Best Operating Practices for Reducing Emissions

From Natural Gas STAR Partners

Murphy Exploration & Production,
Gulf Coast Environmental Affairs Group,
American Petroleum Institute, and
EPA's Natural Gas STAR Program

June 19, 2003

Why Are Best Operating Practices Important?

- Many production facilities have identified practical cost effective methane emissions practices
- □ Production partners report saving 129 Bcf since 1990, 83% from PRO's
- □ VRU's account for 30% of PRO emissions reductions

Why Are Best Operating Practices Important?

- Simple vehicle for sharing successes and continuing program's future
 - ♦ BMP's: the consensus best practices
 - ◆ PRO's: Partner Reported Opportunities
 - Lessons Learned: expansion on the most advantageous BMP's and PRO's
 - All posted on the Gas STAR website: http://www.epa.gov/gasstar

Production Best Management Practices

- BMP 1: Install and Replace High-Bleed Pneumatics
- BMP 2: Install Flash Tank Separators on Glycol Dehydrators
- BMP 3: Partner Reported Opportunities (PRO's)

Gas STAR PRO Fact Sheets

- □ PRO Fact Sheets from Annual Reports 1994-2002
 - ♦54 posted PRO's
 - ◆36 PRO's applicable to Production
 - ■12 focused on operating practices
 - •24 focused on technology
 - Several new PRO sheets under development

Lessons Learned

- 14 Lessons Learned on website
- 7 applicable to production
 - ◆ 2 focused on operating practices
 - ♦ 5 focused on technology
- New Lessons Learned under development
 - ◆ Composite Wrap
 - Desiccant Dehydration

Best Operating Practice Lessons Learned

- □ Replacing Gas-Assisted Glycol Pumps with Electric Pumps
- □ Reducing the Glycol Circulation Rates in Dehydrators

Production Best Operating Practices

- □ Compressors & Engines
 - ◆ Convert Engine Starting to Air
 - SAVES...1,356 Mcf/yr
 - PAYOUT...< 1 year</p>
 - ◆ Convert Engine Starting to Nitrogen
 - SAVES... 1,350 Mcf/yr
 - PAYOUT...< 1yr</p>

What is the Problem?

Compressor starts vent methane

- □ How much methane is emitted?
 - Up to 135 Mcf per start
- How can these losses be reduced?
 - Alternative operating practices
 - Use nitrogen
 - Use air
 - Alternative technology
 - Use electric starters
 - Convert to electric drive

Partner Experience

Compressor starts vent methane

- □ Partners report 1,350 Mcf/yr savings per compressor using air or nitrogen assuming ten starts per year
 - Availability and cost of air and nitrogen are issues
 - ◆ Capital costs for electric starters reduce payout
 - Coordinating starts and shutdowns with maintenance schedules are an option
 - Modification of purge procedures to recover gas prior to venting can also gain savings with low costs

More Operating Practices

□ Other

- ◆ Eliminate Unnecessary Equipment or Systems
 - SAVES... 2,000 Mcf/yr
 - PAYOUT... < 1yr
- Begin Directed Inspection and Maintenance at Remote Facilities
 - SAVES... 362 Mcf/yr
 - PAYOUT... 1-3 yrs
- ◆ Lower Heater-Treater Temperatures
 - SAVES... 142 Mcf/yr
 - PAYOUT... < 1yr

What is the Problem?

Unnecessary equipment or systems provide sources of methane emissions

- How much methane is emitted?
 - One unnecessary process controller vents 1 cfm or 0.5 MMcf/yr
- □Other benefits
 - ◆ Increases efficiency
 - Lowers operating & maintenance costs

Partner Experience

Unnecessary equipment or systems provide sources of methane emissions

- □ One partner reports savings of 7,940 Mcf/yr by eliminating 31 dehydrators with an average of 4 controller loops each
 - ◆ Payback was < 1 year</p>

More Operating Practices

□ Tanks

- Consolidate Crude Oil Production & Water Tank Storage
 - SAVES... 4,200 Mcf/yr
 - PAYOUT... < 1 yr</p>
- ◆ Convert Water Tank Blanket to Produced C0₂
 - SAVES... 2,000 Mcf/yr
 - PAYOUT... 1-3 years

What is the Problem?

Tankage is a large source of methane emissions

- How much methane is emitted?
 - ◆ EPA Guideline 42 or API "E&P TANK" Program provide specific guidance. Partners report up to 1,000 Mcf/yr
- How can these losses be reduced?
 - ◆ Tankage consolidation reduces maintenance costs and promotes justification of vapor recovery or alternative blanketing with produced CO₂

Partner Experience

Tankage is a large source of methane emissions

- One partner reports 32,600 Mcf/yr by converting water tank blankets on 9 units at a water treatment station from fuel gas to CO2 -rich produced gas. Payback was 1-3 years
- □ Capital costs are a major factor but gas savings are usually substantial

More Operating Practices

□ Valves

- Inspect & Repair Compressor Station Blowdown Valves
 - SAVES...2,000 Mcf/yr
 - PAYOUT... < 1 yr</p>
- ◆ Test & Repair RV's
 - SAVES...170 Mcf/yr
 - PAYOUT... < 1 yr</p>
- ◆ Test & Repair Gate Station RV's with Nitrogen
 - SAVES... 8 Mcf/yr
 - PAYOUT... >10 yrs

What is the Problem?

Leaking valves are another large source

- How much methane is emitted?
 - ♦ As RV components wear or foul leakage occurs
 - ◆ Estimate 200 Mcf/yr per leaker
- How can these losses be reduced?
 - ◆ Leak check & repair on a planned schedule

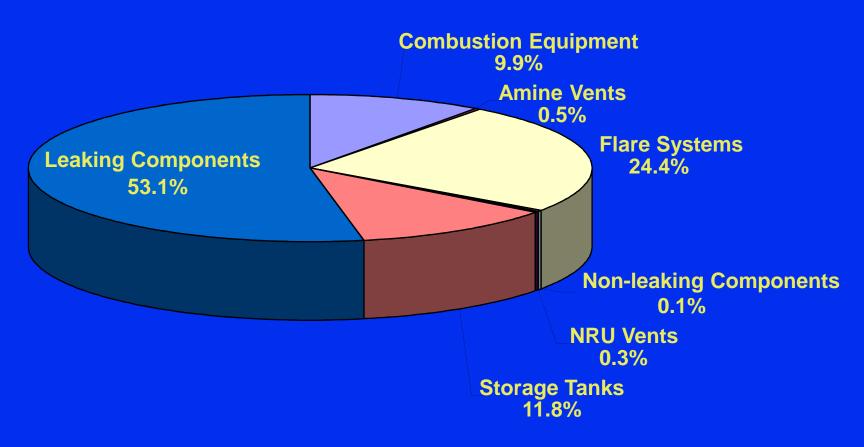
Partner Experience

Leaking valves are another large source

- One partner reports saving 3,907 Mcf/yr by repairing 7 RV's. Payback was immediate
- Another partner reports saving 853 Mcf/yr by repairing compressor RV's
- □ Another Partner reports saving 10 Mcf/yr by using nitrogen to test 120 RV's versus "popping" off with natural gas

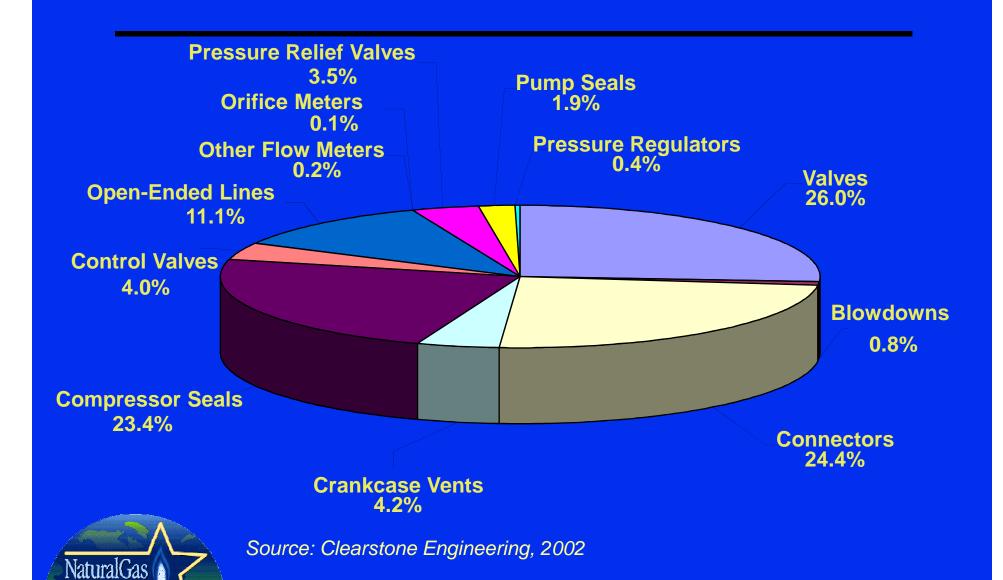
One of the Newer Operating Practices

- Begin Directed Inspection and Maintenance at Remote Facilities
 - ◆ SAVES... 362 Mcf/yr
 - ◆ PAYOUT ... 1-3 yrs



What is the Problem?

- □ Gas leaks are invisible, unregulated and go unnoticed
- STAR partners find that valves, connectors, compressor seals and open-ended lines (OEL) are major sources
 - 27 Bcf of methane are emitted per year by reciprocating compressors seals and OELs
 - Open ended lines contribute half these emissions
- □ Facility fugitive methane emissions depend on operating practices, equipment age and maintenance


Natural Gas Losses by Source

Source: Clearstone Engineering, 2002

Natural Gas Losses by Equipment Type

How Much Methane is Emitted?

Methane Emissions from Leaking Components at Gas Processing Plants

Component Type	% of Total Methane Emissions	% Leaks	Estimated Average Meth- ane Emissions per Leaking Component (Mcf/Year)
Valves (Block & Control)	26.0 %	7.4 %	66
Connectors	24.4 %	1.2 %	80
Compressor Seals	23.4 %	81.1 %	372
Open-ended Lines	11.1 %	10.0 %	186
Pressure Relief Valves	3.5 %	2.9 %	844

Source: Clearstone Engineering, 2002, Identification and Evaluation of Opportunities to Reduce Methane Losses at Four Gas Processing Plants. Report of results from field study of 4 gas processing plants in WY and TX to evaluate opportunities to economically reduce methane emissions.

How Much Methane is Emitted?

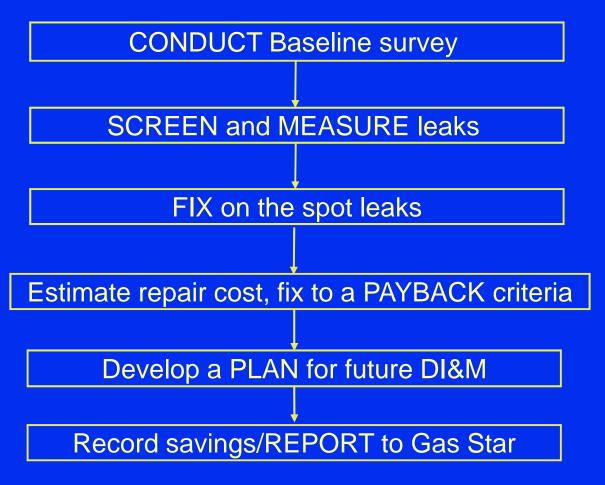
Summary of Natural Gas Losses from the Top Ten Leakers¹.

Plant No.	Gas Losses	Gas Losses From	Contribution	Contribution
	From Top 10	All Equipment	By Top 10	By Total
	Leakers	Leakers	Leakers	Leakers
	(Mcfd)	(Mcfd)	(%)	(%)
1	43.8	122.5	35.7	1.78
2	133.4	206.5	64.6	2.32
3	224.1	352.5	63.6	1.66
4	76.5	211.3	36.2	1.75
Combined	477.8	892.84	53.5	1.85

¹Excluding leakage into flare system

How Can These Losses Be Reduced?

□ Implementing a Directed Inspection and Maintenance (DI&M) Program


Source: CLEARSTONE ENGINEERING LTD

What is a DI&M Program?

- Implementing a Directed Inspection and Maintenance Program
 - Voluntary program to identify and fix leaks that are cost effective to repair
 - Outside of mandatory LDAR
 - Survey cost will pay out in the first year
 - Provides valuable data on leakers

How Do You Implement A DI&M Program?

Screening and Measurement

Summary of Screening and Measurement Techniques					
Instrument/ Technique	Effectiveness	Approximate Capital Cost			
Soap Solution ★★		\$			
Electronic Gas Detectors	*	\$\$			
Acoustic Detection/ Ultrasound Detection	**	\$\$\$			
TVA (FID)	*	\$\$\$			
Bagging	*	\$\$\$			
High Volume Sampler	***	\$\$\$			
Rotameter	**	\$\$			
Source: EPA's Lessons Learned Study					

Cost-Effective Repairs

Repair the Cost Effective Components						
Component	Value of Lost gas ¹ (\$)	Estimated Repair cost (\$)	Payback (Months)			
Plug Valve: Valve Body	12,641	200	0.2			
Union: Fuel Gas Line	12,155	100	0.1			
Threaded Connection	10,446	10	0.0			
Distance Piece: Rod Packing	7,649	2,000	3.1			
Open-Ended Line	6.959	60	0.1			
Compressor Seals	5,783	2,000	4.2			
Gate Valve Source: Hydrocarbon Processin	4,729	60	0.2			

Source: Hydrocarbon Processing, May 2002

¹Based on \$3/Mcf gas price

DI&M - Partner Experience

- □ Partner A: A leaking cylinder head was tightened, which reduced the methane emissions from almost 64,000 Mcf/yr per year to 3,300 Mcf/yr
 - ◆ The repair required 9 man-hours of labor and the annualized gas savings were approximately 60.7 MMcf/yr At \$3.00/Mcf, the estimated value of the gas saved was \$182,100/year
- □ Partner B: A one-inch pressure relief valve emitted almost 36,774 Mcf/yr

NaturalGas 🗥

◆ Five man-hours of labor and \$125 of materials eliminated the leak. The annualized value of the gas saved was more than \$110,300 at \$3.00/Mcf

DI&M - Partner Experience

- □ Partner C: A blowdown valve leaked almost 14,500 Mcf/yr
 - Rather than replace the expensive valve, the Partner spent just \$720 on labor and materials to reduce the emissions to approximately 100 Mcf/yr
 - The gas saved was approximately 14,400 Mcf/year, worth \$43,200 at \$3.00/Mcf
- □ Partner D: A tube fitting leaked at a rate of 4,121 Mcf/yr
 - A very quick repair requiring only five minutes reduced the leak rate to 10 Mcf/yr
 - At \$3.00/Mcf, the annualized value of the gas saved was approximately \$12,300

Discussion Questions

- ☐ To what extent are you implementing these opportunities?
- □ Can you suggest other opportunities?
- □ How could these opportunities be improved upon or altered for use in your operation?
- What are the barriers (technological, economic, lack of information, regulatory, etc.) that are preventing you from implementing these practices?

