#### Oil and Gas 101: An Overview of Oil and Gas Upstream Activities and Using EPA's Nonpoint Oil and Gas Emission Estimation Tool for the 2017 NEI

Jennifer Snyder, U.S. EPA Regi Oommen and Mike Pring, Eastern Research Group August 15, 2017 2017 Emission Inventory Conference Baltimore, MD



# **Presenters**

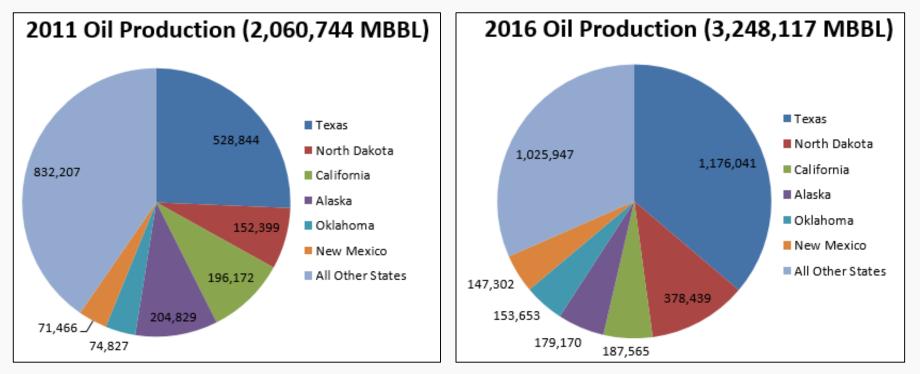
- Mike Pring, Eastern Research Group
  - mike.pring@erg.com
- Jennifer Snyder, U.S. EPA
  - Snyder.Jennifer@epa.gov
- Regi Oommen, Eastern Research Group
  - regi.oommen@erg.com



# **Training Overview**

- Oil and gas production in the United States
- Upstream oil and gas emission sources
- Data resources
- Oil and gas emission estimates in the NEI
- Future plans
- Use and application of the Nonpoint Oil and Gas Emission Estimation Tool



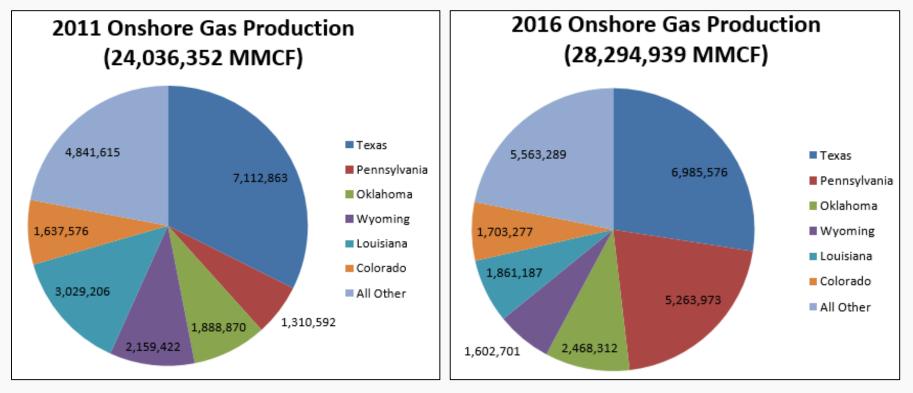

# **Oil and Gas Production in the US**

- Over 3 billion barrels of crude oil produced in 2016
  - ~50% increase since 2011
  - Down slightly from 2015
  - ~18% of production offshore (was 30% in 2010)
  - Texas, North Dakota, California
- Over 28 trillion cubic feet of gas produced in 2016
  - ~30% increase since 2009
  - ~5% of production offshore
  - Texas, Pennsylvania, Oklahoma

Source: U.S. Energy Information Administration



#### **US Onshore Crude Oil Production**




Source: U.S. Energy Information Administration

8/24/2017

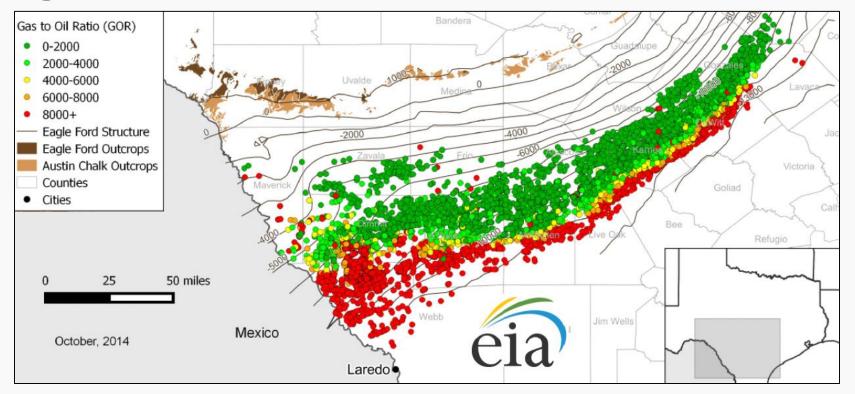


#### **US Onshore Natural Gas Production**



Source: U.S. Energy Information Administration

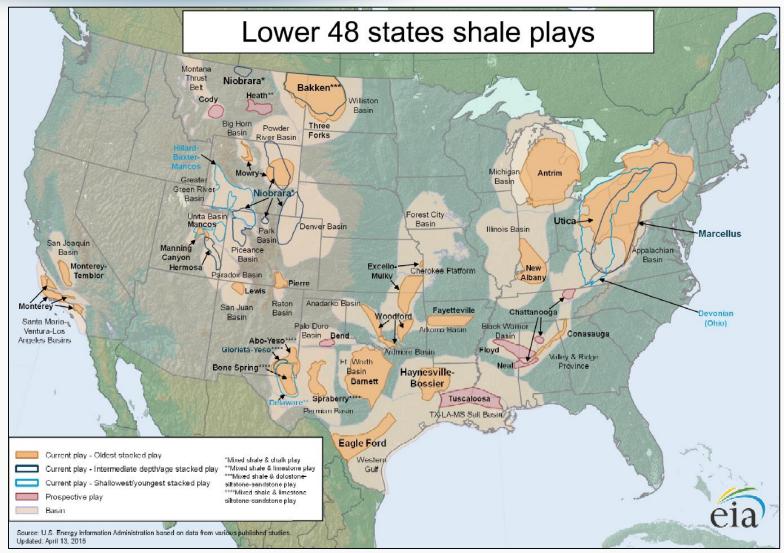
8/24/2017




## Natural Gas, NGLs, Condensate, Oil

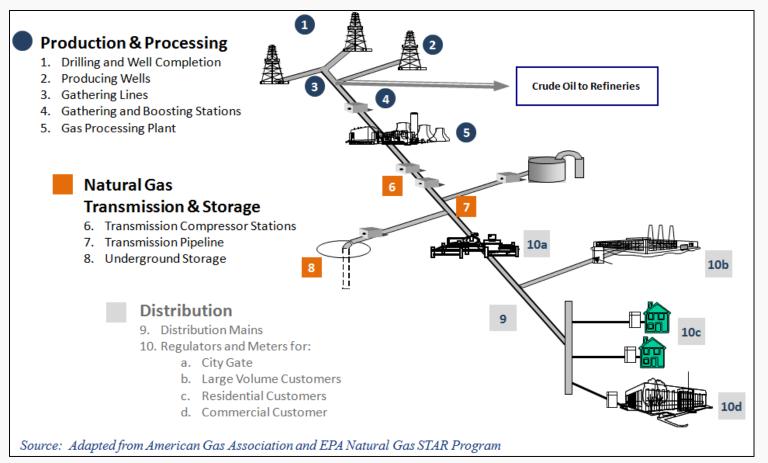
- Natural Gas (C1 primarily Methane)
- Natural Gas Liquids (C2 C4)
  - Ethane, Propane, Butane
  - Extracted at gas processing plants
  - "Wet gas"
- Condensate (~C5+)
  - Condenses out of gas stream at surface
- Crude Oil (mixture of heavier hydrocarbons)
  - Distilled into gasoline, kerosene, diesel, jet fuel




#### **Eagle Ford Shale Oil and Gas Well Map**



Source: U.S. Energy Information Administration


8/24/2017







#### **Upstream Oil and Gas Emission Sources**





#### **Upstream Oil and Gas Emission Sources**

#### **Exploration Sources**

- Drilling Rigs
- Hydraulic Fracturing Pumps
- Mud Degassing
- Well Completion Venting

#### **Production Sources**

- Artificial Lift Engines
- Associated Gas Venting
- Condensate Tanks
- Crude Oil Tanks
- Dehydrators

#### **Production Sources (continued)**

- Fugitive Leaks
- Gas-Actuated Pneumatic Pumps
- Heaters
- Lateral Compressor Engines
- Liquids Unloading
- Hydrocarbon Liquids Loading
- Pneumatic Devices
- Produced Water Tanks
- Wellhead Compressor Engines



#### **Tool Estimation Methodologies**

- Area (nonpoint) source methodologies
- Based on point source methodologies averaged over the population
- Scaled to the county level using activity factors (well counts, oil production, gas production)
- Refer to "2014 Nonpoint Oil and Gas Emission Estimation Tool Version 2.2" (June, 2017) for details



# **Exploration - Drilling Rigs**

- Used to drill wellbore to target formation
- 2 primary rig types
  - Mechanical
  - Diesel-electric
- Powered by large, diesel engines (~1,000 – 1,500 HP)
- ~2 4 weeks



EPA photo.



# **Drilling Rigs**

- Emissions based on cumulative feet drilled
- Process characteristics needed to estimate emissions
  - Engine size and type (HP)
  - Operating hours (hr/spud)
- Emission factors from EPA's NONROAD model
- Methodology accounts for different types of rig configurations (mechanical and diesel-electric)



# **Mud Degassing**

- Mud degassing refers to the process of "off-gassing" of entrained gas in the drilling mud once it is outside of the wellbore
- Drilling mud used to keep the drill bit cool, carry out drill cuttings, and maintain wellbore pressure to prevent formation fluids from entering wellbore
- Emissions based on total drilling days
- Emission factor derived from 1977 EPA report
   "Atmospheric Emissions from Offshore Oil and Gas
   Development and Production"



# **Hydraulic Fracturing Pumps**

- Emissions based on number of fracture events
- Process characteristics needed to estimate emissions
  - Engine size (HP)
  - Number of engines
  - Operating hours (hr/event)
- Emission factors from EPA's NONROAD model

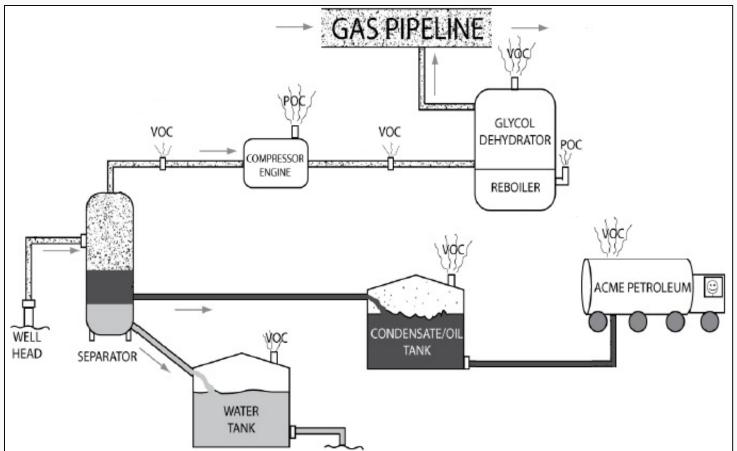


## **Well Completion Venting**

- Emissions generated as gas is vented prior to well being brought into production
- For fractured wells, emissions are generated as gas entrained in the flowback fluid is emitted through open vents at the top of flowback tanks
- Fractured wells regulated under NSPS 0000 and 0000a



Example of Green Completion Equipment (Source: Weatherford)




# **Well Completion Venting**

- Emissions based on number of completion events
- Process characteristics needed to estimate emissions
  - Volume of gas released per completion (MCF/event)
    - Oil and gas
    - Conventional and unconventional
  - Gas composition
  - Controls



#### **Production Sources**



Source : Texas Commission on Environmental Quality Air Permit Reference Guide APDG 5942 8/24/2017 U.S. Environmental Protection Agency



# **Artificial Lift Engines**

- "Pumpjack" engines
- Engines used to lift oil out of the well if there is not enough bottom hole pressure for the oil to flow to the surface
- Generally use casinghead gas



# **Artificial Lift Engines**

- Emissions based on number of oil wells
- Process characteristics needed to estimate emissions
  - Engine size (HP)
  - Engine operating schedule (hr/yr)
  - Fraction of oil wells with engines
- Emission factors from AP-42
- Electric engines are common, accounted for in methodology



#### **Associated Gas Venting**

- Refers to the practice of venting gas produced at oil wells where the well is not connected to a gas sales pipeline
- May be flared (e.g. Bakken Shale)
- Process characteristics needed to estimate emissions
  - Quantity of gas vented per barrel of oil production (MCF/bbl)
  - Fraction of gas flared
  - Composition of the vented gas



#### **Condensate Tanks**



EPA photo.

8/24/2017



#### **Condensate Tanks**

- Emissions based on condensate production
- Emissions occur from flashing, working, and breathing losses
- Flashing losses are generally the largest component and occur when gases entrained in a liquid "flash off" as the pressure drops
- Emissions per barrel of condensate needed to estimate total county-level emissions (lb/bbl)
- Regulated under NSPS OOOO and OOOOa



# **Crude Oil Tanks**

- Used to store crude oil at a well pad or central tank battery prior to transfer to a refinery
- Some oil fields pipe oil directly downstream and do not have tanks in the field
  - Accounted for in Tool
- Largest VOC source as calculated by the Tool



Permian Basin Tank Battery Source: Google Earth



#### **Crude Oil Tanks**

- Emissions based on oil production
- Emissions occur from flashing, working, and breathing losses
- Emissions per barrel of crude oil needed to estimate total county-level emissions (lb/bbl)
- Regulated under NSPS 0000 and 0000a



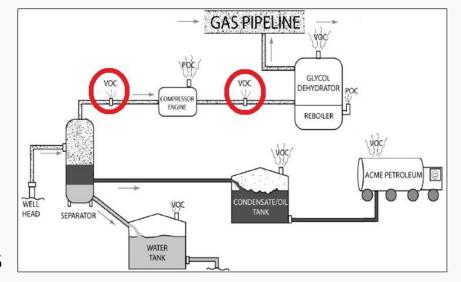
#### Dehydrators

- Use glycol to remove water from gas stream to prevent corrosion or freezing issues downstream
- Small reboiler used to regenerate the glycol
- May be located at well pad, or at centrally located gathering station



EPA photo.




# Dehydrators

- Emissions generated from the still vent and the reboiler
- Emissions from the still vent based on gas production
  - Emissions per throughput (lb/MMSCF)
- Emissions from the reboiler based on gas well count
  - Number of dehydrators per well
  - Reboiler size (MMBtu/hr) and operating schedule (hr/yr)
- NESHAP HH and HHH may require controls



#### **Fugitive Leaks**

- Emissions of gas that escape through well site components such as connectors, flanges, and valves
- Source category only covers components located at the well pad
- Regulated under NSPS 0000a



Source : Texas Commission on Environmental Quality Air Permit Reference Guide APDG 5942



# **Fugitive Leaks**

- Emissions based on well count
- Process characteristics needed to estimate emissions
  - Counts of fugitive components by type per well
  - Operating schedule (hr/yr)
  - Composition of leaked gas
- Emission factors from "Protocol for Equipment Leak Emission Estimates" (EPA, 1995)



#### **Gas-Actuated Pneumatic Pumps**

- Small gas-driven plunger pumps used to provide a constant supply of chemicals or lubricants
- Commonly used in sites where electric power is unavailable
- Gas-actuated pumps vent by design




#### **Gas-Actuated Pneumatic Pumps**

- Emissions based on well counts
- Kimray pumps
- Chemical injection pumps (CIP)
- Certain pumps regulated under NSPS OOOOa
- Process characteristics needed to estimate emissions
  - Count of pumps per well (oil, gas, CBM)
  - Pump vent rate (SCF per throughput or day)
  - Composition of vented gas



#### Heaters

- Line heaters used to maintain temperatures as pressure decreases to prevent formation of hydrates (Marcellus Shale)
- Heater treaters used to heat oil/water emulsions to aid in separation (Bakken Shale, Permian Basin)



Source : Texas Commission on Environmental Quality Air Permit Reference Guide APDG 5942

# THE STATES

#### Heaters

- Emissions based on the number of wells
- Heaters used as control devices regulated under NSPS 0000 and 0000a
- Process characteristics needed to estimate emissions
  - Number of heaters per well
  - Heater size (MMBtu/hr)
  - Operating schedule (hr/yr)
  - H<sub>2</sub>S content (to estimate SO<sub>2</sub>)



# **Lateral Compressor Engines**

- Large "line" engines
- May serve ~10 to 100 wells
- Used at gathering or booster stations (mid-stream)
- Natural gas-fired
- Rich-burn or lean-burn



# Lateral Compressor Engines

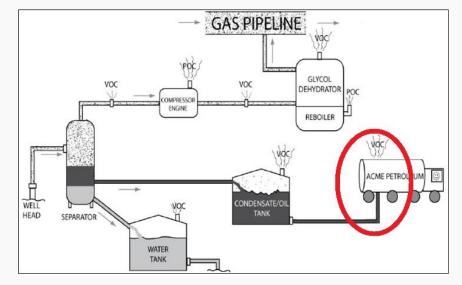
- Emissions based on the number of gas wells
- Compressors regulated under NSPS OOOO and OOOOa
- Process characteristics needed to estimate emissions
  - Number of gas wells served by a lateral engine
  - Engine size (HP)
  - Operating schedule (hr/yr)
  - Control information



# **Liquids Unloading**

- Used to remove accumulation of fluids in the wellbore
- Also known as "well blowdowns"
- May be controlled (flaring or plunger lifts)




# **Liquids Unloading**

- Emissions based on the number of gas wells
- Process characteristics needed to estimate emissions
  - Number of unloading events per well
  - Volume of vented gas per liquids unloading event (MCF/event)
  - Composition of vented gas
  - Control information



# **Hydrocarbon Liquids Loading**

- Emissions generated during transfer of liquids from tanks to trucks
- As with storage tank emissions, where liquids are piped directly downstream, no emissions from this category
  - Accounted for in Tool



Source : Texas Commission on Environmental Quality Air Permit Reference Guide APDG 5942



# **Hydrocarbon Liquids Loading**

- Emissions based on oil and condensate production
- AP-42 loading loss equation used to estimate emissions
- Tank vapor composition needed to estimate VOC and HAP emissions

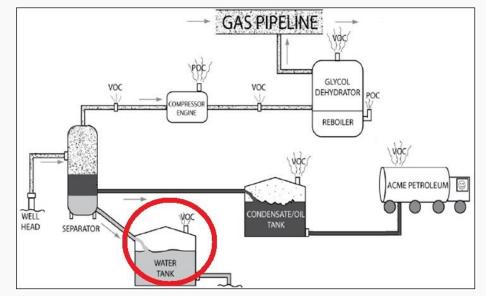
$$L = 12.46 \times \left(\frac{S \times V \times MW_{gas}}{T}\right)$$



## **Pneumatic Devices**

- Use high-pressure gas to produce mechanical motion (levers, switches)
- Largest CH<sub>4</sub> source under Subpart W and in the GHG EI (production sector)
- 2<sup>nd</sup> largest VOC source as calculated by the Tool




# **Pneumatic Devices**

- Emissions based on the number of wells
- Process characteristics needed to estimate emissions
  - Number of devices per well
  - Type of devices (high, low, and intermittent-bleed)
  - Volume of vented gas per device (SCF/hr/device)
  - Operating schedule (hr/yr)
  - Composition of vented gas
- Regulated under NSPS OOOO and OOOOa



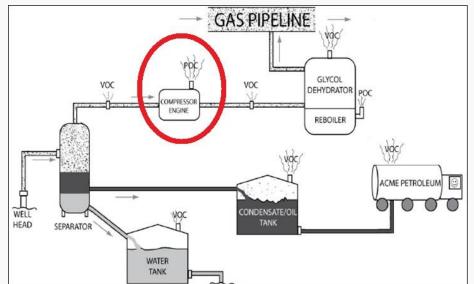
## **Produced Water Tanks**

- Store water separated at the wellhead
- Emissions generated from working and breathing losses
- Water may be injected underground to maintain pressure (waterflooding) or for disposal



Source : Texas Commission on Environmental Quality Air Permit Reference Guide APDG 5942




# **Produced Water Tanks**

- Emissions based on produced water production
- Emissions occur from working and breathing losses
- Process characteristics needed to estimate emissions
  - Emissions per barrel of production (lb/bbl)
  - Fraction of produced water directed to tanks
  - Composition of the tank vapors



# **Wellhead Compressor Engines**

- Provide energy to move produced gas downstream to gathering or boosting station
- Brought onsite as well pressure drops
- Utilize produced gas as fuel
- Largest NO<sub>x</sub> source as calculated by the Tool



Source : Texas Commission on Environmental Quality Air Permit Reference Guide APDG 5942



# Wellhead Compressor Engines

- Compressors regulated under NSPS OOOO and OOOOa
- Emissions based on the number of gas wells
- Process characteristics needed to estimate emissions
  - Fraction of gas wells requiring compression
  - Engine size (HP)
  - Operating schedule (hr/yr)
  - Control information



# **Data Resources**

- National Oil & Gas Committee Information Repository
- Existing Studies
- EPA Natural Gas STAR Program
  - <u>https://www.epa.gov/natural-gas-star-program/natural-gas-star-program</u>
- Industry Surveys
- State Permitting/Inventory Data



# **Existing Studies**

- National Oil & Gas Committee Information Repository
  - http://vibe.cira.colostate.edu/ogec/home.htm
- Texas Commission on Environmental Quality (TCEQ)
  - https://www.tceq.texas.gov/airquality/airmod/project/pj\_repor t\_ei.html
- Western Regional Air Partnership (WRAP)
  - https://www.wrapair2.org/emissions.aspx



# **Industry Surveys**

- Send directly to industry, focused or broad
- Recent Industry Surveys/Examples
  - CenSARA
  - TCEQ
  - WRAP



# State Permitting/Inventory Data

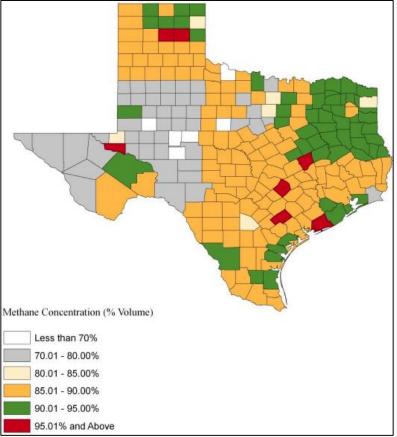
- Permit Applications
- Annual Emissions Inventory Submittals
- Dehydrator Simulation Software
  - Gas Research Institute (GRI) GLYCalc Model
  - ProMax®, Aspen HYSYS®, etc.
- Storage Tank Simulation Software
  - American Petroleum Institute (API) E&P TANKS
  - ProMax®, Aspen HYSYS®, etc.



# State Permitting/Inventory Data

- EPA (Cindy Beeler) Presentation
  - GRI-GLYCalc and E&P TANK Example Applications
  - <u>http://vibe.cira.colostate.edu/ogec/docs/meetings/2015-03-</u>
     <u>12/NationalOGEmissionWorkGroup\_031215\_GLYCalc\_EPT</u>
     <u>ank4.pdf</u>
- Data may be used to develop "nonpoint" factors
  - GRI-GLYCalc fugitive gas composition and dehydrator emission factors
  - E&P TANK VOC and HAP emission factors




#### **GRI-GLYCalc Gas Composition**

| WET GAS STREAM                                                                  |                                     |                                                               | DRY | GAS STREAM |                                                |                                                               |                                     |
|---------------------------------------------------------------------------------|-------------------------------------|---------------------------------------------------------------|-----|------------|------------------------------------------------|---------------------------------------------------------------|-------------------------------------|
| Temperature: 95.00 deg. F<br>Pressure: 994.70 psia<br>Flow Rate: 2.48e+005 scfh |                                     |                                                               |     | Pressure:  | 95.00 deg. F<br>994.70 psia<br>2.48e+005 scfh  |                                                               |                                     |
| Component                                                                       | Conc.<br>(vol%)                     | Loading<br>(lb/hr)                                            |     |            | Component                                      |                                                               | Loading<br>(lb/hr)                  |
| Carbon Dioxide<br>Hydrogen Sulfide<br>Nitrogen                                  | 1.90e-001<br>9.99e-005<br>1.02e-001 |                                                               |     |            | Carbon Dioxide<br>Hydrogen Sulfide<br>Nitrogen |                                                               | 5.42e+001<br>2.13e-002<br>1.86e+001 |
| Propane<br>Isobutane                                                            | 2.33e+000<br>5.93e-001<br>5.95e-001 | 1.12e+003<br>6.71e+002<br>2.25e+002<br>2.26e+002<br>1.10e+002 |     |            | Propane<br>Isobutane                           | 5.68e+000<br>2.33e+000<br>5.93e-001<br>5.94e-001<br>2.32e-001 | 6.69e+002<br>2.25e+002<br>2.25e+002 |
| n-Pentane<br>Cyclopentane<br>n-Hexane<br>Cyclohexane<br>Other Hexanes           | 9.99e-003<br>5.59e-002<br>4.29e-002 | 4.58e+000<br>3.15e+001<br>2.36e+001                           |     |            | Cyclopentane                                   | 5.56e-002<br>4.15e-002                                        | 4.48e+000<br>3.13e+001<br>2.28e+001 |
| Methylcyclohexane<br>Benzene                                                    | 3.60e-002<br>1.60e-002<br>1.30e-002 | 8.16e+000<br>7.82e+000                                        |     |            | Methylcyclohexane<br>Benzene                   | 1.18e-002<br>8.47e-003                                        | 2.22e+001<br>5.99e+000<br>5.09e+000 |
| Xylenes<br>C8+ Heavies                                                          |                                     | 2.77e+000<br>1.35e+002                                        |     |            | Xylenes<br>C8+ Heavies                         |                                                               | 1.38e+000<br>1.30e+002              |

U.S. Environmental Protection Agency



### **GRI-GLYCalc Gas Composition**



8/24/2017

U.S. Environmental Protection Agency



#### **GRI-GLYCalc Dehydrator Emissions**

| ONTROLLED REGENERATOR EMISSIONS |         | FLASH TANK OFF GAS          |        |  |
|---------------------------------|---------|-----------------------------|--------|--|
| Component                       | lbs/hr  | Component                   | lbs/hr |  |
| Hydrogen Sulfide                | <0.0001 | Hydrogen Sulfide            | 0.0001 |  |
| Methane                         | 0.0088  | Methane                     |        |  |
| Ethane                          | 0.0096  | Ethane                      |        |  |
| Propane                         | 0.0123  | Propane                     |        |  |
|                                 | 0.0061  | Isobutane                   | 0.2993 |  |
| n-Butane                        | 0.0081  | n-Butane                    | 0.3260 |  |
| Isopentane                      | 0.0027  | Isopentane                  | 0.1343 |  |
| n-Pentane                       | 0.0025  | n-Pentane                   | 0.1012 |  |
| Cyclopentane                    | 0.0006  | Cyclopentane                | 0.008  |  |
| n-Hexane                        | 0.0009  | n-Hexane                    | 0.0389 |  |
| Cyclohexane                     | 0.0025  | Cyclohexane                 | 0.036  |  |
| Other Hexanes                   | 0.0011  | Other Hexanes               | 0.047  |  |
| Heptanes                        | 0.0006  | Heptanes                    | 0.028  |  |
| Methylcyclohexane               | 0.0014  | Methylcyclohexane           | 0.027  |  |
| Benzene                         | 0.0065  | Benzene                     | 0.012  |  |
| Toluene                         | 0.0027  | Toluene                     | 0.009  |  |
|                                 | 0.0001  | Ethylbenzene                | 0.000  |  |
| Xylenes                         | 0.0004  | Xylenes                     | 0.001  |  |
| C8+ Heavies                     | <0.0001 | C8+ Heavies                 | 0.035  |  |
| Total Emissions                 | 0.0668  | Total Emissions             | 7.739  |  |
| Total Hydrocarbon Emissions     | 0.0668  | Total Hydrocarbon Emissions | 7.739  |  |
| Total VOC Emissions             | 0.0484  | Total VOC Emissions         | 1.957  |  |
| Total HAP Emissions             | 0.0106  | Total HAP Emissions         | 0.063  |  |
| Total BTEX Emissions            | 0.0097  | Total BTEX Emissions        | 0.024  |  |

U.S. Environmental Protection Agency

8/24/2017



# **E&P TANKS**

| Project Setup                                                                                                                                                                                     | D Information<br>************************************                                                                                                        | ogram Files\API\<br>nk with Separat<br>ressure Oil                                                                                                       | E&P TANK Versi                                                                                                                                                | **************************************                                                                                                                                |
|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------|----------------------------------------------------------------------------------------------------------------------------------------------------------|---------------------------------------------------------------------------------------------------------------------------------------------------------------|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| Days of Annual Oper<br>Emission Summary                                                                                                                                                           | acron .                                                                                                                                                      | bb1/day1                                                                                                                                                 |                                                                                                                                                               |                                                                                                                                                                       |
| Item<br>Total HAPs<br>Total HC<br>VOCs, C2+                                                                                                                                                       | Uncontrolled<br>[ton/yr]<br>14.210<br>566.994<br>500.099                                                                                                     | Uncontrolled<br>[lb/hr]<br>3.244<br>129.451<br>114.178                                                                                                   | Controlled<br>[ton/yr]<br>0.711<br>28.350<br>25.005                                                                                                           | Controlled<br>[lb/hr]<br>0.162<br>6.473<br>5.709                                                                                                                      |
| Emission Compos                                                                                                                                                                                   | ltion                                                                                                                                                        |                                                                                                                                                          |                                                                                                                                                               |                                                                                                                                                                       |
| No Component<br>1 H2S<br>2 O2<br>3 CO2<br>4 N2<br>5 C1<br>6 C2<br>7 C3<br>14 C8<br>15 O3<br>16 C10+<br>16 C10+<br>17 Benzene<br>18 Toluene<br>18 Toluene<br>19 E-Benzene<br>24 Xylenes<br>21 n-C6 | Uncontrolled<br>[ton/yr]<br>0.000<br>3.783<br>1.607<br>66.895<br>113.476<br>141.081<br>8.178<br>1.717<br>0.023<br>0.489<br>1.242<br>0.147<br>1.259<br>11.006 | Uncontrolled<br>[1b/hr]<br>0.000<br>0.864<br>0.367<br>15.273<br>25.908<br>32.210<br>1.867<br>0.392<br>0.005<br>0.112<br>0.284<br>0.034<br>0.287<br>2.513 | Controlled<br>[ton/yr]<br>0.000<br>0.000<br>3.783<br>1.607<br>3.345<br>5.674<br>7.054<br>0.409<br>0.086<br>0.001<br>0.024<br>0.002<br>0.007<br>0.063<br>0.550 | Controlled<br>[lb/hr]<br>0.000<br>0.864<br>0.367<br>0.764<br>1.295<br>1.611<br>0.093<br>0.020<br>0.000<br>0.000<br>0.006<br>0.014<br>0.014<br>0.014<br>0.014<br>0.014 |



# BREAK

#### NATIONAL EMISSIONS INVENTORY (NEI)

The full NEI is on a 3-yr cycle (e.g. 2011, 2014, 2017)

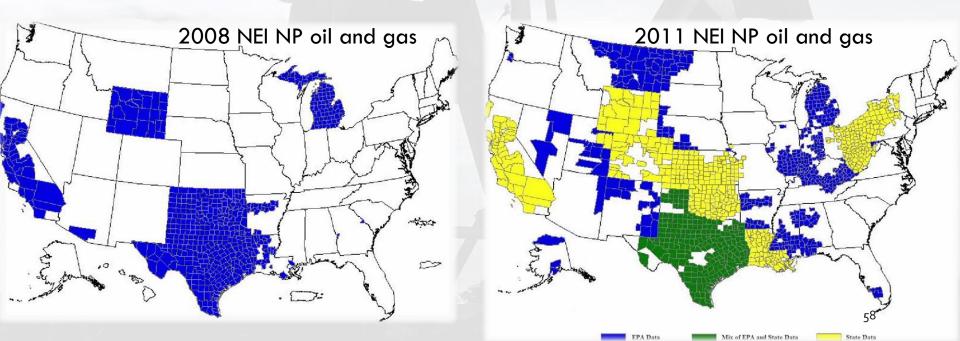
- Point sources (87,000 facilities)
- Nonpoint and mobile sources (county-process)
- Fires (daily/point)
- Biogenic soil and vegetation (county)

States, locals, and tribes are required to submit CO, SOx, NOx, VOC, PM10, PM2.5, NH3, and Lead.

- Basis is National Ambient Air Quality Standards (NAAQS) parts of the Clean Air Act
- Use CAA-based emissions thresholds for "point". States can go lower.

Hazardous Air Pollutants (HAPs) and GHGs can also be voluntarily submitted

• EPA augments the data to make HAPs more complete


## ROLE OF STATES VS. EPA

States are responsible for the emissions estimates

SLTs can choose to accept EPA estimates; however, states choose method to apply

 EPA methods are assumptions about activity and emissions rates that can be improved with local understanding

In the absence of SLT data, EPA still has to create a complete inventory.



#### **COLLABORATIVE EFFORTS**

- National Oil and Gas Emissions Committee (meets monthly)
- Internal agencywide EPA Oil and Gas Team that includes regional experts, regulation writers, EF developers, modelers
- Working closely with WRAP/WESTAR to help adjacent states share data; hope to do the same with MARAMA
- Working with OAP to incorporate GHG EI and RP data and methods (whole gas/venting)

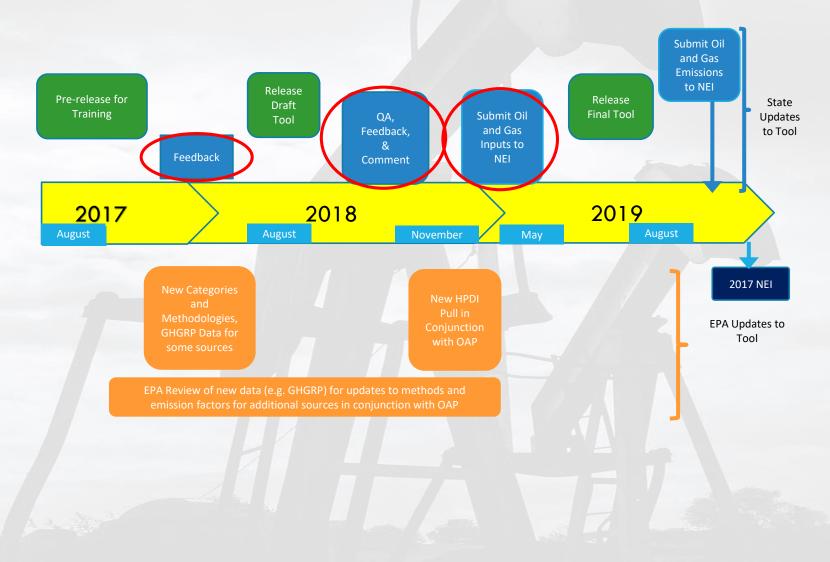
## ALIGNING THE INVENTORIES

NEI covers criteria pollutants and their precursors and HAPs

- Office of Atmospheric Program's El covers GHGs
- Two offices are working to align the inventories
- Methodologies
- Equipment counts
- Activity data
- Emission factors

# **NEW PROCESS FOR NONPOINT IN 2017**

Lean Event November 2016


#### Outcome from this lean event included:

- Agreement to do early coordination and buy-in on methods and implementation
- Goal of release of one version of the NEI, rather than 2 or 3 (but a later release date))
- Division of the nonpoint data category into 3 bins, in order to create focus
  - Bin 1: no expected changes in methodology, no point source subtraction
  - Bin 2: changes in methodology, no point source subtraction
  - Bin 3: more complex source categories, with point source subtraction (Oil and Gas fits in here)

### **IMPORTANT DATES FOR BIN 3**

| Action                                                         | Date               |
|----------------------------------------------------------------|--------------------|
| EPA posts draft tool and estimates                             | 8/31/2018          |
| SLT comments due                                               | 11/30/2018         |
| SLTs submit inputs or emissions for Category 3 tools           | 12/1/18 -5/31/2019 |
| EPA posts revised tools and estimates                          | 2/28/2019          |
| EPA posts final tools and estimates using SLT submitted inputs | 8/31/2019          |
| 2017 v1 NEI Release in EIS for nonpoint                        | 12/31/2019         |
| 2017 v1 Public Release                                         | 1/31/2020          |
|                                                                |                    |

### **OIL AND GAS 2017 NEI TIMELINE**



### THE OUTPUT IS ONLY AS GOOD AS THE INPUT!

Review the inputs for accuracy for your state.

- Gather process characterization data
- Contact oil and gas commission in your state
- Review permit data to see if equipment counts are accurate
- Do your own survey
- Talk to your RPO or neighboring states



#### **START NOW!**

### **2017 NEI PLANS (BUDGET RELIANT)**

No planned updates to the database structure for the 2017 Tool (re-engineered for the 2014 NEI).

- New categories and methodologies
  - Add CBM Dewatering Pumps category
  - Abandoned wells
    - EPA/OAR/OAP currently developing draft estimates for abandoned wells for methane
    - For GHG El, this may add up to millions of metric tons of methane
    - EIAG is working to adapt this methodology for the NEI to estimate VOC and speciated HAPs
- Disaggregate selected emissions algorithms that combine multiple processes into a single SCC (e.g., dehydrators) to individual components (dehydrator, flare, and reboiler)

### 2017 NEI PLANS (BUDGET RELIANT)

 Recode the tool for conventional/unconventional emissions calculations (need based)

#### Include additional pollutants

- SPECIATE profiles include pollutants not in the Tool
- Gas analysis includes pollutants not in the Tool

#### • Update basin factors

- Default conventional oil well completion value
- Nonroad engine factors
- 2017 Subpart W data mining/updates
- Other recent studies?

#### **2017 NEI PLANS (BUDGET RELIANT)**

- Add tribal reservation layer to activity data (consider also basin factor data)
- Add new control technologies:
  - Vapor recovery units (VRU)
  - Electrified engines
- Pull HPDI data (Fall 2018)
  - Consider updated methodology for oil/condensate distinction (EIA-based?)
- Final 2017 Tool (August 2019)

#### TO IMPROVE EMISSIONS, WE CAN...

Keep coordinated through better targeted and ongoing communication Use the opportunity periods during the NEI cycle to focus efforts

Define new processes to update building blocks of emissions:

- Methods and their assumptions
- Test data and its use
- Emissions factors

Select source categories of common interest and collectively review:

- Find ways to update for improvements that meet different uses
- Resolve inconsistencies or clearly define and accept them



# BREAK



#### Acknowledgements

- National Oil and Gas Committee
- ERG Staff
  - o Bebhinn Do
  - Stacie Enoch
  - o Karla Faught
  - Steve Mendenhall
  - o Stephen Treimel
  - Jody Tisano



#### **Overview of the Presentation**

- Introduction/Timeline of the Tool Development
- 2014 NEI Oil and Gas Tool Coverage
- Walking through the Tool
- Case Studies using the 2014 Tool
- Development Plans for the 2017 NEI Oil and Gas Tool

8/24/2017



#### Where We Were

- 2011 Oil and Gas Tool
  - $\circ~$  Converted from Excel Workbook to Access
  - Spreadsheet-type formatted tables

| TOOL_08.6_V2_20141121 : Database (Access 2007) - Microsoft Access |                                             |              |            |             |                 |                  |                |
|-------------------------------------------------------------------|---------------------------------------------|--------------|------------|-------------|-----------------|------------------|----------------|
| Home Create External Data Database Tools Acrobat                  | 0                                           |              |            |             |                 |                  |                |
| 山 A A B A A B A A A A A A A A A A A A A                           |                                             |              |            |             |                 |                  |                |
| a copy                                                            |                                             |              |            |             |                 |                  |                |
|                                                                   |                                             |              |            |             |                 |                  |                |
| Views Clipboard 🕞 Font 🕫 Rich Text Records Sort & Filter Find     |                                             |              |            |             |                 |                  |                |
| Custom • «                                                        | 003q_BASIN_FACTORS_FUGITIVES                |              |            |             |                 |                  | ×              |
| GROUP_IA_INPUT_ACTIVITY_DATA_TABLE &                              |                                             | STATE COUL . | STATE ADDD | COUNTY NAME | SOURCE CATEGORY | FUG VALVES GAS - | REF FUG V/     |
|                                                                   | Mid-Gulf Coast Basin                        | 01001        | _          | _           | FUGITIVES       |                  |                |
| I ODG DECEMBER REFERENCE TABLE                                    |                                             |              | AL         | Autauga     |                 |                  | CENSARA_STUDY  |
| GROUP IS EMISSION FACTOR DATA TABLES *                            | Mid-Gulf Coast Basin                        | 01003        | AL         | Baldwin     | FUGITIVES       |                  | CENSARA_STUDY_ |
| GROUP LC BASIN FACTORS DATA TABLES *                              | S.GA Sedimentary Prov                       | 01005        | AL         | Barbour     | FUGITIVES       |                  | CENSARA_STUDY_ |
| GROUP_2_CATEGORY_AND_GEOGRAPHIC_SEL × =                           | Appalachian Basin (Eastern Overthrust Area) |              | AL         | Bibb        | FUGITIVES       |                  | CENSARA_STUDY_ |
| A MACRO_RESET_CATEGORY_AND_GEOGRAPHIC_L                           | Appalachian Basin (Eastern Overthrust Area) |              | AL         | Blount      | FUGITIVES       |                  | CENSARA_STUDY_ |
| JESTEP_01_PICK_SOURCE_CATEGORY                                    | Mid-Gulf Coast Basin                        | 01011        | AL         | Bullock     | FUGITIVES       | 13.82857 (       | CENSARA_STUDY_ |
| 2 step_02_RUN_SOURCE_CATEGORY_LEVEL                               | Mid-Gulf Coast Basin                        | 01013        | AL         | Butler      | FUGITIVES       | 13.82857 0       | CENSARA_STUDY  |
| 3 STEP_03_PICK_SPECIFIC_SOURCE_CATEGORIES (C                      | Appalachian Basin (Eastern Overthrust Area) | 01015        | AL         | Calhoun     | FUGITIVES       | 13.82857 0       | CENSARA_STUDY_ |
| 🚚 STEP_04_PICK_GEOGRAPHIC_LEVEL (CLOSE AFTER 🛄                    | Piedmont-Blue Ridge Prov                    | 01017        | AL         | Chambers    | FUGITIVES       | 13.82857 0       | CENSARA_STUDY_ |
| 2 STEP_05_RUN_PICK_GEOGRAPHIC_LEVEL                               | Appalachian Basin (Eastern Overthrust Area) | 01019        | AL         | Cherokee    | FUGITIVES       | 13.82857 0       | CENSARA_STUDY_ |
| ETEP_66_PICK_GEOGRAPHIC_SPECIFIC (CLOSE AFT                       | Mid-Gulf Coast Basin                        | 01021        | AL         | Chilton     | FUGITIVES       | 13.82857 0       | CENSARA STUDY  |
| Z STEP_07_RUN_PICK_GEOGRAPHIC_SPECIFIC                            | Mid-Gulf Coast Basin                        | 01023        | AL         | Choctaw     | FUGITIVES       | 13.82857 0       | CENSARA STUDY  |
| GROUP_3_POINT_SOURCE_ACTIVITY_ADJUST >                            | Mid-Gulf Coast Basin                        | 01025        | AL         | Clarke      | FUGITIVES       | 13.82857 (       | CENSARA STUDY  |
| GROUP_4_RUN_ESTIMATION_QUERIES                                    | Piedmont-Blue Ridge Prov                    | 01027        | AL         | Clay        | FUGITIVES       |                  | CENSARA STUDY  |
| GROUP 5 POINT SOURCE EMISSION ADJUST *                            | Piedmont-Blue Ridge Prov                    | 01029        | AL         | Cleburne    | FUGITIVES       |                  | ENSARA STUDY   |
| GROUP 6 INALIZE INISION STIMUTES *                                | S.GA Sedimentary Prov                       | 01031        | AL         | Coffee      | FUGITIVES       |                  | ENSARA STUDY   |
| .2 STEP_09_RUN_POINT_SOURCE_EMISSIONS_ADJU                        | Black Warrior Basin                         | 01033        | AL         | Colbert     | FUGITIVES       |                  | CENSARA STUDY  |
| 2 STEP_10_MACRO_TO_DEVELOP_EIS_FILES                              | Mid-Gulf Coast Basin                        | 01035        | AL         | Conecuh     | FUGITIVES       |                  | CENSARA STUDY  |
| GROUP_TA_COMPLIED_SUMMARY_EMISSIONS 🙊                             | Piedmont-Blue Ridge Prov                    | 01035        | AL         | Coosa       | FUGITIVES       |                  | CENSARA STUDY  |
| COMPLED_EMISSIONS_ALL                                             | Mid-Gulf Coast Basin                        | 01037        | AL         | Covington   | FUGITIVES       |                  | CENSARA STUDY  |
| Ready                                                             | Mid-Gulf Coast Basin                        | 01039        | AL         | Crenshaw    | FUGITIVES       |                  |                |
|                                                                   |                                             |              |            |             |                 |                  | CENSARA_STUDY_ |
|                                                                   | Black Warrior Basin                         | 01043        | AL         | Cullman     | FUGITIVES       |                  | CENSARA_STUDY_ |
|                                                                   | S.GA Sedimentary Prov                       | 01045        | AL         | Dale        | FUGITIVES       |                  | CENSARA_STUDY_ |
|                                                                   | Mid-Gulf Coast Basin                        | 01047        | AL         | Dallas      | FUGITIVES       | 13.82857 0       | CENSARA_STUDY_ |

#### U.S. Environmental Protection Agency

Appalachian Basin (Eastern Overthrust Area) 01049

Record: H 4 1 of 3227 + H H3 🗰 No Filter Search

AL

**▲** 

DeKalb

FUGITIVES

13.82857 CENSARA\_STUDY -



#### Where We Are

- 2014 Oil and Gas Tool
  - Re-engineered to enhance user experience
  - Dashboard, buttons, import/export procedures

| Ge   | eographic and Source Selections     |                |                      |                         |                                 |                                    |                                          |                           |                           |
|------|-------------------------------------|----------------|----------------------|-------------------------|---------------------------------|------------------------------------|------------------------------------------|---------------------------|---------------------------|
| Dil  | and Gas Tool: Product               | ion Acti       |                      | nboard View             | r                               |                                    |                                          |                           |                           |
| Ba   | ack to Home Page Reset All Selec    | ctions/Go t    | Step 1 –<br>Select a | TOOL                    |                                 |                                    |                                          |                           |                           |
|      |                                     | p Z - View/Edi | geographic           | Step 8 - Point Source   | e Activity Adjustments          | Step 9 -                           | Point Source Emission Adjustments        | Step 10 - Final Emissions | Master References         |
|      | Step 1 - Select Geographic Level    | Step 2 - Sele  | level.               | ion Step                | 3 - Select Source Category Leve | el                                 | Step 4 - Select Specific Source Category | Step 5 - View/Edit Co     | ounty-Level Activity Data |
| Plei | AREA TYPE                           | PICK ONE       | •                    | 1                       | N                               | EI                                 | A Supply Region                          |                           |                           |
| 1    | EIA SUPPLY REGION                   | PICK_ONE       |                      | When<br>finished, click |                                 | 1                                  |                                          |                           |                           |
|      | EPA REGION                          |                |                      | here to                 | West Coa                        | in the                             |                                          |                           |                           |
|      | NATIONWIDE                          |                |                      | complete this step.     |                                 | $\mathcal{H}$                      |                                          |                           |                           |
|      | NEMS REGION                         |                |                      |                         |                                 | Rocky Mountains                    | 1 100                                    |                           |                           |
|      | OZONE ATTAINMENT STATUS             |                |                      | │ \<br>\                |                                 |                                    | Midcontinent                             |                           |                           |
|      | REGIONAL PLANNING ORGANIZATION      |                |                      |                         |                                 | 5                                  | - La                                     |                           |                           |
|      | STATE                               |                |                      |                         | After meline                    |                                    | Atlantic                                 |                           |                           |
|      | SUBPART W BASIN                     |                |                      |                         | After making                    | - Le                               | Guil Coast                               |                           |                           |
| *    |                                     |                |                      |                         | the selection,                  |                                    | Shallow Guilt of Mexico.                 |                           |                           |
| Re   | cord: I4 4 4 of 8 🕨 🕨 🐹 🏷 No Filter | Search         |                      |                         | click this<br>button.           | elamation Administration Office of | Deep Gulf of Mexico                      |                           |                           |



#### **2014 Tool Coverage – Source Categories**

- Exploration Sources:
  - o Drilling
  - Mud Degassing
  - Hydraulic
     Fracturing
  - Well Completions



## **2014 Tool Coverage – Source Categories**

- Production Sources:
  - Artificial Lifts
  - Associated Gas
  - Condensate Tanks
  - Crude Oil Tanks
  - Dehydrators
  - Fugitives
  - Gas-Actuated Pumps

- o Heaters
- Lateral/Gathering Compressors
- Liquids Unloading
- Loading Operations
- Pneumatic Devices
- Produced Water
- Wellhead Compressors



## 2014 Tool Coverage – Pollutants

• Criteria Pollutants:

 $\circ$  CO, NH<sub>3</sub>, NO<sub>x</sub>, PM10-PRI, PM2.5-PRI, SO<sub>2</sub>, VOC

• HAPs:

• BTEX, formaldehyde, and Other HAPs

Other Pollutants:
 O Hydrogen sulfide



#### **2014 Tool Data Sources**

- <u>Methodologies</u>: EPA, CenSARA, and Texas calculation tools
- <u>Activity Data</u>: HPDI, state-provided activity data, state OGC databases, EIA, GHGRP, RigData
- <u>Emission Factors</u>: mostly EPA AP-42; API, Climate Registry, GHGRP
- Basin Factors: EPA; CenSARA; state feedback; SPECIATE

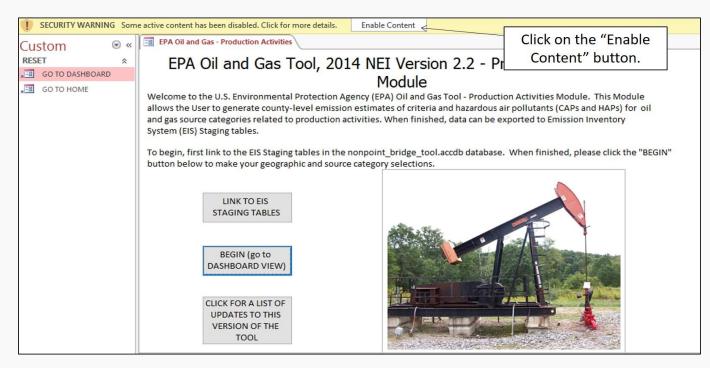


#### **2014 Tool Results**

- Source category coverage: 54 SCCs from 18 source categories
- Pollutant coverage: 50 pollutants
- Geographic coverage: 34 states, 1157 counties, 65 basins
- Emission records generated:
  - From Tool = 939,493
  - To EIS = 749,096

8/24/2017




## Let's Walk Through the Tool...

- Tool Modules:
  - OIL\_GAS\_TOOL\_2014\_NEI\_PRODUCTION\_V2\_2.zip
     OIL\_GAS\_TOOL\_2014\_NEI\_EXPLORATION\_V2\_2.zip
- Each Module contains:
  - Tool in MS-Access format
  - o Blank Nonpoint Bridge Tool database
  - Instructions
- Production Module used as example



## **Production Sources – Getting Started**

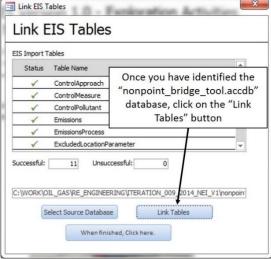
 If using the Tool for the first time from unzipping, then you will need to "Enable Content"





## Production Sources – Linking to EIS Staging Tables

 Click on the "LINK TO EIS STAGING TABLES" button, and a pop-up box will appear. Follow the instructions to link in the EIS Staging tables in the "nonpoint\_bridge\_tool.accdb" database (see figure below). If successfully linked, 11 tables


will be linked.

| EIS Import Ta | bles            |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |
|---------------|-----------------|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| Status        | Table Name      | <u></u>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |
|               | ControlApproa   | ich                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
|               | ControlMeasur   | re internet interne |
|               | ControlPolluta  | nt                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |
|               | Emissions       |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |
|               | EmissionsPro    | Click on the "Select Source                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |
|               | ExcludedLoc     | Database" button, and locate the<br>"nonpoint_bridge_tool.accdb"<br>database                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |
| Se            | lect Source Dat | abase Link Tables                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |



## Production Sources – Linking to EIS Staging Tables

 Once you have identified the location of the "nonpoint\_bridge\_tool.accdb" database to link, click on the "Link Tables" button. If successful, 11 tables will be linked. When finished click on the "When finished, Click here." button.





 Select the geographic-level of the emissions inventory based on interest. Most Users will select the "STATE" view. When finished, click the "When finished, click here to complete this step." button. A message box will appear instructing the User to proceed to Step 2.

| ack to Home Page Reset All Selec                                         | tions/Go t     | Step 1 –<br>Select a | TOOL                       |                                  |                                            |                           |                           |
|--------------------------------------------------------------------------|----------------|----------------------|----------------------------|----------------------------------|--------------------------------------------|---------------------------|---------------------------|
|                                                                          | p 7 - View/Edi | geographic           | Step 8 - Point Source      | e Activity Adjustments           | Step 9 - Point Source Emission Adjustments | Step 10 - Final Emissions | Master Reference          |
| Step 1 - Select Geographic Level                                         | Step 2 - Sele  | level.               | on Step                    | 3 - Select Source Category Level | Step 4 - Select Specific Source Categor    | y Step 5 - View/Edit Co   | ounty-Level Activity Data |
| AREA_TYPE •                                                              | PICK_ONE       | •                    | When                       |                                  |                                            |                           |                           |
| EIA SUPPLY REGION                                                        | PICK_ONE       | •                    | When                       |                                  |                                            |                           |                           |
| EPA REGION                                                               | 000            |                      | finished, click<br>here to | West Coast                       |                                            |                           |                           |
| EPA REGION                                                               |                |                      | complete this              |                                  |                                            |                           |                           |
| NATIONWIDE                                                               |                |                      | step.                      |                                  |                                            |                           |                           |
|                                                                          |                |                      |                            |                                  | ky Mountains                               |                           |                           |
| NATIONWIDE<br>NEMS REGION<br>OZONE ATTAINMENT STATUS                     |                |                      | 1                          |                                  | ky Mountains Northeast Midcontinent        |                           |                           |
| NEMS REGION                                                              |                |                      |                            |                                  | Northeast                                  |                           |                           |
| NEMS REGION<br>OZONE ATTAINMENT STATUS                                   |                |                      |                            |                                  | Northeast                                  |                           |                           |
| NEMS REGION<br>OZONE ATTAINMENT STATUS<br>REGIONAL PLANNING ORGANIZATION |                |                      |                            | After making<br>the selection,   | Midcontinent                               |                           |                           |



 Select the specific geographic location of interest. The User may select more than one specific location. When finished, click the "When finished, click here to complete this step." button. A message box will appear instructing the User to proceed to Step 3.

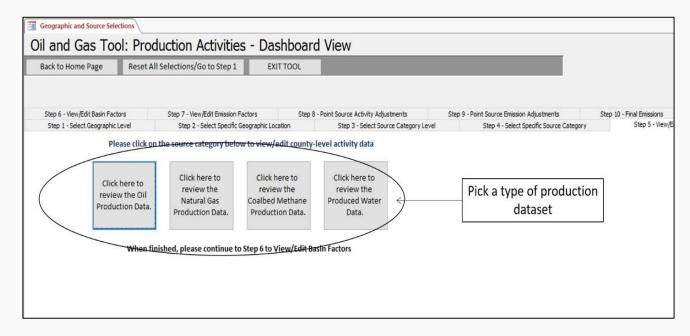
| Geographic and Source Selections                  |                                                                       |                                 |                                                                                                                                                                                                        |
|---------------------------------------------------|-----------------------------------------------------------------------|---------------------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| Oil and Gas Tool: Producti                        | on Activities - Das                                                   | Chan 2 Calast                   | 7                                                                                                                                                                                                      |
| Back to Home Page Reset All Select                | ions/Go to Step 1 EXIT                                                | Step 2 – Select<br>the specific |                                                                                                                                                                                                        |
|                                                   | t Emission Factors Step 8 - Point<br>Specific Geographic Location Ste | geographic                      | Point Source Emission Adjustments         Step 10 - Final Emissions         Master References           Step 4 - Select Specific Source Category         Step 5 - View/Edit County-Level Activity Data |
| Please select the specific geographic location at | which you are generating emission                                     | location(s)                     |                                                                                                                                                                                                        |
| AREA_TYPE -                                       | AREA_DESCRIPTION - P                                                  | ICK_AT_LEAST_ONE                | <b>→</b>                                                                                                                                                                                               |
| STATE                                             | AK                                                                    |                                 |                                                                                                                                                                                                        |
| STATE                                             | AL                                                                    |                                 | When                                                                                                                                                                                                   |
| STATE                                             | AR                                                                    |                                 | finished, click<br>here to                                                                                                                                                                             |
| STATE                                             | AZ                                                                    |                                 | complete this                                                                                                                                                                                          |
| STATE                                             | CA                                                                    |                                 | step.                                                                                                                                                                                                  |
| STATE                                             | со                                                                    |                                 |                                                                                                                                                                                                        |
| STATE                                             | ст                                                                    |                                 |                                                                                                                                                                                                        |
| STATE                                             | DC                                                                    |                                 | After making                                                                                                                                                                                           |
| STATE                                             | DE                                                                    |                                 |                                                                                                                                                                                                        |
| STATE                                             | FL                                                                    |                                 | the                                                                                                                                                                                                    |
| STATE                                             | GA                                                                    |                                 | selection(s),                                                                                                                                                                                          |
| STATE                                             | HI                                                                    |                                 | selection(s),                                                                                                                                                                                          |
| STATE                                             | IA                                                                    |                                 | click this                                                                                                                                                                                             |
| STATE                                             | ID                                                                    |                                 |                                                                                                                                                                                                        |
| STATE                                             | IL                                                                    |                                 | button.                                                                                                                                                                                                |
| STATE                                             | IN                                                                    |                                 |                                                                                                                                                                                                        |
| STATE                                             | KS                                                                    |                                 |                                                                                                                                                                                                        |



 The User may generate emission estimates for <u>all</u> oil and gas production source categories or <u>individually</u> select source categories. When finished, click the "When finished, click here to complete this step." button. A message box will appear instructing the User to proceed to Step 4.

| Back to Home Page                                                                                      | Reset All Selections/Go to Step 1                                                                                                                              | EXIT TOO   | DL                                               |   |                                                             | Select the                                         |                                                 |
|--------------------------------------------------------------------------------------------------------|----------------------------------------------------------------------------------------------------------------------------------------------------------------|------------|--------------------------------------------------|---|-------------------------------------------------------------|----------------------------------------------------|-------------------------------------------------|
| Step 6 - View/Edit Basin Factors<br>Step 1 - Select Geographic Level<br>Please select the source categ | Step 7 - View/Edit Emission Factors         St           Step 2 - Select Specific Geographic Location           ory level at which you are generating emission | n Step 3 - | ce Activity Adjustments<br>Select Source Categor |   | Bource (<br>tep 4 - Sek<br>level.                           | Category                                           | ns Master Reference<br>County-Level Activity Da |
| ALL UPSTREAM PRODUC                                                                                    | OURCE_CATEGORY<br>TION OIL AND GAS SOURCE CATEGORI<br>DUCTION OIL AND GAS SOURCE CATEG                                                                         |            |                                                  | * | When<br>finished, clck<br>here to<br>complete<br>this step. | After ma<br>the<br>selectior<br>click th<br>buttor | n(s),<br>iis                                    |




 Select the specific Source Categories to generate emission estimates. A message box will appear instructing the User to proceed to Steps 5, 6, and 7 to review/edit the activity data, basin factors, and emission factors; or to proceed directly to Step 8 for Point Source Activity Adjustments.

| Back to Home Page Res                | set All Selections/Go                                    | o to Step 1   | EXIT TOOL                                                                          | Categories are                         | e              |                                   |                                         |
|--------------------------------------|----------------------------------------------------------|---------------|------------------------------------------------------------------------------------|----------------------------------------|----------------|-----------------------------------|-----------------------------------------|
|                                      | tep 7 - View/Edit Emission<br>Step 2 - Select Specific G |               | Step 8 - Point Source Activity Adjustments<br>on Step 3 - Select Source Category I | selected.                              | D - Final I    | Emissions M<br>iew/Edit County-Le | laster References<br>evel Activity Data |
| Please select the specific source ca | ategor(ies) for which y                                  | ou are genera | ting emission estimates for.                                                       |                                        |                |                                   |                                         |
| SOURCE_CATEG                         |                                                          |               |                                                                                    |                                        | PICK_AT_LEAST_ | ONE -                             |                                         |
| ARTIFICIAL LIFTS                     |                                                          | 2310000330    | Oil & Gas Expl & Prod /All Process                                                 |                                        | V              |                                   |                                         |
| ASSOCIATED GAS                       |                                                          | 2310011000    | On Shore Crude Oil Production Al                                                   |                                        | V              |                                   | When<br>finished, pres                  |
| CONDENSATE TANKS                     | 2                                                        | 2310021010    | On-Shore Gas Production /Storage                                                   |                                        | <b>v</b>       |                                   | here                                    |
| CONDENSATE TANKS                     | 2                                                        | 2310023010    | On-Shore CBM Production /Storag                                                    | ge Tanks: Condensate                   |                |                                   |                                         |
| CRUDE OIL TANKS                      | 2                                                        | 2310010200    | Oil & Gas Expl & Prod /Crude Petr                                                  | oleum /Oil Well Tanks - Flashing & Sta |                |                                   | 7                                       |
| DEHYDRATORS                          | 2                                                        | 2310021400    | On-Shore Gas Production Dehydra                                                    | ators                                  | V              | 1220                              |                                         |
| DEHYDRATORS                          | 2                                                        | 2310023400    | Coal Bed Methane NG / Dehydrate                                                    | ors                                    |                | A                                 | fter                                    |
| FUGITIVES                            | 2                                                        | 2310011501    | On-Shore Oil Production /Fugitive                                                  | es: Connectors                         | V              |                                   | . 1                                     |
| FUGITIVES                            | 2                                                        | 2310011502    | On-Shore Oil Production /Fugitive                                                  | es: Flanges                            | V              | такі                              | ng the                                  |
| FUGITIVES                            | 2                                                        | 2310011503    | On-Shore Oil Production /Fugitive                                                  | es: Open Ended Lines                   | V              | solor                             | tion(s)                                 |
| FUGITIVES                            | 2                                                        | 2310011505    | On-Shore Oil Production /Fugitive                                                  | es: Valves                             |                | selec                             | cion(s)                                 |
| FUGITIVES                            | 2                                                        | 2310021501    | On-Shore Gas Production /Fugitiv                                                   | es: Connectors                         |                | clic                              | k this                                  |
| FUGITIVES                            | 2                                                        | 2310021502    | On-Shore Gas Production /Fugitiv                                                   | es: Flanges                            |                |                                   |                                         |
| FUGITIVES                            | 2                                                        | 2310021503    | On-Shore Gas Production /Fugitiv                                                   | es: Open Ended Lines                   |                | bu                                | tton.                                   |
| FUGITIVES                            | 2                                                        | 2310021505    | On-Shore Gas Production / Fugitiv                                                  | es: Valves                             |                |                                   |                                         |





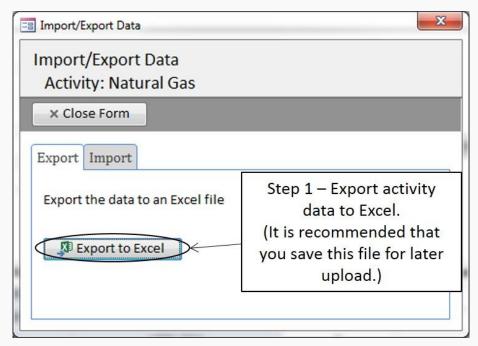
 The User can view and edit the activity data that EPA has compiled for the geographic area and source categories selected





• Once the county-level data set is selected, an Activity Data form will appear that the User can view or edit.

| State Abbreviation                  | AR                             |                |                                      |                              |                     | he User can filter<br>or specific basins.          |
|-------------------------------------|--------------------------------|----------------|--------------------------------------|------------------------------|---------------------|----------------------------------------------------|
| State and County FIPs Code          | 05023                          |                |                                      |                              |                     | or specific basilis.                               |
| County Name                         | Cleburne                       |                |                                      |                              | · ·                 |                                                    |
| Basin Name                          | Arkoma Basin                   |                |                                      | Filter for this Basin only   | Remove Basin Filter | $\mathbf{i}$                                       |
| Year                                | 2014                           |                |                                      |                              |                     |                                                    |
|                                     |                                |                | Import/Export<br>Data                |                              | Tool. V             | s from the 2011<br>alues here cannot<br>be edited. |
| County-Level Natural Gas Production | (MSCE)                         | 226,113,000.00 | Current Value Reference<br>HPDI 2016 | 2011 Value<br>138,938,400.00 | HPDI_2013           |                                                    |
|                                     | n from natural gas wells (BBL) | 0.00           | HPDI_2016                            | 0.00                         | HPDI_2013           | When finished,<br>click here                       |
| county-Level condensate Froduction  |                                | 889            | HPDI_2016                            | 407                          | HPDI_2013           | 1                                                  |
| County-Level Condensate Production  | 5                              | <b>∼</b>       | - /                                  |                              |                     |                                                    |




• The User may also edit activity data in MS-Excel by using the "Import/Export Data..." button.

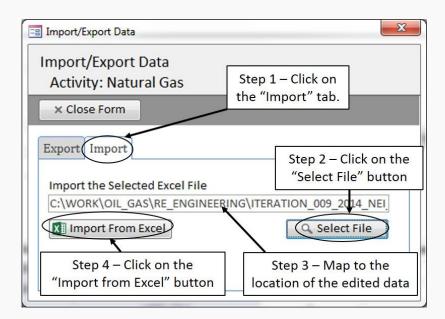
| State Abbreviation                                                                                              | AR                                         |                                 |                            |                              |                                   |               |
|-----------------------------------------------------------------------------------------------------------------|--------------------------------------------|---------------------------------|----------------------------|------------------------------|-----------------------------------|---------------|
| State and County FIPs Code                                                                                      | 05023                                      |                                 |                            | ]                            |                                   |               |
| County Name                                                                                                     | Cleburne                                   |                                 |                            | ]                            |                                   |               |
| Basin Name                                                                                                      | Arkoma Basin                               |                                 |                            | Filter for this Basin o      | nly Remove Basin Filter           |               |
|                                                                                                                 |                                            |                                 |                            |                              |                                   |               |
| Year                                                                                                            | 2014                                       | (                               | Import/Export<br>Data Valu | es here can be ed            | ited.                             |               |
| fear                                                                                                            | 2014                                       | Current Value                   |                            | es here can be ed            | ited.<br>2011 Value Reference     |               |
|                                                                                                                 |                                            |                                 | Data Valu                  |                              |                                   | When finished |
| ounty-Level Natural Gas Production                                                                              | n (MSCF)                                   | Current Value                   | Current Value Reference    | 2011 Value                   | 2011 Value Reference              | When finished |
| County-Level Natural Gas Production<br>County-Level Condensate Production<br>County-Level Condensate Production | n (MSCF)<br>n from natural gas wells (BBL) | Current Value<br>226,113,000.00 | Current Value Reference    | 2011 Value<br>138,938,400.00 | 2011 Value Reference<br>HPDI_2013 |               |



 If the user elects to edit activity data in MS-Excel, after clicking the button, the data is then exported into MS-Excel as shown below.






 A MS-Excel workbook will open when finished exporting. It is required that the User save this file to the hard drive for later upload. In the Excel file, the User can only edit the yellow shaded cells. When completed, simply save the file.

| -  | -  |                   |             |                                   |                     | • ·                                                             |                | 550 C              |               |                    |
|----|----|-------------------|-------------|-----------------------------------|---------------------|-----------------------------------------------------------------|----------------|--------------------|---------------|--------------------|
| A  | A  | B                 | c           | D                                 | E                   | F                                                               | G              | н                  | I             | $\sim$ '           |
|    |    | STATE_COUNTY_FIPS | COUNTY_NAME | 112220100                         | And a second second | DATA_CATEGORY                                                   | PREVIOUS_VALUE | PREVIOUS_REFERENCE | CURRENT_VALUE |                    |
|    | AR | 05001             | Arkansas    | Louisiana-Mississippi Salt Basins |                     | County-Level Natural Gas Production (MSCF)                      | 0              | HPDI_2013          | 0             | HPDI_2015          |
|    | AR | 05001             | Arkansas    | Louisiana-Mississippi Salt Basins |                     | County-Level Condensate Production from natural gas wells (BBL) | 0              | HPDI_2013          | 0 /           | HPDI_2015          |
|    | AR | 05001             | Arkansas    |                                   |                     | County-Level Natural Gas Well Counts                            | 0              | HPDI_2013          | 0 /           | HPDI_2015          |
|    | AR | 05001             | Arkansas    | Louisiana-Mississippi Salt Basins |                     | Fraction of natural gas wells in the county needing compression | 9.090909E-02   | CENSARA_STUDY_2012 | 9.09099E-02   | CENSARA_STUD 2012  |
|    | AR | 05003             | Ashley      | Louisiana-Mississippi Salt Basins |                     | County-Level Natural Gas Production (MSCF)                      | 0              | HPDI_2013          | 0             | HPDI_2015          |
| 7  | AR | 05003             | Ashley      | Louisiana-Mississippi Salt Basins | 2014                | County-Level Condensate Production from natural gas wells (BBL) | 0              | HPDI_2013          | 0             | HPDI_2015          |
|    | AR | 05003             | Ashley      | Louisiana-Mississippi Salt Basins |                     | County-Level Natural Gas Well Counts                            | 0              | HPDI_2013          | 0             | HPDI_2015          |
|    | AR | 05003             | Ashley      | Louisiana-Mississippi Salt Basins | 2014                | Fraction of natural gas wells in the county needing compression | 9.090909E-02   | CENSARA_STUDY_2012 | 9.000909E-02  | CENSARA_STUDY_2012 |
| 10 | AR | 05005             | Baxter      | Ozark Uplift                      | 2014                | County-Level Natural Gas Production (MSCF)                      | 0              | HPDI_2013          | 0             | HPDI_2015          |
|    | AR | 05005             | Baxter      | Ozark Uplift                      |                     | County-Level Condensate Production from natural gas wells (BBL) | 0              | HPDI_2013          | 0             | HPDI_2015          |
| 12 | AR | 05005             | Baxter      | Ozark Uplift                      | 2014                | County-Level Natural Gas Well Counts                            | 0              | HPDI_2013          | 0             | HPDI_2015          |
| 13 | AR | 05005             | Baxter      | Ozark Uplift                      | 2014                | Fraction of natural gas wells in the county needing compression | 0.2082511      | CENSARA_STUDY_2012 | 0.2082511     | CENSARA_STUDY_2012 |
| 14 | AR | 05007             | Benton      | Ozark Uplift                      | 2014                | County-Level Natural Gas Production (MSCF)                      | 0              | HPDI_2013          | •             | HPDI_2015          |
| 15 | AR | 05007             | Benton      | Ozark Uplift                      | 2014                | County-Level Condensate Production from natural gas wells (BBL) | 0              | HPDI_2013          | þ             | HPDI_2015          |
| 16 | AR | 05007             | Benton      | Ozark Uplift                      | 2014                | County-Level Natural Gas Well Counts                            | 0              | HPDI_2013          | þ             | HPDI_2015          |
| 17 | AR | 05007             | Benton      | Ozark Uplift                      | 2014                | Fraction of natural gas wells in the county needing compression | 0.2082511      | CENSARA_STUDY_2012 | 0.2082511     | CENSARA_STUDY_2012 |
| 18 | AR | 05009             | Boone       | Ozark Uplift                      | 2014                | County-Level N                                                  | p              | HPDI_2013          | 0             | HPDI_2015          |
| 19 | AR | 05009             | Boone       | Ozark Uplift                      | 2014                | County-Level C Step 2 – The User can edit                       | D              | HPDI_2013          | 0             | HPDI_2015          |
| 20 | AR | 05009             | Boone       | Ozark Uplift                      |                     | County-Level N                                                  | ,              | HPDI_2015          | 0             | HPDI_2015          |
| 21 | AR | 05009             | Boone       | Ozark Uplift                      | 2014                | Fraction of natu the yellow-shaded cells.                       | 0.2082511      | CENSARA_STUDY_2012 | 0.2082511     | CENSARA_STUDY_2012 |
| 22 | AR | 05011             | Bradley     | Louisiana-Mississippi Salt Basins | 2014                | County-Level Natural Gas Production (WSCP)                      | 0              | HPDI_2013          | p             | HPDI_2015          |
| 23 | AR | 05011             | Bradley     | Louisiana-Mississippi Salt Basins | 2014                | County-Level Condensate Production from natural gas wells (BBL) | 0              | HPDI_2013          | p             | HPDI_2015          |
| 24 | AR | 05011             | Bradley     | Louisiana-Mississippi Salt Basins | 2014                | County-Level Natural Gas Well Counts                            | 0              | HPDI_2013          | þ.            | HPDI_2015          |
| 25 | AR | 05011             | Bradley     | Louisiana-Mississippi Salt Basins | 2014                | Fraction of natural gas wells in the county needing compression | 9.090909E-02   | CENSARA_STUDY_2012 | 9.090909E-02  | CENSARA_STUDY_2012 |
| 26 | AR | 05013             | Calhoun     | Louisiana-Mississippi Salt Basins | 2014                | County-Level Natural Gas Production (MSCF)                      | 0              | HPDI_2013          | d             | HPDI_2015          |
| 27 | AR | 05013             | Calhoun     | Louisiana-Mississippi Salt Basins | 2014                | County-Level Condensate Production from natural gas wells (BBL) | 0              | HPDI_2013          | 0             | HPDI_2015          |
| 28 | AR | 05013             | Calhoun     | Louisiana-Mississippi Salt Basins | 2014                | County-Level Natural Gas Well Counts                            | 0              | HPDI_2013          | 0             | HPDI_2015          |
| 29 | AR | 05013             | Calhoun     | Louisiana-Mississippi Salt Basins | 2014                | Fraction of natural gas wells in the county needing compression | 9.090909E-02   | CENSARA_STUDY_2012 | 9.090909E-02  | CENSARA_STUDY_2012 |
| 30 | AR | 05015             | Carroll     | Ozark Uplift                      | 2014                | County-Level Natural Gas Production (MSCF)                      | 0              | HPDI_2013          | 0             | HPDI_2015          |
| 31 | AR | 05015             | Carroll     | Ozark Uplift                      | 2014                | County-Level Condensate Production from natural gas wells (BBL) | 0              | HPDI_2013          | 0             | HPDI_2015          |
| 32 | AR | 05015             | Carroll     | Ozark Uplift                      | 2014                | County-Level Natural Gas Well Counts                            | 0              | HPDI_2013          | 0             | HPDI_2015          |
| 33 | AR | 05015             | Carroll     | Ozark Uplift                      | 2014                | Fraction of natural gas wells in the county needing compression | 0.2082511      | CENSARA_STUDY_2012 | 0.2082511     | CENSARA_STUDY 2012 |
| 34 | AR | 05017             | Chicot      | Louisiana-Mississippi Salt Basins | 2014                | County-Level Natural Gas Production (MSCF)                      | 0              | HPDI_2013          | 0             | HPDI_2015          |
| 35 | AR | 05017             | Chicot      | Louisiana-Mississippi Salt Basins | 2014                | County-Level Condensate Production from natural gas wells (BBL) | 0              | HPDI_2013          | 0             | HPDI_2015          |
| 36 | AR | 05017             | Chicot      | Louisiana-Mississippi Salt Basins | 2014                | County-Level Natural Gas Well Counts                            | 0              | HPDI_2013          | 0             | HPDI_2015          |
| 37 | AR | 05017             | Chicot      | Louisiana-Mississippi Salt Basins | 2014                | Fraction of natural gas wells in the county needing compression | 9.090909E-02   | CENSARA_STUDY_2012 | 9.090909E-02  | CENSARA STUDY_2012 |
| 38 | AR | 05019             | Clark       | Louisiana-Mississippi Salt Basins | 2014                | County-Level Natural Gas Production (MSCF)                      | 0              | HPDI 2013          | 0             | HPDI 2015          |





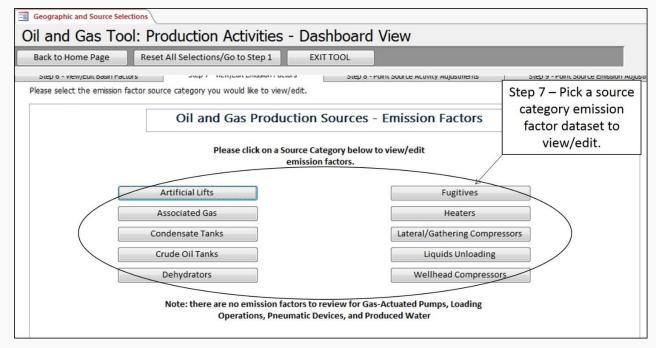
• The User will need to go back to the Tool and click on the "Import/Export Data..." button to initiate importing the edited data file. After clicking, the Import/Export form will appear.





 In Step 6, the User can view and edit the basin factor data that EPA has compiled for the geographic area and source categories selected.

| Back to Home Page Re<br>Step 1 - Select Geographic Level<br>Step 6 - View/Edit Basin Factors | seet All Selections/Go to Step 1<br>Step 2 - Select Specific G<br>Step 7 - View/Edit Emission Fr | Step 3 - Select Source Cal<br>- Point Source Activity Adjustment |                    |
|----------------------------------------------------------------------------------------------|--------------------------------------------------------------------------------------------------|------------------------------------------------------------------|--------------------|
|                                                                                              | Oil and Gas P<br>gory below to view/edit the bas                                                 |                                                                  |                    |
| Artificial Lifts                                                                             | Heaters                                                                                          | Associated Gas                                                   | Gas-Actuated Rumps |
| Associated Gas                                                                               | Lateral/Gathering<br>Compressors                                                                 | Condensate Tank                                                  | Liquids Unloading  |
| Condensate Tank                                                                              | Liquids Unloading                                                                                | Crude Oil Tank                                                   | Loading Operations |
| Crude Oil Tank                                                                               | Loading Operations                                                                               | Dehydrators                                                      | Pneumatic Devices  |
| Dehydrators                                                                                  | Pneumatic Devices                                                                                | Fugitives                                                        | Produced Water     |
| Fugitives                                                                                    | Produced Water                                                                                   |                                                                  |                    |
| Gas-Actuated Pumps                                                                           | Wellhead<br>Compressors                                                                          |                                                                  |                    |
|                                                                                              |                                                                                                  |                                                                  |                    |




 In Step 6, the User can view/edit the basin factor data. If the User updates values for one county in a basin, then all other counties in the basin and state can be updated by clicking on the "Click to apply these values to all other counties in the same basin for the state." button.

| State Abbreviation                                                                                                         | AR           |                    |                                                                                          |                          |                                                                       | The User                                                                                     | can filter                           |                                                                                |           |
|----------------------------------------------------------------------------------------------------------------------------|--------------|--------------------|------------------------------------------------------------------------------------------|--------------------------|-----------------------------------------------------------------------|----------------------------------------------------------------------------------------------|--------------------------------------|--------------------------------------------------------------------------------|-----------|
| State and County FIPs Code                                                                                                 | 05023        |                    |                                                                                          |                          |                                                                       | for specif                                                                                   | ic basins.                           |                                                                                |           |
| County Name                                                                                                                | Cleburne     |                    | Default Values                                                                           |                          |                                                                       |                                                                                              |                                      | _                                                                              |           |
| Basin Name                                                                                                                 | Arkoma Basin | can                | not be edited.                                                                           | Filter for this Basin of | only Remove Basin Filter                                              | Click to apply these<br>values to all other<br>counties in the same<br>basin for this state. |                                      | Values from                                                                    |           |
|                                                                                                                            |              |                    | Import/Export<br>Data                                                                    | $\backslash$             |                                                                       |                                                                                              |                                      | Tool. Valu<br>cannot be                                                        |           |
|                                                                                                                            |              | Current Value      |                                                                                          | EPA Desault Value        | EPA Default Value Reference                                           |                                                                                              | 2011 1                               |                                                                                |           |
| Crude Oil Fraction directed to Tanks                                                                                       |              | Current Value      | Data                                                                                     | EPA Detault Value        | EPA Default Value Reference<br>CENSARA_STUDY_2019-AVERAGE             | basin for this state.                                                                        | /                                    | cannot be                                                                      | e edited. |
|                                                                                                                            | /            | Current Value      | Data<br>Current Value Reference                                                          | EPA Default Value        |                                                                       | basin for this state.                                                                        | CENSA                                | cannot be                                                                      | e edited. |
| Fraction of Oil Tanks with Flares                                                                                          | /            | 1                  | Data Current Value Reference CENSARA_STUDY_2012                                          | EPA Detault Value        | CENSARA_STUDY_2012_AVERAGE                                            | 2011 Value                                                                                   | CENSA                                | cannot be<br>alue Reference<br>RA_STUDY_2012                                   | e edited. |
| Fraction of Oil Tanks with Flares<br>Average VOCs Loss (Ib VOCs/BBL Cru<br>Flaring (7 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5  | de Oil)      | 1 0                | Data Current Value Reference CENSARA_STUDY_2042 EPA_2015d                                | 0                        | CENSARA_STUDY_2018_AVERAGE<br>EPA_2015d                               | 2011 Value                                                                                   | CENSAI<br>CENSAI<br>CENSAI           | cannot be<br>alue Reference<br>RA_STUDY_2012<br>RA_STUDY_2012                  | e edited. |
| Crude Oil Fraction directed to Tanks<br>Fraction of Oil Tanks with Flares<br>Average VOCs Loss (Ib VOCs/BBL Cru<br>Flaring | de Oil)      | 1<br>0<br>2.244627 | Data<br>Current Value Reference<br>CENSARA_STUDY_20H2<br>EPA_2015d<br>CENSARA_STUDY_2012 | 0 1.01541                | CENSARA_STUDY_2012_AVERAGE<br>EPA_2015d<br>CENSARA_STUDY_2012_AVERAGE | 2011 Value           1           0           2.244627                                        | CENSAI<br>CENSAI<br>CENSAI<br>CENSAI | cannot be<br>alue Reference<br>RA_STUDY_2012<br>RA_STUDY_2012<br>RA_STUDY_2012 |           |

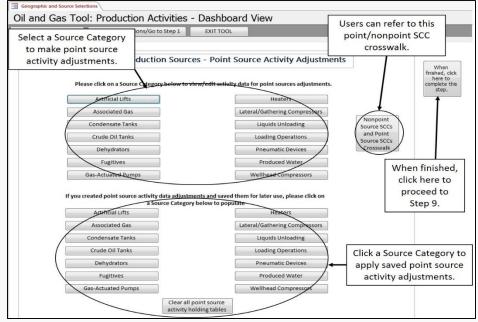


 In Step 7, the User can view or edit the emission factors that are used to generate the emission estimates for the source categories selected.





 Once a Source Category has been selected, the User can view or edit the emission factors. The User should update the reference field (EMISSION\_FACTOR\_SOURCE) for any updated emission factors.


|       |                | WELI            | LHEAD    | COMPR                        | RESSOR       | S EMI        | SSION FA         | CTORS FORM            | 1       |          |              |      |         |        |        |
|-------|----------------|-----------------|----------|------------------------------|--------------|--------------|------------------|-----------------------|---------|----------|--------------|------|---------|--------|--------|
|       |                |                 |          |                              |              |              |                  |                       |         |          |              |      |         |        |        |
| ST/ → | BASIN          | ATTAINMEN -     | SOURCE_C | ATEGORY -                    | SCC -Y       | SCC_         | SHORTENED +      | POLLUTANT_DESCRIP     | + 10IT  | POLLU" - | EMISSION_F - | EN - | EMISS - | EMIS - |        |
| AR    | Illinois Basin | ATTAINMENT      | WELLHEAD | COMPRESS                     | 2310021102   | On-Sho       | re Gas Productic | Polycyclic Aromatic H | Hydroca | 250      | 4 86248 E-04 | G    | HP-HR   | EPA_20 |        |
| AR    | Il inois Basin | ATTAINMENT      | WELLHEAD | COMPRESS                     |              |              |                  | Dropulopo dichloride  | 'n      | 78875    | 1.6184098-04 | G    | HP-HR   | EPA_20 |        |
| AR /  | Illinois Basin | ATTAINMENT      | WELLHEAD | COMPRESS                     | 23100: Th    | ese em       | ission factors   | can be edited. If     |         | 100425   | 1.988539E-04 | G    | HP-HR   | EPA_20 |        |
| AR /  | Illinois Basin | ATTAINMENT      | WELLHEAD | COMPRESS                     | 23100: C     | hanges       | are made, ple    | ase update the        |         | SO2      | 2.133687E-03 | G    | HP-HR   | EPA_20 |        |
| AR    | Illinois Basin | ATTAINMENT      | WELLHEAD | COMPRESS                     | 23100        |              | reference        | e.                    | 1,2,2-  | 79345    | 2.405841E-04 | G    | HP-HR   | EPA_20 | 1      |
| AR    | Illinois Basin | ATTAINMENT      | WELLHEAD | COMPRESS                     | 2310021102   | Un-Sho       | re Gas Productic | Toluene               | -       | 108883   | 3.494457E-03 | G    | HP-HR   | EPA_20 | finish |
| AR    | Illinois Basin | ATTAINMENT      | WELLHEAD | COMPRESS                     | 2310021102   | On-Sho       | re Gas Productic | Trichloroethane, 1,1, | ,2-     | 79005    | 3.069897E-03 | G    | HP-HR   | EPA_20 |        |
| AR    | Illinois Basin | ATTAINMENT      | WELLHEAD | COMPRESS                     | 2310021102   | On-Sho       | re Gas Productic | Trimethylpentane, 2   | ,2,4-   | 540841   | 3.494457E-03 | G    | HP-HR   | EPA_2  |        |
| AR    | Illinois Basin | ATTAINMENT      | WELLHEAD | COMPRESS                     | 2310021102   | On-Sho       | re Gas Productic | Vinyl chloride        |         | 75014    | 8.962939E-05 | G    | HP-HR   | EPA_20 |        |
| AR    | Illinois Basin | ATTAINMENT      | WELLHEAD | COMPRESS                     | 2310021102   | On-Sho       | re Gas Productic | Volatile Organic Com  | pound   | VOC      | 0.4354464    | G    | HP-HR   | EPA_20 |        |
| AR    | Illinois Basin | ATTAINMENT      | WELLHEAD | COMPRESS                     | 2310021102   | On-Sho       | re Gas Productic | Xylenes (Mixed Isom   | iers)   | 1330207  | 9.72497E-04  | G    | HP-HR   | EPA_20 |        |
| AR    | Illinois Basin | NONATTAINM      | WELLHEAD | COMPRESS                     | 2310021102   | On-Sho       | re Gas Productic | Acetaldehyde          |         | 75070    | 2.815887E-02 | G    | HP-HR   | EPA_20 |        |
| AR    | Illinois Basin | NONATTAINM      | WELLHEA  | Englants                     |              |              | re Gas Productic | Acrolein              |         | 107028   | 2.823144E-02 | G    | HP-HR   | EPA_20 |        |
| AR    | Illinois Basin | NONATTAINM      | WELLHE/  |                              | on Factors   |              | re Gas Productic | Benzene               |         | 71432    | 7.039717E-03 | G    | HP-HR   | EPA.   | When   |
| AR    | Illinois Basin | NONATTAINM      | WELLHEA  | . Contraction and the second | ed at the st | 1000010000EL | re Gas Productic | Biphenyl              |         | 92524    | 1.433344E-05 | G    | HP-HR   | CD A   | hished |
| AR    | Illinois Basin | NONATTAINME     | WELLHEA  | basin, ai                    | nd attainm   | nent         | re Gas Productic | Butadiene, 1,3-       |         | 106990   | 2.97555E-03  | G    | HP-HR   | EDA    | ck her |
| AR    | Illinois Basin | NONATTAINME     | WELLHEA  | sta                          | tus level.   |              | re Gas Productic | Carbon Dioxide        |         | CO2      | 399.1592     | G    | HP-HR   | EPA    | uk nei |
| AR    | Illinois Basin | NONATTAINME     | WELLHEAD | COMPRESS                     | 2310021102   | On-Sho       | re Gas Productic | Carbon Monoxide       |         | со       | 1.280938     | G    | HP-HR   | EPA_2  |        |
| AR    | Ninois Basin   | NONATAINMI      | WELLHEAD | COMPRESS                     | 2310021102   | On-Sho       | re Gas Productic | Carbon tetrachloride  |         | 56235    | 2.202633E-04 | G    | HP-HR   | EPA_2  |        |
| AR    | Illingis Basin | NONATTAINM      | WELLHEAD | COMPRESS                     | 2310021102   | On-Sho       | re Gas Productic | Chlorobenzene         |         | 108907   | 1 611152E-04 | G    | HP-HR   | EPA_20 |        |
| A.D.  | Illinois Decin | TONIA TTAINIAAL | MELLIEAD | COMPRESS                     | 2210021102   | On Cha       | ra Car Draductic | Chloroform            |         | 67669    | 1 701177 04  | 0    |         | EDA 30 |        |

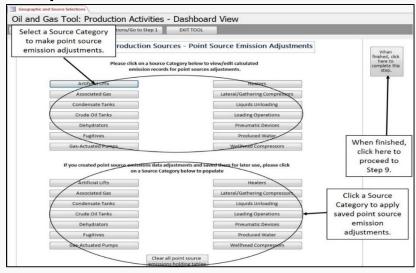


- In Step 8, the User may account for emissions that are to be reported to the point sources emissions inventory.
- Activity adjustments are preferred
  - Well counts
  - Liquids production
  - o Etc.
- Emissions adjustments are also an option
  - o NOx
  - o VOC
  - o Etc.



 If the User does not have any point source activity adjustments, then they will need to click the "When finished, click here to complete this step." button.





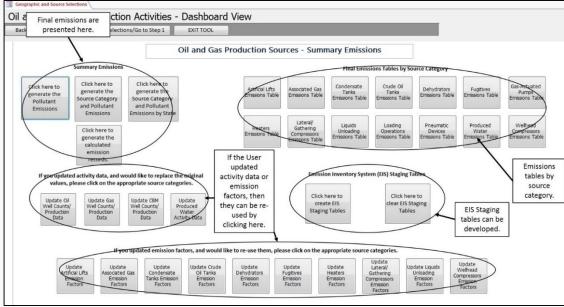

 Point source activity adjustments are preferred over point source emission adjustments. Additionally, Users should pay careful attention to ensure that the point source activity data is entered in the same units as the nonpoint activity data (e.g., MMBBL vs. MBBL).

| HEATERS POIN                | NT SOURC  | E ACTIVITY | ADJUSTMEN   | IT FORM                 |
|-----------------------------|-----------|------------|-------------|-------------------------|
| State abbreviation:         | AR        |            |             | · · · · · ·             |
| State and County FIPs Code: | 05001     | ]          |             | When finished,          |
| County name:                | Arkansas  |            | click here. |                         |
| Year:                       | 2014      | ]          |             |                         |
|                             | Oil Wells | Gas Wells  | CBM Wells   | When                    |
| Point Source Well Counts    | 0         | 0          | 0           | finished, click<br>here |
|                             |           | 71         |             |                         |
|                             |           |            |             |                         |



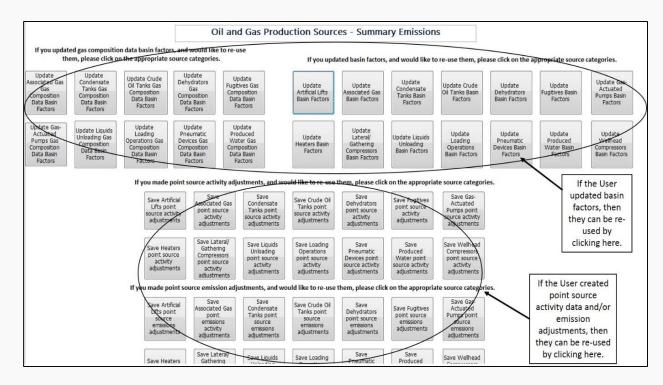
 In Step 9, the User can make point source emission adjustments directly in the emission tables. Select a Source Category to open. If a User has no point source emissions adjustments, they may click on the "When finished, click here to complete this step" button.






 Point source emission estimates are to be entered in the "POINT\_EMISSIONS\_TPY" field.

| WELLHEAD COMPRESSORS POINT SOURCE E |           |             |            |               |                  | When                   |                      | NT FORM             |         |                                 |     |
|-------------------------------------|-----------|-------------|------------|---------------|------------------|------------------------|----------------------|---------------------|---------|---------------------------------|-----|
|                                     |           |             |            |               |                  |                        |                      | finished            |         | When<br>finished, click<br>here |     |
| STATE -                             | STATE A . | COUNTY_NA - | SCC -      | SOURCE_C      | ATEGORY +        | POLLUTAI -             |                      | click here          | to      | TPY . POINT EMISSIONS           | TPY |
| 05023                               | AR        | Cleburne    | 2310021202 | WELLHEAD COMI | RESSOR ENGINES   | 75003                  | Ethyle               | <b>6</b> 1. 1       | 845     | 556E-04                         | 1   |
| 05023                               | AR        | Cleburne    | 2310021202 | WELLHEAD COM  | RESSOR ENGINES   | 75014                  | Vinyl                | finalize th         | 1e 533  | 363E-03                         | 1   |
| 05023                               | AR        | Cleburne    | 2310021202 | WELLHEAD COM  | RESSOR ENGINES   | 75070                  | Aceta                |                     |         | 966251                          |     |
| 05023                               | AR        | Cleburne    | 2310021202 | WELLHEAD COM  | RESSOR ENGINES   | 75092                  | Methy                | emission            | S. 273  | 333E-03                         |     |
| 05023                               | AR        | Cleburne    | 2310021202 | WELLHEAD COM  | PRESSOR ENGINES  | 75343                  | Ethyli               |                     | 342     | 253E-03                         |     |
| 05023                               | AR        | Cleburne    | 2310021202 | WELLHEAD COM  | RESSOR ENGINES   | 78875                  | Propyle              | ene Dichloride      | 1.9197  | 763E-03                         |     |
| 05023                               | AR        | Cleburne    | 2310021202 |               |                  | 1,1,2-T                | Trichloroethane 2.2  |                     | 159E-03 |                                 |     |
| 05023                               | AR        | Cleburne    | 2310021202 |               |                  | -Tetrachloroethane 2.8 |                      | 566E-03             |         |                                 |     |
| 05023                               | AR        | Cleburne    | 2310021202 | WELLHEAD COM  | PRESSOR ENGINES  | 91203                  | Naphth               | alene               | 5.3096  | 579E-03                         |     |
| 05023                               | AR        | Cleburne    | 2310021202 | WELLHEAD CON  |                  |                        |                      | 4                   | 1.5129  | 973E-02                         |     |
| 05023                               | AR        | Cleburne    | 2310021202 | WELLHEAD CON  | o sers can enter |                        | e                    | 115.512             |         |                                 |     |
| 05023                               | AR        | Cleburne    | 2310021202 | WELLHEAD CON  |                  |                        | Monoxide             | 35                  | 5.06402 |                                 |     |
| 05023                               | AR        | Cleburne    | 2310021202 | WELLHEAD CON  |                  |                        | Dioxide 10165.09     |                     | 0165.09 |                                 |     |
| 05023                               | AR        | Cleburne    | 2310021202 | WELLHEAD CON  |                  |                        |                      | Oxide               | 1.9353  | 393E-02                         |     |
| 05023                               | AR        | Cleburne    | 2310021202 | WELLHEAD CON  | con              |                        | n Oxides             | 78                  | 8.27121 |                                 |     |
| 05023                               | AR        | Cleburne    | 2310021202 | WELLHEAD CON  |                  |                        | imary (Filt + Cond)  | 0.9                 | 229071  |                                 |     |
| 05023                               | AR        | Cleburne    | 2310021202 | WELLHEAD CON  |                  |                        | rimary (Filt + Cond) | 0.9                 | 229071  | 1                               |     |
| 05023                               | AR        | Cleburne    | 2310021202 | WELLHEAD CON  | aujustitients    |                        |                      | ioxide              | 5.4337  | 702E-02                         | 1   |
| 05023                               | AR        | Cleburne    | 2310021202 | WELLHEAD COM  | PRESSOR ENGINES  | VOC                    | Volatil              | e Organic Compounds | 8,      | 417548                          | · · |




 In Step 10, the User can review the final emissions; update county-level activity data, emission factors, and/or basin factors they provided in Steps 5 through 7; or generate the Emission Inventory System (EIS) data tables.

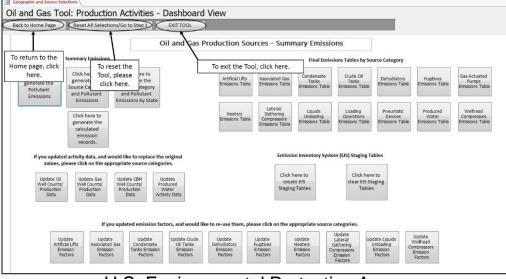




 Point source activity and/or emissions adjustments can also be saved within the Tool for future use.






#### **Additional Notes**

- In the EIS Staging Tables, the following tables are populated:
  - ControlApproach
  - ControlMeasure
  - ControlPollutant
  - o Emissions
  - EmissionsProcess
  - o Location
  - ReportingPeriod
- The Exploration Module runs the same way as the Production Module.



## Additional Notes (cont.)

- If the User wishes to reset the tool, and regenerate the emissions, the following steps are recommended:
  - Click on the "Reset All Selections/Go to Step 1" button at the top of the Dashboard.
  - o Compact and Repair the database.







## **Additional Notes (cont.)**

 References cited for the original data in the Tool are found in the "Master References" tab.

| Geographic and Source Selections                                                                |                                                                                                                            |                                                                                    |    |  |  |  |  |
|-------------------------------------------------------------------------------------------------|----------------------------------------------------------------------------------------------------------------------------|------------------------------------------------------------------------------------|----|--|--|--|--|
| Oil and Gas Tool: Production                                                                    | n Activities - Dashboard View                                                                                              |                                                                                    |    |  |  |  |  |
| Back to Home Page Reset All Selection                                                           | ns/Go to Step 1 EXIT TOOL                                                                                                  |                                                                                    |    |  |  |  |  |
| Step 1 - Select Geographic Level Step 2 - Select Spec                                           | cific Geographic Location                                                                                                  | p 4 - Select Specific Source Category Step 5 - View/Edit County-Level Activity Dat |    |  |  |  |  |
| Step 6 - View/Edit Basin Factors Step 7 - View/Edit Emi                                         | nission Factors Step References                                                                                            | S int Source Emission Adjustments Step 10 - Final Emissions Master Reference       | es |  |  |  |  |
| References are compiled into a single table. These re                                           | eferences pertain to the cited in the T                                                                                    | eferences entered by the User.                                                     |    |  |  |  |  |
| FIELD_REFERENCE -1                                                                              | cited in the r                                                                                                             | DESCRIPTION                                                                        |    |  |  |  |  |
| AK_OGC_2012 Alaska O                                                                            | for the origin                                                                                                             | nal                                                                                |    |  |  |  |  |
| AK_OGC_2013_RIGDATA Alaska.Q                                                                    | Hrand Gas Commissi                                                                                                         | from RIGDATA                                                                       |    |  |  |  |  |
| AL_OGC_2013_RIGDATA                                                                             | a Oil and Gas Commit data are her                                                                                          | tals from RIGDATA                                                                  |    |  |  |  |  |
| API_2009a API Com                                                                               | npendium (8/2009), T                                                                                                       |                                                                                    |    |  |  |  |  |
| API_2009b API Com                                                                               | npendium (8/2009), Table 4-11                                                                                              |                                                                                    |    |  |  |  |  |
| AR_DEQ_2013 Arkansas                                                                            | Arkansas Oil and Gas Commission well completion reports                                                                    |                                                                                    |    |  |  |  |  |
| CA_OGC_2013 Californi                                                                           | California Oil and Gas Commission data                                                                                     |                                                                                    |    |  |  |  |  |
| CA_OGC_2013_RIGDATA Californi                                                                   | California Oil and Gas Commission drilling data scaled to California state totals from RIGDATA                             |                                                                                    |    |  |  |  |  |
| CENRAP_2008 ENVIRON                                                                             | ENVIRON. Recommendations for Improvements to the CENRAP STATES' OIL AND GAS EMISSIONS INVENTORIES. November 2008           |                                                                                    |    |  |  |  |  |
| CENSARA_STUDY_2012 ENVIRON                                                                      | ENVIRON International Corporation. Oil and Gas Emission Inventory Enhancement Project for CenSARA States. December 21, 201 |                                                                                    |    |  |  |  |  |
| CENSARA_STUDY_2012_AVERAGE ENVIRON                                                              | ENVIRON International Corporation. Oil and Gas Emission Inventory Enhancement Project for CenSARA States. December 21, 201 |                                                                                    |    |  |  |  |  |
| CENSARA_STUDY_2012_EXTENSION ENVIRON                                                            | ENVIRON International Corporation. Oil and Gas Emission Inventory Enhancement Project for CenSARA States. December 21, 201 |                                                                                    |    |  |  |  |  |
| CLIMATE_REGISTRY_2010 The Clim                                                                  | The Climate Registry Oil and Gas Production Annex II to the General Reporting Protocol, 2010 - Table 17.5                  |                                                                                    |    |  |  |  |  |
| EIA 2012 Energy Information Administration (EIA). 2012. Accessed online at: http://www.eia.gov/ |                                                                                                                            |                                                                                    |    |  |  |  |  |



#### **Case Studies**



#### Case Studies.

(please have both the Production and Exploration modules open)



#### Case Study #1

- The Permian Basin consists of 4 counties in New Mexico and 62 counties in Texas. In 2014, the basin produced:
  - $_{\odot}$  582,987,082 barrels of oil from 125,421 wells
  - o 552,747,870 MSCF of natural gas from 24,606 wells
  - 121,407 MSCF coalbed methane from 12 wells

Use the Tool to calculate the nonpoint VOC emissions for crude oil tanks for each state, and the % of total production sources.

# UNITED STATES

#### Case Study #2

- Based on new permit applications, unconventional drilling activity is expected to begin in Wake County, NC (FIPS = 37183). Calculate NOx emissions from exploration sources.
  - 100 natural gas wells drilled horizontally; total estimated feet drilled is 425,000 ft.
  - ➢ 85 natural gas wells completed

NCDENR is also wanting to evaluate the impact of limiting hydraulic fracturing engines to 3.5 g/hp-hr for NOx from the current factor of 5.831 g/hp-hr for NOx. Calculate the NOx impact.



#### Case Study #3

- EPA is considering reducing the NOx emission factor for 4cycle lean-burn wellhead compressor engines at gas wells (SCC = 2310021202) to 0.5 g/hp-hr in nonattainment areas (current factor = 3.07359 g/hp-hr. Using the tool, assess:
  - Impact of total NOx emissions within nonattainment counties.
  - Impact of total NOx emissions within nonattainment counties for SCC 2310021202



#### Case Study #4

- The state of Oklahoma provides point source emissions in the NEI for several upstream oil and gas wells. Using the Tool, calculate benzene emissions from Dehydrators in Alfalfa County, OK (FIPS = 40003), after making point source activity adjustments.
  - Alfalfa County, OK Gas Production = 5,017,381 MSCF from 170 gas wells (No CBM production in Alfalfa County, OK)
  - Alfalfa County, OK Associated Gas Production = 107,564,300 MSCF from 783 oil wells
  - Point sources activity = 1,706,326 MSCF from 12 gas wells; 92,718,640 MSCF from 613 oil wells



#### **Discussion/Q&A**

• What else would you like to see?

• Q&A