Gas STAR Technologies and Practices for DI&M and Compressor Seals

(Opportunities for Cost Effective Methane Sensors)

EPA's Natural Gas STAR Program,
El Paso Corporation, and
Southern Gas Association
October 27, 2003

Agenda

□ Equipment leaks

- ♦ What is the problem?
- ♦ Where are the leaks?
- ♦ What Gas STAR Partners are doing.
- ◆A low-cost sensor option.

□ Compressor seals

NaturalGas 🖍

- ♦ What is the problem?
- ♦ Where are the leaks?
- ♦ What Gas STAR Partners are doing.
- ◆A low-cost sensor option.

Equipment leaks What is the Problem?

- □ STAR partners find that valves, connectors, compressors and openended lines (OEL) are major leak sources
 - ◆ 50.7 Bcf/yr of methane are emitted by compressors and facility components
 - ◆ 1% of the leakers contribute 90% of the emissions
- □ Fugitive emissions depend on operating practices, equipment age and maintenance

Distribution of Natural Gas Losses by Source Category

Natural Gas Losses from Equipment Leaks by Type of Component

- □ Valves account for 30%
 - ◆ Block valves = 26%
 - ◆ Control valves = 4%
- □ Stem seal leaks are the primary source

NaturalGas (

- Balance between packing pressure and valve movement force
- Packing wears, requiring either more pressure or replacement

- □ Open ended lines (OEL) account for 11%
 - Block valves

NaturalGas (

- Blowdown vents, motor starters, vent and drain connections
- □ Through-valve leakage is the primary source
 - Often from vent stacks
 - Valve seat wears or fouls, requiring either more pressure, cleaning or replacement

- □ Pressure Relief Valves (PRV) account for 3.5%
 - Fewer of them, so higher individual leakage
 - Protect equipment from over-pressure
- □ Through-valve leakage is the primary source
 - Often from vent stacks
 - Valve seat wears or fouls, requiring either cleaning or replacement

What Gas STAR Partners are doing?

- □ Implementing a Directed Inspection and Maintenance Program (DI&M)
 - Voluntary program to identify and fix leaks that are cost effective to repair
 - Survey cost will pay out in the first year
 - Provides valuable data on leakers

Current DI&M Techniques

Summary of Screening and Measurement Techniques				
Instrument/ Technique	Effectiveness	Approximate Capital Cost		
Soap Solution	**	\$		
Electronic Gas Detectors	*	\$\$		
Acoustic Detection/ Ultrasound Detection	**	\$\$\$		
TVA (FID)	*	\$\$\$		
Bagging	*	\$\$\$		
High Volume Sampler	***	\$\$\$		
Rotameter	**	\$\$		
Source: EPA's Lessons Learned Study				

Cost-Effective Repair Examples

Repair the Cost Effective Components				
Component	Value of Lost gas ¹ (\$)	Estimated Repair cost (\$)	Payback (Months)	
Plug Valve: Valve Body	12,641	200	0.2	
Open-Ended Line	6,959	60	0.1	
Pressure Relief Valve	982	293	3.5	
Gate Valve	4,729	60	0.2	
Source: Hydrocarbon Processing, May 2002				

¹Based on \$3/Mcf gas price

Opportunities for Inexpensive Leak Sensors

- □ Application: Valves, Open-Ended Lines (OELs), Pressure Relief Valves (PRVs)
- □ Objective: Automated detection of LARGE leaks that are cost-effective to repair
- □ Potential application:

Business as usual site visit

Equipment alerts operator to cost-effective leak

Operator directs repairs on the spot

DI&M – Transmission Partner Experience

- □ Partner A: 15 Stations surveyed annually
 - ◆ Survey and repairs averaged \$350/station
 - ♦ Methane savings averaged 11,067Mcf/station

Total Gas Savings \$ 498,030

Total DI&M Cost \$ (5,250)

SAVINGS \$ 492,780

- □ Partner B: 2 Stations surveyed quarterly
 - ♦ Survey costs \$200/station
 - ◆ 24 leaks detected & repaired; 23 repaired at average \$50 each

Total Gas Savings \$ 51,240
Total DI&M Cost \$ (2,750)
SAVINGS \$ 48,490

Compressor seals What is the problem?

- □ Compressor seals account for 23.4% of emissions
 - ◆ 11.9 Bcf/yr of methane are emitted by compressors
 - ◆ Over 8,500 compressors in gas transmission sector

- □ Reciprocating compressor rod packing
 - ◆ Fourth largest gas industry emissions at 16 Bcf/yr
- □ Leakage typically occurs from:
 - ◆ Nose gasket
 - ◆ Between cups
 - Ring movement
 - Down shaft
- □ All packings leak
 - → ~60 scfh new
 - ♦ >900 scfh worn

□ Centrifugal compressor wet seals

 90% of new compressors for transmission are centrifugal

□ Leakage typically occurs from:

- Labyrinth seal into seal oil
- Seal oil degassing vent
- Very little leakage seal face
- □ Seal oil vents emit
 - ♦ 40-200 scfm

- □ Centrifugal compressor dry seals
 - Most new compressors are supplied with dry seals
- □ Leakage typically occurs from:
 - Labyrinth seal into static barrier
 - Seal vent after tandem seal
 - Little leakage from seal face
- □ Seal vents emit
 - ♦ 0.5-3 scfm

What Gas STAR Partners are doing.

- □ Leakage is reduced through routine monitoring and seal maintenance
 - Conventional rod packing rings require replacement every 3 to 5 years
- An economic leak rate is determined based on costs and gas savings
- □ Replace rings when it is economical
 - ◆Saves gas and money
 - ◆Extends the life of the piston rod
 - ◆ Reduces methane emissions

Best Practice Compressor Emissions Control

Compressor Rod Packing Systems

□ Partners develop an "economic replacement threshold" that defines the point when it is cost-effective to replace rings and rods

Economic Replacement Threshold (scfh) = (CR * DF) / [(H * GP) /1,000]

where:

CR = cost of replacement (\$)

DF = company discount factor (%)

H = hours of compressor operation

GP = gas price (\$/Mcf)

Economic Analysis

Compressor Rod Packing System

Economic Replacement Threshold for Packing Rings

LRE (scfh)	Payback Period ¹ (yrs)
83	1
43	2
30	3
24	4
20	5

¹ Assumes packing ring replacement costs of \$1,200, \$3.00/Mcf gas and 8,000 hr/yr

Economic Replacement Threshold for Rod and Rings

LRE (scfh)	Payback Period ¹ (yrs)
564	1
295	2
206	3
162	4
135	5

1 Assumes packing ring replacement costs of \$1,200, rod replacement cost of \$7,000, \$3.00/Mcf gas and 8,000 hr/yr

Opportunities for Inexpensive Leak Sensors

- ☐ Application: Compressor seal and seal oil vents
- □ Objective: Automated detection of LARGE leaks that are cost-effective to repair
- **□** Potential application:

Business as usual site visit

Equipment alerts operator to cost-effective leak

Operator schedules cost-effective repairs

Company Experience

- One partner conducted semi-annual inspections of compressor rod packing
 - Replaced packing cases at eight stations costing \$1,050 per case, installed
 - Saved 55 MMcf/yr valued at \$165,000

Discussion Questions

- How accurate would sensors need to be in quantifying methane emissions?
- Would methane emissions sensor outputs need to be transmitted to a SCADA center?
- □ To what degree are candidate sites for low cost fugitive sensors non-electrified?
- What are other applications for inexpensive methane emissions sensors?

