

2016-2017 Annual Monitoring Network Plan for the North Carolina Division of Air Quality

Volume 2

Site Descriptions by Division of Air Quality Regional Office and Metropolitan Statistical Area

C. The Mooresville Monitoring Region

July 1, 2016

State of North Carolina | Department of Environmental Quality | Division of Air Quality 1641 Mail Service Center | 217 W. Jones Street, Suite 4000 | Raleigh, NC 27699-1641 919 707 8400 T

Table of Contents

List of Figures	2
List of Tables	
C. The Mooresville Monitoring Region	4
(1) Hickory-Lenoir-Morganton MSA	4
(2) Cleveland County	
(3) Charlotte-Gastonia-Concord MSA	14
(4) Stanly County	
Appendix C.1 Annual Network Site Review Forms for 2015	24
Appendix C-2. Scale of Representativeness	

List of Figures

Figure C1. The Mooresville monitoring region	4
Figure C2. Locations of monitors in the Hickory-Lenoir-Morganton MSA	4
Figure C3. Taylorsville Liledoun ozone monitoring site, 37-003-0005	5
Figure C4. Looking north from the Taylorsville-Liledoun site	6
Figure C5. Looking west from the Taylorsville-Liledoun site	6
Figure C6. Looking east from the Taylorsville-Liledoun site	6
Figure C7. Looking south from the Taylorsville-Liledoun site	6
Figure C8. Relationship between old Waggin Trail site (to the north) and Taylorsville Liledour	1
site (to the south)	7
Figure C9. Lenoir ozone and sulfur dioxide monitoring site	7
Figure C10. Looking north from the Lenoir site	8
Figure C11. Looking northeast from the Lenoir site	8
Figure C12. Looking northwest from the Lenoir site	9
Figure C13. Looking west from the Lenoir site	9
Figure C14. Looking southwest from the Lenoir site	9
Figure C15. Looking east from the Lenoir site	9
Figure C16. Looking southeast from the Lenoir site	9
Figure C17. Looking south from the Lenoir site	9
Figure C18. Hickory fine particle monitoring site	10
Figure C19. Looking north from the Hickory site	10
Figure C21. Looking northwest from the Hickory site	11
Figure C20. Looking northeast from the Hickory site	10
Figure C24. Looking east from the Hickory site	11
Figure C22. Looking west from the Hickory site	11

Figure C23. Looking southwest from the Hickory site	11
Figure C25. Looking southeast from the Hickory site	11
Figure C26. Looking south from the Hickory site	11
Figure C27. Monitoring sites in the Charlotte-Concord-Gastonia MSA	14
Figure C28. Crouse Ozone monitoring site	15
Figure C29. Looking north from the Crouse site	
Figure C30. Looking northwest from the Crouse site	16
Figure C31. Looking west from the Crouse site	17
Figure C32. Looking northeast from the Crouse site	16
Figure C33. Looking east from the Crouse site	
Figure C34. Looking southeast from the Crouse site	17
Figure C35. Looking southwest from the Crouse site	17
Figure C36. Looking south from the Crouse site	17
Figure C37. The Rockwell ozone, fine particle and precursor site, 37-159-0021	18
Figure C38. Looking north from the Rockwell site	18
Figure C39. Looking northwest from the Rockwell site	18
Figure C40. Looking west from the Rockwell site	19
Figure C41. Looking southwest from the Rockwell site	19
Figure C42. Looking northeast from the Rockwell site	
Figure C43. Looking east from the Rockwell site	18
Figure C44. Looking southeast from the Rockwell site	19
Figure C45. Looking south from the Rockwell site	19
Figure C46. Monroe ozone monitoring site, 37-179-0003	
Figure C47. Looking north from the Monroe site	22
Figure C48. Looking west from the Monroe site	22
Figure C49. Looking east from the Monroe site	22
Figure C50. Looking south from the Monroe site	22

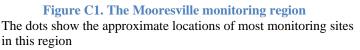

List of Tables

Table C1. Site Table for Taylorsville-Liledoun	5
Table C2. Site Table for Lenoir	
Table C3. Site Table for Hickory	
Table C4. Site Table for Crouse	
Table C5. Site Table for Rockwell	19
Table C6. Site Table for Monroe Middle School	
Table C7. Site Type Appropriate Siting Scales	39

C. The Mooresville Monitoring Region

The Mooresville monitoring region, shown in Figure C1, consists of four areas: (1) the eastern portion of the Hickory-Lenoir-Morganton metropolitan statistical area, MSA, (Alexander and Catawba counties), (2) Cleveland County, (3) the Charlotte MSA (Cabarrus, Gaston, Iredell, Lincoln, Mecklenburg, Rowan and Union counties) and (4) Stanly County.

(1) Hickory-Lenoir-Morganton MSA

The Hickory-Lenoir-Morganton MSA consists of four counties: Alexander, Burke, Caldwell and Catawba County. The major urban areas are the Cities of Hickory, Lenoir and Morganton. The DAQ currently operates three monitoring sites in the Hickory-Lenoir-Morganton MSA. These sites are located at Taylorsville-Liledoun in Alexander County, Lenoir in Caldwell County and the Hickory Water Tower in Catawba County. The locations of these monitors are shown in Figure C2.

A is the Lenoir ozone monitoring site; B is the Taylorsville-Liledoun ozone monitoring site; C is the Hickory particle monitoring site. Circles around the monitors show the scale of representation (Lenoir is regional - 50 Km plus; Taylorsville Liledoun is urban - 4 to 50 Km; Hickory is neighborhood – 0.5 to 4 Km).

Figure C2. Locations of monitors in the Hickory-Lenoir-Morganton MSA

At the Taylorsville-Liledoun site, DAQ operates a seasonal ozone monitor. Figure C3 shows the site.

Table C1 summarizes monitoring information for the site. Figure C4 through Figure C7 show views looking north, east, south and west. This site was established as the downwind site for the Hickory-Lenoir-Morganton MSA in 2013 to replace the Taylorsville-Waggin Trail site. The DAQ requests that the 2014 and 2015 data from the Liledoun site be combined with the 2013 data from the Taylorsville site to provide a valid design value for recommended designations due in 2016. This site is the design value monitor for the MSA. 40 CFR 58 Appendix D requires the Hickory-Lenoir-Morganton MSA to have two ozone monitoring sites.

Figure C3. Taylorsville Liledoun ozone monitoring site, 37-003-0005

Sile I	able	101° 1 ay	101.24	Ine-1	Lileu	Juli							
Taylo	orsville	e Liledour				AQS S	ite Ident	tification	Nun	nber:	37-00	3-0005	
Location: 700 Liledoun Road, Taylorsville, North Carolina													
	Hick	ory-Lenoi	r-Mor	ganto	n, NC			CBSA	#:		25860)	
5.9139)]	Longitud	e -8	31.19		Datum:	1	WGS84	Ele	vation		365 meters	
							Metho	d	S	Sample			
Meth	od				Reference ID					Duration	Sa	mpling Schedule	
Instru	imenta	al with ult	a viol	et pho	tometry (047) EQOA-0880-047			7 1	l-Hour	Ap	r. 1 to Oct. 31		
Date Monitor Established: Ozone Aug. 2, 2013										2, 2013			
d:	Lil	ledoun Ro	oad Traffic Count: 6600 Year of Count: 2013						2013				
ame	Dista	ance to R	oad	Dire	ction to) Road	Monito	or Type	Sta	atement of	f Purp	oose	
									Rea	al-time AQ	-time AQI reporting and		
	2	218 meters			Southe	ast	SLAM	S	for	forecasting. Compliance w/NAAQS.			
						Suitabl	e for Co	mpariso	1				
ame	Mon	itoring O	bjecti	ve S	Scale	to NAA	QS	-		Proposa	l to N	Iove or Change	
	Gene	eral Backg	round	J	Jrban		Yes			Season v	vill sta	art Mar. 1 in 2017	
						Meet	s Part 5	8 Requir	eme	nts for:			
ame		Α	opend	lix A	ix A Appendix			A	ppen	ndix D		Appendix E	
			Yes			Yes			Yes			Yes	
-					D' 4	4 6	Support Dis			<u> </u>			
ame		Probe I	leight	t (m)	Dist	ance to S	Support	Di	stan	ce to Tree	S	Obstacles	
	Taylo 700 I 5.9139 Meth Instru r Estal I: ame ame	Taylorsville 700 Liledou 11edou 5.9139 Method Instrumenta r Establishe 1: Li ame Dista ame Mon Gene ame	Taylorsville Liledoun 700 Liledoun Road, 7 Hickory-Lenoi 5.9139 Longitude Method Instrumental with ultr r Established: Ozon d: Liledoun Ro ame Distance to Ro General Backg ame A	Taylorsville Liledoun 700 Liledoun Road, Taylor 700 Liledoun Road, Taylor Hickory-Lenoir-Mor 5.9139 Longitude -8 Method Instrumental with ultra viol r Established: Ozone d: Liledoun Road ame Distance to Road General Background ame Append Yes	Taylorsville Liledoun 700 Liledoun Road, Taylorsville, Hickory-Lenoir-Morganto 5.9139 Longitude -81.19 Method -81.19 Instrumental with ultra violet photer r Established: Ozone d: Liledoun Road 7 ame Distance to Road Direction ame Monitoring Objective S ame Appendix A Yes	Taylorsville Liledoun 700 Liledoun Road, Taylorsville, North Hickory-Lenoir-Morganton, NC 5.9139 Longitude Method Instrumental with ultra violet photometr r Established: Ozone d: Liledoun Road Traffic ame Distance to Road Direction to General Background Urban ame Appendix A A Yes Yes Yes	700 Liledoun Road, Taylorsville, North Carolina Hickory-Lenoir-Morganton, NC 5.9139 Longitude -81.19 Datum: Method -81.19 Datum: Instrumental with ultra violet photometry (047) r Established: Ozone d: Liledoun Road Traffic Count: ame Distance to Road Direction to Road 218 meters Southeast ame Monitoring Objective Scale General Background Urban Yes Yes	AQS Site Ident AQS Site Ident 700 Liledoun Road, Taylorsville, North Carolina Hickory-Lenoir-Morganton, NC 5.9139 Longitude -81.19 Datum: Y Method Refere Instrumental with ultra violet photometry (047) EQOA r Established: Ozone Traffic Count: 6600 ame Distance to Road Direction to Road Monito 218 meters Southeast SLAM ame Monitoring Objective Scale Suitable for Co ame Appendix A Appendix C Yes	AQS Site Identification AQS Site Identification 700 Liledoun Road, Taylorsville, North Carolina Hickory-Lenoir-Morganton, NC CBSA 5.9139 Longitude -81.19 Datum: WGS84 Method Reference ID Method Reference ID Instrumental with ultra violet photometry (047) EQOA-0880-047 EQOA-0880-047 Traffic Count: 6600 General Background Direction to Road Monitor Type 218 meters Southeast SLAMS General Background Urban Yes Meets Part 58 Requir ame Appendix A Appendix C Appendix C	AQS Site Identification Nur 700 Liledoun Road, Taylorsville, North Carolina Hickory-Lenoir-Morganton, NC CBSA #: 5.9139 Longitude -81.19 Datum: WGS84 Ele Method -81.19 Datum: WGS84 Ele Method -81.19 Datum: WGS84 Ele Method Safeference ID J J Instrumental with ultra violet photometry (047) EQOA-0880-047 J r Established: Ozone d: Liledoun Road Traffic Count: 6600 Y fame Distance to Road Direction to Road Monitor Type State ame Appendix Southeast SLAMS for ame Monitoring Objective Scale Suitable for Comparison ame General Background Urban Yes ame Appendix A Appendix C Appendi Yes Yes Yes Yes	AQS Site Identification Number: 700 Liledoun Road, Taylorsville, North Carolina 700 Liledoun Road, Taylorsville, North Carolina CBSA #: 5.9139 Longitude -81.19 Datum: CBSA #: 5.9139 Longitude -81.19 Datum: WGS84 Elevation Method Method Sample Method Sample Duration Instrumental with ultra violet photometry (047) EQOA-0880-047 1-Hour r Established: Ozone Zear of Co ame Distance to Road Direction to Road Monitor Type Statement of forecasting. C ame Monitoring Objective Scale Suitable for Comparison Real-time AC ame Monitoring Objective Scale Suitable for Comparison Proposa ame Monitoring Objective Scale Yes Yes Yes	Taylorsville Liledoun AQS Site Identification Number: 37-00 700 Liledoun Road, Taylorsville, North Carolina Hickory-Lenoir-Morganton, NC CBSA #: 25860 5.9139 Longitude -81.19 Datum: WGS84 Elevation Sample Method -81.19 Datum: WGS84 Elevation Sample Sample Method -81.19 Datum: WGS84 Elevation Sample Aug. 2 Method Ozone Traffic Count: 6600 Year of Count: Aug. 2 d: Liledoun Road Traffic Count: 6600 Year of Count: Aug. 2 ame Distance to Road Direction to Road Monitor Type Statement of Purg ame Monitoring Objective Scale Suitable for Comparison Real-time AQI rep ame General Background Urban Yes Season will state Yes Yes Yes Yes Yes	

Table C1. Site Table for Taylorsville-Liledoun



Figure C5. Looking west from the Taylorsville-Liledoun site

igure C7. Looking south from the Taylorsville Liledoun site

The Taylorsville-Liledoun site was established on Aug. 2, 2013, after DAQ discovered in January 2013 that Alexander County planned to establish a vehicle maintenance facility at the Waggin Trail site. Because these construction plans, once implemented, made the Waggin Trail site unacceptable for ozone monitoring, DAQ identified the Taylorsville-Liledoun site for the ozone monitor. As shown in Figure C8, the Taylorsville-Liledoun site is located almost exactly one mile south of the former Waggin Trail site, behind the Alexander County Board of Education building, 700 Liledoun Road, Taylorsville. A meteorological tower is operated by the State Climate Office in the same area where the ozone monitor is located. The Waggin Trail and Taylorsville-Liledoun site operated simultaneously from Aug. 2 through Oct. 31, 2013.

Figure C8. Relationship between old Waggin Trail site (to the north) and Taylorsville Liledoun site (to the south)

At **Lenoir**, 37-027-0003, the DAQ operates a seasonal ozone monitor, the second required ozone-monitor for the MSA. In 2013, DAQ added a special purpose sulfur dioxide monitor at Lenoir that operates every third year to provide data for prevention of significant deterioration, PSD, modeling for industrial expansion. The site is shown in Figure C9. Table C2 summarizes monitoring information for the site. Views looking north, northeast, east, southeast, south, southwest, west and northwest from the site are shown in Figure C10 to Figure C17.

Figure C9. Lenoir ozone and sulfur dioxide monitoring site

Table C2.	Site I	able	or Lenoir											
Site Name:	Leno	ir				AQ	S Sit	e Ident	ification N	lun	nber:	37-	-027	7-0003
Location:	291 N	Juway (Circle, Lenoi	r, Noi	rth Caroli	ina								
MSA:		Hick	ory-Lenoir-N	Iorgai	nton, NC				CBSA #	:	25860			
Latitude	35.935	833	Longitude	tude -81.530278 Datum: WGS84						El	evation			366 meters
Parameter]	Metho	d	Sample			Sai	mpling
Name	Meth	od						Refere	nce ID	D	ouration	1	Scl	hedule
Ozone	Instru	ımental	with ultra vi	ultra violet photometry (047) EQOA-0						1	-Hour		Ар	r. 1 to Oct. 31
Sulfur	Instru	imental	with pulsed	fluore	escence (060)							Ye	ar-round; every
dioxide]	EQSA-	0486-060	1	-Hour		thi	rd year
Date Monito	n Estal	Ozone										Jan.	1, 1	1981
Date Monito	or Esta	onsneu	• Sulfur di	oxide								Jan.	1,2	2013
Nearest Roa	d:	Nuwa	y Circle	ele Traffic Count: 490 Year							ar of Count: 2013			
Parameter N	lame	Dista	nce to Road	Di	rection t	o Roa	d I	Monito	or Type	St	atement	t of F	Purp	pose
										Re	al-time	AQI	rep	orting & fore-
Ozone		14	6 meters		East	t		SLAM	S					ce w/NAAQS.
										Pr	evention	n of s	igni	ificant
Sulfur dioxid	e	14	6 meters		East	t		Special	purpose	de	deterioration, PSD, Modeling			
								Suitab	le for					
Parameter N	lame	Moni	toring Obje	ctive	Scale	e (Com	parison	to NAAQ	S	Propo	osal t	o N	Iove or Change
Ozone		Gene	eral backgrou	ınd	Region	al		Ye	es		Season	will	sta	rt Mar. 1 in 2017
Sulfur dioxid	e	Gen	eral backgrou	ınd	Region	al		Ye	es				Ν	one
							Mee	ts Part	58 Requi	rem	ents:			
Parameter N	ame Appendix A Appendi				ndix (С	Ap	pen	dix D			Appendix E		
Ozone			Y	es		Yes				Ye	s			Yes
Sulfur dioxid	e		Y	es		Yes Yes						Yes		
Parameter N	lame		Probe Heig	ht (m) Dist	tance	to Su	ipport	Dist	Distance to Trees				Obstacles
Ozone			3.81 meter								5.28 meters			None
Sulfur dioxid	e		3.683 met	ers		1.0)97 m	neter	8	<u>3.9</u> 4	1 meters	s		None

Table C2. Site Table for Lenoir

Figure C11. Looking northeast from the Lenoir site

Figure C12. Looking northwest from the Lenoir site

Figure C13. Looking west from the Lenoir site

Figure C14. Looking southwest from the Lenoir site

Figure C15. Looking east from the Lenoir site

Figure C16. Looking southeast from the Lenoir site

Figure C17. Looking south from the Lenoir site

35°43'44" N 81°21'56" W

Figure C18. Hickory fine particle monitoring site

Figure C19. Looking north from the Hickory site

At the Hickory site, the DAQ operates onein-three day and one-in-six-day fine particle collocated federal reference method, FRM, monitors and a continuous fine particle monitor. The one-in-six-day speciation fine particle SASS and URG monitors and the two one-in-six-day high volume PM10 monitors were shut down in 2014. In 2015 a second continuous fine particle monitor that recently received equivalency status was added to the site so DAQ could evaluate its performance. By the end of 2016 the DAQ anticipates making one of the continuous monitors the primary monitor and shutting down the primary FRM monitor at the site. Figure C18 through Figure C26 show the site as well as views looking north, northeast, east, southeast, south, southwest, west and northwest. Table C3 summarizes monitoring information for the site.

Figure C20. Looking northeast from the Hickory site

Figure C21. Looking northwest from the Hickory site

Figure C22. Looking west from the Hickory site

Figure C23. Looking southwest from the Hickory site

Figure C24. Looking east from the Hickory site

Figure C25. Looking southeast from the Hickory site

Figure C26. Looking south from the Hickory site

Site Name: Hickory AQS Site Identification Number Location: 1650 1 st Street, Hickory, North Carolina	37-035-0004		
	r 37-035-0004		
MSA: Hickory-Lenoir-Morganton, NC CBSA #:	25860		
Latitude 35.728889 Longitude -81.365556 Datum:	WGS84		
Elevation 333 meters			
Parameter Name Method Sample Method Reference ID Duration			
R & P Model 2025 PM-2.5 Sequential Air Sampler w/VSCC – Gravimetric AnalysisRFPS-1006-14524-Hot	Every Third Day, Year Round Every Sixth Day, Ir Year Round		
PM 2.5 local conditions, BAM 1020Met One BAM-1020 Mass Monitor w/ VSCCEQPM-0308-1701-Hour	Year Round		
PM 2.5 local conditions, BAM 1022Met One BAM-1022 Mass Monitor w/ VSCCEQPM-1013-2091-Hour			
PM 2.5 Local Conditions, Primary Monitor	Jan. 1, 1999		
Date Monitor PM 2.5 Local Conditions, Collocated Monitor	Aug. 16, 2008		
Established: PM 2.5 local conditions, BAM 1020	Dec. 11, 2014		
PM 2.5 local conditions, BAM 1022	Sept. 14, 2015		
Nearest Road:2 nd Avenue SWTraffic Count:3400Y	ear of Count: 2013		
Distance toDirectionParameter NameRoadto RoadMonitor TypeStatemed	ent of Purpose		
	ance w/NAAQS. AQI		
	g. SIP required monitor.		
	ne AQI reporting &		
BAM 1020 22.25 meters southeast non-regulatory forecast			
PM 2.5 local conditions, South Special purpose, Evaluation	ion of new monitor		
BAM 1022 21.34 meters southeast non-regulatory perform	ance.		
Monitoring Suitable for Comparison	Proposal to Move or Change		
	Shut down primary on		
	Dec. 31, 2016		
	Shut down after Sept. 30,		
	2016		
	Make primary Jan. 1, 2017, if data matches		
Meets Part 58Meets Part 58Meets Part 58Appendix AAppendix CAppendix I	58Meets Part 58OAppendix E		
Parameter Name Requirements Requirements Requirements	•		
PM 2.5 Local Conditions, FRM Yes Yes Yes	Yes		
PM 2.5 local conditions, BAM 1020 Yes Yes Yes	Yes		
PM 2.5 local conditions, BAM 1022 Yes Yes Yes	Yes		
Parameter Name Probe Height (m) Distance to Support Distan	ce to Trees Obstacles		
	ъ. — Тат		
2.3368 2.0574 meters >20	0 meters None		
2.3368 2.0574 meters >20 PM 2.5 Local Conditions, FRM 2.3622 2.0574 meters >20) meters None		
2.3368 2.0574 meters >20 PM 2.5 Local Conditions, FRM 2.3622 2.0574 meters >20 PM 2.5 local conditions, BAM 1020 2.5146 2.159 meters >20			

Table C3. Site Table for Hickory

Both one-in-six day PM10 monitors were shut down on Dec. 31, 2014. The PM10 monitor was not required by 40 CFR 58 Appendix D, the DAQ does not use the PM10 data from this site for

permit modeling and the monitor is no longer needed to ensure an adequate PM10 network. The United States Environmental Protection Agency, EPA, ended the funding for the analysis of the SASS and URG samples in January 2015. As a result, the DAQ also shut down these monitors in 2014. At the end of December 2015 the well impactor ninety-six, WINS, on the FRM was replaced with a very sharp cut cyclone, VSCC. This change was made because the VSCC is easier and less expensive to maintain.

The Hickory-Lenoir-Morganton MSA did not need to do lead monitoring to meet the 2010 **lead monitoring** requirements because it does not have an NCore monitoring station and has no facilities within the MSA reporting over one half tons of lead emissions to the air.¹

The 2015 **ozone monitoring** requirements do not require additional monitors in the Hickory-Lenoir-Morganton MSA. The MSA has the minimum number of monitors required by 40 CFR 58 Appendix D for population exposure monitoring in urban areas. Seasonal ozone monitoring will start on Mar. 1 instead of Apr. 1 beginning in 2017.

The Hickory-Lenoir-Morganton MSA did not need additional monitors to comply with the 2010 **nitrogen dioxide monitoring** requirements. It is too small to require area-wide monitors or near roadway monitoring.

The DAQ will not need to add source-oriented monitors in the Hickory-Lenoir-Morganton MSA to comply with the 2010 **sulfur dioxide monitoring** requirements for source-oriented monitoring. No additional monitors were required to comply with the population weighted emission index (PWEI) monitoring requirements because the total sulfur dioxide emissions in this MSA multiplied by the total MSA population does not result in a high enough index to require monitoring.

This area will also not be required to operate near road **carbon monoxide** and **fine particle** monitors because the population is under one million.

(2) Cleveland County

Cleveland County is part of the Charlotte-Concord combined statistical area. The micropolitan statistical area of Shelby is in the county. The DAQ currently does not operate any monitors in Cleveland County. The December 2010 revisions to the **lead monitoring** network regulations did not result in additional monitoring in Cleveland County. This county is not required to add ozone monitors because the area does not have any MSAs that must meet the minimum number of monitors required by 40 CFR 58 Appendix D for population exposure monitoring in urban areas. Cleveland County is too small to require area-wide nitrogen dioxide monitors or near roadway monitoring for nitrogen dioxide, carbon monoxide and fine particles. The 2010 **sulfur dioxide** monitoring requirements also did not result in additional monitoring in this area because there are no large sources of sulfur dioxide in this county. This county is also not required to

¹ Data obtained from the DAQ emission inventory database, accessed Feb. 2, 2012.

monitor for **carbon monoxide** because the population is too small to require near road carbon monoxide monitoring.

(3) Charlotte-Gastonia-Concord MSA

The Charlotte-Gastonia-Concord MSA consists of 10 counties: Cabarrus, Gaston, Iredell, Lincoln, Mecklenburg, Rowan and Union in North Carolina and Chester, Lancaster and York in South Carolina. The major urban areas are Charlotte, Gastonia and Concord in North Carolina and Rock Hill in South Carolina. This MSA is one of the fastest growing areas in North Carolina. Currently DAQ operates three monitoring sites in the Charlotte-Gastonia-Concord MSA, Mecklenburg County Air Quality, MCAQ, operates six and the South Carolina Department of Health and Environmental Conservation, DHEC, operates one. These sites are located at Crouse (Lincoln County), Remount Road, Garinger High School, University Meadows, Montclaire, Fire Station #11 and Oakdale, in Charlotte (Mecklenburg County), Rockwell (Rowan County), Monroe (Union County) and York (York County, South Carolina). The locations of these monitors are shown in Figure C27.

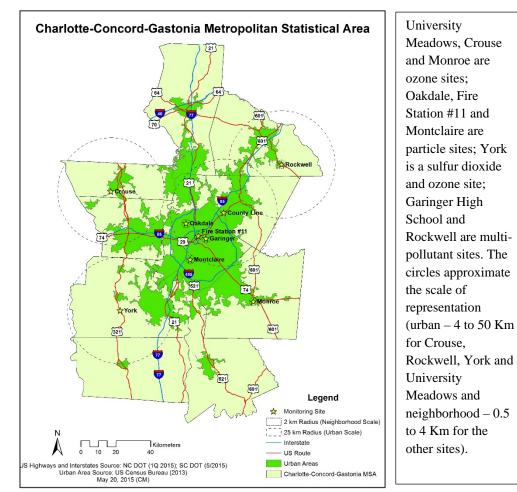


Figure C27. Monitoring sites in the Charlotte-Concord-Gastonia MSA

The DAQ shut down the **Enochville** seasonal ozone monitor in Rowan County at the end of the 2013 ozone season and the Grier Middle School (Gaston County) fine particle monitoring site in February 2015. At the end of the 2014 ozone season MCAQ was evicted from the Arrowood site (Mecklenburg County) and at the end of the 2015 ozone season MCAQ was evicted from the County Line site (Mecklenburg County). Mecklenburg County Air Quality established the University Meadows site on Apr. 1, 2016, to replace the County Line site. The DAQ shut down the **Grier Middle School** site on Feb. 25, 2015. The NAAQS and AQI monitors were not required by 40 CFR 58 Appendix D, the DAQ no longer needed the continuous monitor at the site for air quality forecasting and because of the lower fine particle concentrations throughout the state, the monitors are discussed in Appendix B to Volume 1. Only the three DAQ sites (Crouse in Lincoln County, Rockwell in Rowan County and Monroe in Union County) are further discussed in this subsection.

At the **Crouse** site in Lincoln County, the DAQ operates a seasonal ozone monitor. The site is shown in Figure C28. Monitoring information for the site is summarized in Table C4. Views looking north, northeast, east, southeast, south, southwest, west and northwest are provided in Figure C29 through Figure C36. The site was originally established in 1993 as the secondary downwind site for the Charlotte-Concord-Gastonia MSA. Today it provides valuable information on ozone concentrations in Lincoln County and could be useful for keeping parts of the county from being designated as in nonattainment with the ozone standard.

Figure C28. Crouse Ozone monitoring site

Site Name:	Site Name: Crouse					QS Si	te Identifi	icati	on N	umber	37-109-0004			
Location:	1487	Rivervi	ew Road,	Lincolnton	n, North	Caro	lina							
CBSA: Charlotte-Gastonia-Concor					d, NC-S	С		CB	SA #	#:	167	40		
Latitude		35.4385	556	Longitud	e -	-81.276750 Datum:		WG	iS84					
Elevation		270 me	ters											
Parameter Name Method					Method Reference ID				Sample Duration			Sampling Schedule		
		Instrum	nental with	ultra										
Ozone		violet photometry (047) EQOA-0880-04)-047	1-Hour			A	pr. 1 to Oct. 31					
Date Monitor Established: Ozone					· · · · · · · · · · · · · · · · · · ·						Ju	ıly 1, 1993		
Nearest Road	:	Rivervi	ew Road	Traffic	Count:	unt: 1400 Year of Count		nt:	2013					
Parameter Name Distance to Road Direction to					tion to F	Road	Monito	r Ty	ype	Statemen	t of P	urpose		

Table C4. Site Table for Crouse

Ozone	62 meters		Southwes	st	SLAMS			/NAAQS. Real-time & forecasting.	
		Suita			ole for Comp	oarison			
Parameter Name	Monitoring Objecti	ive	Scale		to NAAQS	Proposal to Move or Change			
Ozone	General background		Urban Yes				Season will start Mar. 1 in 2017		
Parameter Name			Meets	Requir	ements of 40	CFR Pa	art 58		
	Appendix A		Append	lix C	App	oendix D		Appendix E	
Ozone	Yes		Yes			Yes		Yes	
Parameter Name	Probe Height (m)	E	Distance to Support		ort	Distance to T		Obstacles	
Ozone	3.5		1.3 meter		er	>20 meters		None	

Table C4. Site Table for Crouse

Figure C29. Looking north from the Crouse site

Figure C30. Looking northwest from the Crouse site

Figure C31. Looking northeast from the Crouse

Figure C32. Looking east from the Crouse site

Figure C33. Looking west from the Crouse site

Figure C34. Looking southwest from the Crouse site

Figure C35. Looking southeast from the Crouse site

Figure C36. Looking south from the Crouse site

At **Rockwell** DAQ operates a year-round ozone monitor. A continuous fine particle nitrate monitor and aethalometer as well as a reactive oxides of nitrogen monitor also operate year-round at this site. The one-in-three-day fine particle FRM monitor, one-in-six day collocated fine particle monitor and continuous fine particle monitor were shut down at the end of 2015. The one-in-six-day speciation fine particle monitors were shut down in January 2015 because the EPA stopped funding the sample analysis for them. Pictures of the site as well as views looking north, northeast, east, southeast, south, southwest, west and northwest are provided in Figure C37 through Figure C45.

Figure C37. The Rockwell ozone, fine particle and precursor site, 37-159-0021

Figure C38. Looking north from the Rockwell site

Figure C39. Looking northwest from the Rockwell site

Figure C40. Looking northeast from the Rockwell site

Figure C41. Looking east from the Rockwell site

Figure C42. Looking west from the Rockwell site

Figure C43. Looking southwest from the Rockwell site

Figure C44. Looking southeast from the Rockwell

Figure C45. Looking south from the Rockwell site

Site Name:			Rockwell	AQS Site	e Idei	ntification Nun	ıber	37-1	59-0021	
Location:			316 West S	treet, Rockw	vell, l	North Carolina				
CBSA:	Char	lotte-Gasto	onia-Concord, NG	C-SC		CBSA #:		16740		
Latitude	35.55	51868	Longitude	-80.395039	9	Datum:		WG	S84	
Elevation	240 r	neters								
Parameter Name	Metł	ıod			-	thod ference ID	Samp Dura		Sampling Schedule	
Reactive oxides of nitrogen			tal chemilumine lectron 42i-Y (6			t a reference thod	1-Ho	ur	Year round	
Ozone	tal with ultra vio ry (047)	let	EQOA-0880-047		1-Hour		Year round			
Total Nitrate PM2.5 L	С	R&P Mod Vaporizat	lel 8400N Flash ion (861)			t a reference thod	1-Hour		Year round	
Black Carbon PM2.5 LC/UV Carbon PM2.5	5 LC	Magee Sc Aethalom	ientific AE21ER eter (866)			t a reference thod	1-Hour		Year round	
Date Monitor Establi	ished:	Reactive	e oxides of nitrog	ides of nitrogen					Apr. 1, 1993	
Date Monitor Establi	ished:	Ozone						A	Apr. 1, 1993	
Date Monitor Establi	Total Ni	trate PM2.5 LC		J	an. 2, 2007					
Date Monitor Establi	Black C	arbon PM2.5 LC	/UV Carbon	J	Jan. 1, 2009					
Nearest Road:		Gold	Hill Road	ill Road						
Traffic Count:		Not a	available							

Table C5. Site Table for Rockwell

Parameter Name	Distar to Roa	nce 1	Direction to Road		Ionitor Type	e Sta	atei	nent of Purpo	se	
Reactive oxides of nitrogen	17 me		North					e and fine partic oring; emission tion		
<u></u>					U	*	zone	e precursor mor	nitorin	ıg.
Ozone	17 me	eters	North	S	pecial purpos	se Co	omp	liance w/NAA	QS. M	Iodeling.
Total nitrate PM2.5 LC	26 me	eters	North	S	pecial Purpos	se Fii	ne p	article precurso	or mo	nitoring.
Black carbon PM2.5 LC/UV carbon PM2.5 LC	26 me	eters	North	s	pecial Purpos	se Fii	ne p	article precurso	or mo	nitoring.
Parameter Name	Monit Objec		<u>1</u>					to Compare QS		posal to ve or Change
Reactive oxides of nitrogen		num ozo ntration		Urban			No		None	
Ozone	Highes	st conce	entration	Urb				Yes	Nor	ie
Total nitrate PM2.5 LC	Popula	tion ex	posure	Nei	eighborhood			No	Non	ie
Black carbon PM2.5 LC/UV carbon PM2.5 LC	Popula	tion ex	posure	Nei	ghborhood			No	Nor	ie
					Meets I	Part 58	Re	quirements for	r :	
Parameter Name			Append	dix A	Appendix	с С		Appendix D		Appendix E
Reactive oxides of nitrogen			Ye	s	No not re	juired to		No requirements		Yes
Ozone			Ye	s	Ye	es		No requireme	nts	Yes
Total nitrate PM2.5 LC			No)	No not re	quired to		No requireme	nts	Yes
Black carbon PM2.5 LC/UV car	bon PM	2.5								
LC			No)	No not ree	quired t	to	No requireme	nts	Yes
Parameter Name	Probe	e Height ((m)	Distance to	Suppo	rt	Distance to 7	Frees	Obstacles	
Reactive oxides of nitrogen	Reactive oxides of nitrogen				1.1 me	eters		14.3 meters		None
Ozone			3.6		1.1 me	eters		14.3 meters		None
Total nitrate PM2.5 LC	Total nitrate PM2.5 LC				> 2 me	eters		>20 meters		None
Black carbon PM2.5 LC/UV car PM2.5 LC	Unavailable Unavailable			> 2 me	eters		>20 meters		None	

Table C5. Site Table for Rockwell

At the **Monroe Middle School** site, the DAQ operates a seasonal ozone monitor. Figure C46 shows the site. Table C6 summarizes monitoring information for the site. Figure C47 through Figure C50 provide views looking north, east, south and west. This ozone-monitoring site is one of six for the MSA. 40 CFR 58 Appendix D requires the Charlotte-Gastonia-Concord MSA to have two ozone monitoring sites. The site is located at the goal end of a soccer field so soccer balls sometimes damage the probe. The DAQ has investigated moving the site to another part of Monroe; however, this site meets the siting criteria in 40 CFR 58 Appendix E better than any nearby alternative location. The DAQ has also added a fence on the roof of the building between the probe and soccer field to protect the probe.

Figure C46. Monroe ozone monitoring site, 37-179-0003

Table C6. Site Table for Monroe Middle School

2.00 -0											
Monro	e Middle School			AQS Sit	te Ident	tificatio	n Number	37-	179-0003		
701 Cha	rles Street, Monroe	e, North (Carolina								
Charlott	e-Gastonia-Concor	d, NC-SO	2			CBSA #	#:	167	40		
34.9738	89 Longitude	-80.540	833		WC	S S84					
	184 meters										
Parameter Name Method					nce ID	Samp	le Duration	Sa	mpling Schedule		
Instrumental with ultra violet photometry (047) EQOA-0880-047 1-Hour				-	or. 1 to Oct. 31						
Date Monitor Established: Ozone								Apr.	7, 1999		
Nearest Road: Charles Street				Traffic Count:			Year of Co	unt:	2012		
Parameter Name Distance to Road			Direction to Road Mon				Statemen	t of P	urpose		
	71.3 meters		1			-			e w/NAAQS. Real-time ing & forecasting.		
	Monitoring Objective	Sc	ale				QS Propo	sal to	Move or Change		
Pop	oulation Exposure	Neighb	orhood		Yes	3	Seasor	will a	start Mar. 1 in 2017		
Арре		Appendix C		C				D	Meets Part 58 Appendix E Requirements		
	Yes		Yes				Yes		Yes		
Name	Probe Height (m)) Dis	Distance to Support			Dis	stance to Tr	ees	Obstacles		
	3.9		1 meter >20 meters					None			
	Monro 701 Cha Charlott 34.9738 Name Dr Estab Id: Name Por Name	Monroe Middle School 701 Charles Street, Monroe 701 Charles Street, Monroe Charlotte-Gastonia-Concor 34.973889 Longitude 184 meters Name Method Instrumental with violet photometry or Established: Ozone od: Charles Street Name Distance to Road 71.3 meters Monitoring Objective Population Exposure Meets Part 58 Appendix A Requirements Yes Name	Monroe Middle School 701 Charles Street, Monroe, North C Charlotte-Gastonia-Concord, NC-SG 34.973889 Longitude Is4 meters Name Method Instrumental with ultra violet photometry (047) or Established: Ozone Other Charles Street Name Distance to Road Distance to Road Director Yopulation Exposure Neighb Meets Part 58 Method Appendix A Appendix A Yes Yes	Monroe Middle School 701 Charles Street, Monroe, North Carolina Charlotte-Gastonia-Concord, NC-SC 34.973889 Longitude -80.540833 184 meters Name Method Method Instrumental with ultra violet photometry (047) EQOA- or Established: Ozone Ozone or Established: Ozone Traff Name Distance to Road Direction to I 71.3 meters West Monitoring Objective Scale Population Exposure Neighborhood Mame Requirements Requiremets Yes Yes Yes	701 Charles Street, Monroe, North Carolina Charlotte-Gastonia-Concord, NC-SC 34.973889 Longitude 184 meters Name Method Method Method Reference Instrumental with ultra violet photometry (047) EQOA-0880-04 or Established: Ozone Name Distance to Road Direction to Road 71.3 meters West Scale 71.3 meters West Scale Population Exposure Neighborhood Scale Population Exposure Neighborhood Scale Mame Requirements Appendix C Name Requirements Yes Yes Yes Yes	Monroe Middle School AQS Site Ident 701 Charles Street, Monroe, North Carolina Charlotte-Gastonia-Concord, NC-SC 34.973889 Longitude -80.540833 184 meters 184 meters Name Method Method Reference ID Instrumental with ultra violet photometry (047) EQOA-0880-047 or Established: Ozone Ind: Charles Street Traffic Count: 53 Name Distance to Road Direction to Road Monitor 71.3 meters West Purpose Monitoring Scale Comparison to the comparis	Monroe Middle School AQS Site Identification 701 Charles Street, Monroe, North Carolina Charlotte-Gastonia-Concord, NC-SC CBSA # 34.973889 Longitude -80.540833 Datuma 184 meters 184 meters Datuma Name Method Method Reference ID Samp Instrumental with ultra violet photometry (047) EQOA-0880-047 1-Hoto or Established: Ozone Special 1-Hoto Name Distance to Road Direction to Road Monitor Type Special 71.3 meters Suitable for Special Population Exposure Neighborhood Yes Yes Meets Part 58 Appendix A Appendix C Meets Part 58 Appendix A Appendix C Requirements Requirements Requirements Yes Yes Yes Yes Yes Yes	Monroe Middle School AQS Site Identification Number 701 Charles Street, Monroe, North Carolina CBSA #: 34.973889 Longitude -80.540833 Datum: 34.973889 Longitude -80.540833 Datum: 184 meters 184 meters Datum: Image: Concent of the concent of th	Monroe Middle School AQS Site Identification Number 37- 701 Charles Street, Monroe, North Carolina Charlotte-Gastonia-Concord, NC-SC CBSA #: 167 34.973889 Longitude -80.540833 Datum: WC 184 meters 184 meters WC Sample Duration Sa Name Method Method Reference ID Sample Duration Sa Instrumental with ultra violet photometry (047) EQOA-0880-047 1-Hour Apr. or Established: Ozone Apr. Apr. Apr. or Established: Ozone Special Compliance w/Apr. Mame Distance to Road Direction to Road Monitor Type Statement of P Name Monitoring Scale Comparison to NAQS Proposal to Population Exposure Neighborhood Yes Season will s Name Requirements Requirements Requirements Yes Yes Yes Yes Yes Yes Yes Yes		

Figure C47. Looking north from the Monroe site

Figure C49. Looking east from the Monroe site

Figure C48. Looking west from the Monroe site

Figure C50. Looking south from the Monroe site

The DAQ continues to operate the Monroe site because it provides valuable information for developing nonattainment boundaries and has been used in the past to keep parts of Union County from being designated as in nonattainment with the ozone standard.

Changes to the **lead monitoring** requirements in 2010 resulted in additional monitoring in the Charlotte-Gastonia-Concord MSA. This MSA has an NCore monitoring site and began

monitoring at that site for lead in the ambient air Dec. 27, 2011. This lead monitoring ended on Apr. 30, 2016, when new monitoring regulations became effective.²

The 2015 **ozone monitoring** requirements did not result in additional monitoring in the Charlotte-Gastonia-Concord MSA. The MSA currently exceeds the minimum number of monitors required by 40 CFR 58 Appendix D for population exposure monitoring in urban areas. Seasonal ozone monitoring will start on Mar. 1 instead of Apr. 1 beginning in 2017.

The 2010 **nitrogen dioxide** monitoring requirements required additional monitoring in the Charlotte-Gastonia-Concord MSA. The MSA is required to have an area-wide monitor starting in 2013 and a near-roadway monitor starting in 2014. The 2010 **sulfur dioxide** monitoring requirements also required additional monitoring in the Charlotte-Gastonia-Concord MSA. This MSA was required to have two population-weighted emission index (PWEI) monitors within the MSA because there were large sources of sulfur dioxide as well as large numbers of people in the MSA. These PWEI monitors are located at the Garinger High School monitoring site in Charlotte and at the York monitoring site in York, South Carolina. However, a decline in sulfur dioxide emissions result in only one PWEI monitor being required. The changes in the **carbon monoxide monitoring** requirements will also result in more monitoring in this MSA. Because the population in the MSA is over one million people, a near road carbon monoxide monitor will be required in 2017.

(4) Stanly County

Stanly County is part of the Charlotte- Concord combined statistical area. The Albemarle micropolitan statistical area is in Stanly County. The DAQ does not operate any monitoring sites in this county.

The expansion of the **lead monitoring** network to support the lower lead NAAQS did not result in monitoring in Stanly County. The 2015 **ozone monitoring** requirements also did not result in more monitoring in this area. This area does not have any MSAs requiring a minimum number of monitors by 40 CFR 58 Appendix D for population exposure monitoring in urban areas.

The 2010 **nitrogen dioxide** monitoring requirements did not result in additional monitoring in Stanly County. The area is too small to require area-wide monitors or near roadway monitoring. The 2010 **sulfur dioxide** monitoring requirements did not require any additional monitoring in this area because the population and sulfur dioxide emissions do not exceed the required threshold for monitoring. The 2011 changes to the **carbon monoxide monitoring** requirements also did not require additional monitors in this area because the populational monitors in this area because the populational monitors in this area because the population is too small.

² Revisions to Ambient Monitoring Quality Assurance and Other Requirements, Federal Register, Vol. 81, No. 59, Monday, Mar. 28, 2016, available on the worldwide web at <u>https://www.gpo.gov/fdsys/pkg/FR-2016-03-28/pdf/2016-06226.pdf</u>.

Appendix C.1 Annual Network Site Review Forms for 2015

Taylorsville-Liledoun

Lenoir

Hickory

Crouse

Rockwell

Monroe Middle School in Monroe

Region_MRO Site Name Taylorsville Liledoun		AQS Site # 37- <u>003</u> - <u>0005</u>						
Street Address-700 Liledoun Road		City <u>Taylorsville</u>						
Urban Area Not in an Urban	Area	Core-based	Stat	istical Area	Hic	kory-Lenoir	-Morganton	, NC
Enter Exact								
Longitude <u>-81.1910</u>	Latitude	<u>35.913</u>	8		Me	ethod of Mea	asuring	
In Decimal Degrees	In Decima	l Degrees		Other (exp	lain)	Explanatio	on: <u>Google</u>	Maps
Elevation Above/below Mean S	ea Level (in	meters)				<u>362</u>		
Name of nearest road to inlet probe Liledoun Road ADT 7400 Year latest available 2014 Distance of ozone probe to nearest traffic lane (m) 219 Direction from ozone probe to nearest traffic lane SE Comments: www.ncdot.gov/travel/statemapping/trafficvolumemaps Name of nearest major road HWY 64 ADT 8700 Year latest available 2014 Distance of site to nearest major road (m) 526 Direction from site to nearest major road SW Comments: www.ncdot.gov/travel/statemapping/trafficvolumemaps								
Site located near electrical substation/high voltage power lines? Yes No 🛛				No 🛛				
Distance of site to nearest railroad track (m) <u>2152</u> Direction to RR <u>NE</u> NA Distance of site to nearest power pole w/transformer (m) 221 Direction SE								
Distance between site and drip line of water tower (m)Direction from site to water towerNA								
Explain any sources of potential bias; include cultivated fields, loose bulk storage, stacks, vents, railroad tracks, construction activities, fast food restaurants, and swimming pools. None noted.								

Site Information

ANSWER ALL APPLICABLE QUESTIONS:

Parameters	Monitoring Objective	Scale	Site Type		
\bigcirc O ₃	General/Background	Micro	SLAMS		
	Max O3 Concentration	Middle	SPM		
	Population Exposure	Neighborhood			
	Source Oriented	⊠Urban			
	Upwind Background	Regional			
Probe inlet height	(from ground) 2-15 m? Yes	No 🗌			
Give actual measu	ared height from ground (meters) <u>3.65</u>			
Distance of outer	Distance of outer edge of probe inlet from horizontal (wall) and/or vertical (roof) supporting				
structure $> 1 \text{ m}$? Yes \boxtimes No					
Actual measured distance from outer edge of probe to supporting structure (meters) 1.06					
Is probe > 20 m from the nearest tree drip line? Yes \times *No \square (answer *'d questions)					
*Is probe > 10 m from the nearest tree drip line? Yes *No					
*Distance from probe to tree (m) Direction from probe to tree *Height of tree (m)					
Are there any obstacles to air flow? *Yes 🗌 (answer *'d questions) No 🔀					
*Identify obstacle Distance from probe inlet (m)Direction from probe inlet to obstacle *Is distance from inlet probe to obstacle at least twice the height that the obstacle protrudes above the probe? Yes No					

Taylorsville Liledoun Site Review 2015

1

RECOMMENDATIONS:

1) Maintain current site status? Yes 🛛 *No 🗌 (answer *'d questions)	
*2) Change monitoring objective? Yes [] (enter new objective:) No [
*3) Change scale of representativeness? Yes 🗌 (enter new scale:) No 🗌	
*4) Relocate site? Yes No	
Comments: UV monitor had winter cap on. New pictures taken.	
Date of Last Site Pictures: <u>December 4, 2015</u> New Pictures Submitted? Yes	No
Reviewer Paul J. Chappin	

Ambient Monitoring Coordina	ator Deborah W Manning	Date: 12/15/2015
Amorent womtoring coordine	dor Deboran W. Manning	Date. 12/15/2015

Instructions:

If the annual network review has indicated that the monitoring objectives and scale of representativeness for the site have not changed and the siting criteria still meets those monitoring objectives and that scale of representativeness and there are no other reasons to modify the site in any way, check "Yes" to the question "Maintain current site status?" and skip the rest of the recommendations section.

If the annual network review has indicated that the monitoring objectives, scale of representativeness, or siting criteria have changed for some reason or there is another reason to modify the site in some way, check "No" to the question "Maintain current site status?" and complete the rest of the recommendations section. If the monitoring objective or scale of representativeness needs to be changed, check the "Yes" box and write in the new monitoring objective or scale of representativeness on the line. Otherwise check the "No" box. If the site needs to be relocated, check the "Yes" box. If the site needs to be shut down, write "Shut down" in the comments line. Also use the comments line to explain any change requested.

Check the site picture archive to find out when the last set of site pictures were taken and write the date down on the line. If the pictures are more than five years old or if something at the site has changed in the past year, take new site pictures. Changes that require new site pictures include additions, removals, or movement of monitors at the site, growth or removal of trees and other shrubs at the site, and construction of roads or buildings at or in the vicinity of the site.

Pictures of the site should at a minimum include at least one picture showing the site itself and pictures standing at the probe or inlet or as close as possible to the probe or inlet looking in the four compass directions (north, east, south, and west). If meteorological data are collected at the site, pictures standing at the meteorological tower looking southwest and northeast should also be included. Sometimes pictures looking at the site from the four compass directions are also helpful.

Be sure to correctly identify the pictures as to which compass direction they show. This documentation may be achieved by using good notes when taking the pictures, holding a compass in front of the camera, or placing a sign with the appropriate direction indicated somewhere in the picture. Label the pictures with the name of the site using the two digit logger ID (HC, JW, *etc.*), the direction (N, NE, E, SE, S, SW, W, NW), and the date taken (YYYYMMDD) and transfer the pictures to the group drive in the appropriate Incoming/Regional Office directory.

Taylorsville Liledoun Site Review 2015

3

Region ARO Site I	Name <u>Lenoi</u>	<u>r</u>	AQSS	Site # 37- <u>027</u> - <u>0003</u>
Street Address-291 Nuway Circle		City Lenoir		
Urban Area Not in an Urb	an Area	Core-based Sta	atistical Area None	3
Enter	Exact			
Longitude <u>-81.530614</u>	Latitude	35.935934	4 Method of Measuring	
In Decimal Degrees	In Decim	al Degrees	Other (explain) Explanation: Google Earth	
Elevation Above/below Mea	n Sea Level	(in meters)		<u>372</u>
Name of nearest road to inlet probe Nuway Circle ADT 490 Year latest available2013 Comments: Distance of site to nearest major road (m) 146.00 Direction from site to nearest major road E Name of nearest major road <u>Hwy 321</u> ADT 23000 Year latest available2013 Comments:				
Site located near electrical substation/high voltage power lines? Yes X No				
Distance of site to nearest railroad track (m) 1016 Direction to RR WSW INA Distance of site to nearest power pole (m) 73 Direction ENE w/transformer (m) 73 Direction ENE				
Distance between site and drip line of water tower (m) Direction from site to water tower NA				
Explain any sources of potential bias; include cultivated fields, loose bulk storage, stacks, vents, railroad tracks, construction activities, fast food restaurants, and swimming pools.				

Site Information

ANSWER ALL APPLICABLE QUESTIONS: Parameters Monitoring Objective

Parameters	Monitoring Objective	Scale	Monitor Type		
Ozone (O3)	General/Background	Micro	SLAMS		
	Highest Concentration	Middle	SPM		
	Max O3 Concentration	Neighborhood			
	Population Exposure	Urban			
	Source Oriented	Regional			
	Transport				
	Upwind Background				
	Welfare Related Impacts				
Probe inlet height (from ground) 2-15 m? Yes 🛛 No 🗌 Give actual measured height from ground (meters) 3.81					
Distance of outer edge of probe inlet from horizontal (wall) and/or vertical (roof) supporting structure > 1 m? Yes \boxtimes No \square Actual measured distance from outer edge of probe to supporting structure (meters) 1.189					
Distance of outer edge of probe inlet from other gas monitoring probe inlets > 0.25 m? Yes \square No \square NA \square					
Is probe > 20 m from the nearest tree drip line? Yes \square *No \boxtimes (answer *'d questions)					
*Is probe > 10 m fro	m the nearest tree drip line? Yes 🔲 *No 🛛				
*Distance from prob	be to tree (m) 5.09 Direction from probe to tree	<u>S</u> *Height of tree (m) <u>6.18 (</u>	2.37m above inlet probe)		
Are there any obstac	eles to air flow? *Yes 🗌 (answer *'d questions) N	To 🛛			
*Identify obstacle	Distance from probe inlet (m)Direc	tion from probe inlet to obst	acle		
	let probe to obstacle at least twice the height that t				
	nearest traffic lane (m) <u>146</u> Direction from pro		· · · · · · · · · · · · · · · · · · ·		

2015 Lenoir Site Review

OZONE MONITOR RECOMMENDATIONS:

- 1) Maintain current monitor status? Yes 🛛 *No 🗌 (answer *'d questions)
- *2) Change monitoring objective? Yes [(enter new objective _____) No [-
- *3) Change scale of representativeness? Yes 🗌 (enter new scale ____) No 🔲
- *4) Relocate monitor? Yes 🗌 No 🗌

<u>Comments:</u> <u>Distance from inlet probe to nearest tree (5.09 m) is more than twice the height that the tree protrudes</u> above the probe (2.37 m).

ANSWER ALL APPLICABLE QUESTIONS:

Parameters	Monitoring Objective	Scale	Monitor Type		
☐ SO₂ (NAAQS) ☐ SO₂ (trace-level)	General/Background Highest Concentration Population Exposure Source Oriented Transport Upwind Background Welfare Related Impacts	Micro Middle Neighborhood Urban Regional	SLAMS SPM		
Probe inlet height (from ground) 2-15 m? Yes No Give actual measured height from ground (meters)					
Distance of outer edge of probe inlet from horizontal (wall) and/or vertical (roof) supporting structure > 1 m? Yes \square No \square Actual measured distance from outer edge of probe to supporting structure (meters)					
	probe inlet from other monitoring probe inle		Yes 🗌 No 🗌 NA 🗌		
Is probe > 20 m from the nearest tree drip line? Yes \square *No \square (answer *'d questions)					
*Is probe > 10 m from the nearest tree drip line? Yes \square *No \square					
*Distance from probe to tree (m) Direction from probe to tree *Height of tree (m)					
Are there any obstacles to air flow? *Yes 🗌 (answer *'d questions) No 🗌					
*Identify obstacle Distance from probe inlet (m) Direction from probe inlet to obstacle					
*Is distance from inlet probe to obstacle at least twice the height that the obstacle protrudes above the probe? Yes 🗌 No 🗌					
Distance of probe to neare	est traffic lane (m) Direction from p	probe to nearest traffic lane			

SULFUR DIOXIDE MONITOR RECOMMENDATIONS:

*2) Change monitoring objective? Yes 🗌 (enter new objective) No 🔲-	
*3) Change scale of representativeness? Yes 🗌 (enter new scale) No 🔲	
*4) Relocate monitor? Yes 🗌 No 🗌	
Comments:	
Date of Last Site Pictures <u>11/3/2014</u> New Pictures Submitted? Yes 🗌 No 🔀	
Reviewer Sarah Albert DateDecember 16, 201	15
Ambient Monitoring Coordinator Steve EnsleyDate12/17/1	15
Revised 2015-12-18	

2015 Lenoir Site Review

Region MRO Site	Name <u>Hickory</u>			AQS Site # 37-0	035-0004
Street Address-1st. Ave. SW at 15th St. SW		City Hickory			
Urban Area HICKORY	C	Core-based Stat	istical Area	Hickory-Lenoir	r-Morganton, NC
Enter Exact					
Longitude <u>81.3657</u>	Latitude	<u>35.7289</u>		Method of Me	asuring
In Decimal Degrees	In Decimal D	Degrees	Other (expla	<u>uin)</u> Explanation	on: <u>Google Maps</u>
Elevation Above/below Mean	Sea Level (in me	eters)		<u>342.90</u>	
Name of nearest road to inlet probe2nd Ave. SWADT Latest available3,400 Year2013Distance of ozone probe to nearest traffic lane (m)22.2504 Direction from inlet to nearest traffic laneSSEComments:Used http://www.ncdot.gov/travel/statemapping/trafficvolumemaps/.Name of nearest major road.Highway 321 (Hickory Blvd.) ADT37,000 Year latest available2013Distance of site to nearest major road (m)162.458 Direction from site to nearest major roadENEComments:Used http://www.ncdot.gov/travel/statemapping/trafficvolumemaps/.All distances based on thelocation of the HC (primary) PM2.5 FRM inlet.					
Site located near electrical substation/high voltage power lines? Yes X No				Yes 🛛 No 🗌	
Distance of site to nearest railroad track(m) 227 Direction to RR NNADistance of site to nearest power pole w/transformer(m) 32 Direction E					
Distance between site and drip line of water tower (m) <u>15.8496</u> Direction from site to water tower <u>NW</u> NA					
Explain any sources of potential bias; include cultivated fields, loose bulk storage, stacks, vents, railroad tracks, construction activities, fast food restaurants, and swimming pools.					

Site Information

Instructions:

Address: Sometimes local addresses change. Confirm the local address of the site using a 911 locator or the address used by the local utility company, community or county to identify the site location.

Urban Area: If the monitor is located within the bounds of an urban area (an incorporated area with a population of 10,000 or more people), select the appropriate urban area from the list. Otherwise select "Not in an Urban Area". Core-Based Statistical Area (CBSA): If the monitor is located within a county that is part of a metropolitan statistical area (MSA) or a micropolitan statistical area (MiSA), then it is located within a core-based statistical area. If the monitoring station is located in a county included in a MSA or MiSA, select the appropriate CBSA from the list. Otherwise select "None".

Longitude and Latitude: The longitude and latitude should be entered in decimal degrees. Use a conversion program, such as http://transition.fcc.gov/mb/audio/bickel/DDDMMSS-decimal.html_ to convert to decimal degrees. Road Information: For the nearest road to the inlet probe, list whatever roadway that carries vehicles that is closest to the probe, whether or not it is a named or public road and even if the road has very little traffic. Use the comments space if necessary to describe the road or the source of the annual average daily traffic (AADT) counts. If the monitor is located near an unnamed, little used, private road, use the nearest major road space to list the closest named public road to the site. Include the distance and direction of the nearest major road from the site as well as the AADT if it is available. If the closest road is a small public road but there is a large major roadway such as an interstate highway, divided highway, major thoroughfare, etc., near the monitoring station use the nearest major road space to list the information about this major roadway. Include the distance and direction of the major road from the site as well as the AADT. The AADT for state roads can be obtained from the North Carolina Division of Transportation at http://www.ncdot.gov/travel/statemapping/trafficvolumemaps/default.html. For AADT values for local roadways contact the appropriate local governments.

Any Sources of Potential Bias: Use this space to record any information about the site that is not requested elsewhere. Especially note any changes to the site that occurred near the site in the past year, such as road construction, building construction, new businesses, businesses closing, or changes in traffic patterns, crops or other agricultural activities.

Parameters	Monitoring Objective	Scale	Monitor Type		
Air flow < 200 L/min PM2.5 FRM	General/Background	Micro	SLAMS PM2.5 FRMs		
PM10 FRM	Highest Concentration	Middle	SPM_BAM 1020 & BAM		
PM10 Cont. (BAM)	Population Exposure	Neighborhood	1022		
PM10-2.5 FRM	Source Oriented	Urban			
PM10-2.5 BAM		Regional	Nonregulatory		
PM10 Lead (PB) PM2.5 Cont. (TEOM)			Supplemental Speciation		
\square PM2.5 Cont. (BAM)	Welfare Related Impacts				
PM2.5 Spec. (SASS)					
PM2.5 Spec. (URG)					
PM2.5 Cont. Spec.					
	$(1 \text{ ground}) \square < 2 \text{ m} \square 2$				
2.5146, HK 1022 BAM	ce from probe inlet to ground (1	neters) <u>nc 2.3308, n</u>	CA 2.3022, IIK BAM		
	of probe inlet from horizontal (v	vall) and/or vertical (r	latform or roof) supporting		
	es 🛛 No 🗍	wan) and or vertical (p	supporting		
	ce from outer edge of probe inl	et to sunnorting struct	(meters) HC 2 0574		
	4 2.159, HK 1022 BAM 2.1082		(meters) <u>110 2.007 (</u>		
	uter edge of probe inlets of any				
	me monitor at the site $= 1 \text{ m or } $		Yes 🛛 No 🗌 NA 🗌		
	uter edge of all low volume mo				
Hi-Volume PM-10 or TSP inlet = 2 m or greater? Yes \square No \square NA					
Are collocated PM2.5 Monitors (Two FRMs, FRM & BAM, FRM & *Yes 🛛 (answer *'d questions)					
TEOM, BAM & TEOM			No 🗌 NA 🔲		
			ctual (meters): HC and HCA		
(X) within 2 to 4 m of each other? $= 3.1496 \text{ HK and HK } 1022 = 3.1242$					
*Are collocated PM2.5 sampler inlets within 1 m vertically of each other? Yes \square No \square Give actual (meters): <u>HC and HCA</u> = 0.2286 HK and HK 1022 = 0.3048					
vertically of each other					
Is an URG 3000 monitor collocated with a SASS monitor at the site? *Yes [] (answer *'d questions) No [] NA 🔀					
* Entire inlet opening of collocated speciation samplers inlets (X) within 2 to 4 m of each other? Yes \square No \square					
Give actual (meters)					
	tion sampler inlets within 1 m v	vertically of each other	? Yes 🗌 No 🗌 Give actual		
(meters)					
Is a low-volume PM10 monitor collocated with a PM2.5 monitor at *Yes (answer *'d questions)					
the site to measure PM10-2.5? No \square NA \square					
* Entire inlat opening of collocated PM10 and PM2 Scamplers for PM10.2.5 (V)					
within 2 to 4 m of each	other?		$(X) \qquad \text{Yes} \square \text{No} \square$		
	and PM2.5 sampler inlets within				
	e nearest tree drip line? Yes		*'d questions)		
-	-	s 🔲 *No 🗖			
*Distance from probe to			*Height of tree (m)		
	to air flow? *Yes (answer *		1.4.1.		
	istance from probe inlet (m)Di to obstacle at least twice the height t	rection from probe inlet to hat the obstacle protrudes a			

RECOMMENDATIONS:	
1) Maintain current site status? Yes 🛛 *No 🗌 (answer *'d questions)	
*2) Change monitoring objective? Yes [] (enter new objective:) No [
*3) Change scale of representativeness? Yes 🗌 (enter new scale:) No 🗌	
*4) Relocate site? Yes 🗌 No 🗌	
Comments:	
Date of Last Site Pictures: <u>December 4, 2015</u> New Pictures Submitted? Yes	No

Reviewer Paul J. Chappin	Date: 12/9/15

Ambient Monitoring Coordinator Deborah W. Manning Date: 1/6/2016

Instructions (continued):

Trees: The probe or inlet must be at least 10 meters or further from the drip line of trees. A distance of at least 20 meters between the probe and any tree or trees is preferred.

Obstacles: An obstacle is anything that restricts air flow. A tree can be an obstacle because it has branches and leaves that restrict the flow of air but a pole is not considered to be an obstacle. To avoid interference from obstacles, the probe or inlet must have unrestricted airflow and be located away from obstacles. The distance from the obstacle to the probe or inlet must be at least twice the height that the obstacle protrudes above the probe, inlet, or monitoring path.

If the annual network review has indicated that the monitoring objectives and scale of representativeness for the site have not changed and the siting criteria still meets those monitoring objectives and that scale of representativeness and there are no other reasons to modify the site in any way, check "Yes" to the question "Maintain current site status?" and skip the rest of the recommendations section.

If the annual network review has indicated that the monitoring objectives, scale of representativeness, or siting criteria have changed for some reason or there is another reason to modify the site in some way, check "No" to the question "Maintain current site status?" and complete the rest of the recommendations section. If the monitoring objective or scale of representativeness needs to be changed, check the "Yes" box and write in the new monitoring objective or scale of representativeness on the line. Otherwise check the "No" box. If the site needs to be relocated, check the "Yes" box. If the site needs to be shut down, write "Shut down" in the comments line. Also use the comments line to explain any change requested.

Check the site picture archive to find out when the last set of site pictures were taken and write the date down on the line. If the pictures are more than five years old or if something at the site has changed in the past year, take new site pictures. Changes that require new site pictures include additions, removals, or movement of monitors at the site, growth or removal of trees and other shrubs at the site, and construction of roads or buildings at or in the vicinity of the site.

Pictures of the site should at a minimum include at least one picture showing the site itself and pictures standing at the probe or inlet or as close as possible to the probe or inlet looking in the four compass directions (north, east, south, and west). If meteorological data are collected at the site, pictures standing at the meteorological tower looking southwest and northeast should also be included. Sometimes pictures looking at the site from the four compass directions are also helpful.

Be sure to correctly identify the pictures as to which compass direction they show. This documentation may be achieved by using good notes when taking the pictures, holding a compass in front of the camera, or placing a sign with the appropriate direction indicated somewhere in the picture. Label the pictures with the name of the site using the two digit logger ID (HC, JW, *etc.*), the direction (N, NE, E, SE, S, SW, W, NW), and the date taken (YYYYMMDD) and transfer the pictures to the group drive in the appropriate Incoming/Regional Office directory.

4

Region_MRO Site Name Crouse			AQS Site # 37- <u>109</u> - <u>0004</u>			
Street Address-1487 Riverview Road			City Lincolnton			
Urban Area Not in an Urban A	rea Co	ore-based Stati	stical Area Lincolnton, NC			
Enter E	xact					
Longitude <u>81.2767</u>	.2767 Latitude 35.4385			Method of Measuring		
In Decimal Degrees	In Decimal De	In Decimal Degrees Explanation: A		ACME Mapper 2.0		
Elevation Above/below Mean Sea	Level (in meters)		<u>267.</u>	.00	
Name of nearest road to inlet probe Riverview Road ADT 120 Year latest available 2014 Distance of ozone probe to nearest traffic lane (m) 62 Direction from ozone probe to nearest traffic lane SW Comments: Used http://www.ncdot.gov/travel/statemapping/traffic volume maps/ Name of nearest major road W. Hwy 150 ADT 9900 Year latest available 2014 Distance of site to nearest major road (m) 78.00 Direction from site to nearest major road N Comments: Used http://www.ncdot.gov/travel/statemapping/traffic volume maps/						
Site located near electrical substation/high voltage power lines? Yes No 🛛						
Distance of site to nearest railroad track(m) 302Distance of site to nearest power pole w/transformer(m) 52					DNA	
Distance between site and drip line of water tower (m) <u>28</u> Direction from site to water tower <u>NE</u> NA						
Explain any sources of potential bias; include cultivated fields, loose bulk storage, stacks, vents, railroad tracks, construction activities, fast food restaurants, and swimming pools. None Noted						

Site Information

ANSWER ALL APPLICABLE QUESTIONS:

Parameters	Monitoring Objective	Scale	Site Type			
\Box O ₃	General/Background	Micro	SLAMS			
	Max O3 Concentration	Middle	SPM			
	Population Exposure	Neighborhood				
	Source Oriented	⊠Urban				
	Upwind Background Welfare Related Impacts	Regional				
Probe inlet height	(from ground) 2-15 m? Yes	🛾 No 🗌	-			
Give actual measu	ared height from ground (meters) <u>3.50</u>				
Distance of outer	edge of probe inlet from horizon	tal (wall) and/or vertical (re	oof) supporting			
structure > 1 m? Y	structure $> 1 \text{ m}?$ Yes \boxtimes No					
Actual measured distance from outer edge of probe to supporting structure (meters) 1.30						
Is probe > 20 m from the nearest tree drip line? Yes \boxtimes *No \square (answer *'d questions)						
*Is probe > 10 m from the nearest tree drip line? Yes \checkmark *No \checkmark						
*Distance from probe to tree (m) Direction from probe to tree *Height of tree (m)						
Are there any obstacles to air flow? *Yes \Box (answer *'d questions) No \boxtimes						
*Identify obstacle Distance from probe inlet (m)Direction from probe inlet to obstacle *Is distance from inlet probe to obstacle at least twice the height that the obstacle protrudes above the probe? YesNo						

1

1) Maintain current site status? Yes 🛛 *No 🗌 (answer *'d questions)
*2) Change monitoring objective? Yes 🗌 (enter new objective:) No 🗌
*3) Change scale of representativeness? Yes 🗌 (enter new scale:) No 🗌
*4) Relocate site? Yes No
Comments: None
Date of Last Site Pictures: December 8, 2015 New Pictures Submitted? Yes 🛛 No

Date: December 8, 2015

Ambient Monitoring Coordinator Deborah W. Manning	Date: 12/30/2015
---	------------------

Instructions:

If the annual network review has indicated that the monitoring objectives and scale of representativeness for the site have not changed and the siting criteria still meets those monitoring objectives and that scale of representativeness and there are no other reasons to modify the site in any way, check "Yes" to the question "Maintain current site status?" and skip the rest of the recommendations section.

If the annual network review has indicated that the monitoring objectives, scale of representativeness, or siting criteria have changed for some reason or there is another reason to modify the site in some way, check "No" to the question "Maintain current site status?" and complete the rest of the recommendations section. If the monitoring objective or scale of representativeness needs to be changed, check the "Yes" box and write in the new monitoring objective or scale of representativeness on the line. Otherwise check the "No" box. If the site needs to be relocated, check the "Yes" box. If the site needs to be shut down, write "Shut down" in the comments line. Also use the comments line to explain any change requested.

Check the site picture archive to find out when the last set of site pictures were taken and write the date down on the line. If the pictures are more than five years old or if something at the site has changed in the past year, take new site pictures. Changes that require new site pictures include additions, removals, or movement of monitors at the site, growth or removal of trees and other shrubs at the site, and construction of roads or buildings at or in the vicinity of the site.

Pictures of the site should at a minimum include at least one picture showing the site itself and pictures standing at the probe or inlet or as close as possible to the probe or inlet looking in the four compass directions (north, east, south, and west). If meteorological data are collected at the site, pictures standing at the meteorological tower looking southwest and northeast should also be included. Sometimes pictures looking at the site from the four compass directions are also helpful.

Be sure to correctly identify the pictures as to which compass direction they show. This documentation may be achieved by using good notes when taking the pictures, holding a compass in front of the camera, or placing a sign with the appropriate direction indicated somewhere in the picture. Label the pictures with the name of the site using the two digit logger ID (HC, JW, *etc.*), the direction (N, NE, E, SE, S, SW, W, NW), and the date taken (YYYYMMDD) and transfer the pictures to the group drive in the appropriate Incoming/Regional Office directory.

Region MRO	m_MRO Site Name Monroe Middle School			AQS Site # 37- <u>179-0003</u>		
Street Address-701 Charles Street			City Monroe			
Urban Area MONROE Core-based Statistic			al Area Charlotte-Gastonia-Concord, NC-SC			
	Enter Exact					
Longitude <u>-80.541</u>	Longitude <u>-80.5410</u> Latitude <u>34.9739</u>		Method of Measuring			
In Decimal Degrees	In Deci	mal Degrees	Explanation: <u>Google Maps</u>			
Elevation Above/below N	/lean Sea Level (in	meters)		<u>18</u>	<u>34.00</u>	
Name of nearest road to inlet probe Charles Street ADT 5100 Year latest available 2014 Distance of ozone probe to nearest traffic lane (m) 71 Direction from ozone probe to nearest traffic lane W Comments: Used www.ncdot.gov/travel/statemapping/trafficvolumemaps Name of nearest major road Highway 74/601 ADT 48000 Year latest available 2014 Distance of site to nearest major road (m) 1548.00 Direction from site to nearest major road ENE Comments: Used www.ncdot.gov/travel/statemapping/trafficvolumemaps						
Site located near electrical substation/high voltage power lines? Yes Ves No						
Distance of site to nearest railroad track(m) <u>967</u> Direction to RR <u>NE</u> NADistance of site to nearest power pole w/transformer(m) <u>30</u> Direction <u>NE</u>					NA	
Distance between site and drip line of water tower (m) Direction from site to water tower 🕅 NA						
Explain any sources of potential bias; include cultivated fields, loose bulk storage, stacks, vents, railroad tracks, construction activities, fast food restaurants, and swimming pools.						
None noted						

Site Information

ANSWER ALL APPLICABLE QUESTIONS:

Parameters	Monitoring Objective	Scale	Site Type			
\Box O ₃	General/Background	Micro	SLAMS			
	Highest Concentration	Middle	⊠ SPM			
	Population Exposure	Neighborhood	_			
	Source Oriented	Urban				
	Upwind Background	Regional				
Probe inlet height	(from ground) 2-15 m? Yes	No 🗌				
Give actual measu	ured height from ground (meters) <u>3.90</u>				
Distance of outer	edge of probe inlet from horizor	ntal (wall) and/or vertical (ro	oof) supporting			
structure > 1 m? Y	structure $> 1 \text{ m}$? Yes \boxtimes No \square					
	Actual measured distance from outer edge of probe to supporting structure (meters) <u>1.00</u>					
Is probe > 20 m from the nearest tree drip line? Yes \times *No \square (answer *'d questions)						
*Is probe > 10 m from the nearest tree drip line? Yes \checkmark *No \checkmark						
*Distance from probe to tree (m) Direction from probe to tree *Height of tree (m)						
Are there any obstacles to air flow? *Yes 🗌 (answer *'d questions) No 🛛						
*Identify obstacle Distance from probe inlet (m) Direction from probe inlet to obstacle *Is distance from inlet probe to obstacle at least twice the height that the obstacle protrudes above the probe? Yes No						

Monroe Site Review 2015

<u>RECOMMENDATIONS:</u>				
1) Maintain current site status? Yes 🛛 *No 🗌 (answer *'d questions)				
*2) Change monitoring objective? Yes 🗌 (enter new objective:) No 🗌				
*3) Change scale of representativeness? Yes 🗌 (enter new scale:) No 🗌				
*4) Relocate site? Yes No				
Comments:				
Date of Last Site Pictures: <u>11/01/2011</u> New Pictures Submitted? Yes No				
Reviewer Ryan C Mills Date: December 9, 2015				
Ambient Monitoring Coordinator Deborah W. Manning Date: 12/21/2015				

Instructions:

DEGOLO (END. ETONO

If the annual network review has indicated that the monitoring objectives and scale of representativeness for the site have not changed and the siting criteria still meets those monitoring objectives and that scale of representativeness and there are no other reasons to modify the site in any way, check "Yes" to the question "Maintain current site status?" and skip the rest of the recommendations section.

If the annual network review has indicated that the monitoring objectives, scale of representativeness, or siting criteria have changed for some reason or there is another reason to modify the site in some way, check "No" to the question "Maintain current site status?" and complete the rest of the recommendations section. If the monitoring objective or scale of representativeness needs to be changed, check the "Yes" box and write in the new monitoring objective or scale of representativeness on the line. Otherwise check the "No" box. If the site needs to be relocated, check the "Yes" box. If the site needs to be shut down, write "Shut down" in the comments line. Also use the comments line to explain any change requested.

Check the site picture archive to find out when the last set of site pictures were taken and write the date down on the line. If the pictures are more than five years old or if something at the site has changed in the past year, take new site pictures. Changes that require new site pictures include additions, removals, or movement of monitors at the site, growth or removal of trees and other shrubs at the site, and construction of roads or buildings at or in the vicinity of the site.

Pictures of the site should at a minimum include at least one picture showing the site itself and pictures standing at the probe or inlet or as close as possible to the probe or inlet looking in the four compass directions (north, east, south, and west). If meteorological data are collected at the site, pictures standing at the meteorological tower looking southwest and northeast should also be included. Sometimes pictures looking at the site from the four compass directions are also helpful.

Be sure to correctly identify the pictures as to which compass direction they show. This documentation may be achieved by using good notes when taking the pictures, holding a compass in front of the camera, or placing a sign with the appropriate direction indicated somewhere in the picture. Label the pictures with the name of the site using the two digit logger ID (HC, JW, *etc.*), the direction (N, NE, E, SE, S, SW, W, NW), and the date taken (YYYYMMDD) and transfer the pictures to the group drive in the appropriate Incoming/Regional Office directory.

Region_MRO Site Name Rockwell		A	AQS Site # 37- <u>159-0021</u>			
Street Address-316 West Street			City <u>Rockwell</u>			
Urban Area Not in an Urban Area Core-based Statistical Area Salisbury, NC						
E	nter Exact					
Longitude <u>W.80.39</u>				Method of Measuring		
In Decimal Degrees	In Decimal	Degrees	<u>Other (explain)</u>	http://draftlogic.com/sandbox-		
				google-maps-find-altitude.htm		
Elevation Above/below I				234		
Name of nearest road to inle	-			<u>2014</u>		
Comments: Used www.ncc			-			
Distance of site to nearest n				road <u>S</u>		
Name of nearest major road	l <u>Highway 52</u> ADT	<u>7800</u> Year <u>20</u>	<u>14</u>			
Comments: Used www.ncc	lot.gov/travel/statem	apping/trafficvol	umemaps			
Site located near electrical s	substation/high volta	ge power lines?		Yes 🗌 No 🗙		
Distance of site to neares Distance of site to neares			n) <u>737</u> Direction to R n) <u>39</u> Direction NV			
Distance between site and c			Direction from site to			
			lds, loose bulk stor	age, stacks, vents, railroad tracks,		
construction activities, fa	st food restaurants	, and swimming	g pools.			
None Noted						
ANSWER ALL APPLICA	ABLE QUESTION	S:				
Parameters	Monitoring		Scale	Monitor Type		
 NA SO₂(NAAQS) SO₂(trace-level) NO₄ (NAAQS) MHSNO₂ O₃ NH₃ Hydrocarbon Air Toxics HSCO (Not Micro) CO (trace-level) 	General/Backgr Highest Concer Max O3 Concer Population Exp Source Oriented Transport Upwind Backgr Welfare Related	ntration <u>O3</u> ntration <u>HSNOy</u> osure d round	☐ Micro ☐ Middle Neighborhood ⊠ Urban ☐Regional	Unofficial PAMS		

Site Information

Probe inlet height (from ground) 2-15 m? Yes 🛛 No 🗌 Give actual measured height from ground (meters) 3.50						
Distance of outer edge of probe inlet from horizontal (wall) and/or vertical (roof) supporting structure > 1 m? Yes \square No \square Actual measured distance from outer edge of probe to supporting structure (meters) <u>1.10</u>						
Distance of outer edge of probe inlet from other monitoring probe inlets > 1 m? Yes \square No \square NA \square						
Is probe > 20 m from the nearest tree drip line? Yes \boxtimes *No \square (answer *'d questions)						
*Is probe > 10 m from the nearest tree drip line? Yes \square *No \square						
*Distance from probe to tree (m) Direction from probe to tree *Height of tree (m)						
Are there any obstacles to air flow? *Yes 🗌 (answer *'d questions) No 🛛						
*Identify obstacle Distance from probe inlet (m) Direction from probe inlet to obstacle						
*Is distance from inlet probe to obstacle at least twice the height that the obstacle protrudes above the probe? Yes 🗌 No 🗌						
Distance of probe to nearest traffic lane (m) <u>18tt27tt</u> Direction from probe to nearest traffic lane \underline{N}						

Rockwell Site Review 2015

Revised 8/07/2015 1

Parameters	Monitoring Objective	Scale	Monitor Type		
⊠ NA □ NO _y (trace-level)	General/Background Highest Concentration Max O3 Concentration Population Exposure Source Oriented	Micro Middle Neighborhood Urban	SLAMS SPM Monitor Network Affiliation		
	Transport Upwind Background Welfare Related Impacts	Regional	NCORE		
	ground) 10-15 m? Yes 🗌 No 🔲 e from probe inlet to ground (meters)				
	f probe inlet from horizontal and/or ver e from outer edge of probe inlet to supp				
Distance of outer edge of	probe inlet from other monitoring prol	be inlets > 1 m?	Yes 🗌 No 🗌 NA 🗌		
Is probe > 20 m from the	nearest tree drip line? Yes 🔲 *N	o 🗌 (answer *'d questions)		
	e nearest tree drip line? Yes 🔲 *N				
	tree (m) Direction from probe		e (m)		
Are there any obstacles to	o air flow? *Yes 🗌 (answer *'d questi	ons) No 🗌			
	Distance from probe inlet (m)				
	obe to obstacle at least twice the height est traffic lane (m) Direction				
Parameters	Monitoring Objective	Scale	Monitor Type		
NA Air flow > 200 L/min □ PM10 □ TSP □ TSP Pb	Highest Concentration Population Exposure Source Oriented Background	Micro Middle Neighborhood	SLAMS SPM Monitor Network Affiliation		
	Transport Welfare Related Impacts	Urban Regional	NCORE		
Probe inlet height (from ground) $\bigcirc < 2 \text{ m}$ $\bigcirc 2-7m$ $\bigcirc 7-15 \text{ m}$ $\bigcirc > 15 \text{ m}$ Actual measured distance from probe inlet to ground (meters) $\bigcirc > 15 \text{ m}$					
Distance of outer edge of probe inlet from horizontal (wall) and/or vertical (platform or roof) supporting structure > 2 m? Actual measured distance from probe to supporting structure (meters) Yes No					
Entire inlet opening of collocated PM-10, TSP or TSP Pb Samplers (X) within 2 to 4 m of each other? Yes No NA Actual measured distance (X) including entire inlet openings of both (all) collocated probe inlets (meters) Distance (Y) between outer edge of any high volume inlet and any other high or low volume inlet $\geq 2 \text{ m}$? Yes No NA Is probe > 20 m from the nearest tree drip line? Yes *No (answer *'d questions)					
*Is probe > 10 m from the nearest tree drip line? Yes : *No :					
*Identify obstacle Distance from probe inlet (m)Direction from probe inlet to obstacle *Is distance from inlet probe to obstacle at least twice the height that the obstacle protrudes above the probe? Yes Distance of probe to nearest traffic lane (m) Direction from probe to nearest traffic lane					

Rockwell Site Review 2015

Parameters	Monitoring Objective	Scale		Site Type	
NA NA	General/Background	Micro	SLAMS PM2.		
Air flow < 200 L/min ☑ PM2.5 FRM	Highest Concentration	Middle	No	Cont. Spec. (aethalometer),	
PM10 FRM	Inglest Concentration	Neighborhood		c. (8400N), PM2.5 Cont.	
PM10 Cont. (BAM)		Iveignborhood	(BAM)	<u>c. (040010), 11012.5 Cont.</u>	
PM10-2.5 FRM	Population Exposure			I. A CC11: _ 4!	
PM10-2.5 BAM	Source Oriented	Urban	Monitor Network Affiliation		
PM10 Lead (PB) PM2.5 Cont. (TEOM)	Transport	Regional	NCORE		
PM2.5 Cont. (BAM)	Welfare Related Impacts		SUPPLEMENTAL SPECIATION		
PM2.5 Spec. (SASS) PM2.5 Spec. (URG)			Monitor NAAQS Exclusion		
PM2.5 Cont. Spec.			NONREGUI	ATORY	
Probe inlet height (from g	round) 🔲 < 2 m 2	-7m 🛛 7-	15 m	□ > 15 m	
Actual measured distance from probe inlet to ground (meters) PM2.5 is 2.4m, BAM is 2.4m. Aethalometer and 8400N					
located inside a building with the ambient probe on the roof. Both are within the 2-7 m range.					
Distance of outer edge of probe inlet from horizontal (wall) and/or vertical (platform or roof) supporting structure > 2 m? Actual measured distance from outer edge of probe inlet to supporting structure (meters) 2.1 Yes \square No \square					
Distance (Y) between outer edge of probe inlets of any low volume monitor and any other low volume monitor at the site = 1 m or greater? Yes \boxtimes No \square NA \square					
Distance (Y) between outer edge of all low volume monitor inlets and any Hi-Volume PM-10 $Ves \square$ No \square NA \square NA					
Are collocated PM2.5 Monitors (Two FRMs, FRM & BAM, FRM & *Yes 🛛 (answer *'d questions) No 🗌 NA 🗌					
* Entire inlet opening of collocated PM 2.5 samplers (X) within 2 to 4 m of					
each other? *Are collocated PM2.5 sampler inlets within 1 m vertically of each other? Yes \square No \square Give actual (meters) <u>2.2</u> Yes \square No \square Give actual (meters) <u>0.17</u>					
Is an URG 3000 monitor collocated with a SASS monitor at the site? *Yes 🗌 (answer *'d questions) No 🗌 NA 🛛					
* Entire inlet opening of collocated speciation samplers inlets (X) within 2 to 4 m of each other? Yes 🗋 No 🗍					
Give actual (meters) $*$ Are collected speciation sampler inlets within 1 m vertically of each other? Vas \Box No \Box Give actual (meters)					
* Are collocated speciation sampler inlets within 1 m vertically of each other? Yes 🗌 No 🗌 Give actual (meters) Is a low-volume PM10 monitor collocated with a PM2.5 monitor at the					
site to measure PM10-2.5?					
* Entire inlet opening of collocated PM10 and PM2.5samplers for PM10-2.5 (X) within 2 to 4 m of Yes No					
each other? *Are collocated PM10 and PM2.5 sampler inlets within 1 m vertically of each other? Yes Ves No					
Is probe > 20 m from the nearest tree drip line? Yes \boxtimes *No \square (answer *'d questions)					
*Is probe > 10 m from the nearest tree drip line? Yes \square *No \square					
*Distance from probe to tree (m) Direction from probe to tree *Height of tree (m)					
Are there any obstacles to air flow? *Yes 🗌 (answer *'d questions) No 🛛					
*Identify obstacle Distance from probe inlet (m) Direction from probe inlet to obstacle					
*Is distance from inlet probe to obstacle at least twice the height that the obstacle protrudes above the probe? Yes \square No \square Distance of probe to nearest traffic lane (m) <u>18tt27tt</u> Direction from probe to nearest traffic lane <u>N</u>					
RECOMMENDATIONS:					
1) Maintain current site status? Yes X *No (answer *'d questions)					
 *2) Change monitoring objective? Yes (enter new objective) No - *3) Change scale of representativeness? Yes (enter new scale) No * *4) Relocate site? Yes No * 					
Comments:					
Date of Last Site Pictures <u>10/20/15</u> New Pictures Submitted? Yes No					
Reviewer Robert Jay Papuga Date <u>11/20/15</u>					
Ambient Monitoring Coordinator Deborah W. Manning Date1/26/2016					

Revised 8/07/2015 5

Rockwell Site Review 2015

Appendix C-2. Scale of Representativeness

Each station in the monitoring network must be described in terms of the physical dimensions of the air parcel nearest the monitoring station throughout which actual pollutant concentrations are reasonably similar. Area dimensions or scales of representativeness used in the network description are:

- a) Micro-scale defines the concentration in air volumes associated with area dimensions ranging from several meters up to about 100 meters.
- b) Middle scale defines the concentration typical of areas up to several city blocks in size with dimensions ranging from about 100 meters to 0.5 kilometers.
- c) Neighborhood scale defines concentrations within an extended area of a city that has relatively uniform land use with dimensions ranging from about 0.5 to 4.0 kilometers.
- d) Urban scale defines an overall citywide condition with dimensions on the order of 4 to 50 kilometers.
- e) Regional Scale defines air quality levels over areas having dimensions of 50 to hundreds of kilometers.

Closely associated with the area around the monitoring station where pollutant concentrations are reasonably similar are the basic monitoring exposures of the station.

There are six basic exposures:

- a) Sites located to determine the highest concentrations expected to occur in the area covered by the network.
- b) Sites located to determine representative concentrations in areas of high population density.
- c) Sites located to determine the impact on ambient pollution levels of significant sources or source categories.
- d) Sites located to determine general background concentration levels.
- e) Sites located to determine the extent of regional pollutant transport among populated areas.
- f) Sites located to measure air pollution impacts on visibility, vegetation damage, or other welfare-based impacts and in support of secondary standards.

The design intent in siting stations is to correctly match the area dimensions represented by the sample of monitored air with the area dimensions most appropriate for the monitoring objective of the station. The following relationship of the six basic objectives and the scales of representativeness are appropriate when siting monitoring stations:

1. Highest concentration	Micro, middle, neighborhood (sometimes urban		
	or regional for secondarily formed pollutants)		
2. Population oriented	Neighborhood, urban		
3. Source impact	Micro, middle, neighborhood		
4. General/background & regional transport	Urban, regional		
5. Welfare-related impacts	Urban, regional		

Table C7. Site Type Appropriate Siting Scales