0.5	0.3
04-013-9997	JLG Supersite	2.263	1.9

Table 4.7-2 CO Design Values at ADEQ Sites

4.8 PAMS Monitoring Network Requirements

On October 26, 2015 EPA promulgated a new O_3 standard along with final changes to the PAMS program. Starting on June 1, 2019, PAMS measurements will be required at all NCore sites in CBSAs with a population of 1,000,000 people or more, irrespective of O_3 attainment status. Required monitoring at this site includes hourly VOC (volatile organic compounds) measurements, three 8-hour carbonyl samples, a direct NO₂ measurement, hourly mixing height, atmospheric pressure, precipitation, solar radiation, UV radiation, wind speed, wind direction, temperature, and relative humidity. Additionally, the EPA is requiring enhanced monitoring plans (EMP) in areas classified as Moderate or above O_3 nonattainment. ADEQ will continue to monitor under the PAMS program at JLG Supersite which is the NCore site in the Phoenix-Mesa-Scottsdale MSA. Queen Valley was a legacy PAMS type 3 site that will not be required under the 2015 PAMS requirements, therefore, the PAMS specific instruments were shut down after the 2016 PAMS season.

Parameter	Period of Operation	Collection Method	Frequency and Duration
VOC *	Jan – Dec	Canister Sampler	1-in-6, one – 24 hr sample
Carbonyl *	Jan – Dec	Multi-port Carbonyl Sampler	 1-in-6, one – 24 hr sample
			 1-in-6, three – 3 hr samples (0500-
			0800, 0800-1100, 1100-1400)(June-
			August)
СО	Jan – Dec	Trace CO	Hourly average
O ₃	Jan – Dec	O ₃ Analyzer	Hourly average
NOx	Jan – Dec	NOx Analyzer	Hourly average
Meteorology	Jan – Dec	 Wind speed/direction 	Hourly average
		Temperature	
		 Relative humidity 	
		 Pyranometer (total solar 	
		radiation)	
		 Ultra-violet (UV solar) 	

Table 4.8-1 Current JLG Supersite PAMS Instrumentation

* 24-hour VOC and Carbonyl measurements are also part of the NATTS program and collected year-round

4.9 NCore Monitoring Network Requirements

EPA has identified JLG Supersite as the required NCore site for the Phoenix metropolitan area. JLG Supersite has been a multipollutant monitoring site since its establishment in 1993. The required NCore parameters are listed in Table 4.9-1. The required NCore monitors were operational by January 1, 2011.

Required Measurement	Frequency/Duration	Status
PM _{2.5} FEM mass	Hourly	Met One BAM 1020 FEM pair, designated primary
PM _{2.5} FRM mass	1-in-3	Thermo Partisol 2000i is current instrument;
		PM _{2.5} samples collected since 1999
PM ₁₀ FEM mass	Hourly	Met One BAM 1020 FEM pair
PM _{coarse} FEM mass	Hourly	Met One BAM 1020 FEM pair, difference method
PM _{2.5} speciation - organic and	1-in-3	Met One SuperSASS with URG module is current
elemental carbon, major		instrument; STN/CSN samples collected since
ions, and trace metals		1999
O ₃	Hourly	API Teledyne 400E
CO (Trace Level)	Hourly	Ecotech EC9830T
SO ₂ (Trace Level)	Hourly	Ecotech EC9850T
NO/NOy	Hourly	Ecotech EC9843
Surface meteorology	Hourly	RM Young anemometer, Vaisala
		temperature/relative humidity probe

Table 4.9-1 JLG Supersite NCore Requirements

4.10 NATTS Monitoring Network Requirements

EPA has designated JLG Supersite to be part of the 27-site national network of air toxics monitoring stations. There are currently 187 hazardous air pollutants (HAPs), or air toxics, regulated under the CAA that have been associated with a wide variety of adverse health effects. The program was developed by EPA to fulfill the need of long-term HAP monitoring data of consistent quality. The primary purpose is tracking trends to facilitate measuring progress toward emission and risk reduction goals. Additionally, ADEQ operates a monitor for the Urban Air Toxics Monitoring Program (UATMP) at the South Phoenix site, whose purpose is to characterize the composition and magnitude of air toxics pollution. The required NATTS and UATMP parameters are listed in Table 4.10-1.

Site	Required Measurement	Frequency/Duration	Status
JLG Supersite	Carbonyl	1-in-6	ATEC 8000 multi-port
			cartiluge sampler
JLG Supersite	Volatile Organic Compounds (VOC)	1-in-6	ATEC 2200 canister sampler
JLG Supersite	Polycyclic Aromatic Hydrocarbons	1-in-6	Tisch Polyurethane Foam
	(PAH) or Semi-Volatile Organic		(PUF) sampler
	Compounds (SVOC)		
JLG Supersite	Metals Speciation	1-in-6	Thermo 2000i PM sampler,
			local conditions
South Phoenix	VOC	1-in-12	ATEC 8001 multi-port
			canister sampler

Table 4.10-1 NATTS and UATMP Requirements

4.11 CSN Monitoring Network Requirements

Each state shall conduct chemical speciation monitoring and analyses at sites designated to be part of the PM_{2.5} Speciation Trends Network (STN). The selection and modification of these STN sites must be approved by the Administrator. Samples must be collected using approved monitoring methods and the sampling schedules. ADEQ operates a CSN station at JLG Supersite. The required CSN parameters are listed in Table 4.11-1

Required Measurement	Frequency/Duration	Status
PM _{2.5} Speciation, Teflon and Nylon Filters for Metals and Ions	1-in-3	MetOne SuperSASS
PM _{2.5} Speciation, Quartz Filter for Carbon	1-in-3	URG 3000N

Table 4.11-1 CSN Requirements

4.12 SIP Monitoring Network Requirements

ADEQ, along with other delegated agencies, is responsible for the preparation and submittal of SIPs for nonattainment and maintenance areas in Arizona. ADEQ is responsible for conducting ambient air monitoring for areas not included within Maricopa, Pima, and Pinal Counties, or tribal lands. Permitted sources are also responsible for monitoring air quality, if it is included in their air quality permit. Some monitoring sites are specifically named in the area's SIP; other monitoring sites are not specifically named, but are representative of the air quality in that SIP area. Table 4.12-1 lists the ADEQ and source-operated monitors used to determine SIP compliance.

Table 4.12-1 SIP Network Monitoring Requirements
--

Area and County	Pollutant	Classification	ADEQ SIP Sites
Phoenix, Maricopa	СО	Maintenance/Attainment	JLG Supersite
Phoenix, Maricopa	O₃ 1-hr	Maintenance/Attainment	JLG Supersite, Tonto National Monument
Phoenix-Apache	O₃ 8-hr	"Basic" Nonattainment	Alamo Lake, JLG Supersite, Queen Valley, Tonto National
Junction, Maricopa and			Monument
Pinal			
Ajo, Pima	PM ₁₀	Moderate Nonattainment	Ajo
Bullhead City, Mohave	PM ₁₀	Maintenance/Attainment	Bullhead City (Post Office)
Douglas-Paul Spur,	PM ₁₀	Moderate Nonattainment	Douglas Red Cross, Paul Spur Chemical Lime Plant
Cochise			
Hayden, Gila and Pinal	PM ₁₀	Moderate Nonattainment	Hayden Old Jail
Miami, Gila	PM ₁₀	Moderate Nonattainment	Miami Golf Course
Nogales, Santa Cruz	PM ₁₀	Moderate Nonattainment	Nogales Post Office
Payson, Gila	PM ₁₀	Maintenance/Attainment	Payson Well Site
Phoenix, Maricopa, and	PM ₁₀	Serious Nonattainment	JLG Supersite
Pinal (Apache Junction			
portion) Phoenix (Salt			
River Area)			
Rillito, Pima	PM ₁₀	Moderate Nonattainment	Rillito
Yuma, Yuma	PM ₁₀	Moderate Nonattainment	Yuma Supersite

Area and County	Pollutant	Classification	ADEQ SIP Sites
Nogales, Santa Cruz	PM _{2.5}	Nonattainment	Nogales Post Office
Ajo, Pima	SO ₂	Maintenance/Attainment	No network or commitment
Douglas, Cochise	SO ₂	Maintenance/Attainment	No network or commitment
Hayden, Gila and Pinal	SO ₂	Nonattainment – Primary	ADEQ (SO ₂ , MET): Hayden Old Jail ASARCO (5 SO ₂ , 3 MET [no MET at Jail or Garfield]): Globe Hwy, Garfield Ave., Montgomery Ranch, Hayden Old Jail, Hayden Junction
Miami, Gila	SO ₂	Maintenance/Attainment	ADEQ: Miami Ridgeline, Miami Jones Ranch, Miami Townsite FMMI (SO2, MET) Miami Jones Ranch, Miami Townsite
Morenci, Greenlee	SO ₂	Maintenance/Attainment	No network or commitment
San Manuel, Pima and Pinal	SO ₂	Maintenance/Attainment	No network or commitment
Regional Haze, 12 Class 1 areas	Visibility Impairing pollutants (VOC, NOx, SO ₂ , PM ₁₀ , PM _{2.5} , PM _{2.5} species)	Statewide – IMPROVE monitors	ADEQ Protocol sites: Nogales Post Office, Organ Pipe National Monument, JLG Supersite, Saguaro West National Monument, Meadview NPS / USFS sites: Chiricahua Entrance Station, Greer Water Treatment Plant, Grand Canyon - Hance Camp, Ike's Backbone, Petrified Forest National Park, Pleasant Valley Ranger Station, Saguaro National Park-East, Sycamore Canyon, Tonto National Monument

Note: *Sites in italics are specifically required in SIP*; others meet the general SIP requirement that representative monitoring be conducted (no specific monitoring sites are named in SIP).

4.13 Source Compliance Monitoring Network Requirements

ADEQ requires select major and minor point sources in the state to conduct ambient monitoring for selected pollutants in and around their sources. Some requirements are for prevention of significant deterioration (PSD) monitoring prior to operation of the facility. Other monitoring requirements are for the duration of the permit or timeframe specified therein. ADEQ activities have been limited to regular performance audits of instruments at some of these sites and review of ambient monitoring data submitted according to the permit requirements. Sources are required to review and validate their data and submit quality assurance documents to ADEQ with the data. Table 4.13-1 lists the monitors operated by ADEQ permitted sources.

Table 4.13-1 Source Compliance Monitoring Network

Site Name	City	Pollutant(s)	AQS Submittal
Globe Highway	Winkelman	SO ₂	No
ASARCO – Hayden – Garfield Ave.	Hayden	SO ₂	No
ASARCO – Montgomery Ranch	Hayden	SO ₂	No
ASARCO - Hayden Junction	Hayden	SO.	No
ASANCO – Hayden Junction	Junction	502	
Hayden Old Jail ¹	Hayden	SO ₂	No
Chemical Lime Plant	Nelson	Meteorology	No
Drake Coment	Sycamore	PM ₁₀ , PM _{2.5} mass and ammonium	No
	Canyon	speciation, Meteorology	

Site Name	City	Pollutant(s)	AQS Submittal
		PM ₁₀ mass and metals speciation,	
PCC – Clarkdale NW	Clarkdale	Meteorology	No
		PM ₁₀ mass and metals speciation,	
PCC – Clarkdale SE	Clarkdale	Meteorology	No
Carlota Mine – Sanctuary	Globe	PM ₁₀ , H ₂ SO ₄ , Meteorology	No

¹ ADEQ also operates an SO₂ monitor at this site. The ADEQ data are submitted to AQS while the facility data are not.

4.14 Class 1 Visibility Network

As stated previously, visibility monitoring networks track impairment in specified national parks and wilderness areas called Class 1 areas based on designations made by the 1977 CAA Amendments. The evaluations, performed by the USFS and NPS, reviewed the wilderness areas of parks and national forests which were designated as wilderness before 1977, were more than 6,000 acres in size, and had visual air quality as an important resource for visitors. Of the 156 Class 1 areas designated across the nation, 12 are located in Arizona.

For the Class 1 area designations, EPA initiated a nationally operated monitoring network in 1987 called the Interagency Monitoring of PROtected Visual Environments (IMPROVE) program. The purpose of this network is to characterize broad regional trends in visibility conditions using monitoring data collected in or near Class 1 areas across the United States. Originally, the national IMPROVE network was made up of approximately 30 sites at Class 1 areas. During 1999-2000 the number of sites increased to approximately 110. ADEQ, Pima County, and federal land managers at Arizona's Class 1 areas cooperatively operate the visibility monitoring network in Arizona. The current network is described in Table 4.14-1. In addition to the Class 1 IMPROVE monitors listed in Table 4.14-1, ADEQ also operates protocol IMPROVE monitors at the Nogales Post Office site, two collocated IMPROVE monitors at the JLG Supersite, one in Meadview, AZ, one at the west side of the Saguaro National Park, and one at the Organ Pipe National Monument. The Douglas Red Cross protocol site was relocated to the Nogales Post Office site in October, 2015. The Queen Valley protocol site was shut down starting January 1, 2016 after an EPA network assessment determined it was not necessary. The JLG Supersite serves as an urban IMPROVE monitor and has been used to provide comparative analysis with data from the CSN network. See the IMPROVE map in Appendix B for a spatial representation of the IMPROVE monitoring network and Class 1 areas within the state of Arizona.

Geographic Area Represented	Monitoring Location	
Background	Meadview, Organ Pipe National Monument	
Chiricahua National Monument, Chiricahua	Chiricahua Entrance Station	
Wilderness Area and Galiuro USFS Wilderness		
Grand Canyon National Park	Hance Camp	
Mazatzal and Pine Mountain USFS Wilderness	Ike's Backbone	
Mount Baldy	Greer Water Treatment Plant	
Petrified Forest National Park	Petrified Forest	
Saguaro National Park	East Unit and West Unit	
Sierra Ancha USFS Wilderness	Pleasant Valley Ranger Station	

Table 4.14-1 Arizona Class 1 Visibility Monitoring Network

Superstition USFS Wilderness	Tonto National Monument
Sycamore Canyon USFS Wilderness	Sycamore Canyon (Garland Prairie)
Protocol Sites	JLG Supersite, Meadview, Nogales Post Office,
	Organ Pipe National Monument, Saguaro West

4.15 Urban Haze Monitoring Network

ADEQ began studying the nature and causes of urban haze by conducting studies during the winter of 1989-90 in Phoenix and during the winter of 1992-93 in Tucson. These studies recommended long-term, year-round monitoring of visibility in both areas. In 1993, ADEQ began deploying visibility monitoring equipment in Phoenix and Tucson. The purpose of Executive Order 2000-3 directed by the Governor's Brown Cloud Summit was to establish options for a visibility standard or other method to track progress in improving visibility in the Phoenix area. The Summit concluded that a daily visibility index for the metropolitan area should have its characteristics defined through a public survey process. This process called for a representative cross-section of residents of Area A (as described in House Bill 2538, roughly the Phoenix metropolitan area), to determine what visual air qualities are desirable, what visual range is acceptable, and how often the combination of acceptable visual range and air quality is preferred. Through a series of meetings in 2002 and early 2003, ADEQ and the Visibility Index Oversight Committee designed the visibility survey, selected a contractor to conduct the survey, oversaw the completion of the field portion of the survey, and defined a recommended visibility index. The Visibility Index Oversight Committee Final Report was issued in early 2003 summarizing the visibility index.

Equipment currently used to evaluate urban visibility includes transmissometers, nephelometers, and digital camera systems. The Phoenix urban haze network consists of a transmissometer for measuring light extinction along a fixed path length of four and a half kilometers, three nephelometers for measuring light scattering, and five digital camera systems to record visual characteristics of the urban area.

The current Phoenix urban haze sites (and their status) are described in Table 4.15-1. ADEQ continues to evaluate the Urban Haze program. The high-resolution images from these cameras can be viewed online at http://www.phoenixvis.net.

Site Name	Parameter(s) Measured
ADEQ Building	High Resolution Digital Camera
Banner Mesa Medical Center	High Resolution Digital Camera
Estrella Mountain Community College	High Resolution Digital Cameras
JLG Supersite	IMPROVE
JLG Supersite	Light Scattering (Bscat) Nephelometer
North Mountain Summit	2 High Resolution Digital Cameras
Phoenix Transmissometer	Total Light Extinction (Bext)
(Phoenix Baptist Hospital to Holiday Inn Hotel)	Transmissometer

 Table 4.15-1 Phoenix Urban Haze Monitoring Network

4.16 Meteorology Monitoring Network

ADEQ operates meteorological equipment at selected sites throughout its network (see Table 4.16-1). Some sites were originally established because other meteorology networks (NWS, AZMet, etc.) were not located near ADEQ's ambient air quality sites. ADEQ has begun to expand the meteorology monitoring network and standardize the meteorological measurements so that all sites collect measurements of wind speed, wind direction, temperature, and relative humidity.

Except for the items mentioned above, ADEQ does not have any specific plans to make changes to the meteorological network, but may add additional meteorological equipment at existing SLAMS sites as resources permit. At this time, ADEQ plans to only submit meteorological data that are required by 40 CFR Part 58.16 to EPA's AQS database. If future resources allow additional meteorological data submittals to the AQS database, ADEQ may do so on a voluntary basis. A spatial representation of ADEQ's meteorological monitoring network can be found in Appendix B.

Site	Temp	Relative Humidity	Wind	Total Horizontal Solar Radiation	Ultraviolet Solar Radiation	Report to AQS	Comments
Alamo Lake	Х	Х	Х			No	
Ajo	Х	Х	Х			No	
Douglas Red Cross	x	х	х			No	
Globe Highway	Х	Х	Х			No	
Hayden Old Jail	Х	Х	Х			No	
JLG Supersite	x	х	х	х	х	Yes	For NCore / PAMS support
Miami Golf Course	x	х	х			No	
Nogales Post Office	x	х	х			No	
Paul Spur Chemical Lime Plant	x	х	х			No	
Payson Well Site	х	х	х			No	
Queen Valley	Х	Х	Х			No	
Rillito	X	X	X			No	
Yuma Supersite	Х	Х	X			No	

Table 4.16-1 Meteorology Monitoring Network

5.0 QUALITY ASSURANCE

ADEQ sustains a quality system as required by EPA to ensure high quality data are produced that meet the users' needs. The EPA primarily specifies the quality assurance (QA) requirements for operating SLAMS, SPM, CSN, NCore, NATTS, PAMS, and prevention of significant deterioration (PSD) air monitors in 40 CFR Part 58 Appendix A, the Quality Assurance Handbook for Air Pollution Measurement Systems: Volume II: Ambient Air Quality Monitoring Program, technical assurance documents (TADs), and other supporting guidance documents. In response, ADEQ develops quality assurance program plans (QAPP) for air monitoring networks, which provide detailed information regarding the specifics of each air monitoring network and how data will be managed. Components of ADEQ's quality system include, but are not limited to:

- ADEQ being established as the primary quality assurance organization (PQAO) for the criteria and noncriteria pollutant air monitoring data collected and reported to EPA's air quality system (AQS).
- An agency-level Quality Management Plan (QMP), which is an "umbrella" document that details, in broad terms, the strategies used to carry out QA/QC in environmental data collection activities.
- Division-level quality assurance program plans (QAPPs) for each major, ongoing air monitoring network. Each QAPP describes:
 - o purpose for operating the monitoring station or network
 - data quality objectives (DQOs) and/or measurement quality objectives (MQOs) along with data quality indicators (DQIs) that specify the amount of tolerable error in the data using statistical metrics
 - o variety of regularly occurring quality control (QC) checks along with pass/fail criteria
 - o types of QA assessments and reports needed from the network
 - o data validation processes and data reporting requirements
- Unit-level standard operating procedures (SOPs) that document procedures to assure that work products are reliable, reproducible, and consistent in quality. SOPs also serve to clearly communicate any process customizations in-use, providing a means of attesting that work products are credible, legally defensible, and meet or exceed our customers' and/or stakeholders' needs or requirements.
- A comprehensive audit and data assessment program.
 - PE audits on a quarterly, semi-annual, or annual basis
 - o Technical system audits (TSA) performed every three years by EPA Region 9 and annually by ADEQ
 - Audits of data quality
 - Data quality assessments
 - o Corrective action process

ADEQ uses a multi-tiered approach to data validation to ensure consistent quality. It requires all data to move through different levels of QA by separate reviewers. ADEQ has five different stages which data may be categorized.

- Raw Original unchanged data recorded by the sampler or produced by laboratory analysis.
- QA Level 1 Data are reviewed programmatically using software written to flag data. The data are flagged valid or invalid based on instrumentation parameters.
- QA Level 2 Data are reviewed manually on a daily to weekly basis by an initial data reviewer to flag any discrepancies found. This gives the data a preliminary verification decision and identifies outliers, anomalous data and instrumentation/laboratory problems.
- QA Level 3 Data are reviewed manually on a monthly to quarterly basis by the final data reviewer by looking at the data spatially and temporally. QC measures are incorporated, environmental events are identified, and a final determination on the validity of data is made.
- Certified Data are uploaded to AQS and are certified annually by ADEQ.

5.1 EPA QA Reports and Network Performance

Periodically, EPA publishes reports for some of the criteria pollutant networks, and potentially non-criteria pollutant networks, that rate and/or rank monitoring organizations' performance over a three year period. ADEQ's air assessment section personnel review these reports to gauge how well our networks are performing with those across the nation. If needed, corrective actions are taken to ensure data of the highest quality possible are collected.

5.2 EPA Data Reports

The 2016 Data Certification was completed on April 7th, 2017. The data certification sections of AQS were also updated reflecting ADEQ's recommendations for certifying the data.

Appendix A – Definitions and Abbreviations

AADT	Annual Average Daily Traffic
ADEQ	Arizona Department of Environmental Quality
AQI	Air Quality Index
ARM	Approved Regional Methods
ASARCO	American Smelting and Refining Company, LLC
ATEC	Atmospheric Technologies, Inc.
AQS	Air Quality System (EPA database)
BAM	Beta Attenuation Monitor
Bext	Total Light Extinction
Bscat	Light Scattering
CAA	Clean Air Act
CBSA	Core Based Statistical Area
CEDES	Commission for Ecology and Sustainable Development
CFR	Code of Federal Regulations
СО	Carbon Monoxide
COTL	Carbon Monoxide Trace Level
CSN	Chemical Speciation Network
DQO	Data Quality Objective
E-BAM	Environment Proof - Beta Attenuation Monitor
EPA	Environmental Protection Agency
ERG	Eastern Research Group, Inc.
FEM	Federal Equivalent Method
FMMI	Freeport McMoRan Copper and Gold Inc.
FRM	Federal Reference Method
НАР	Hazardous Air Pollutant
ICP-MS	Inductively Coupled Plasma Mass Spectrometry
IMPROVE	Interagency Monitoring of PROtected Visual Environments

MCAQD	Maricopa County Air Quality Department
MET	Meteorological Measurements (wind, temperature, relative humidity)
MQO	Measurement Quality Objective
MSA	Metropolitan Statistical Area
µg/m³	Micrograms per Cubic Meter
NAAQS	National Ambient Air Quality Standard
NATA	National Air Toxics Assessment
NATTS	National Air Toxics Trends Station
NCore	National Core multipollutant monitoring stations
NEI	National Emissions Inventory
NM	National Monument
NO ₂	Nitrogen Dioxide
NOx	Nitrogen Oxides
NOy	Reactive Nitrogen Oxides
NPAP	National Performance Audit Program
NPEP	National Performance Evaluation Program
NPS	National Park Service
NWS	National Weather Service
O ₃	Ozone
PAHs	Polycyclic Aromatic Hydrocarbons
PAMS	Photochemical Assessment Monitoring Station
Pb	Lead
PE	Performance Evaluation
PEP	Performance Evaluation Program
PM	Particulate Matter
PM ₁₀	Particulate Matter ≤ 10 microns
PM_{coarse}	Coarse Particulate Matter between 2.5 to 10 micrometers aerodynamic diameter, may also be denoted as $PM_{10\text{-}2.5}$
PM _{2.5}	Particulate Matter ≤ 2.5 microns

POC	Parameter Occurrence Code
ррb	Parts Per Billion
ppm	Parts Per Million
PQAO	Primary Quality Assurance Organization
PSD	Prevention of Significant Deterioration
PUF	Polyurethane Foam Sampler
PWEI	Populated Weighted Emissions Index
QA	Quality Assurance
QAPP	Quality Assurance Program Plan
QC	Quality Control
QMP	Quality Management Plan
RH	Relative Humidity
SEMARNAT	Secretariat of Environment and Natural Resources
SIP	State Implementation Plan
SLAMS	State and Local Air Monitoring Stations
SO ₂	Sulfur Dioxide
SOP	Standard Operating Procedure
SPM	Special Purpose Monitor
SR	State Route
STN	Speciation Trends Network
SVOC	Semi-Volatile Organic Compounds
TAD	Technical Assistance Document
TEOM	Tapered Element Oscillating Microbalance
TSA	Technical System Audit
TSP	Total Suspended Particulates
UATMP	Urban Air Toxics Monitoring Program
USFS	United States Forest Service
VOC	Volatile Organic Compound

Appendix B – Network Maps

There are eleven maps in this section illustrating the location of ADEQ monitors:

- CO Network
- NO₂ Network
- O₃ Network
- SO₂ Network
- Pb Network
- PM₁₀ Network
- PM_{2.5} Network
- Meteorological Network
- Urban Visibility Network
- IMPROVE Network & Class I Wilderness areas
- EBAM Network

Appendix C – Current Monitors by Program or Network

This appendix contains detailed information about monitors operated by ADEQ, or monitors that ADEQ has a strong association with (e.g. IMPROVE monitors). Only those monitors that were at some point in operation during January 1, 2016 – July 1, 2017 are included in this appendix. Monitors that are proposed to be installed or those that were discontinued prior to the creation of this network plan are not included in this appendix. Since individual pollutants or networks have specific monitoring or siting criteria, this appendix was created so that siting criteria can be easily identified and evaluated throughout a program or network. See Appendix D for detailed information on specific monitoring sites.

NON-REGULATORY NETWORKS

Meteorology	
Temp/RH	Appendix C Page 4
Wind	Appendix C Page 6
Special Purpose Monitors (SPM)	Appendix C Page 8

NAAQS-RELATED NETWORKS

State & Local Air Monitoring Stations (SLAMS)

CO	Appendix C Page 9
NO ₂	Appendix C Page 10
O ₃	Appendix C Page 11
SO ₂	Appendix C Page 12
Pb	Appendix C Page 13
PM ₁₀	Appendix C Page 14
PM _{2.5}	Appendix C Page 16
Chemical Speciation Network (CSN)	Appendix C Page 17
National Core Multi-Pollutant Monitoring Stations (NCore)	Appendix C Page 18
Photochemical Assessment Monitoring Stations (PAMS)	Appendix C Page 20
Air Toxics (NATTS/UATMP)	Appendix C Page 22
Urban Haze	Appendix C Page 23
ADEQ Interagency Monitoring of Protected Visual Environments (IMPROVE) Protocol	Appendix C Page 24

Meteorology - Temp/RH									
Local site name	Ajo	Alamo Lake	Douglas Red Cross	Globe Highway	Hayden Old Jail	JLG Supersite	Miami Golf Course		
Pollutant (POC)	Temp/RH (1)	Temp/RH (1)	Temp/RH (1)	Temp/RH (1)	Temp/RH (1)	Temp/RH (1)	Temp/RH (1)		
Parameter code	62101, 62201	62101, 62201	62101, 62201	62101, 62201	62101, 62201	62101, 62201	62101, 62201		
Basic monitoring objective									
				Highest					
	Population Exposure	Population Exposure	Population Exposure	Concentration, Source	Source Oriented	Population Exposure	Source Oriented		
Site type(s)				Oriented					
Monitor type						SLAMS			
Network affiliation(s)						NCore, PAMS			
Collocation designation									
last ward and the state of a state of the st	Vaisala HMP 155	Vaisala HMP 155	Vaisala HMP 155	Vaisala HMP 155	Vaisala HMP 155	Vaisala HMP 155	Vaisala HMP 155		
Instrument manufacturer and model	Probe	Probe	Probe	Probe	Probe	Probe	Probe		
	040	040	040	040	040	040	040		
Analytical lab (weight toxics other)									
Reporting agency	ADEO	ADEO	ADEO	ΔDEO	ADEO	ADEO	ΔDEO		
Spatial scale (micro_neighborhood)	Neighborhood	Neighborhood	Neighborhood	Neighborhood	Neighborhood	Neighborhood	Neighborhood		
Monitoring start date (MM/DD/YYYY)	02/11/2014	07/09/2015	08/16/2012	04/15/2011	02/02/2011	07/01/1993	06/08/2011		
Current sampling frequency (1:3, continuous)	Continuous	Continuous	Continuous	Continuous	Continuous	Continuous	Continuous		
Calculated sampling frequency (1:3, 211)									
Sampling season (MM/DD-MM/DD)	01/01-12/31	01/01-12/31	01/01-12/31	01/01-12/31	01/01-12/31	01/01-12/31	01/01-12/31		
Prohe height (meters)	23	22	28	2	2 1	2	2		
Distance from supporting structure (motors)	1.2	1	1.0		0.5	1			
Distance from obstructions on roof (motors)	1.2	-	1.0		0.5	2			
Distance from obstructions on root (meters)						2			
Distance from obstructions not on roor (meters)						20			
Distance from trees (meters)	14		11.5	3.0	12	20	0		
Obstruction height above probe (meters)						1			
Tree height above probe (meters)						8			
Distance to furnace or incinerator flue (meters)									
Distance between collocated monitors (meters)									
Distance to closest monitor (meters)									
Unrestricted airflow (degrees)	360	360	360	360	270	150	330		
Restricted airflow (degrees)					250-340	140-350	310-350		
Prevailing wind direction (degrees)									
Probe material for reactive gases									
Residence time for reactive gases (seconds)									
Changes within the next 18 months? (Y/N)	N	N	N	N	N	N	N		
Comparison against the annual PM2.5? (Y/N)									
Frequency of flow rate verification manual PM and Pb samplers									
Frequency of flow rate verification automated PM analyzers									
Frequency of one-point OC check gaseous instruments									
Last annual PE audit for gaseous parameters									
Last two semi-annual flow rate audits DM and Ph									
Last two serie dimudi now rate addits rivi and FD			1	1					

Non-Regulatory - Meteorology - Temp/RH continued								
	Nogales Post Office	Paul Spur Chemical	Payson Well Site	Phoenix Transmissometer	Queen Valley	Rillito	San Luis Rio Colorado	Yuma Supersite
Local site name		Line Flant		Receiver			Well 10	
Pollutant (POC)	Temp/RH (1)	Temp/RH (1)	Temp/RH (1)	Temp R/H (1)	Temp/RH (1)	Temp/RH (1)	Temp/RH (1)	Temp/RH (1)
Parameter code	62101, 62201	62101, 62201	62101, 62201	62101, 62201	62101, 62201	62101, 62201	62101, 62201	62101, 62201
Basic monitoring objective								
Site type(s)	Population Exposure	Source Oriented	Population Exposure	Population Exposure	Downwind	Source Oriented	Source Oriented	Population Exposure
Monitor type					SLAMS			
Network affiliation(s)					PAMS			
Collocation designation								
	Vaisala HMP 155	Vaisala HMP 155	Vaisala HMP 155	Vaisala HMP 155	Vaisala HMP 155	Vaisala HMP 155	Vaisala HMP 155	Vaisala HMP 155
Instrument manufacturer and model	Probe	Probe	Probe	Probe	Probe	Probe	Probe	Probe
Method code	040	040	040	040	040	040	040	040
FRM/FEM/ARM/other								
Collecting agency	ADEQ	ADEQ	ADEQ	ADEQ	ADEQ	ADEQ	ADEQ	ADEQ
Analytical lab (weight, toxics, other)								
Reporting agency	ADEQ	ADEQ	ADEQ	ADEQ	ADEQ	ADEQ	ADEQ	ADEQ
Spatial scale (micro, neighborhood)	Neighborhood	Middle	Neighborhood	Urban	Regional	Middle	Neighborhood	Neighborhood
Monitoring start date (MM/DD/YYYY)	08/11/2011	12/01/2011	05/30/1991	01/01/1994	06/23/2003	03/30/2010	05/10/2017	03/17/2010
Current sampling frequency (1:3, continuous)	Continuous	Continuous	Continuous	Continuous	Continuous	Continuous	Continuous	Continuous
Calculated sampling frequency (1:3 / 1:1)								
Sampling season (MM/DD-MM/DD)	01/01-12/31	01/01-12/31	01/01-12/31	01/01-12/31	01/01-12/31	01/01-12/31	01/01-12/31	01/01-12/31
Probe height (meters)	5.2	2.4	2	32	2.6	2.4	3.7	2
Distance from supporting structure (meters)		1.0			0.50			1
Distance from obstructions on roof (meters)				10				
Distance from obstructions not on roof (meters)			5					1
Distance from trees (meters)	5		1		1.2	19	8.5	
Obstruction height above probe (meters)								
Tree height above probe (meters)								
Distance to furnace or incinerator flue (meters)								
Distance between collocated monitors (meters)								
Distance to closest monitor (meters)								
Unrestricted airflow (degrees)	360	360	250	360	180	290	360	270
Restricted airflow (degrees)					90-270	35-105		0-90
Prevailing wind direction (degrees)								
Probe material for reactive gases								
Residence time for reactive gases (seconds)								
Changes within the next 18 months? (Y/N)	N	N	N	N	N	N	N	N
Comparison against the annual PM2.5? (Y/N)								
Frequency of flow rate verification manual PM and Pb samplers								
Frequency of flow rate verification automated PM analyzers								
Frequency of one-point QC check gaseous instruments								
Last annual PE audit for gaseous parameters								
Last two semi-annual flow rate audits PM and Pb								

Meteorology - Wind									
Local site name	Aio	Alamo Lake	Douglas Red Cross	Globe Highway	Havden Old Jail	II G Supersite	Miami Golf Course		
	Wind (1)	Wind (1)	Wind (1)	Wind (1)	Wind (1)	Wind (1)	Wind (1)		
Parameter code	61103 61104	61103 61103	61103 61104	61103 61104	61103 61104	61103 61104	61103 61104		
Paris monitoring objective	01103, 01104	01103, 01105	01103, 01104	01105, 01104	01105, 01104	01103, 01104	01105, 01104		
				Highest					
Site type(s)	Population Exposure	Population Exposure	Population Exposure	Concentration, Source Oriented	Source Oriented	Population Exposure	Source Oriented		
Monitor type						SLAMS			
Network affiliation(s)						NCore, PAMS			
Collocation designation									
conocation designation	RM Young 5305	RM Young 5305	RM Young 5305	RM Young 5305	RM Young 5305	RM Young 5305	RM Young 5305		
Instrument manufacturer and model	Anemometer	Anemometer	Anemometer	Anemometer	Anemometer	Anemometer	Anemometer		
Method code	065	065	065	065	065	065	065		
FRM/FEM/ARM/other									
Collecting agency	ADEQ	ADEQ	ADEQ	ADEQ	ADEQ	ADEQ	ADEQ		
Analytical lab (weight, toxics, other)									
Reporting agency	ADEQ	ADEQ	ADEQ	ADEQ	ADEQ	ADEQ	ADEQ		
Spatial scale (micro, neighborhood)	Neighborhood	Neighborhood	Neighborhood	Neighborhood	Neighborhood	Neighborhood	Neighborhood		
Monitoring start date (MM/DD/YYYY)	07/01/1969	07/09/2015	08/06/2012	04/15/2011	02/02/2011	07/01/1993	06/08/2011		
Current sampling frequency (1:3, continuous)	Continuous	Continuous	Continuous	Continuous	Continuous	Continuous	Continuous		
Calculated sampling frequency (1:3 / 1:1)									
Sampling season (MM/DD-MM/DD)	01/01-12/31	01/01-12/31	01/01-12/31	01/01-12/31	01/01-12/31	01/01-12/31	01/01-12/31		
Probe height (meters)	10	11	10	10	10	11.5	10.5		
Distance from supporting structure (meters)									
Distance from obstructions on roof (meters)									
Distance from obstructions not on roof (meters)									
Distance from trees (meters)	14		11.5			20			
Obstruction height above probe (meters)									
Tree height above probe (meters)									
Distance to furnace or incinerator flue (meters)									
Distance between collocated monitors (meters)									
Distance to closest monitor (meters)									
Unrestricted airflow (degrees)	360	360	360	360	360	360	360		
Restricted airflow (degrees)									
Prevailing wind direction (degrees)									
Probe material for reactive gases									
Residence time for reactive gases (seconds)									
Changes within the next 18 months? (Y/N)	N	N	N	N	N	N	N		
Comparison against the annual PM2.5? (Y/N)									
Frequency of flow rate verification manual PM and Pb samplers									
Frequency of flow rate verification automated PM analyzers									
Frequency of one-point QC check gaseous instruments									
Last annual PE audit for gaseous parameters									
Last two semi-annual flow rate audits PM and Pb									

Non-Regulatory - Meteorology - Wind continued								
Local site name	Nogales Post Office	Paul Spur Chemical Lime Plant	Payson Well Site	Queen Valley	Rillito	San Luis Rio Colorado	Yuma Supersite	
Pollutant (POC)	Wind (1)	Wind (1)	Wind (1)	Wind (1)	Wind (1)	Wind (1)	Wind (1)	
Parameter code	61103, 61104	61103, 61104	61103, 61104	61103, 61104	61103, 61104	61103, 61104	61103, 61104	
Basic monitoring objective								
Site type(s)	Population Exposure	Source Oriented	Population Exposure	Downwind	Source Oriented	Source Oriented	Population Exposure	
Monitor type				SLAMS				
Network affiliation(s)				PAMS				
Collocation designation								
Instrument manufacturer and model	RM Young 5305	RM Young 5305	RM Young 5305	RM Young 5305	RM Young 5305	RM Young 5305	RM Young 5305	
Method code	065	065	065	065	065	065	065	
FRM/FEM/ARM/other								
	ADFO	ADFO	ADFO	ADFO	ADFO	ADEO	ADFO	
Analytical lab (weight toxics other)								
Reporting agency	ADEO	ΔDEO	ADEO	ADEO	ΔDEO	ΔDEO	ADEO	
Spatial scale (micro, neighborhood)	Neighborhood	Middle	Neighborhood	Regional	Middle	Middle	Neighborhood	
Monitoring start date (MM/DD/YYYY)	01/01/1980	12/01/2011	05/30/1991	06/23/2003	01/08/2004	05/10/2017	03/17/2010	
Current sampling frequency (1:3 continuous)	Continuous	Continuous	Continuous	Continuous	Continuous	Continuous	Continuous	
Calculated sampling frequency (1:3 / 1:1)								
Sampling season (MM/DD-MM/DD)	01/01-12/31	01/01-12/31	01/01-12/31	01/01-12/31	01/01-12/31	01/01-12/31	01/01-12/31	
Probe height (meters)	12	10	10	9	10.4	10.4	10	
Distance from supporting structure (meters)				6.5			6.3	
Distance from obstructions on roof (meters)								
Distance from obstructions not on roof (meters)								
Distance from trees (meters)			2		20	8.5		
Obstruction height above probe (meters)								
Tree height above probe (meters)								
Distance to furnace or incinerator flue (meters)								
Distance between collocated monitors (meters)								
Distance to closest monitor (meters)								
Unrestricted airflow (degrees)	360	360	270	360	360	360	360	
Restricted airflow (degrees)								
Prevailing wind direction (degrees)								
Probe material for reactive gases								
Residence time for reactive gases (seconds)								
Changes within the next 18 months? (Y/N)	N	N	N	N	Ν	Ν	N	
Comparison against the annual PM2.5? (Y/N)								
Frequency of flow rate verification manual PM and Pb samplers								
Frequency of flow rate verification automated PM analyzers								
Frequency of one-point QC check gaseous instruments								
Last annual PE audit for gaseous parameters								
Last two semi-annual flow rate audits PM and Pb								

SPM									
Flagstaff Middle									
Local site name	School	Payson Well Site	Prescott College AQD	AQD	Alamo Lake	Hillcrest	Well 10		
Pollutant (POC)	PM _{2.5} (1)	PM _{2.5} (1)	PM _{2.5} (1)	PM _{2.5} (1)	CO (1)	Pb (1)	O3 (1)		
Parameter code					42101	14129	44201		
Basic monitoring objective	Public Information	Public Information	Public Information	Public Information	NAAQS Comparison	NAAQS Comparison	Research		
						Highest			
	Population Exposure	Population Exposure	Population Exposure	Population Exposure	Background	Concentration, Source	Max O3 Concentration		
Site type(s)						Oriented			
Monitor type	Special Purpose	Special Purpose	Special Purpose	Special Purpose	SPM	SPM	SPM		
Network affiliation(s)									
Collocation designation						Primary			
Instrument manufacturer and model	Met One E-BAM	Met One E-BAM	Met One E-BAM	Met One E-BAM	Teledyne T300U	Tisch TE-8550-BL TSP	Teledyne API 400		
Method code					093	191	087		
FRM/FEM/ARM/other					FEM	FEM	FEM		
Collecting agency	ADEQ	ADEQ	ADEQ	ADEQ	ADEQ	ADEQ	ADEQ		
Analytical lab (weight, toxics, other)						PCRWRD			
Reporting agency	ADEQ	ADEQ	ADEQ	ADEQ	ADEQ	ADEQ	ADEQ		
Spatial scale (micro, neighborhood)	Neighborhood	Neighborhood	Neighborhood	Neighborhood	Regional	Neighborhood	Neighborhood		
Monitoring start date (MM/DD/YYYY)	09/09/1999	05/16/2012	07/13/2011	12/16/2011	9/1/2016	1/1/2016	5/10/2017		
Current sampling frequency (1:3, continuous)	Continuous	Continuous	Continuous	Continuous	Continuous	1:6	Continuous		
Calculated sampling frequency (1:3 / 1:1)									
Sampling season (MM/DD-MM/DD)	01/01-12/31	01/01-12/31	01/01-12/31	01/01-12/31	01/01-12/31	01/01-12/32	01/01-12/31		
Probe height (meters)	6.8	2	4.5	3.6	4.1	3	10		
Distance from supporting structure (meters)			1.5		1.6	1.2	6.1		
Distance from obstructions on roof (meters)									
Distance from obstructions not on roof (meters)		6	28.0	3					
Distance from trees (meters)	31	4					5		
Obstruction height above probe (meters)			11.0						
Tree height above probe (meters)	5.7						Below Inlet by 3m		
Distance to furnace or incinerator flue (meters)						526			
Distance between collocated monitors (meters)									
Distance to closest monitor (meters)									
Unrestricted airflow (degrees)	270	90	360	300	360	360	360		
Restricted airflow (degrees)									
Prevailing wind direction (degrees)									
Probe material for reactive gases					Teflon		Teflon		
Residence time for reactive gases (seconds)					1.73		<20 seconds		
Changes within the next 18 months? (Y/N)	N	N	N	N	N	N	N		
Comparison against the annual PM2.5? (Y/N)	N	N	N	N					
Frequency of flow rate verification manual PM and Pb samplers						Monthly			
Frequency of flow rate verification automated PM analyzers	Monthly	Monthly	Monthly	Monthly					
Frequency of one-point QC check gaseous instruments					Bi-Weekly		Bi-Weekly		
Last annual PE audit for gaseous parameters					8/23/16		N/A for 2016		
						2/4/2016, 5/3/2016, 8/18/2016, 11/15/2016			
Last two semi-annual flow rate audits PM and Pb									
SPM Meets requirements in Appendices A & E	No	No	No	No	Yes	Yes	Yes		

NAAQS - SLAMS - CO						
Local site name	JLG Supersite	Alamo Lake				
Pollutant (POC)	CO (1)	CO (1)				
Parameter code	42101	42101				
Basic monitoring objective	NAAQS Comparison	NAAQS Comparison				
Site type(s)	Highest Concentration	Background				
Monitor type	SLAMS	SPM				
Network affiliation(s)	NCore, PAMS					
Collocation designation						
Instrument manufacturer and model	Ecotech EC9830T	Teledyne T300U				
Method code	588	093				
FRM/FEM/ARM/other	FEM	FEM				
Collecting agency	ADEQ	ADEQ				
Analytical lab (weight, toxics, other)						
Reporting agency	ADEQ	ADEQ				
Spatial scale (micro, neighborhood)	Neighborhood	Regional				
Monitoring start date (MM/DD/YYYY)	01/01/1999	09/01/2016				
Current sampling frequency (1:3. continuous)	Continuous	Continuous				
Calculated sampling frequency (1:3 / 1:1)						
Sampling season (MM/DD-MM/DD)	01/01-12/31	01/01-12/31				
Prohe height (meters)	4.1	4.1				
Distance from supporting structure (meters)	1.2	1.6				
Distance from obstructions on roof (meters)						
Distance from obstructions of root on roof (meters)	20					
Distance from troos (motors)	20					
Obstruction height above probe (meters)	6					
Tree height above probe (meters)	6					
Dictance to furnace or incinerator flue (meters)						
Distance to furnace of incinerator inde (meters)						
Distance between conocated monitors (meters)						
Lineartisted sinflaw (decreas)	260	260				
Unrestricted airliow (degrees)	300	300				
Restricted airnow (degrees)						
Prevailing wind direction (degrees)	 Glass Toflon	Toflon				
Probe material for reactive gases		1.72				
Residence time for reactive gases (seconds)	1.73	1.73				
Changes within the next 18 months? (Y/N)	IN	IN				
Comparison against the annual PM2.5? (Y/N)						
samplers						
Frequency of flow rate verification automated PM						
analyzers						
Frequency of one-point QC check gaseous instruments	Bi-Weekly	Bi-Weekly				
Last annual PE audit for gaseous parameters	11/29/2016	08/23/2016				
Last two semi-annual flow rate audits PM and Pb						

NAAQS - SLAMS - NO ₂					
Local site name	JLG Supersite				
Pollutant (POC)	NO ₂ (1)				
Parameter code	42602				
Basic monitoring objective	NAAQS Comparison				
Site type(s)	Highest Concentration				
Monitor type	SLAMS				
Network affiliation(s)	NCore				
Collocation designation	Primary				
Instrument manufacturer and model	Ecotech EC9841B				
Method code	090				
FRM/FEM/ARM/other	FRM				
Collecting agency	ADEQ				
Analytical lab (weight, toxics, other)					
Reporting agency	ADEQ				
Spatial scale (micro, neighborhood)	Neighborhood				
Monitoring start date (MM/DD/YYYY)	01/01/1999				
Current sampling frequency (1:3, continuous)	Continuous				
Calculated sampling frequency (1:3 / 1:1)					
Sampling season (MM/DD-MM/DD)	01/01-12/31				
Probe height (meters)	4.1				
Distance from supporting structure (meters)	1.2				
Distance from obstructions on roof (meters)					
Distance from obstructions not on roof (meters)	20				
Distance from trees (meters)	20				
Obstruction height above probe (meters)	6				
Tree height above probe (meters)	6				
Distance to furnace or incinerator flue (meters)					
Distance between collocated monitors (meters)					
Distance to closest monitor (meters)					
Unrestricted airflow (degrees)	360				
Restricted airflow (degrees)					
Prevailing wind direction (degrees)					
Probe material for reactive gases	Glass, Teflon				
Residence time for reactive gases (seconds)	1.94				
Changes within the next 18 months? (Y/N)	Ν				
Comparison against the annual PM2.5? (Y/N)					
Frequency of flow rate verification manual PM and Pb samplers					
Frequency of flow rate verification automated PM analyzers					
Frequency of one-point QC check gaseous instruments	Bi-Weekly				
Last annual PE audit for gaseous parameters	12/01/2016				
Last two semi-annual flow rate audits PM and Pb					

NAAQS - SLAMS - O ₃									
Local site name	Alamo Lake	Flagstaff Middle School	JLG Supersite	Prescott College AQD	Prescott Pioneer Park	Queen Valley	San Luis Rio Colorado Well 10	Tonto National Monument	Yuma Supersite
Pollutant (POC)	O ₃ (1)	O ₃ (1)	O ₃ (1)	O ₃ (1)	O ₃ (1)	O ₃ (1)	O ₃ (1)	O ₃ (1)	O ₃ (1)
Parameter code	44201	44201	44201	44201	44201	44201	44201	44201	44201
Basic monitoring objective	NAAQS Comparison	NAAQS Comparison	NAAQS Comparison	NAAQS Comparison	NAAQS Comparison	NAAQS Comparison	Research	NAAQS Comparison	NAAQS Comparison
Site type(s)	Regional Transport	Max O ₃ Concentration	Extreme Downwind	Max O ₃ Concentration	Extreme Downwind	Max O ₃ Concentration			
Monitor type	SLAMS	SLAMS	SLAMS	SLAMS	SLAMS	SLAMS	SPM	SLAMS	SLAMS
Network affiliation(s)			NCore, PAMS			PAMS			
Collocation designation									
Instrument manufacturer and model	Teledyne API 400	Teledyne API 400	Teledyne API 400	Teledyne API 400	Teledyne API 400	Teledyne API 400	Teledyne API 400	Teledyne API 400	Teledyne API 400
Method code	087	087	087	087	087	087	087	087	087
FRM/FEM/ARM/other	FEM	FEM	FEM	FEM	FEM	FEM	FEM	FEM	FEM
Collecting agency	ADEQ	ADEQ	ADEQ	ADEQ	ADEQ	ADEQ	ADEQ	ADEQ	ADEQ
Analytical lab (weight, toxics, other)									
Reporting agency	ADEQ	ADEQ	ADEQ	ADEQ	ADEQ	ADEQ	ADEQ	ADEQ	ADEQ
Spatial scale (micro, neighborhood)	Regional	Neighborhood	Neighborhood	Neighborhood	Neighborhood	Regional	Neighborhood	Regional	Neighborhood
Monitoring start date (MM/DD/YYYY)	05/20/2005	04/01/2008	07/01/1993	04/01/2008	01/01/2017	05/23/2001	05/10/2017	05/23/2002	05/06/2008
Current sampling frequency (1:3, continuous)	Continuous	Continuous	Continuous	Continuous	Continuous	Continuous	Continuous	Continuous	Continuous
Calculated sampling frequency (1:3 / 1:1)									
Sampling season (MM/DD-MM/DD)	01/01-12/31	01/01-12/31	01/01-12/31	01/01-12/31	01/01-12/31	01/01-12/31	01/01-12/31	01/01-12/31	01/01-12/31
Probe height (meters)	4.1	9.5	4.1	4.0	3.6	4.5	10	4.1	4.3
Distance from supporting structure (meters)	1.6	1.5	1.2	1.0	1.5	2	6.1	1.4	1.6
Distance from obstructions on roof (meters)		0							
Distance from obstructions not on roof (meters)			20	27					65
Distance from trees (meters)		21.5	20		11.1		5		
Obstruction height above probe (meters)			6	11.5					0
Tree height above probe (meters)		3	6		3.0		Below Inlet by 3m		
Distance to furnace or incinerator flue (meters)									
Distance between collocated monitors (meters)									
Distance to closest monitor (meters)									
Unrestricted airflow (degrees)	360	360	360	360	360	360	360	360	360
Restricted airflow (degrees)									
Prevailing wind direction (degrees)									
Probe material for reactive gases	Teflon	Teflon	Glass, Teflon	Teflon	Teflon	Teflon	Teflon	Teflon	Teflon
Residence time for reactive gases (seconds)	3.78	8.72	1.94	6.0	4.1	3.65	<20 seconds	3.24	5.02
Changes within the next 18 months? (Y/N)	N	N	N	N	N	N	N	N	Ν
Comparison against the annual PM2.5? (Y/N)									
Frequency of flow rate verification manual PM and Pb samplers									
Frequency of flow rate verification automated PM analyzers									
Frequency of one-point QC check gaseous instruments	Bi-Weekly	Bi-Weekly	Bi-Weekly	Bi-Weekly	Bi-Weekly	Bi-Weekly	Bi-Weekly	Bi-Weekly	Bi-Weekly
Last annual PE audit for gaseous parameters	02/23/2016	05/18/2016	11/29/2016	02/24/2016	N/A for 2016	04/19/2016	N/A for 2016	05/11/2016	11/03/2016
Last two semi-annual flow rate audits PM and Pb									

NAAQS - SLAMS - SO ₂									
Local site name	Hayden Old Jail	JLG Supersite	Miami Jones Ranch	Miami Ridgeline	Miami Townsite				
Pollutant (POC)	SO ₂ (1)								
Parameter code	42401	42401	42401	42401	42401				
Basic monitoring objective	NAAQS Comparison								
	Source Oriented	Population Exposure	Source Oriented	Source Oriented	Source Oriented				
Site type(s)	SLAMS		SLAMS	SLAMS	SLANAS				
Notwork affiliation(c)	SLAIVIS	SLAWS NCore	SLAIVIS	SLAIVIS	SLAIVIS				
Collocation designation									
Instrument manufacturer and model	Ecotech EC9850T	Ecotech EC9850T	Ecotech EC9850T	Thermo 43C	Ecotech EC9850T				
Method code	592	592	592	592	592				
FRM/FFM/ARM/other	FEM	FEM	FEM	FEM	FEM				
Collecting agency	ADEO	ADEO	ADEO	ADEO	ADEO				
Analytical lab (weight, toxics, other)									
Reporting agency	ADEQ	ADEQ	ADEQ	ADEQ	ADEQ				
Spatial scale (micro, neighborhood)	Neighborhood	Neighborhood	Neighborhood	Neighborhood	Neighborhood				
Monitoring start date (MM/DD/YYYY)	01/05/1979	03/04/2005	02/01/2013	01/01/1999	02/01/2013				
Current sampling frequency (1:3, continuous)	Continuous	Continuous	Continuous	Continuous	Continuous				
Calculated sampling frequency (1:3 / 1:1)									
Sampling season (MM/DD-MM/DD)	01/01-12/31	01/01-12/31	01/01-12/31	01/01-12/31	01/01-12/31				
Probe height (meters)	4.7	4.1	3.5	3.5	3.7				
Distance from supporting structure (meters)	2.1	1.2	1	1.1	1				
Distance from obstructions on roof (meters)									
Distance from obstructions not on roof (meters)		20		10	26.4				
Distance from trees (meters)	12	20			14				
Obstruction height above probe (meters)		6		1.5	10.9				
Tree height above probe (meters)	0	6			7				
Distance to furnace or incinerator flue (meters)	280		3081	1411	2300				
Distance between collocated monitors (meters)									
Distance to closest monitor (meters)									
Unrestricted airflow (degrees)	360	360	360	360	360				
Restricted airflow (degrees)									
Prevailing wind direction (degrees)									
Probe material for reactive gases	Teflon	Glass, Teflon	Teflon	Teflon	Teflon				
Residence time for reactive gases (seconds)	4.54	1.94	4.08	4.1	3.96				
Changes within the next 18 months? (Y/N)	Ν	N	Ν	N	Ν				
Comparison against the annual PM2.5? (Y/N)									
Frequency of flow rate verification manual PM and Pb samplers									
Frequency of flow rate verification automated PM									
	Bi-Weekly	Bi-Weekly	Bi-Weekly	Bi-Weekly	Bi-Weekly				
Lest appual DE audit for gassaus parameters	02/04/2016	11/20/2016	07/26/2016	04/27/2016	11/08/2016				
Last annual PE audit for gaseous parameters	02/04/2010	11/29/2010	07/20/2010	04/2//2010	11/00/2010				
Last two semi-annual flow rate audits PM and Pb									

NAAQS - SLAMS - Pb								
Local site name	Globe Highway	Globe Highway	Hillcrest	Miami Golf Course				
Pollutant (POC)	Pb (1)	Pb (2)	Pb (1)	Pb (1)				
Parameter code	14129	14129	14129	14129				
Basic monitoring objective	NAAQS Comparison	NAAQS Comparison	NAAQS Comparison	NAAQS Comparison				
	Highest Concentration, Source	Highest Concentration, Source	Highest Concentration, Source	Source Oriented				
Site type(s)	Oriented	Oriented	Oriented					
Monitor type	SLAMS	SLAMS	SPM	SLAMS				
Network affiliation(s)								
Collocation designation	Primary	QA Collocated	Primary	Primary				
Instrument manufacturer and model	Tisch TE-8550-BL TSP	Tisch TE-8550-BL TSP	Tisch TE-8550-BL TSP	Tisch TE-8550-BL TSP				
Method code	191	191	191	191				
FRM/FEM/ARM/other	FEM	FEM	FEM	FEM				
Collecting agency	ADEQ	ADEQ	ADEQ	ADEQ				
Analytical lab (weight, toxics, other)	PCRWRD	PCRWRD	PCRWRD	PCRWRD				
Reporting agency	ADEQ	ADEQ	ADEQ	ADEQ				
Spatial scale (micro, neighborhood)	Neighborhood	Neighborhood	Neighborhood	Neighborhood				
Monitoring start date (MM/DD/YYYY)	01/01/2011	01/01/2011	01/01/2016	01/01/2011				
Current sampling frequency (1:3, continuous)	1:6	1:6	1:6	1:6				
Calculated sampling frequency (1:3 / 1:1)								
Sampling season (MM/DD-MM/DD)	01/01-12/31	01/01-12/31	01/01-12/32	01/01-12/31				
Probe height (meters)	2	2	3	3				
Distance from supporting structure (meters)	1.1	1.1	1.2	1.1				
Distance from obstructions on roof (meters)								
Distance from obstructions not on roof (meters)	65	65						
Distance from trees (meters)	3	3		7				
Obstruction height above probe (meters)	23	23						
Tree height above probe (meters)	-1	-1		0				
Distance to furnace or incinerator flue (meters)	1043	1043	526	2635				
Distance between collocated monitors (meters)	2.7	2.7						
Distance to closest monitor (meters)	2.7	2.7		3.5				
Unrestricted airflow (degrees)	360	360	360	360				
Restricted airflow (degrees)								
Prevailing wind direction (degrees)								
Probe material for reactive gases								
Residence time for reactive gases (seconds)								
Changes within the next 18 months? (Y/N)	N	N	N	N				
Comparison against the annual PM2.5? (Y/N)								
Frequency of flow rate verification manual PM and Pb samplers	Monthly	Monthly	Monthly	Monthly				
Frequency of flow rate verification automated PM analyzers								
Frequency of one-point QC check gaseous instruments								
Last annual PE audit for gaseous parameters								
Last two semi-annual flow rate audits PM and Pb	2/4/2016, 5/3/2016, 8/18/2016, 11/15/2016	2/4/2016, 5/3/2016, 8/18/2016, 11/15/2016	2/4/2016, 5/3/2016, 8/18/2016, 11/15/2016	2/5/2016, 5/11/2016, 7/26/2016, 11/15/2016				

NAAQS - SLAMS - PM ₁₀						
Local site name	Ајо	Alamo Lake	Bullhead City	Douglas Red Cross	Hayden Old Jail	JLG Supersite
Pollutant (POC)	PM ₁₀ (3)	PM ₁₀ (3)	PM ₁₀ (3)	PM ₁₀ (3)	PM ₁₀ (3)	PM ₁₀ (3)
Parameter code	81102	81102	81102	81102	81102	81102
Basic monitoring objective	NAAQS Comparison	NAAQS Comparison	NAAQS Comparison	NAAQS Comparison	NAAQS Comparison	NAAQS Comparison
Site type(s)	Population Exposure	Background	Population Exposure	Population Exposure	Source Oriented	Population Exposure
Monitor type	SLAMS	SLAMS	SLAMS	SLAMS	SLAMS	SLAMS
Network affiliation(s)						NCore
Collocation designation	Primary	Primary	Primary	Primary	Primary	Primary
Instrument manufacturer and model	Met One BAM 1020	Met One BAM 1020	Met One BAM 1020	Met One BAM 1020	Met One BAM 1020	Met One BAM 1020
Method code	122	122	122	122	122	122
FRM/FEM/ARM/other	FEM	FEM	FEM	FEM	FEM	FEM
Collecting agency	ADEQ	ADEQ	ADEQ	ADEQ	ADEQ	ADEQ
Analytical lab (weight, toxics, other)						
Reporting agency	ADEQ	ADEQ	ADEQ	ADEQ	ADEQ	ADEQ
Spatial scale (micro, neighborhood)	Neighborhood	Regional	Neighborhood	Neighborhood	Neighborhood	Neighborhood
Monitoring start date (MM/DD/YYYY)	12/01/1986	01/01/2014	11/01/1997	09/02/1998	12/01/1986	07/01/1993
Current sampling frequency (1:3, continuous)	Continuous	Continuous	Continuous	Continuous	Continuous	Continuous
Calculated sampling frequency (1:3 / 1:1)	1:1	1:1	1:1	1:6	1:6	1:2
Sampling season (MM/DD-MM/DD)	01/01-12/31	01/01-12/31	01/01-12/31	01/01-12/31	01/01-12/31	01/01-12/31
Probe height (meters)	3.7	4.4	8	3.1	4.6	4.9
Distance from supporting structure (meters)	2.6	2	2	2.1	2	2.5
Distance from obstructions on roof (meters)			6.3			
Distance from obstructions not on roof (meters)						15
Distance from trees (meters)	12			10	12	15
Obstruction height above probe (meters)			0			5
Tree height above probe (meters)	0			1	0	5
Distance to furnace or incinerator flue (meters)						
Distance between collocated monitors (meters)						
Distance to closest monitor (meters)		1.0		1.0		1.0
Unrestricted airflow (degrees)	360	360	360	360	360	360
Restricted airflow (degrees)						
Prevailing wind direction (degrees)						
Probe material for reactive gases						
Residence time for reactive gases (seconds)						
Changes within the next 18 months? (Y/N)	N	N	N	N	N	Ν
Comparison against the annual PM2.5? (Y/N)						
Frequency of flow rate verification manual PM and Pb samplers						
Frequency of flow rate verification automated PM analyzers	Monthly	Monthly	Monthly	Monthly	Monthly	Monthly
Frequency of one-point QC check gaseous instruments						
Last annual PE audit for gaseous parameters						
Last two semi-annual flow rate audits PM and Pb	5/5/2016, 11/2/2016	2/23/2016, 8/23/2016	6/8/2016, 12/20/2016	2/10/2016, 8/2/2016	2/4/2016, 8/9/2016	5/19/2016, 11/29/2016

NAAQS - SLAMS - PM ₁₀ continued						
Local site name	Miami Golf Course	Nogales Post Office	Paul Spur Chemical Lime Plant	Payson Well Site	Rillito	Yuma Supersite
Pollutant (POC)	PM ₁₀ (3)	PM ₁₀ (3)	PM ₁₀ (3)	PM ₁₀ (3)	PM ₁₀ (3)	PM ₁₀ (3)
Parameter code	81102	81102	81102	81102	81102	81102
Basic monitoring objective	NAAQS Comparison	NAAQS Comparison	NAAQS Comparison	NAAQS Comparison	NAAQS Comparison	NAAQS Comparison
Site type(s)	Source Oriented	Population Exposure	Source Oriented	Population Exposure	Source Oriented	Population Exposure
Monitor type	SLAMS	SLAMS	SLAMS	SLAMS	SLAMS	SLAMS
Network affiliation(s)						
Collocation designation	Primary	Primary	Primary	Primary	Primary	Primary
Instrument manufacturer and model	Met One BAM 1020	Met One BAM 1020	Met One BAM 1020	Met One BAM 1020	Met One BAM 1020	Met One BAM 1020
Method code	122	122	122	122	122	122
FRM/FEM/ARM/other	FEM	FEM	FEM	FRM	FEM	FEM
Collecting agency	ADEQ	ADEQ	ADEQ	ADEQ	ADEQ	ADEQ
Analytical lab (weight, toxics, other)						
Reporting agency	ADEQ	ADEQ	ADEQ	ADEQ	ADEQ	ADEQ
Spatial scale (micro, neighborhood)	Neighborhood	Neighborhood	Middle	Neighborhood	Middle	Neighborhood
Monitoring start date (MM/DD/YYYY)	7/26/2012	12/01/1986	12/01/1986	05/31/1991	03/01/1986	02/08/2006
Current sampling frequency (1:3, continuous)	Continuous	Continuous	Continuous	Continous	Continuous	Continuous
Calculated sampling frequency (1:3 / 1:1)	1:6	1:1	1:2	1:6	1:6	1:6
Sampling season (MM/DD-MM/DD)	01/01-12/31	01/01-12/31	01/01-12/31	01/01-12/31	01/01-12/31	01/01-12/31
Probe height (meters)	4	8	3.1	4.75	4.3	5
Distance from supporting structure (meters)	2	2.7	2	2.1	2	2.2
Distance from obstructions on roof (meters)		11				
Distance from obstructions not on roof (meters)					3	65
Distance from trees (meters)	6	10		17.4	20	
Obstruction height above probe (meters)		2			0	0
Tree height above probe (meters)	0	0		1	0	
Distance to furnace or incinerator flue (meters)						
Distance between collocated monitors (meters)		3				
Distance to closest monitor (meters)		1.0				1.0
Unrestricted airflow (degrees)	360	360	360	360	360	360
Restricted airflow (degrees)						
Prevailing wind direction (degrees)						
Probe material for reactive gases						
Residence time for reactive gases (seconds)						
Changes within the next 18 months? (Y/N)	Ν	Ν	Ν	Ν	Ν	Ν
Comparison against the annual PM2.5? (Y/N)						
Frequency of flow rate verification manual PM and Pb samplers						
Frequency of flow rate verification automated PM analyzers	Monthly	Monthly	Monthly	Monthly	Monthly	Monthly
Frequency of one-point QC check gaseous instruments						
Last annual PE audit for gaseous parameters						
Last two semi-annual flow rate audits PM and Pb	2/5/2016, 7/26/2016	2/11/2016, 8/3/2016	2/10/2016, 8/2/2016	5/8/2016, 12/13/2016	4/20/2016, 11/2/2016	5/5/2016, 11/2/2016

NAAQS - SLAMS - PM _{2.5}							
l ocal sita nama	Alamo Lake	Douglas Red Cross	JLG Supersite	JLG Supersite	Nogales Post Office	Nogales Post Office	Yuma Supersite
	PM ₂ ₅ (3)	PM ₂ - (3)	PM ₂ - (3)	PM _{2.5} (1)	PM ₂ = (3)	PMa.c (1)	PM ₂ _c (3)
Parameter code	88101	88101	88101	88101	88101	88101	88101
	00101	00101	00101	00101	00101		00101
Basic monitoring objective	NAAQS Comparison	NAAQS Comparison	NAAQS Comparison	NAAQS Comparison	NAAQS Comparison	NAAQS Comparison	NAAQS Comparison
Site type(s)	Background	Population Exposure	Population Exposure	Population Exposure	Highest Concentration	Highest Concentration	Regional Transport
Monitor type	SLAMS	SLAMS	SLAMS	SLAMS	SLAMS	SLAMS	SLAMS
Network affiliation(s)			NCore	NCore			
Collocation designation	Primary	Primary	Primary	QA Collocated	Primary	QA Collocated	Primary
Instrument manufacturer and model	Met One BAM 1020	Met One BAM 1020	Met One BAM 1020	Thermo Partisol 2000i	Met One BAM 1020	Thermo Partisol 2000i	Met One BAM 1020
Method code	170	170	170	143	170	143	170
FRM/FEM/ARM/other	FEM	FEM	FEM	FRM	FEM	FRM	FEM
Collecting agency	ADEQ	ADEQ	ADEQ	ADEQ	ADEQ	ADEQ	ADEQ
Analytical lab (weight, toxics, other)				IML		IML	
Reporting agency	ADEQ	ADEQ	ADEQ	ADEQ	ADEQ	ADEQ	ADEQ
Spatial scale (micro, neighborhood)	Regional	Neighborhood	Neighborhood	Neighborhood	Neighborhood	Neighborhood	Neighborhood
Monitoring start date (MM/DD/YYYY)	01/01/2014	01/12/1999	01/01/2011	01/06/1999	04/01/2013	01/06/1999	01/01/2010
Current sampling frequency (1:3, continuous)	Continuous	Continuous	Continuous	1:3	Continuous	1:6	Continuous
Calculated sampling frequency (1:3 / 1:1)	1:3	1:3	1:3	1:3	1:3	1:3	1:3
Sampling season (MM/DD-MM/DD)	01/01-12/31	01/01-12/31	01/01-12/31	01/01-12/31	01/01-12/31	01/01-12/31	01/01-12/31
Probe height (meters)	4.5	3.9	5	4.7	8.3	7.3	5.1
Distance from supporting structure (meters)	2.1	2.9	2.5	2	3	2	2.3
Distance from obstructions on roof (meters)					12	9	
Distance from obstructions not on roof (meters)			15	20			65
Distance from trees (meters)		10.5	15	20	10	10	
Obstruction height above probe (meters)			5	6	1.7	2.7	0
Tree height above probe (meters)		0	5	6	0	0	
Distance to furnace or incinerator flue (meters)							
Distance between collocated monitors (meters)			3.8	3.8	3.0	3.0	
Distance to closest monitor (meters)	1.0	1.0	1.0	2.0	1.0	3.0	1.0
Unrestricted airflow (degrees)	360	360	360	360	360	360	360
Restricted airflow (degrees)							
Prevailing wind direction (degrees)					180	180	
Probe material for reactive gases							
Residence time for reactive gases (seconds)							
Changes within the next 18 months? (Y/N)	N	Ν	Ν	N	N	N	N
Comparison against the annual PM2.5? (Y/N)	Y	Y	Y	Y	Y	Y	Y
Frequency of flow rate verification manual PM and Pb samplers				Monthly		Monthly	
Frequency of flow rate verification automated PM analyzers	Monthly	Monthly	Monthly		Monthly		Monthly
Frequency of one-point OC check ascenus instruments							
Last annual PE audit for gaseous parameters							
Last two semi-annual flow rate audits PM and Pb	2/23/2016, 8/23/2016	2/10/2016, 8/2/2016	5/19/2016, 11/29/2016	5/25/2016, 11/29/2016	2/11/2016, 8/3/2016	2/11/2016, 8/3/2016	5/5/2016, 11/2/2016

NAAQS - CSN				
Local site name	II G Supersite	II G Supersite		
	JEG Supersite	JEG Supersite		
Pollutant (POC)	PM _{2.5} Speciation (7)	PM _{2.5} Speciation (7)		
Parameter code	Multiple	Multiple		
Basic monitoring objective	Research	Research		
	Deputation Exposure	Deputation Exposure		
Site type(s)	Population Exposure	Population Exposure		
Monitor type	SLAMS	SLAMS		
Network affiliation(s)	CSN STN, NCore	CSN STN, NCore		
Collocation designation				
Instrument manufacturer and model	Met One SuperSASS	URG 3000N		
Method code	Various	Various		
FRM/FEM/ARM/other				
Collecting agency	ADEQ	ADEQ		
Analytical lab (weight, toxics, other)	RTI	RTI		
Reporting agency	RTI	RTI		
Spatial scale (micro, neighborhood)	Neighborhood	Neighborhood		
Monitoring start date (MM/DD/YYYY)	02/21/2000	02/21/2000		
Current sampling frequency (1:3, continuous)	1:3	1:3		
Calculated sampling frequency (1:3 / 1:1)				
Sampling season (MM/DD-MM/DD)	01/01-12/31	01/01-12/31		
Probe height (meters)	4.7	4.9		
Distance from supporting structure (meters)	2	2.2		
Distance from obstructions on roof (meters)				
Distance from obstructions not on roof (meters)	20	15		
Distance from trees (meters)	20	15		
Obstruction height above probe (meters)	6	5		
Tree height above probe (meters)	6	5		
Distance to furnace or incinerator flue (meters)				
Distance between collocated monitors (meters)				
Distance to closest monitor (meters)				
Unrestricted airflow (degrees)	360	360		
Restricted airflow (degrees)				
Prevailing wind direction (degrees)				
Probe material for reactive gases				
Residence time for reactive gases (seconds)				
Changes within the next 18 months? (Y/N)	Ν	Ν		
Comparison against the annual PM2.5? (Y/N)				
Frequency of flow rate verification manual PM and Pb samplers	Monthly	Monthly		
Frequency of flow rate verification automated PM		_		
analyzers				
Frequency of one-point QC check gaseous instruments				
Last annual PE audit for gaseous parameters				
Last two semi-annual flow rate audits PM and Pb	5/26/2016, 12/1/2016	5/26/2016, 12/1/2016		

	NA	AAQS - NCore			
Local site name	JLG Supersite	JLG Supersite	JLG Supersite	JLG Supersite	JLG Supersite
Pollutant (POC)	CO (1)	NOy (1)	O3 (1)	SO2 (1)	PM _{10-2.5} (1)
Parameter code	42101	42600	44201	42401	86101
Basic monitoring objective	NAAQS Comparison	NAAQS Comparison	NAAQS Comparison	NAAQS Comparison	Research
Site type(s)	Highest Concentration	Population Exposure	Max O3 Concentration	Population Exposure	Population Exposure
Monitor type	SLAMS	SLAMS	SLAMS	SLAMS	SLAMS
Network affiliation(s)	NCore, PAMS	NCore	NCore, PAMS	NCore	NCore
Collocation designation					Primary
Instrument manufacturer and model	Ecotech EC9830T	Ecotech 9843	Teledyne API 400	Ecotech EC9850T	Met One BAM 1020
Method code	588	591	087	592	185
FRM/FEM/ARM/other	FEM	FEM	FEM	FEM	FEM
Collecting agency	ADEQ	ADEQ	ADEQ	ADEQ	ADEQ
Analytical lab (weight, toxics, other)					
Reporting agency	ADEQ	ADEQ	ADEQ	ADEQ	ADEQ
Spatial scale (micro, neighborhood)	Neighborhood	Neighborhood	Neighborhood	Neighborhood	Neighborhood
Monitoring start date (MM/DD/YYYY)	1/1/1999	01/01/2011	7/1/1993	3/4/2005	11/10/2010
Current sampling frequency (1:3, continuous)	Continuous	Continuous	Continuous	Continuous	Continuous
Calculated sampling frequency (1:3 / 1:1)					
Sampling season (MM/DD-MM/DD)	01/01-12/31	01/01-12/31	01/01-12/31	01/01-12/31	01/01-12/31
Probe height (meters)	4.1	10	4.1	4.1	4.9
Distance from supporting structure (meters)	1.2	7	1.2	1.2	2.5
Distance from obstructions on roof (meters)					
Distance from obstructions not on roof (meters)	20	20	20	20	15
Distance from trees (meters)	20	20	20	20	15
Obstruction height above probe (meters)	6	0	6	6	5
Tree height above probe (meters)	6	0	6	6	5
Distance to furnace or incinerator flue (meters)					
Distance between collocated monitors (meters)					
Distance to closest monitor (meters)					2.0
Unrestricted airflow (degrees)	360	360	360	360	360
Restricted airflow (degrees)					
Prevailing wind direction (degrees)					
Probe material for reactive gases	Glass, Teflon	Glass, Teflon	Glass, Teflon	Glass, Teflon	
Residence time for reactive gases (seconds)	1.73	14.39	1.94	1.94	
Changes within the next 18 months? (Y/N)	Ν	N	N	N	Ν
Comparison against the annual PM2.5? (Y/N)					
Frequency of flow rate verification manual PM and Pb samplers					
Frequency of flow rate verification automated PM analyzers					Monthly
Frequency of one-point QC check gaseous instruments	Bi-Weekly	Bi-Weekly	Bi-Weekly	Bi-Weekly	
Last annual PE audit for gaseous parameters	11/29/2016	12/01/2016	11/29/2016	11/29/2016	
Last two semi-annual flow rate audits PM and Pb					

NAAQS - NCore continued						
Local site name	JLG Supersite	JLG Supersite	JLG Supersite	JLG Supersite	JLG Supersite	JLG Supersite
Pollutant (POC)	PM2.5 (3)	PM2.5 (1)	PM _{2.5} Speciation (7)	PM _{2.5} Speciation (7)	Temp/RH (1)	Wind (1)
Parameter code	88101	88101	Multiple	Multiple	62101, 62201	61103, 61104
Basic monitoring objective	NAAQS Comparison	NAAQS Comparison	Research	Research		
Site type(s)	Population Exposure	Population Exposure	Population Exposure	Population Exposure	Population Exposure	Population Exposure
Monitor type	SLAMS	SLAMS	SLAMS	SLAMS	SLAMS	SLAMS
Network affiliation(s)	NCore	NCore	CSN STN, NCore	CSN STN, NCore	NCore, PAMS	NCore, PAMS
Collocation designation	Primary	QA Collocated				
Instrument manufacturer and model	Met One BAM 1020	Thermo Partisol 2000i	Met One SuperSASS	URG 3000N	Vaisala HMP 155 Probe	RM Young 5305 Anemometer
Method code	170	143	Various	Various	040	065
FRM/FEM/ARM/other	FEM	FRM				
Collecting agency	ADEQ	ADEQ	ADEQ	ADEQ	ADEQ	ADEQ
Analytical lab (weight, toxics, other)		IML	RTI	RTI		
Reporting agency	ADEQ	ADEQ	RTI	RTI	ADEQ	ADEQ
Spatial scale (micro, neighborhood)	Neighborhood	Neighborhood	Neighborhood	Neighborhood	Neighborhood	Neighborhood
Monitoring start date (MM/DD/YYYY)	1/1/2011	1/6/1999	02/21/2000	02/21/2000	7/1/1993	7/1/1993
Current sampling frequency (1:3, continuous)	Continuous	1:3	1:3	1:3	Continuous	Continuous
Calculated sampling frequency (1:3 / 1:1)	1:3	1:3				
Sampling season (MM/DD-MM/DD)	01/01-12/31	01/01-12/31	01/01-12/31	01/01-12/31	01/01-12/31	01/01-12/31
Probe height (meters)	5	4.7	4.7	4.9	2	11.5
Distance from supporting structure (meters)	2.5	2	2	2	1	
Distance from obstructions on roof (meters)					2	
Distance from obstructions not on roof (meters)	15	20	20	15	20	
Distance from trees (meters)	15	20	20	15	20	20
Obstruction height above probe (meters)	5	6	6	5	1	
Tree height above probe (meters)	5	6	6	5	8	
Distance to furnace or incinerator flue (meters)						
Distance between collocated monitors (meters)	3.8	3.8				
Distance to closest monitor (meters)	1.0	2.0				
Unrestricted airflow (degrees)	360	360	360	360	150	360
Restricted airflow (degrees)					140-350	
Prevailing wind direction (degrees)						
Probe material for reactive gases						
Residence time for reactive gases (seconds)						
Changes within the next 18 months? (Y/N)	N	N	Ν	N	N	N
Comparison against the annual PM2.5? (Y/N)	Y	Y				
Frequency of flow rate verification manual PM and Pb samplers		Monthly	Monthly	Monthly		
Frequency of flow rate verification automated PM analyzers	Monthly					
Frequency of one-point QC check gaseous instruments						
Last annual PE audit for gaseous parameters						
Last two semi-annual flow rate audits PM and Pb	5/19/2016, 11/29/2016	5/25/2016, 11/29/2016	5/26/2016, 12/1/2016	5/26/2016, 12/1/2016		

		NAAQS - PAN	ЛS			
Local site name	JLG Supersite	JLG Supersite	JLG Supersite	JLG Supersite	JLG Supersite	JLG Supersite
Pollutant (POC)	CO (1)	NO2 (1)	O3 (1)	Carbonyl (30,31)	Carbonyl (32)	VOC (6)
Parameter code	42101	42602	44201	Multiple	Multiple	Multiple
Basic monitoring objective	NAAQS Comparison	NAAQS Comparison	NAAQS Comparison	Research	Research	Research
Site type(s)	Highest Concentration	Highest Concentration	Max O3 Concentration	Max Precursor Impact	QA Collocated	Max Precursor Impact
Monitor type	SLAMS	SLAMS	SLAMS	SLAMS	SLAMS	SLAMS
Network affiliation(s)	NCore, PAMS	NCore	NCore, PAMS	PAMS	PAMS	PAMS, NATTS
Collocation designation		Primary				
Instrument manufacturer and model	Ecotech EC9830T	Ecotech EC9841B	Teledyne API 400	ATEC 8000	ATEC 8000	ATEC 2200
Method code	588	090	087	202	202	126
FRM/FEM/ARM/other	FEM	FRM	FEM			
Collecting agency	ADEQ	ADEQ	ADEQ	ADEQ	ADEQ	ADEQ
Analytical lab (weight, toxics, other)				ERG	ERG	ERG
Reporting agency	ADEQ	ADEQ	ADEQ	ERG	ERG	ERG
Spatial scale (micro, neighborhood)	Neighborhood	Neighborhood	Neighborhood	Neighborhood	Neighborhood	Neighborhood
Monitoring start date (MM/DD/YYYY)	01/01/1999	01/01/1999	07/01/1993	05/15/1999	05/15/1999	05/15/1999
Current sampling frequency (1:3, continuous)	Continuous	Continuous	Continuous	1:6	1:6	1:6
Calculated sampling frequency (1:3 / 1:1)						
Sampling season (MM/DD-MM/DD)	01/01-12/31	01/01-12/31	01/01-12/31	06/01-08/31	06/01-08/31	06/01-08/31
Probe height (meters)	4.1	4.1	4.1	4.7	4.7	4.7
Distance from supporting structure (meters)	1.2	1.2	1.2	2	2	2
Distance from obstructions on roof (meters)						
Distance from obstructions not on roof (meters)	20	20	20	20	20	20
Distance from trees (meters)	20	20	20	20	20	20
Obstruction height above probe (meters)	6	6	6	6	6	6
Tree height above probe (meters)	6	6	6	6	6	6
Distance to furnace or incinerator flue (meters)						
Distance between collocated monitors (meters)						
Distance to closest monitor (meters)						
Unrestricted airflow (degrees)	360	360	360	360	360	360
Restricted airflow (degrees)						
Prevailing wind direction (degrees)						
Probe material for reactive gases	Glass, Tetion	Glass, Tetion	Glass, Tetion	Stainless Steel	Stainless Steel	Stainless Steel
Residence time for reactive gases (seconds)	1.73	1.94	1.94	2.10	2.10	15.44
Changes within the next 18 months? (Y/N)	N	N	N	N	N	N
Comparison against the annual PM2.5? (Y/N)						
samplers						
Frequency of flow rate verification automated PM analyzers						
Frequency of one-point QC check gaseous instruments	Bi-Weekly	Bi-Weekly	Bi-Weekly			
Last annual PE audit for gaseous parameters	11/29/2016	12/01/2016	11/29/2016			
Last two semi-annual flow rate audits PM and Pb						

	NAAQS -	- PAMS continued			
Local site name	JLG Supersite	JLG Supersite	JLG Supersite	JLG Supersite	JLG Supersite
		Tomm (DLL (1)	Wind (1)	Horizontal Solar	Ultraviolet Solar
Pollutant (POC)	VUC (7)	Temp/RH (1)	wind (1)	Raditation (1)	Radiation (1)
Parameter code	Multiple	62101, 62201	61103, 61104	63301	63302, 63304
Basic monitoring objective	Research			Research	Research
Site type(s)	QA Collocated	Population Exposure	Population Exposure	Population Exposure	Population Exposure
Monitor type	SLAMS	SLAMS	SLAMS		
Network affiliation(s)	PAMS, NATTS	NCore, PAMS	NCore, PAMS	PAMS	PAMS
Collocation designation					
Instrument manufacturer and model	ATEC 2200	Vaisala HMP 155 Probe	RM Young 5305 Anemometer	Li-Cor 200S2	Epply TUVR UV
Method code	126	040	065	011	011
FRM/FEM/ARM/other					
Collecting agency	ADEQ	ADEQ	ADEQ	ADEQ	ADEQ
Analytical lab (weight, toxics, other)	ERG				
Reporting agency	ERG	ADEQ	ADEQ	ADEQ	ADEQ
Spatial scale (micro, neighborhood)	Neighborhood	Neighborhood	Neighborhood	Neighborhood	Neighborhood
Monitoring start date (MM/DD/YYYY)	05/15/1999	07/01/1993	07/01/1993	04/29/2016	04/29/2016
Current sampling frequency (1:3, continuous)	NATTS not PAMS	Continuous	Continuous	Continuous	Continuous
Calculated sampling frequency (1:3 / 1:1)					
Sampling season (MM/DD-MM/DD)	06/01 - 08/31	01/01-12/31	01/01-12/31	01/01-12/31	01/01-12/31
Probe height (meters)	4.7	2	11.5	5	5
Distance from supporting structure (meters)	2	1			
Distance from obstructions on roof (meters)		2			
Distance from obstructions not on roof (meters)	20	20			
Distance from trees (meters)	20	20	20	10	10
Obstruction height above probe (meters)	6	1			
Tree height above probe (meters)	6	8			
Distance to furnace or incinerator flue (meters)					
Distance between collocated monitors (meters)					
Distance to closest monitor (meters)					
Unrestricted airflow (degrees)	360	150	360	360	360
Restricted airflow (degrees)		140-350			
Prevailing wind direction (degrees)					
Probe material for reactive gases	Stainless Steel				
Residence time for reactive gases (seconds)	15.44				
Changes within the next 18 months? (Y/N)	Ν	Ν	Ν	Ν	Ν
Comparison against the annual PM2.5? (Y/N)					
Frequency of flow rate verification manual PM and Pb samplers					
Frequency of flow rate verification automated PM analyzers					
Frequency of one-point QC check gaseous instruments					
Last annual PE audit for gaseous parameters					
Last two semi-annual flow rate audits PM and Pb					

Air Toxics -NATTS/UATMP							
Local site name	JLG Supersite	JLG Supersite	JLG Supersite	JLG Supersite	JLG Supersite	JLG Supersite	South Phoenix
Pollutant (POC)	Carbonyl (6)	Carbonyl (7)	VOC (6)	VOC (7)	HAP/SVOC/PAH (6)	PM ₁₀ metals speciation (1)	VOC (6)
Parameter code	Multiple	Multiple	Multiple	Multiple	Multiple	Multiple	Multiple
Basic monitoring objective	Research	Research	Research	Research	Research	Research	Research
Site type(s)	Population Exposure	QA Collocated	Population Exposure	QA Collocated	Population Exposure	Population Exposure	Population Exposure
Monitor type	SLAMS	SLAMS	SLAMS	SLAMS	SLAMS	SLAMS	SLAMS
Network affiliation(s)	NATTS	NATTS	PAMS, NATTS	PAMS, NATTS	NATTS	NATTS	UATMP
Collocation designation							
Instrument manufacturer and model	ATEC 8000	ATEC 8000	ATEC 2200	ATEC 2200	Tisch PUF+	Thermo Partisol 2000	ATEC 8001
Method code	202	202	101	101	118	202	101
FRM/FEM/ARM/other							
Collecting agency	ADEQ	ADEQ	ADEQ	ADEQ	ADEQ	ADEQ	ADEQ
Analytical lab (weight, toxics, other)	ERG	ERG	ERG	ERG	ERG	ERG	ERG
Reporting agency	ERG	ERG	ERG	ERG	ERG	ERG	ERG
Spatial scale (micro, neighborhood)	Neighborhood	Neighborhood	Neighborhood	Neighborhood	Neighborhood	Neighborhood	Neighborhood
Monitoring start date (MM/DD/YYYY)	05/15/1999	05/15/1999	06/06/2001	06/06/2001	07/08/2007	01/01/2005	8/5/2001
Current sampling frequency (1:3, continuous)	1:6	Every other month	1:6	Every other month	1:6	1:6	1:12
Calculated sampling frequency (1:3 / 1:1)							
Sampling season (MM/DD-MM/DD)	01/01-12/31	01/01-12/31	01/01-12/31	01/01-12/31	01/01-12/31	01/01-12/31	01/01-12/31
Probe height (meters)	4.7	4.7	4.7	4.7	4.1	4.7	4.6
Distance from supporting structure (meters)	2	2	2	2	1.2	2	1.6
Distance from obstructions on roof (meters)							
Distance from obstructions not on roof (meters)	20	20	20	20	20	20	8.0
Distance from trees (meters)	20	20	20	20	20	20	4.8
Obstruction height above probe (meters)	6	6	6	6	6	6	8.0
Tree height above probe (meters)	6	6	6	6	6	6	8.0
Distance to furnace or incinerator flue (meters)							
Distance between collocated monitors (meters)							
Distance to closest monitor (meters)					2.0		
Unrestricted airflow (degrees)	360	360	360	360	360	360	335
Restricted airflow (degrees)							240-265
Prevailing wind direction (degrees)							250-260
Probe material for reactive gases	Stainless Steel	Stainless Steel	Stainless Steel	Stainless Steel			Stainless Steel
Residence time for reactive gases (seconds)	2.1	2.1	15.44	15.44			16.35
Changes within the next 18 months? (Y/N)	N	Ν	N	Ν	Ν	N	Ν
Comparison against the annual PM2.5? (Y/N)							
Frequency of flow rate verification manual PM and Pb samplers						Monthly	
Frequency of flow rate verification automated PM analyzers							
Frequency of one-point QC check gaseous instruments							
Last annual PE audit for gaseous parameters							
Last two semi-annual flow rate audits PM and Pb					12/21/2016	5/25/2016, 11/29/2016	

			Urban Haz	9				
		Banner Mesa	Estrella Mountain	North Mountain	North Mountain		Transmissometer	Transmissomator
Local site name	ADEQ Building	Medical Center	Community College	Summit	Summit	JEG Supersite	Pessiver	Transmitter
Pollutant (POC)	Visibility (1)	Visibility (1)	Visibility (1)	Visibility (1)	Visibility (2)	Bscat/PM _{2.5} (1)	B _{ext} (1)	B _{ext} (1)
Parameter code								
Basic monitoring objective	Public Information	Public Information	Public Information					
Site type(s)	Population Exposure	Population Exposure	Population Exposure					
Monitor type								
Network affiliation(s)								
Collocation designation								
Instrument manufacturer and model	CANON EOS Rebel T2i	Optec NGN 2 Nephelometer	Optec LVP-2 Transmissometer Receiver	Optec LVP-2 Transmissometer Transmitter				
Method code								
FRM/FEM/ARM/other								
Collecting agency	ADEQ	ADEQ	ADEQ	ADEQ	ADEQ	ADEQ	ADEQ	ADEQ
Analytical lab (weight, toxics, other)								
Reporting agency	ADEQ	ADEQ	ADEQ	ADEQ	ADEQ	ADEQ	ADEQ	ADEQ
Spatial scale (micro, neighborhood)	Urban	Urban	Urban	Urban	Urban	Urban	Urban	Urban
Monitoring start date (MM/DD/YYYY)	07/01/2002	01/01/1993	01/01/1993	01/01/1993	01/01/1993	04/29/2016	12/01/1992	12/01/1992
Current sampling frequency (1:3, continuous)	Every 5 min.	Continuous	Continuous					
Calculated sampling frequency (1:3 / 1:1)								
Sampling season (MM/DD-MM/DD)	01/01-12/31	01/01-12/31	01/01-12/31	01/01-12/31	01/01-12/31	01/01-12/31	01/01-12/31	01/01-12/31
Probe height (meters)						5	30	27
Distance from supporting structure (meters)								
Distance from obstructions on roof (meters)							5	
Distance from obstructions not on roof (meters)								
Distance from trees (meters)						10		
Obstruction height above probe (meters)								
Tree height above probe (meters)								
Distance to furnace or incinerator flue (meters)								
Distance between collocated monitors (meters)								
Distance to closest monitor (meters)								
Unrestricted airflow (degrees)						300	240	300
Restricted airnow (degrees)								
Prevailing wind direction (degrees)								
Probe material for reactive gases								
Changes within the payt 18 menths2 (V(A))	 N	 N	 N	N	N	 N	 N	 N
Comparison against the appual DN2 52 (V/N)	IN	IN	in	IN	IN .	IN	IN	IN
Erequency of flow rate verification manual PM and Ph								
samplers								
Frequency of flow rate verification automated PM analyzers								
Frequency of one-point QC check gaseous instruments								
Last annual PE audit for gaseous parameters								
Last two semi-annual flow rate audits PM and Pb								

Visibility - ADEQ IMPROVE Protocol						
Local site name	JLG Supersite	JLG Supersite	Meadview	Nogales Post Office	Organ Pipe National Monument	Saguaro National Park West
Pollutant (POC)	IMPROVE	IMPROVE	IMPROVE	IMPROVE	IMPROVE	IMPROVE
Parameter code	Multiple	Multiple	Multiple	Multiple	Multiple	Multiple
Basic monitoring objective	Research	Research	Research	Research	Research	Research
Site type(s)	Other	Other	Background	Background	Other	Other
Monitor type						
Network affiliation(s)	IMPROVE	IMPROVE	IMPROVE	IMPROVE	IMPROVE	IMPROVE
Collocation designation						
Instrument manufacturer and model						
Method code	Various	Various	Various	Various	Various	Various
FRM/FEM/ARM/other	Other	Other	Other	Other	Other	Other
Collecting agency	ADEQ	ADEQ	NFS	ADEQ	NPS	NPS
Analytical lab (weight, toxics, other)						
Reporting agency	UC Davis	UC Davis	UC Davis	UC Davis	UC Davis	UC Davis
Spatial scale (micro, neighborhood)	Neighborhood	Neighborhood	Regional	Regional	Regional	Regional
Monitoring start date (MM/DD/YYYY)	04/25/2001	04/25/2001	09/04/1991	10/24/2015	01/15/2003	04/19/2001
Current sampling frequency (1:3, continuous)	1:3	1:3	1:3	1:3	1:3	1:3
Calculated sampling frequency (1:3, 1:1)						
Sampling season (MM/DD-MM/DD)	01/01-12/31	01/01-12/31	01/01-12/31	01/01-12/31	01/01-12/31	01/01-12/31
Probe height (meters)	5.5	5.5	4.5	8.3	3.4	3.3
Distance from supporting structure (meters)					1.4	1
Distance from obstructions on roof (meters)				16.0		
Distance from obstructions not on roof (meters)	15	15				
Distance from trees (meters)	15	15			13	15
Obstruction height above probe (meters)	5	5		1.7		
Tree height above probe (meters)	5	5				2
Distance to furnace or incinerator flue (meters)						
Distance between collocated monitors (meters)	4	4				
Distance to closest monitor (meters)						
Unrestricted airflow (degrees)	360	360	360	360	360	360
Restricted airflow (degrees)						
Prevailing wind direction (degrees)						
Probe material for reactive gases						
Residence time for reactive gases (seconds)						
Changes within the next 18 months? (Y/N)	N	N	Ν	N	N	Ν
Comparison against the annual PM2.5? (Y/N)	Ν	N	Ν	Ν	N	Ν
Frequency of flow rate verification manual PM and Pb samplers						
Frequency of flow rate verification automated PM analyzers						
Frequency of one-point QC check gaseous instruments						
Last annual PE audit for gaseous parameters						
Last two semi-annual flow rate audits PM and Pb						

Definitions for Appendix C – Current Monitors by Program or Network

Metadata Type	Description
Local site name	Official name for the site as written in ADEQ's AirVision Database
Pollutant (POC)	The pollutant(s) or parameter(s) being collected or measured at the site and
	the POC is the Primary Occurrence Code for the instrument, as it is in ADEQ's
	AirVision Database
Parameter code	The AQS code representing a specific pollutant being measured or monitored
Basic monitoring objective	Purpose of monitoring for the parameter at the site (Public Information,
	NAAQS Comparison, or Research)
Site type(s)	A brief description of the intended purpose of the monitor's measurements
	(Extreme Downwind, Highest Concentration, Max Ozone Concentration, Max
	Precursor Impact, Population Exposure, Source Oriented, Upwind
	Background, General / Background, Regional Transport, Welfare-Related
	Impacts, Quality Assurance, or Other)
Monitor type(s)	The associated monitoring type for the monitor (SLAMS, SPM, Industrial, Non-
	EPA Federal, Tribal, EPA, Other)
Network affiliation(s)	The associated network affiliations for the monitor (Border Grant, CASTNET,
	CSN STN, CSN Supplemental, IMPROVE, NATTS, NCore, Near Road, PAMS,
	Proposed NCore, PSD, School Air Toxics, Unofficial PAMS, Voluntary School Air
	Toxics)
Collocation designation	For all $PM_{2.5}$, PM_{10} , $PM_{10-2.5}$, Pb, and NO_2 monitors, the associated collocation
	designation (Primary, QA Collocated, or Other)
Instrument manufacturer	The specific make and model of the monitor or instrument used in the
and model	network
Method code	The AQS code representing the particular method for collecting samples of
	the specified instrument
FRM/FEM/ARM/other	Denotes if the instrument is a Federal Reference Method, Federal Equivalency
	Method, Approved Regional Method (for continuous PM _{2.5} only), or other
	according to the Federal Registry
Collecting agency	Name of agency collecting data
Analytical Lab (weight,	Name of laboratory performing sample analysis
Loxics, other)	Name of again, reporting the data
Reporting Agency	Name of agency reporting the data
spatial scale (micro,	Area represented by an air quality monitor (microscale: $0 - 100$ m, middle
neighbornood)	scale. $0.1 - 0.5$ km, neighborhood. $0.5 - 4$ km, urban. $4 - 50$ km, regional. $50 - 500$ km, or pational/global)
Monitoring start data by	- Soo kin, of hational/global)
nollutant(MM/DD/VVV)	when the specific POC was started
Current sampling frequency	Frequency the instrument collects samples or measurements (e.g. hourly
(1.3 continuous)	daily 1.3 1.6 etc.)
Calculated sampling	Theoretical frequency for particular matter instrument based on Ratio to
frequency (1:3 / 1:1)	Standard Figure in 40 CFR Part 58.12 (e.g. hourly, daily, 1:3, 1:6)
Sampling season (MM/DD-	Period that the instrument collects samples or measurements throughout a
MM/DD)	given year (expressed as a range of months)
Probe height (meters)	Distance the probe is from the ground in meters (O_3 and SO_2 probes must be
	between 2 and 15 meters; others pollutants must be between 2 and 7
	meters; meteorology typically 2 or 10 meters)
Distance from supporting	For rooftop probe(s) only. The separation distance is in reference to walls.
structure (meters)	parapets, or penthouses located on roof

Distance from obstructions	Distance the instrument inlet is from the closest obstruction on the roof in	
on roof (meters)	meters (probes and inlets must be at least 1 meter from obstructions)	
Distance from obstructions	Distance the instrument inlet is from the closest obstruction not on the roof	
not on roof (meters)	in meters (probes and inlets must be at least 1 meter from obstructions)	
Distance from trees (meters)	Distance the instrument inlet is from the nearest tree in meters (must be a	
	minimum of 10 meters from drip line)	
Obstruction Height above	Height the obstruction is above the inlet (distance from the obstruction to the	
Probe (meters)	inlet must be at least 2x the height that the obstacle protrudes above the	
	inlet). Trees can be considered obstructions depending on density of foliage,	
	therefore the same obstruction requirements apply to trees	
Tree Height above Probe	Height the tree is above the inlet. Trees that are within 10 meters of inlet	
(meters)	may not cause issue if the tree height is at or below the inlet height.	
	Furthermore, as trees grow they may become obstructions, therefore it is	
	important to capture the height of trees	
Distance to furnace or	Distance the instrument inlet is from the nearest furnace or incinerator flue in	
incinerator flue (meters)	meters (for Pb and SO ₂ ; designed to avoid undue influences from minor	
	sources)	
Distance between collocated	Distance between the centers of collocated instruments in meters (must be	
monitors (meters)	between 1 and 4 meters)	
Distance to closest monitor	Distance to closest monitor for all PM and Hi-vol instruments	
Unrestricted airflow	Angular measure (in degrees) of the area around an instrument that is free	
(degrees)	from obstructions (minimum of 180°)	
Restricted airflow (degrees)	Direction the airflow is restricted in degrees (i.e. 90° = E) (must not be in the	
	direction of the prevailing winds)	
Prevailing wind direction	Direction the wind predominately comes from in degrees during the season	
(degrees)	of greatest pollutant concentration. Used to determine if restricted airflow is	
	in the direction of the prevailing wind	
Probe material for reactive	Type of probe material (SO ₂ , NO ₂ , O ₃ must have FEP Teflon or borosilicate	
gases	glass; PAMS and VOCs must be borosilicate glass or stainless steel)	
Residence time for reactive	Number of seconds it takes a sample of air to travel from the inlet to the	
gases (seconds)	instrument (reactive gases must be less than 20 seconds)	
Changes within the next 18	Are there any planned changes to the monitor in the next 18 months? (Y or N)	
months? (Y/N)		
Comparison against the	Are the data being compared against the annual $PM_{2.5}$ NAAQS standards? (Y	
annual PM2.5? (Y/N)	or N)	
Frequency of flow rate	Frequency at which flow rate verifications occur for manual particulate	
verification manual PM and	matter and lead instruments (daily, weekly, bi-weekly, monthly)	
Pb samplers		
Frequency of flow rate	Frequency at which flow rate verifications occur for automated particulate	
verification automated PM	matter instrument (daily, weekly, bi-weekly, monthly)	
analyzers		
Frequency of one-point QC	Frequency at which zero/span/precision checks occur for gaseous	
check gaseous instruments	instruments (daily, weekly, bi-weekly, monthly)	
Last Annual PE audit for	Date the last Performance Evaluation audit was performed on the gaseous	
gaseous parameters	instrument. (SO ₂ , NO ₂ , O ₃ , CO, etc.) (MM/DD/YYYY)	
Last two semi-annual flow	Dates of the last two audits on the particulate matter and lead instruments	
rate audits PM and Pb	flow rate (MM/DD/YYYY, MM/DD/YYYY)	
SPM Meets requirements in	For SPM monitors only. States whether requirements in 40 CFR Part 58	
Appendices A & E	Appendices A & E are being met.	

Appendix D – Site Information Data Tables

Note: Some measurements are rounded and/or estimations

This appendix contains detailed information about sites that are fully or partially operated by ADEQ. All sites that were operational between January 1, 2016 and July 1, 2017 are included in this appendix. This appendix also contains general information about the air quality monitors at each site. See Appendix C for more detailed information on specific monitors and networks.

AQS ID	SITE NAME	Appendix D PAGE #
	ADEQ Building	3
04-019-0001	Ajo	4
04-012-8000	Alamo Lake	5
	Banner Mesa Medical Center	6
04-015-1003	Bullhead City	7
04-003-1005	Douglas Red Cross	8
	Estrella Mountain Community College	9
04-005-1008	Flagstaff Middle School	10
04-007-1002	Globe Highway	11
04-007-1001	Hayden Old Jail	12
04-025-8104	Hillcrest	13
04-013-9997	JLG Supersite	14
04-015-9000	Meadview	15
04-007-8000	Miami Golf Course	16
04-007-0011	Miami Jones Ranch	17
04-007-0009	Miami Ridgeline	18
04-007-0012	Miami Townsite	19
04-023-0004	Nogales Post Office	20
	North Mountain Summit	21
04-019-0005	Organ Pipe National Monument	22
04-003-0011	Paul Spur Chemical Lime Plant	23
04-007-0008	Payson Well Site	24
	Phoenix Transmissometer Receiver	25
	Phoenix Transmissometer Transmitter	26
04-025-8033	Prescott College AQD	27
04-025-8034	Prescott Pioneer Park	28
04-021-8001	Queen Valley	29
04-019-0020	Rillito	30
04-019-9000	Saguaro National Park West	31
08-026-8012	San Luis Rio Colorado Well 10	32
	Sedona Fire Station AQD	33
04-013-4003	South Phoenix	34
04-007-0010	Tonto National Monument	35
04-027-8011	Yuma Supersite	36

Definitions for Appendix D – Site Information Data Tables

Local Site Name	Official name for the site as written in ADEQ's AirVision Database
Site Narrative	Brief summary of the site location and surroundings

Site Information

AQS ID	Unique identifier from EPA's Air Quality System database	
Street Address	Physical Street Address or cross streets of the monitoring site	
County	Arizona county the monitor is located within	
CBSA	Core Based Statistical Area that the site is located within. A CBSA is a	
	U.S. geographic area defined by the Office of Management and	
	Budget based around an urban center of at least 10,000 people and	
	adjacent areas that are socioeconomically tied to the urban center by	
	commuting	
Surrounding Area	Description of area around monitoring site (residential, commercial,	
	industrial, agricultural, desert, forest, mobile, blighted area, and	
	military reservation)	
Roadway Info	Distance and direction from the edge of the nearest roadway to the	
	instrument in meters	
Nearest Assessed	ADOT supplied traffic count for the nearest major roadway. Includes	
Roadway Info	distance and direction of roadway if differs from the nearest roadway	
Groundcover	Type of surface at the base of the instrument (e.g. sand, cement,	
	rooftop, metal, asphalt, etc.)	
Latitude	The North/South geographic location of a site in decimal degrees	
Longitude	The East/West geographic location of a site in decimal degrees	
Elevation	The vertical distance above sea level of the site in meters	
Site Established Date	Date site was first used as a monitoring site	

Parameters Monitored

Bulleted list of all parameters monitored at the site	

Site Photos

Aerial View	Image of site and the surrounding area (using Google Earth)
Site View	Most current photo of monitors at the site
ADEQ Building

The high-resolution digital camera sits on the northeast corner of ADEQ's main campus building in Phoenix and points toward Camelback Mountain, which lies 13.4 km to the northeast. The pictures of the local view are updated every 15 minutes and can be viewed on the internet at http://phoenixvis.net/index.aspx. The area between the site and Camelback Mountain is primarily residential with some commercial areas. The camera is part of the Visibility network.

Site Information					
AQS ID		None			
Street Address	1110 W. Washington St. Phoer	nix, AZ 85007			
County	Maricopa	Maricopa Groundcover Rooftop			
CBSA	Phoenix-Mesa-Scottsdale Latitude 33.4483				
Surrounding Area	Residential/Commercial Longitude -112.0878				
Adjacent Roadway	84 m – S – Washington St.	Elevation 220 m			
Info	AADT Count – 10,852	Elevation 529 m			
Nearest Assessed	Samo Site Established Data 07/01/2002				
Roadway Info	Same Site Established Date 07/01/2002				

Parameters Monitored

• Visibility (Camelback Mountain View)

The site is located at the Pima County Maintenance Yard, with the wind system mounted to the north of the instruments. The closest structure to the site is an east-west oriented ADOT office/trailer to the southeast. To the east lies the stabilized tailings pile associated with the Ajo mining operation that closed in 1985. The parameters measured are part of the SLAMS and meteorological networks.

Site Information			
AQS ID	0	4-019-0001	
Street Address	1211 Well Rd. Ajo, AZ 85321		
County	Pima	Groundcover	Gravel
CBSA	Tucson	Latitude	32.3820
Surrounding Area	Residential/Commercial	Longitude	-112.8575
Adjacent Roadway	109 m – E – Ajo Well Rd. 1	Elovation	515 m
Info	AADT Count – 500	Lievation	212 111
Nearest Assessed	Samo	Sita Established Date	07/01/1060
Roadway Info	Same	Sile Established Date	07/01/1909

- PM₁₀
- Wind
- Temp/RH

Alamo Lake

The site was established to replace the Hillside site and is located in Alamo Lake State Park, which is approximately 49 km north of Wenden, AZ. The surrounding area consists of mostly desert, with a lake about 1 km to the northeast. A small water pump/storage tank (1,000 gallon) lies 7 meters to the east of the shelter. The parameters measured are part of the SLAMS, SPM, and meteorological networks.

Site Information			
AQS ID	0	4-012-8000	
Street Address	Alamo Lake State Park		
County	La Paz	Groundcover	Gravel
CBSA	None	Latitude	34.2439
Surrounding Area	Desert Longitude -113.558		-113.5586
Adjacent Roadway Info	80 m – NE – Alamo Rd. AADT Count – 230	Elevation	403 m
Nearest Assessed Roadway Info	Same	Site Established Date	05/20/2005

Parameters Monitored		
• CO	• PM _{2.5}	
• O ₃	Wind	
• PM ₁₀	• Temp/RH	

Banner Mesa Medical Center

The high-resolution digital camera sits on the east side of the Banner Mesa Medical Center and points to the Superstition Mountains, which lie 32 km east of the site. The pictures of the local views are updated every 15 minutes and can be viewed on the internet at <u>http://phoenixvis.net/index.aspx</u>. The area between the site and the mountains is primarily residential with some commercial areas. The camera is part of the Visibility network.

Site Information			
AQS ID		None	
Street Address	525 W. Brown Rd. Mesa, AZ 852	01	
County	Maricopa	Groundcover	Rooftop
CBSA	Phoenix-Mesa-Scottsdale	Latitude	33.4335
Surrounding Area	Residential	Longitude	-111.8428
Adjacent Roadway	170 m – N – W Brown St.	Flouation	454 m
Info	AADT Count – Negligible Count	Elevation	454 111
Nearest Assessed	260m – E – Country Club Dr.	Site Established	01/01/1002
Roadway Info	AADT Count – 32,760	Date	01/01/1995

	Parameters Monitors
•	Visibility (Superstition Mountain View)

Bullhead City

The site is located on the rooftop of the U.S. Post Office Building, northeast of SR 95 and 7th Street. The surrounding area is commercial and residential to the west and south. The Colorado River lies to the west less than 300 meters. To the northeast/east, about 675 meters, is the Bullhead City Airport. The parameter monitored is part of the SLAMS network.

Site Information					
AQS ID	0-	04-015-1003			
Street Address	990 Highway 95 Bullhead City,	AZ 86429			
County	Mohave	Mohave Groundcover Rooftop			
CBSA	Lake Havasu City-Kingman Latitude 35.153		35.1538		
Surrounding Area	Commercial/Residential Longitude -114.56		-114.5668		
Adjacent Roadway	40 m – W – SR 95	Flovation	167 m		
Info	AADT Count – 25,500	Elevation 107 III			
Nearest Assessed	Same	Site Established Date	11/01/1997		
Roadway Info	Jane	Same Site Established Date 11/01/1997			

Parameters Monitors

• PM₁₀

Douglas Red Cross

The site is located at the Red Cross building on the south side of 15th Street. The surrounding area is a mix of residential and commercial land use. The site is about 1,685 meters from the Arizona/Mexico border. The IMPROVE protocol monitor was relocated to Nogales in 2015. The parameters monitored are part of the SLAMS and meteorological networks.

Site Information			
AQS ID	0	04-003-1005	
Street Address	1445 E. 15 th St. Douglas, AZ 85	607	
County	Cochise Groundcover Dirt/Gras		
CBSA	Sierra Vista-Douglas	Latitude	31.3492
Surrounding Area	Commercial/Residential	Longitude	-109.5397
Adjacent Roadway	30 m – N – 14 th St.	Elevation	1 224 m
Info	AADT Count – 2,474	Elevation	1,224 111
Nearest Assessed	Same	Site Established Date	09/01/1998
Roadway Info	Jame		05/01/1550

- PM₁₀
- PM_{2.5}
- Temp/RH
- Wind

Estrella Mountain Community College

The high-resolution digital camera points to the White Tanks mountain range which is 20 km to the northeast. The pictures of the local views are updated every 15 minutes and can be viewed on the internet at <u>http://phoenixvis.net/index.aspx</u>. The area between the site and the mountain ranges is a mixture of residential, commercial, and agricultural uses. The camera is part of the Visibility network.

Site Information				
AQS ID		None		
Street Address	3000 N. Dysart Rd. Avondale, A	AZ 85323		
County	Maricopa	Maricopa Groundcover Rooftop		
CBSA	Phoenix-Mesa-Scottsdale Latitude 33.4836			
Surrounding Area	Residential Longitude -112.3503			
Adjacent Roadway Info	155 m – S – Thomas Rd. AADT Count – 9,798 Elevation 305 m			
Nearest Assessed Roadway Info	Same Site Established Date 01/01/1993			

- Parameters Monitors
- Visibility (White Tanks View)

Flagstaff Middle School

The site is west of Bonito Street on the west side of the rooftop on the Flagstaff Middle School building. The surrounding area is generally residential, with Thorpe Park located about 800 meters to the west, and US Route 180 approximately 415 meters to the east. The parameters monitored are part of the SLAMS and SPM networks.

Site Information					
AQS ID	04	4-005-1008			
Street Address	755 N. Bonito St. Flagstaff, AZ	86001			
County	Coconino	Coconino Groundcover Rooftop			
CBSA	Flagstaff	Latitude	35.2061		
Surrounding Area	Residential Longitude -111.652		-111.6528		
Adjacent Roadway Info	80 m - E - N. Bonito St.Elevation2,126AADT Count - 3,200AADT Count - 3,200AADT Count - 3,200AADT Count - 3,200		2,126 m		
Nearest Assessed Roadway Info	Same Site Established Date 10/29/1996				

Parameters Monitors

• O₃

• PM_{2.5} (EBAM)

Globe Highway

This site is the location of the collocated TSP Pb monitors in Hayden, AZ. ASARCO mine also maintains an SO₂ analyzer, Pb sampler, PM sampler, wind monitor, rain gage, and temp/RH at the site. The site is located on the southwest end of a small canyon and may be influenced by both broad and local meteorological conditions. Approximately 10 m to the west lies State Route 77. The site is located approximately 1 km to the east/southeast of the ASARCO smelting facility and 300 m to the east of the ASARCO slag pile. A roadway AADT count of 2,700 that is 10 meters from the closest monitor would classify the Pb monitor as a micro or middle scale but the neighborhood scale more accurately represents the siting of the monitor. The roadway is not the predominant source of Pb in the area and therefore does not impact area concentrations. For these reasons, the Pb monitor will still be classified as neighborhood scale. The parameters monitored are part of the SLAMS and meteorological networks.

Site Information			
AQS ID	04	4-007-1002	
Street Address	SR 77 Winkelman, AZ 85292		
County	Gila	Groundcover	Gravel
CBSA	Payson	Latitude	33.002
Surrounding Area	Desert/Residential	Longitude	-110.765
Adjacent Roadway	10 m – W – SR 77	Elovation	602 m
Info	AADT Count – 2,700	Elevation	002 111
Nearest Assessed	Samo	Sita Established Data	01/01/1075
Roadway Info	Same	Sile Established Date	01/01/19/5

Parameters Monitors

- Pb
- Pb-Secondary
- Temp/RH
- Wind

State of Arizona Air Monitoring Network Plan for the Year 2017, Appendix D Page 11

Hayden Old Jail

The site is located in a shelter next to the old Hayden Jail building near the center of town. The instruments were previously located in the jail building and were moved to a shelter next to the jail due to safety and siting concerns. The surrounding area consists mainly of residential and commercial buildings. The site is located approximately 1 km to the west of the ASARCO smelting facility. ASARCO mine also maintains an SO₂ analyzer in the old Hayden Jail building next to the new shelter. The parameters monitored are part of the SLAMS and meteorological networks.

Site Information			
AQS ID	04-00	07-1001	
Street Address	Canyon Dr. & Kennecott Ave. Ha	yden, AZ 85235	
County	Gila Groundcover Shelter		
CBSA	Payson	Latitude	33.0062
Surrounding Area	Residential	Longitude	-110.7864
Adjacent Roadway Info	10 m – E – Canyon Dr. AADT Count – Negligible Count	Elevation	625 m
Nearest Assessed	242m – E – Velasco Ave.	Site Established	01/01/1060
Roadway Info	AADT Count – 1,790	Date	01/01/1909

- SO₂
- PM₁₀
- Temp/RH
- Wind

Hillcrest

The site is located just outside the ASARCO smelter property line. The site is a micro scale specifically located for Pb maximum concentration determination and was chosen in response to elevated readings from an EPA superfund monitor. EPA requested ADEQ to monitor at the Hillcrest location in order to determine the location of maximum Pb concentrations. To the east 10m is the ASARCO smelting operations property with an overhead conveyer belt located 15m to the west. The area to the south and west is residential neighborhood. This site is started as an SPM to determine if this is the location of maximum concentration. Directly to the south is a mine operated Superfund site. The Pb instrument is part of the SPM network.

Site Information			
AQS ID	04-00	07-1003	
Street Address	123 S. Hillcrest Ave. Hayden, AZ	85235	
County	Gila Groundcover Dirt		
CBSA	Payson Latitude 33.003		33.0035
Surrounding Area	Residential Longitude -110.7822		-110.7822
Adjacent Roadway Info	18 m – W – S. Hillcrest Ave. AADT Count – Negligible Count Elevation		643 m
Nearest Assessed	226m – W – Velasco Ave.	Site Established	01/01/2016
Roadway Info	AADT Count – 1,790	Date	01/01/2010

Parameters Monitors

• Pb

JLG Supersite

The site was established to represent air quality in the central core of the Phoenix metropolitan area. The surrounding area is primarily residential neighborhoods, with I-17 approximately 1.6 km to the west. The parameters measured cover multiple networks including SLAMS, NCore, PAMS, NATTS, CSN, meteorology, and IMPROVE. This is ADEQ's main test site for various instruments and networks.

Site Information				
AQS ID	04-	04-013-9997		
Street Address	4530 N. 17 th Ave. Phoenix, AZ 85	5015		
County	Maricopa	Groundcover	Gravel	
CBSA	Phoenix-Mesa-Scottsdale Latitude		33.5038	
Surrounding Area	Residential Longitude		-112.0957	
Adjacent Roadway	10 m – E – 17 th Ave.	Flauration 25/		
Info	AADT Count – Negligible Count	Elevation	554 111	
	158m – S – Campbell Ave.			
Nearest Assessed	AADT Count – 1,557	Site Established	07/01/1002	
Roadway Info	367m – W – N 19 th Ave.	Date	07/01/1993	
	AADT Count – 17,639			

Para	meters Monitors	
• CO	VOC	• PM _{2.5} Filter
 NO₂ / NOx 	 SVOC (PUF) 	• PM _{2.5} Speciation (SASS)
 NOy 	 PM₁₀ metals speciation 	 PM_{2.5} Speciation (URG)
• O ₃	• PM ₁₀	• Temp/RH
 SO₂ 	 PM_{10-2.5} (Coarse) 	Wind
 Carbonyl 	• PM _{2.5} Continuous	IMPROVE
		IMPROVE Secondary

Meadview

The site is located within the Lake Mead National Recreation Area on the north end of Meadview, AZ, where the Grand Canyon meets Lake Mead. The surrounding area is primarily desert. To the southwest 50 km is US 93, which is the closest highway to the site and about 96.5 km to the south is downtown Kingman. This is an IMPROVE protocol site.

Site Information				
AQS ID	04-	04-015-9000		
Street Address	36 Whitmore Dr. Meadview, AZ	86444		
County	Mohave	Mohave Groundcover Gravel/Dese		
CBSA	Lake Havasu City-Kingman Latitude 3		36.0194	
Surrounding Area	Desert/Residential Longitude -114.		-114.0685	
Adjacent Roadway	50 m – NE – Whitmore Dr.	Elevation 007 a		
Info	AADT Count – Negligible Count	nt Elevation 907 m		
Nearest Assessed	50 km – SW – US 93	Site Established	00/04/1001	
Roadway Info	AADT Count – 13,300	Date	09/04/1991	

Parameters Monitors
 IMPROVE

Miami Golf Course

This site is the location of the TSP-Pb and PM₁₀ monitors in Miami, AZ. The site is located near the Cobre Valley Country Club with residential areas to the south and east and the Freeport McMoRan facility approximately 2 km to the west/southwest and tailings ponds less than 1 km to the west. Surrounding trees are below inlet height and have no vegetation. The parameters monitored are part of the SLAMS and meteorological networks.

Site Information			
AQS ID		04-007-8000	
Street Address	SR 188 and US 60 Miami, A	Z 85539	
County	Gila Groundcover Gravel		
CBSA	Payson Latitude 33.41		33.4190
Surrounding Area	Residential Longitude -110.829		-110.8296
Adjacent Roadway Info	220 – SE – SR 188 AADT Count – 3,300 Elevation 1		1000 m
Nearest Assessed Roadway Info	Same	Site Established Date	01/01/1997

- Pb
- PM₁₀
- Temp/RH
- Wind

Miami Jones Ranch

This site is one of three SO_2 sites in the Miami area. Freeport McMoRan Copper and Gold Inc. operate an SO_2 instrument at this site as well. The site is located south of the town of Miami and is over 3 km south/southwest of the smelter. The site located in the desert hills overlooking the town and is off a gravel/dirt road. The SO_2 instrument is part of the SLAMS network.

Site Information			
AQS ID	04-00	07-0011	
Street Address	Cherry Flats Rd. Miami, AZ 8553	9	
County	Gila Groundcover Gravel		
CBSA	Payson Latitude 33.385		33.3853
Surrounding Area	Residential Longitude -110.8673		-110.8673
Adjacent Roadway Info	15m - SE - Cherry Flats Rd.Elevation1,2AADT Count - Negligible Count1,2		1,242 m
Nearest Assessed	1300 m – NW – US 60	Site Established	01/01/1007
Roadway Info	AADT Count – 9,069	Date	01/01/199/

Parameters Monitors

• SO₂

Miami Ridgeline

This is one of three SO₂ sites in the Miami area. The site is located inside on private property off of Linden Road and sits on the side of a north-south oriented ridge, which slopes in a northerly direction toward the town of Miami. The surrounding area is desert. The Freeport McMoRan smelter is 1.6 km to the north of the site. The SO₂ instrument is part of the SLAMS network.

Site Information			
AQS ID	04-	007-0009	
Street Address	4030 Linden St. Miami, AZ 85539	Э	
County	Gila	Groundcover	Dirt
CBSA	Payson Latitude		33.3992
Surrounding Area	Residential Longitude		-110.8589
Adjacent Roadway	40 m – N – Linden St. Elevation 1.6		1 09E m
Info	AADT Count – Negligible Count		1,065 11
	230m – W – Loomis Ave.		
Nearest Assessed	AADT Count – 510	Site Established	01/01/1002
Roadway Info	450m – NW – US 60	Date	01/01/1993
	AADT Count – 11,695		

Parameters Monitors

• SO₂

Miami Townsite

This site is one of three SO_2 sites in the Miami area. Freeport McMoRan Copper and Gold Inc. run a SO_2 instrument at this site as well. This site is located on the western side of Miami, near the center of the town. There is a church and a police station to the west with residential to the north and south. The road is located to the south of the site. The smelter is over 2 km to the northeast of the site. The SO_2 instrument is part of the SLAMS network.

Site Information				
AQS ID		04-007-0012		
Street Address	Sullivan ST & Davis Canyon	Miami, AZ 85539		
County	Gila	Gila Groundcover Gravel		
CBSA	Payson Latitude 33.3		33.3973	
Surrounding Area	Residential Longitude -110.8		-110.8744	
Adjacent Roadway Info	0 16.5m – SE – Sullivan St. AADT Count - 470 Elevation		1,042 m	
Nearest Assessed	113m – SE – US 60	Site Established Date	0/01/1997	
Roadway Info	AADT Count – 9,069	Site Established Date	0,01,1997	

Parameters Monitors

• SO₂

<image>

Nogales Post Office

The site is located on the rooftop of the U.S. Post Office building, which lies approximately 670 meters north from the Arizona/Mexico Border. The surrounding area is a mixture of commercial and residential land use. This site is used to meet the PM_{2.5} collocation requirement. The parameters monitored are part of the SLAMS, IMPROVE, and meteorological networks.

Site Information				
AQS ID	04	04-023-0004		
Street Address	300 N. Morley Ave. Nogales, A	Z 85621		
County	Santa Cruz Groundcover Rooftop			
CBSA	Nogales Latitude 31.337		31.3372	
Surrounding Area	Residential/Commercial Longitude -110.93		-110.9367	
Adjacent Roadway	37.6 m – NW – Morley Ave.			
Info	AADT Count – 7,199		1,170111	
Nearest Assessed	Sama Site Established Data 01/01/109		01/01/1090	
Roadway Info	Same	Sile Established Date	01/01/1980	

Parameters Monitors		
 PM₁₀ (Continuous) 	Temp/RH	
• PM _{2.5} (Continuous)	Wind	
• PM _{2.5} (Filter)	IMPROVE	

North Mountain Summit

The site is located on a mountaintop in the North Mountain Recreation Area of Phoenix. One high-resolution digital camera faces South Mountain, which lies 27 km to the south. Another camera faces the Estrella Mountains, which lie 35 km to the southwest. The pictures of the local views are updated every 15 minutes and can be viewed on the internet at http://phoenixvis.net/index.aspx. The surrounding area is desert recreation area to the north and west and residential with some commercial activity to the south and east. The cameras are part of the Visibility network.

Site Information				
AQS ID	None			
Street Address	West side of 7 th St. in North M	West side of 7 th St. in North Mountain Recreation Area Phoenix, AZ		
County	Maricopa Groundcover Dirt/Desert			
CBSA	Phoenix-Mesa-Scottsdale Latitude 33.5		33.5855	
Surrounding Area	Residential/Desert Longitude -112.07		-112.0722	
Adjacent Roadway	850 m – E – 7 th St.	Flovation	625 m	
Info	AADT Count – 28,210	Elevation 625 m		
Nearest Assessed	Samo	Site Established Date	01/01/1002	
Roadway Info	Same	SILE ESTADIISHED DALE	01/01/1993	

- Visibility (South Mountain View)
- Visibility (Estrella Mountain View)

Organ Pipe National Monument

The site is owned by the NPS, who operates the monitor at the site. The site is located 1 km south/southwest of the national monument visitor center, which is about 35.4 km south of Why, AZ. The site is about seven meters from a water pump house and lies about 540 meters east of a small mountain range. The surrounding area is predominately desert. This is an IMPROVE protocol site.

Site Information				
AQS ID	04-019-0005			
Street Address	SR 85 & Puerto Blanco Rd. Ajo,	, AZ 85321		
County	Pima	Pima Groundcover Gravel		
CBSA	Tucson Latitude 31.9499			
Surrounding Area	Desert Longitude -112.8010			
Adjacent Roadway Info	400 m – E – SR 85 AADT Count – 1,525 Elevation 505		505 m	
Nearest Assessed Roadway Info	Same Site Established Date 01/01/197			

Parameters Monitors

IMPROVE

Paul Spur Chemical Lime Plant

The site is located approximately 1 km to the northeast of the Chemical Lime Plant, just south of SR 80 between Bisbee and Douglas, and 3.5 km north of the Arizona/Mexico border. The surrounding area is predominately desert. The Chemical Lime Plant is not operational at this time. The parameters monitored are part of the SLAMS and meteorological networks.

Site Information			
AQS ID	04-003-0011		
Street Address	SR 80 & Paul Spur Rd. Paul Spur,	AZ 85603	
County	Cochise	Groundcover	Dirt
CBSA	Sierra Vista-Douglas	Latitude	31.3658
Surrounding Area	Desert	Longitude	-109.7308
Adjacent Roadway	107 m – S – Paul Spur Rd.	Flovation	1 290 m
Info	AADT Count – Negligible Count	Elevation	1,280 111
Nearest Assessed	230m – N – SR 80	Site Established	
Roadway Info	AADT Count – 4,920	Date	01/01/1985

- PM₁₀
- Temp/RH
- Wind

Payson Well Site

The site is located in the southern area of Payson, in a field at a well water site. To the south of the site are two tanks. In general, the surrounding area is commercial with some residential land use and 200 m to the south east is SR 87. Site was moved 90m NE on the same parcel to meet siting requirements in 2014. The parameters monitored are part of the SLAMS and meteorological networks.

Site Information			
AQS ID		04-007-0008	
Street Address	204 W. Aero Dr. Payson, A	Z 85541	
County	Gila Groundcover Gravel		
CBSA	Payson	Latitude	34.2297
Surrounding Area	Residential/Commercial	Longitude	-111.3295
Adjacent Roadway Info	134 m – S – Aero Dr. AADT Count – 1,724	Elevation	1,501 m
Nearest Assessed Roadway Info	Same	Site Established Date	01/01/1991

Parameters Monitors

• PM₁₀

- PM_{2.5} (EBAM)
- Temp/RH
- Wind

Phoenix Transmissometer Receiver

The site is located in downtown Phoenix on the North side of the rooftop of the Holiday Inn Hotel near 2nd Avenue and Osborn Road. The transmitter is located on top of the Phoenix Baptist Hospital 4.5 km to the northwest. The area between the two sites is a mix of residential and commercial. This instrument is part of the Visibility network.

Site Information			
AQS ID	None		
Street Address	3600 N. 2 nd Ave. Phoenix, AZ 8	5013	
County	Maricopa	Groundcover	Rooftop
CBSA	Phoenix-Mesa-Scottsdale	Latitude	33.4901
Surrounding Area	Commercial/Residential	Longitude	-112.0767
Adjacent Roadway	25 m – E – Central Ave.	Elovation	227 m
Info	AADT Count – 15,470	Lievation	557 111
Nearest Assessed	Samo	Site Established Date	12/01/1002
Roadway Info	Same	SILE ESTADIISHEU DALE	12/01/1992

- Bext
- Temp R/H

Phoenix Transmissometer Transmitter

The transmitter is located on the southeast side of the rooftop of Phoenix Baptist Hospital at 19th Avenue and Bethany Home Road. The receiver is located at the Holiday Inn Hotel 4.5 km to the southeast. The area between the two sites is a mix of residential and commercial. A new long lasting LED bulb was installed in May 2014. This instrument is part of the Visibility network.

Site Information			
AQS ID	None		
Street Address	2000 W. Bethany Home Rd. Ph	oenix, AZ 85015	
County	Maricopa	Groundcover	Rooftop
CBSA	Phoenix-Mesa-Scottsdale	Latitude	33.5253
Surrounding Area	Commercial/Residential	Longitude	-112.1019
Adjacent Roadway	120 m – S – Beth. Home Rd.	Elevation	240 m
Info	AADT Count – 40,950	Elevation	540 111
Nearest Assessed	Samo	Sita Established Data	12/01/1002
Roadway Info	Salle	Site Established Date	12/01/1992

Parameters Monitors

Bext

Prescott College AQD

The site was relocated at Prescott College from the Mogollon Building to the Penstemon Building due to Mogollon Building's renovation and to meet siting requirements in 2013. The surrounding area is residential and commercial, with Grove Ave. approximately 45 m to the east. The O₃ instrument is part of the SLAMS network. This site closed 12/31/2016.

Site Information			
AQS ID	04-025-8033		
Street Address	330 Grove Ave., Prescott, AZ 8	6301	
County	Yavapai	Groundcover	Rooftop
CBSA	Prescott	Latitude	34.5451
Surrounding Area	Residential/Commercial	Longitude	-112.4768
Adjacent Roadway	45m – E – Grove Ave.	Elevation	1 636 m
Info	AADT Count – 13,300	Lievation	1,050 m
Nearest Assessed	Same	Site Established Date	12/05/2006
Roadway Info	Same	Site Established Date	12/03/2000

Parameters Monitors

• O₃

• PM_{2.5} (E-BAM)

Prescott Pioneer Park

This site is the maximum concentration O_3 site for the Yavapai County MSA. The Prescott College site was shut down on 12/31/2016 thus making this the sole site in Yavapai County. Prevailing wind direction is SW. To the NE is the predominant VOC and NOx point source in the area in Ernest Love Airfield.

Site Information			
AQS ID	04	4-025-8034	
Street Address	1200 Commerce Drive, Presco	tt, AZ 86305	
County	Yavapai Groundcover		Rooftop / Desert
CBSA	Prescott	Latitude	31.6121
Surrounding Area	Residential/Commercial	Longitude	-112.4632
Adjacent Roadway Info	210m – SW – Commerce Drive – Negligible Count	Elevation	1,602 m
Nearest Assessed Roadway Info	600m – N – Prescott Parkway – AADT Count– 6,000	Site Established Date	1/1/2017

Parameters Monitors

• O₃

• PM_{2.5} (E-BAM)

Queen Valley

The site is located in northern Pinal County on the far east/southeastern outskirts of the Phoenix metropolitan area. It is located 635 m southeast of the small town of Queen Valley, AZ and the surrounding area is primarily desert. This is a downwind PAMS Type 3 site. The IMPROVE protocol monitor was defunded starting January 2016. The parameters monitored are part of the SLAMS, PAMS, and meteorological networks.

Site Information				
AQS ID	0-	04-021-8001		
Street Address	10 S. Queen Anne Dr. Queen V	/alley, AZ 85219		
County	Pinal Groundcover Gravel			
CBSA	Phoenix-Mesa-Scottsdale	Latitude	33.2938	
Surrounding Area	Desert	Longitude	-111.2857	
Adjacent Roadway Info	87 m – E – Queen Anne Dr. AADT Count – 1,284	Elevation	668 m	
Nearest Assessed Roadway Info	Same	Site Established Date	01/01/1998	

Parameters Monitors

- O₃
- NOy
- VOC
- Temp/RH
- Wind

Site Photos Site Photos Site Photos Fegional view of Queen Valley Site Photos Site Photos Site Photos

Rillito

The site is located at a city water pumping station. The surrounding area is primarily residential and industrial, with I-10 approximately 260 meters to the northeast. The site is located within the small town of Rillito, AZ and is approximately 500 m to the north/northwest of the Cal Portland Rillito Cement Plant. The parameters monitored are part of the SLAMS and meteorological networks.

Site Information			
AQS ID	04-0	19-0020	
Street Address	8840 W. Robinson St. Rillito, AZ 8	5653	
County	Pima	Groundcover	Dirt
CBSA	Tucson	Latitude	32.4143
Surrounding Area	Residential	Longitude	-111.1545
Adjacent Roadway	10 m – S – Robinson St.	Elovation	626 m
Info	AADT Count – Negligible Count	Elevation	020111
	240m – NE – Frontage Rd.		
Nearest Assessed	AADT Count – 2,634	Site Established	01/01/1095
Roadway Info	260m – NE – I10	Date	01/01/1985
	AADT Count – 63,463		

- PM₁₀
- Temp/RH
- Wind

Saguaro National Park West

The site is located within the Saguaro National Park West. The site is operated by the NPS. The area surrounding the site is residential to the northwest and south/southeast and desert to the northeast. The site lies approximately 17 km southwest of I-10. This is an IMPROVE protocol site.

Site Information				
AQS ID	04	04-019-9000		
Street Address	N. Sandario Rd. and W. Mile W	/ide Rd. Tucson, AZ		
County	Pima	Groundcover	Gravel	
CBSA	Tucson	Latitude	32.2485	
Surrounding Area	Desert	Longitude	-111.2175	
Adjacent Roadway Info	27 m – W – Mile Wide Rd. AADT Count – 1,889	Elevation	718 m	
Nearest Assessed Roadway Info	Same	Site Established Date	12/29/1996	

Parameters Monitors

IMPROVE

San Luis Rio Colorado Well 10

This site is located in San Luis, Mexico. Its purpose is to monitor and provide ozone concentrations within the city of San Luis. Data will help gain a better understanding of ozone concentrations in the area.

Site Information			
AQS ID		80-026-8012	
Street Address	Avenida Carranza and Calle 15, S	San Luis Rio Colorado, Mexic	0
County	San Luis Rio Colorado	Groundcover	Rooftop
CBSA	None	Latitude	32.4665
Surrounding Area	Residential/Commercial	Longitude	-114.7688
Adjacent Roadway Info	12 m – E – Calle 15 – Negligible Count 42 m – S – Ave Carranza – Negligible Count	Elevation	41 m
Nearest Assessed Roadway Info	N/A	Site Established Date	5/9/17

Parameters Monitors

• O₃

- Temp/Rh
- Wind

Sedona Fire Station AQD

In 2011, the E-BAM instrument in Sedona was moved from the Sedona Post Office site to the Sedona Fire Station site. The Sedona Fire Station site is located approximately 300 m to the northeast of the Sedona Post Office site and 150 m west of State Route 89A. The surrounding area is composed of residential and commercial use. The E-BAM instrument is part of the SPM network.

Site Information			
AQS ID	None		
Street Address	310 Forest Rd, Sedona, AZ 8633	6	
County	Coconino	Groundcover	Rooftop
CBSA	Flagstaff	Latitude	34.8683
Surrounding Area	Commercial/Residential	Longitude	-111.7633
Adjacent Roadway	50m – N – Forest Rd	Flovation	1 276 m
Info	AADT Count – Negligible Count	Elevation	1,520 11
Nearest Assessed	150m – E – SR 89A	Site Established	12/16/2011
Roadway Info	AADT Count – 5,689	Date	12/10/2011

Parameters Monitors

• PM_{2.5} (E-BAM)

South Phoenix

The site is owned by MCAQD. ADEQ operates the toxics sampler at the site as part of the Urban Air Toxics Monitoring Program (UATMP). The site is situated in South Phoenix, at the edge of a high population area, bordering a mixture of residential and commercial properties. Two high population areas are located north and west of the site.

Site Information				
AQS ID	04-013-4003			
Street Address	33 W. Tamarisk St. Phoenix, AZ 8	33 W. Tamarisk St. Phoenix, AZ 85041		
County	Maricopa	Groundcover	Asphalt	
CBSA	Phoenix-Mesa-Scottsdale	Latitude	33.4030	
Surrounding Area	Residential/Commercial	Longitude	-112.0750	
Adjacent Roadway	83 m – N – Tamarisk St.	Flovation	220 m	
Info	AADT Count – Negligible Count	Elevation	550 111	
Nearest Assessed	165m – E – Central Ave.	Site Established	01/01/1007	
Roadway Info	AADT Count – 19,110	Date	01/01/1997	

Parameters Monitors

• VOC

Tonto National Monument

The site is jointly operated by ADEQ and USFS. The site is located within the Tonto National Forest at the base of Tonto National Monument, about 58 m south of SR 188. The area surrounding the site is desert with Roosevelt Lake about 1 km to the north. The O_3 instrument is part of the SLAMS network.

Site Information					
AQS ID	04-007-0010				
Street Address	South of SR 188 Roosevelt, AZ 85545				
County	Gila	Groundcover	Dirt/Rock		
CBSA	Payson	Latitude	33.6547		
Surrounding Area	Desert	Longitude	-111.1075		
Adjacent Roadway Info	17 m – NE – SR 188 AADT Count – 800	Elevation	730 m		
Nearest Assessed Roadway Info	Same	Site Established Date	04/23/1988		

Parameters Monitors

• O₃

• IMPROVE (not a protocol site)

Yuma Supersite

The site is located on the southeast corner of the Rural Metro Administration Facility property. The surrounding area is commercial and industrial, with a dirt lot adjacent to the south and I-8 1 km to the northeast. In addition to NAAQS compliance, the site is also used to help understand transport of PM and O₃. The parameters monitored are part of the SLAMS and meteorological networks.

Site Information					
AQS ID	04-027-8011				
Street Address	2029 S. Arizona Ave. Yuma, AZ 85364				
County	Yuma	Groundcover	Gravel		
CBSA	Yuma	Latitude	32.6903		
Surrounding Area	Commercial/Industrial	Longitude	-114.6144		
Adjacent Roadway	91 m – W – Arizona Ave.	Elevation	60 m		
Info	AADT Count – 12,302				
Nearest Assessed	Same	Site Established Date	02/01/2006		
Roadway Info					

- Wind
- O₃
- PM₁₀
- PM_{2.5}
- Temp/RH

Appendix E – Letters to EPA

This appendix may contain letters to EPA that have occurred during current Network Plan time period. The letters may include siting waivers, requests for system modifications, and other communications outside of the Annual Network Plan. ADEQ sent the first letter to EPA Region 9 to request a network modification for the required ozone monitor in Yavapai County. EPA Region 9 granted the network modification request in the second letter.

Douglas A. Ducey Governor

ARIZONA DEPARTMENT OF ENVIRONMENTAL QUALITY

January 13, 2017

Elizabeth Adams, Acting Director Air Division U.S. Environmental Protection Agency, Region 9 75 Hawthorne Street San Francisco, CA 94105

Subject: Relocation of the Prescott College site

Dear Ms. Adams:

Arizona Department of Environmental Quality (ADEQ) requests approval for the relocation of the Prescott College site, pursuant to 40 CFR Part 58.14(c)(6). The Prescott College site presents a logistical and safety problem, which ADEQ is unable to correct since the site is owned by Prescott College and they indicated they will not repair or correct the issues. The full report of the logistical and safety problems is enclosed with this submittal.

ADEQ requests to relocate the required maximum concentration ozone monitor currently at the Prescott College site to the Prescott Pioneer Park site. ADEQ will shut down the Prescott College site upon approval of the relocation request.

Please contact Bradley Busby with any questions regarding this request, (602) 771-7676.

Sincerely,

Timothy Franquist, Director ADEQ Air Quality Division

Main Office 1110 W. Washington Street • Phoenix, AZ 85007 (602) 771-2300 Southern Regional Office 400 W. Congress Street • Suite 433 • Tucson, AZ 85701 (520) 628-6733

www.azdeq.gov printed on recycled paper

UNITED STATES ENVIRONMENTAL PROTECTION AGENCY REGION IX 75 Hawthorne Street San Francisco, CA 94105

MAR 0 2 2017

Mr. Tim Franquist Director, Arizona Department of Environmental Quality 1110 West Washington Street Phoenix, Arizona 85007

Dear Mr. Franquist:

This letter provides the U.S. Environmental Protection Agency's (EPA's) review and approval for the Arizona Department of Environmental Quality's (ADEQ's) relocation of the O₃ State and Local Air Monitoring Station (SLAMS) monitor at the Prescott College site (AQS ID: 04-025-8033).

On January 13, 2017, ADEQ sent a letter to EPA with a description of this network change. Per 40 CFR 58.14, monitoring agencies are required to obtain EPA approval for the relocation of SLAMS monitors. This monitor relocation was specifically reviewed by EPA against criteria contained in 40 CFR 58.14(c)(6). 40 CFR 58.14(c)(6) describes the relocation requirements if a SLAMS monitor is not eligible for removal under the criteria in 40 CFR 58.14(c)(1) through (c)(5) and states that, "[a] SLAMS monitor...may be moved to a nearby location with the same scale of representation if logistical problems beyond the State's control make it impossible to continue operation at its current site." The Prescott College O₃ monitor is not eligible for removal under 40 CFR 58.14 (c)(1) – (c)(5).

The Prescott College site was evacuated in early 2016 due to flooding. The deteriorating condition of the site presents numerous logistical and safety issues for site operators such as electrical issues and mold concerns. The site is owned by Prescott College, which has indicated that it will not repair the site and is considering demolishing the building.

ADEQ researched possible relocation sites in the area and identified Prescott Pioneer Park site (34°36'43.6"N, 112°27'47.5"W) as the preferred relocation site. The Prescott Pioneer Park site is located 7.5 kilometers north-northeast of the Prescott College site. ADEQ was unable to locate a site closer the Prescott College site due to a lack of availability and permission. The Prescott Pioneer Park site, however, is located on Yavapai County land and is accessible by ADEQ.

The Prescott College site and Prescott Pioneer Park site are both characterized by residential and commercial land uses. The sources that influence O_3 concentrations at the Prescott Pioneer Park are anticipated to be similar to the sources that would influence O_3 concentrations at the Prescott College site, such as emissions related to mobile sources. The Prescott Pioneer Park site is

anticipated to measure similar concentrations of O₃, as it is located further downwind from the downtown area. Therefore, the relocation site is expected to have the same scale of representation (i.e. neighborhood scale), measure similar O₃ concentrations from similar sources, and will not prevent ADEQ from meeting 40 CFR 58, Appendix D requirements.

Additionally, ADEQ conducted a parallel comparison study of the Prescott College site and the Prescott Pioneer Park site between November 22, 2016 to December 31, 2016. While this is a short duration study, ADEQ conducted a Relative Percent Difference (RPD) analysis on the available data. The RPD analysis compared 1-hour and daily 8-hour maximum matching pairs of data at each site. The RPD values for both the 1-hour and daily 8-hour maximum matching pairs indicated that the concentrations at Prescott Pioneer Park site were in most cases greater than Prescott College. Based on the methodology, an RPD value greater than zero indicates a higher concentration at Prescott Pioneer Park, the relocation site. The RPD value was above zero in 95.2% of 1-hour matching pairs and above zero 100% of the daily 8-hour maximum matching pairs. Additionally, a time series plot of 1-hour data and daily 8-hour maximum data indicate that concentrations at Prescott Pioneer Park site were of equal or greater O3 concentrations than the Prescott College site.

Based on the assessment of proximity, scale of representation, anticipated concentrations, and the parallel monitoring analysis above, EPA has determined ADEQ's request meets the requirement that the replacement site is at a nearby location with the same scale of representation, and approves ADEQ's relocation of the Prescott College O₃ SLAMS monitor to the Prescott Pioneer Park site.

This approval assumes that the new site will meet all 40 CFR 58 requirements, including the siting requirements specified in Appendix E. Please work with EPA to ensure that the new site meets all relevant requirements. As this is a relocation, the data from the old and new sites will be combined to form one continuous data record for design value calculations. Please note this in the AQS comment field for both the old and the new AQS site. Also, please attach this letter and include the relevant monitor and site information in your next Air Monitoring Network Plan.

If there are any questions regarding this letter, please contact me at (415) 947-4134 or Jennifer Williams of my staff at (415) 972-3938.

Sincerely,

Gum.

Gwen Yoshimura, Acting Manager Air Quality Analysis Office

cc (via email): Bradley Busby, ADEQ Craig Pearson, ADEQ

Appendix F – ADEQ's Air Quality Monitoring Role in Arizona

This appendix contains a document to outline the responsibilities delineated to each monitoring agency in Arizona. This document was approved by ADEQ in 2015 with their commitment to follow the minimum monitoring responsibilities.

Interagency Air Quality Monitoring for the State of Arizona

Purpose:

40 CFR Part 58 Appendix D(e) states that "Full monitoring requirements apply separately to each affected State or local agency in the absence of an agreement between the affected agencies and the EPA Regional Administrator." EPA Region 9 indicated in their response to the 2013 Network Plan that an interagency document should be in place to delineate the shared monitoring requirements by overlapping agencies. This document is to fulfill this CFR requirement, to clarify the monitoring requirements, and to support requirements for the monitoring networks in Arizona.

The following table outlines Minimum Monitoring Requirements in the State of Arizona as required in 40 CFR 58 Appendix D. This does not take into account the breadth of monitoring that is required by the EPA Regional Administrator for the design of a complete monitoring program. Each State or local agency must work with the EPA Regional Administrator to develop a monitoring program for their area.

Agreement:

Arizona Department of Environmental Quality (ADEQ) assumes full responsibility for their minimum monitoring requirements outlined in Table 1. ADEQ is meeting the minimum monitoring for each requirement and will augment its monitoring network to fulfill future needs in all of its areas.

Sincerely,

FOR MASSEY

Eric C. Massey, Director Air Quality Division

cc: Jennifer Williams, US EPA, Region 9 Bradley Busby, ADEQ Heather Colson, ADEQ Mark Carrel, ADEQ Craig Pearson, ADEQ

Pollutant/	CFR Reference	CBSA/ Source required to	Requirement Type	Minimum #	Agency
Station		monitor		Required	fulfillment
Ncore	40 part 58 app D 3.0	State Requirement	1 Per State	1	ADEQ and PDEQ
		·			
O3	40 part 58 app D 4.1	Phoenix-Mesa-Scottsdale MSA	Population/Design Value Based	3	MCAQD and PCAQCD
O3	40 part 58 app D 4.1	Tucson MSA	Population/Design Value Based	2	PDEQ
O3	40 part 58 app D 4.1	Yuma MSA	Population/Design Value Based	1	ADEQ
O3	40 part 58 app D 4.1	Flagstaff MSA	Population/Design Value Based	1	ADEQ
O3	40 part 58 app D 4.1	Prescott MSA	Population/Design Value Based	1	ADEQ
O3	40 part 58 app D 4.1	Sierra-Vista MSA	Population/Design Value Based	1	ADEQ
O3	40 part 58 app D 4.1	Lake Havasu City MSA	Population/Design Value Based	1	ADEQ
CO	40 part 58 app D 4.2	Phoenix-Mesa-Scottsdale MSA	Collocated with NO ₂ by Population	1	MCAQD
NOz	40 part 58 app D 4.3	Phoenix-Mesa-Scottsdale MSA	Near-Road Population/Traffic Based	2	MCAQD
NOz	40 part 58 app D 4.3	Tucson MSA	Near-Road Population/Traffic Based	1	PDEQ
NO ₂	40 part 58 app D 4.3	Phoenix-Mesa-Scottsdale MSA	Population Based	1	MCAQD
SO ₂	40 part 58 app D 4.4	None	Weighted Population Index Based	0	None
Pb	40 part 58 app D 4.5	FMMI Smelter	Source Oriented	1	ADEQ
Pb	40 part 58 app D 4.5	ASARCO Hayden Smelter	Source Oriented	1	ADEQ
PM ₁₀	40 part 58 app D 4.6	Phoenix-Mesa-Scottsdale MSA	Population/Design Value Based	6-10	MCAQD and PCAQCD
PM10	40 part 58 app D 4.6	Tucson MSA	Population/Design Value Based	4-8	PDEQ
PM10	40 part 58 app D 4.6	Yuma MSA	Population/Design Value Based	1	ADEQ
PM10	40 part 58 app D 4.6	Flagstaff MSA	Population/Design Value Based	0	ADEQ
PM ₁₀	40 part 58 app D 4.6	Prescott MSA	Population/Design Value Based	0	ADEQ
PM ₁₀	40 part 58 app D 4.6	Sierra-Vista MSA	Population/Design Value Based	1	ADEQ
PM ₁₀	40 part 58 app D 4.6	Lake Havasu City MSA	Population/Design Value Based	1	ADEQ
PM _{2.5}	40 part 58 app D 4.7	Phoenix-Mesa-Scottsdale MSA	Population/Design Value Based	3	MCAQD and PCAQCD
PM _{2.5}	40 part 58 app D 4.7	Tucson MSA	Population/Design Value Based	2	PDEQ
PM _{2.5}	40 part 58 app D 4.7	Yuma MSA	Population/Design Value Based	1	ADEQ
PM _{2.5}	40 part 58 app D 4.7	Flagstaff MSA	Population/Design Value Based	0	ADEQ
PM _{2.5}	40 part 58 app D 4.7	Prescott MSA	Population/Design Value Based	0	ADEQ
PM _{2.5}	40 part 58 app D 4.7	Sierra-Vista MSA	Population/Design Value Based	1	ADEQ
PM _{2.5}	40 part 58 app D 4.7	Lake Havasu City MSA	Population/Design Value Based	1	ADEQ
PM _{2.5}	40 part 58 app D 4.7	Background Station	1 Per State	1	ADEQ
PM _{2.5}	40 part 58 app D 4.7	Transport Station	1 Per State	1	ADEQ
PM _{2.5}	40 part 58 app D 4.7	State STN Station	1 Per State	1	ADEQ
DM Copres	40 port 58 ppp D 4 9	Required at Neoro Station	1 Por Neoro Station	2	ADEO and RDEO
FINI COAISE	40 part 56 app D 4.8	Required at NCOre Station	I PELINCOLE STATION	4	ADEQ and PDEQ
PAMS	40 part 58 app D 5.0	Ozone Area Requirement	Per EPA Admin for Ozone Area	Per PAMS Plan	ADEQ

Table 1: Minimum Monitoring Requirements in Arizona

Appendix G – ADEQ PAMS Monitoring Implementation Network Plan

ADEQ formerly operated two Photochemical Assessment Monitoring Stations (PAMS) sites in the air monitoring network in 2015, at the JLG Supersite (04-013-9997) and Queen Valley (04-021-8001) sites. However, the recently revised monitoring rule (80 FR 65292; October 26, 2015) requires PAMS measurements June 1 through August 31 at NCore sites that are located in Core-Based Statistical Areas (CBSAs) with populations of 1,000,000 or more. States with moderate or above ozone nonattainment areas and states within the Ozone Transport Region (OTR) are required to develop and implement Enhanced Monitoring Plans (EMPs). These EMPs are intended to provide monitoring organizations with the flexibility to implement additional monitoring to suit the needs of their area such as, additional ozone, ozone precursor and/or meteorological monitoring activities. ADEQ has determined that additional monitoring through an EMP does not apply since the Phoenix-Mesa-Scottsdale MSA is projected to be marginal nonattainment.

Network Decision

- The NCore site located at JLG Supersite (04-013-9997) will serve as the location of the required PAMS site and will measure the following parameters described below. An inventory of equipment used at the site(s) is provided in Attachment 2
- We request a waiver from implementing PAMS at an otherwise required NCore site entirely, or to make PAMS measurements at alternative locations such as existing PAMS sites or existing NATTS sites. Rationale for this waiver is provided in Waiver attachment

Auto GC Decision

Volatile organic compounds (VOCs) – A complete list of the targeted compounds are found in Table 1.

We will determine if a waiver will be requested by July 1, 2018.

- □ We will measure hourly speciated VOC measurements with an auto-gas chromatograph (GC) using *(insert manufacturer)*.
- We request a waiver to allow three 8-hour samples every third day as an alternative to daily hourly speciated VOC measurements at locations *(insert locations)*. Rationale for this waiver is provided in Waiver Attachment

Meteorology Measurements Decision – Note: EPA is suggesting the use of ceilometers for determining mixing height, however other types of meteorological equipment that provide for an indication of mixing height can be proposed

Will measure wind direction, wind speed, temperature, humidity, atmospheric pressure, precipitation, solar radiation, ultraviolet radiation, and mixing height. The parameters will be measured using the instrument described in Attachment 2

□ We request a waiver to allow meteorological measurements to be obtained from other nearby sites. Rationale for this waiver is provided in Waiver attachment

Other Required Measurements

- Carbonyls Carbonyl sampling at a frequency of three 8-hour samples on a one-in-three day basis (~90 samples per PAMS sampling season) using the equipment found in Attachment 2. A complete list of the target carbonyl compounds may be found in Table 1. The TO-11A test method, as used in the National Air Toxics Trends Stations (NATTS) program¹ will be used.
- Nitrogen Oxides Will monitor for NO and NO_y (total oxides of nitrogen) in addition to true NO₂. The true NO₂ is required to be measured with a direct reading NO₂ analyzer, cavity attenuated phase shift (CAPS) spectroscopy or photolytic-converter NO_x analyzer. The equipment that will be used is found in attachment 2.

Priority Compounds					Optional Compounds			
1	1,2,3-trimethylbenzene ^a	19	n-hexane ^b	1	1,3,5-trimethylbenzene	19	m-diethlybenzene	
2	1,2,4-trimethylbenzene ^a	20	n-pentane	2	1-pentene	20	methylcyclohexane	
3	1-butene	21	o-ethyltoluene ^a	3	2,2-dimethylbutane	21	methylcyclopentane	
4	2,2,4-trimethylpentane ^b	22	o-xylene ^{a,b}	4	2,3,4-trimethylpentane	22	n-decane	
5	acetaldehyde ^{b,c}	23	p-ethyltoluene ^a	5	2,3-dimethylbutane	23	n-heptane	
6	acetone ^{c,d}	24	Propane	6	2,3-dimethylpentane	24	n-nonane	
7	benzene ^{a,b}	25	propylene	7	2,4-dimethylpentane	25	n-octane	
8	c-2-butene	26	styrene ^{a,b}	8	2-methylheptane	26	n-propylbenzene ^a	
9	ethane ^d	27	toluene ^{a,b}	9	2-methylhexane	27	n-undecane	
10	ethylbenzene ^{a,b}	28	t-2-butene	10	2-methylpentane	28	p-diethylbenzene	
11	Ethylene			11	3-methylheptane	29	t-2-pentene	
12	formaldehyde b,c			12	3-methylhexane	30	α/β-pinene	
13	Isobutane			13	3-methylpentane	31	1,3 butadiene ^b	
14	Isopentane			14	Acetylene	32	benzaldehyde ^c	
15	Isoprene			15	c-2-pentene	33	carbon tetrachloride ^b	
16	m&p-xylenes ^{a,b}			16	cyclohexane	34	Ethanol	
17	m-ethyltoluene ^a			17	cyclopentane	35	Tetrachloroethylene ^b	
18	n-butane			18	isopropylbenzene ^b			

Table 1 PAMS Target Compound List

Source: Revisions to the Photochemical Assessment Monitoring Stations Compound Target List.

U.S. EPA, November 20, 2013

^a Important SOAP (Secondary Organic Aerosols Precursor) Compounds

^b HAP (Hazardous Air Pollutant) Compounds

^c Carbonyl compounds

^d Non-reactive compounds, not considered to be VOC for regulatory purposes

¹ See NATTS Technical Assistance Document for TO-11A method.

Attachment 1 - Waiver Requests and Rationale

Auto GC Waiver Request

We will determine if a waiver will be requested by July 1, 2018.

Rationale for this waiver

ADEQ has not yet determined which instrumentation will be used for the VOC measurement requirements. We will make that determination before submittal of ADEQ's 2018 Network Plan.

Attachment 2 - Equipment Inventory

Region	9	
State	Arizona	
AQS ID	04-013-9997	
CBSA	Phoenix-Mesa-Scottsdale, AZ	
Parameter Category		Detail
	Is the AQS site ID listed above the expected PAMS Core site location?	Yes
	What is the status of the decision for the expected PAMS Core site location (not	
Site	started, draft, or final)?	Final
Site	Is there an alternate PAMS Core site location selected?	No
	Identify type of alternative site (existing PAMS, NATTS, etc)	
	Alternate site AQS ID (if known)	
	Is there an existing functional ceilometer or other similar instrument available for	
	use?	Not currently functional
	current location (at future PAMS Core site, at other site, not applicable)	
	instrument type (ceilometer, radar profiler, etc)	
Mixing Height	manufacturer	
	model	
	date purchased	
	Which ceilometer do you plan to purchase?	Vaisala Cl51
	comments	
	Is there an existing Auto GC available for use?	No
	current location (at future PAMS Core site, at other site, not applicable)	
	manufacturer	
	model	
	date purchased	
	Does it have a service contract?	
Auto GC	Do you currently have auto GC components (such a preconcentrator) that you	
	plan to use at the Required PAMS site?	
	manufacturer	
	model	
	date purchased	
	perference for AutoGC Model	TBD
	comments	
	Is there an existing DAS available for use?	Yes
	current location (at future PAMS Core site, at other site, not applicable)	NA
	DAS type (standalone, integrated, other)	Stand alone
Data Acquisition System (DAS)	manufacturer	Agilaire
Data Acquisition System (DAS)	model	AirVision
	date purchased	2014
	comments	No site node

	to the second state of the	M
	is there an existing true NO2 instrument available for use?	Yes
	current location (at future PAMS Core site, at other site, not applicable)	Not deployed
	instrument type (photolytic conversion, cavity ringdown, CAPS, etc)	CAPS
True NO2	manufacturer	Teledyne
	model	T500U
	date purchased	2015
	Which True NO2 instrument do you plan to purchase?	Purchased
	comments	
	Is there an existing sequential carbonyls sampling unit or similar instrument	
	available for use?	Yes
	current location (at future PAMS Core site, at other site, not applicable)	At future PAMS Core site
Carbonyle Sampling	manufacturer	ATEC
carbonyis sampling	model	8000
	date purchased	2015
	Which carbonyls sampling unit do you plan to purchase?	Purchased
	comments	
	Does the site currently have a support laboratory for carbonyls or plans to use a	
	support laboratory?	No
Carbonyls Analysis	laboratory name	ERG
	comments	
	instrument type (aneroid barometer, etc)	No
	manufacturer	
	model	
Barometric Pressure	date purchased	
	Which Barometric Pressure instrument do you plan to purchase?	Vaisala or RM Young
	comments	
	instrument type (LIV radiometer, etc)	Ves
	manufacturer	Epply
	model	
UV Radiation	date purchased	2011
	Which LIV Padiation instrument do you plan to purchase?	Purchased
	comments	Furchased
		Vee
	instrument type (pyranometer, etc)	Yes
	manufacturer	LI-Cor
Solar Radiation	model	2005
	date purchased	2006
	Which Solar Radiation instrument do you plan to purchase?	Purchased
	comments	
	instrument type (tipping bucket, weighing, etc)	No
	manufacturer	
Precipitation	model	
recipitation	date purchased	
	Which Precipitation instrument do you plan to purchase?	Vaisala or RM Young
	comments	