

EPA Tools and Resources webinar: Monitoring Cyanobacteria with Satellites

Blake Schaeffer Research Physical Scientist National Exposure Research Laboratory US EPA Office of Research and Development

November 15, 2017

- Overview of satellites and data
- Introduction to Cyanobacteria Assessment Network (CyAN)
- Satellite data
- Software
 - SeaDAS Software
 - Remote Sensing (RS) Tools for ArcGIS
 - Android mobile app
- Case studies at UT Department of Environmental Quality (DEQ) and US Army Corps
- Future applications and impacts

Opportunities for States

→ Test and provide feedback on provisional CyAN satellite data

→ Access Remote Sensing (RS) Tools for ArcGIS

→ Beta test CyAN Android mobile application

- European Space Agency
 - -Envisat satellite
 - MEdium Resolution Imaging Spectrometer (MERIS)
 - 2002-2012
 - -Sentinel-3A satellite
 - Ocean and Land Colour Instrument (OLCI) 2016+
 - 3B scheduled 2018
 - -Sentinel-2A satellite 2015+, 2B 2017+
 - Multi-Spectral Instrument (MSI)
- US Geological Survey (USGS)/NASA
 - -Landsat 8 2013+
 - -Landsat 9 scheduled 2020

Original Data Sources

- NASA's Ocean Color Web
 - MERIS 2002-2012
 - OLCI 2016+
- USGS Earth Explorer
- Landsat 1980-present; Sentinel-2 A&B 2015-present

Source: https://oceancolor.gsfc.nasa.gov/

Satellite Sensors

- 30m Land
 - -Landsat 1980-present
 - -Senintel-2 MSI
 - 10-to-16 day revisit
 - Higher spatial resolution
 - Limited bands
 - Bulky data

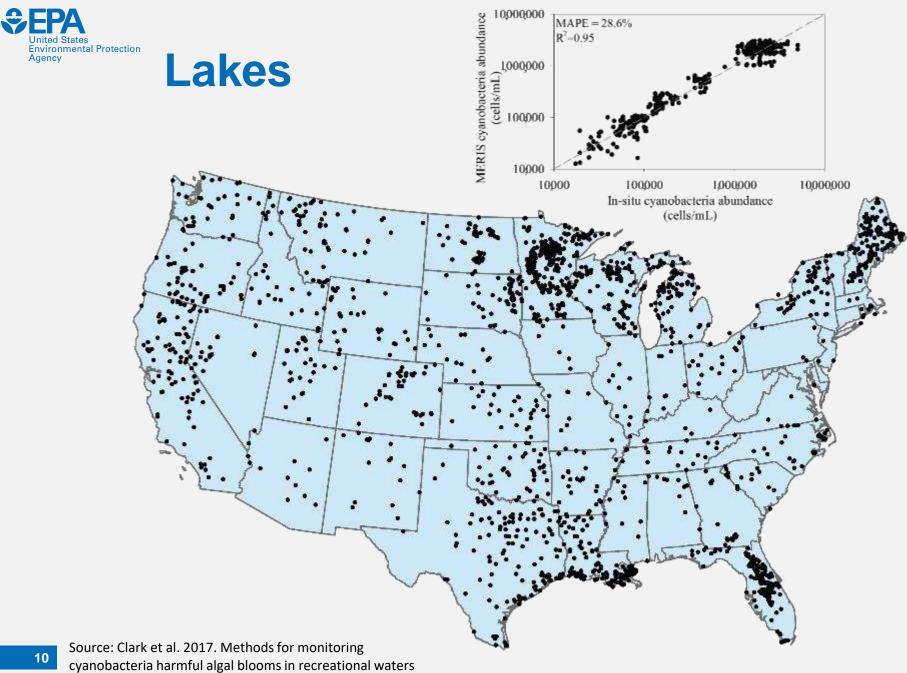
- 300m Ocean
 - -Envisat MERIS
 - -Sentinel-3 OLCI
 - 2-3 day revisit
 - Optimal bands
 - Limited spatial resolution

Image Source: European Space Agency

Satellite Derived Water Quality Products

- Turbidity
- Chlorophyll-a
- Harmful algae
 - -i.e. phycocyanin, cyanobacteria
- Sediment
- Submerged habitat
- Temperature

- **Problem**: How to support the use of U.S. waters with satellite monitoring?
- **Opportunity**: Water quality indicators can be monitored with satellites and used to protect public health and environment
- Approach: Strengthen cross-agency research to mainstream satellite capabilities for water quality management decisions
- Results: New methods and tools to monitor cyanobacteria harmful algal blooms (HABs)
- Impact: Scalable information across any geo-political boundary, and ability to prioritize locations for management actions



- EPA: Satellite application methods for management of freshwater HABs and water quality
- NASA: Satellite data processing, evaluation/validation, quality control
- NOAA: Satellite algorithms to detect and forecast HABs for marine systems and Great Lakes
- USGS: Field freshwater HAB monitoring, ecological expertise, and Landsat satellite management

and drinking source waters with satellites. Ecological Indicators. 80:94-95.

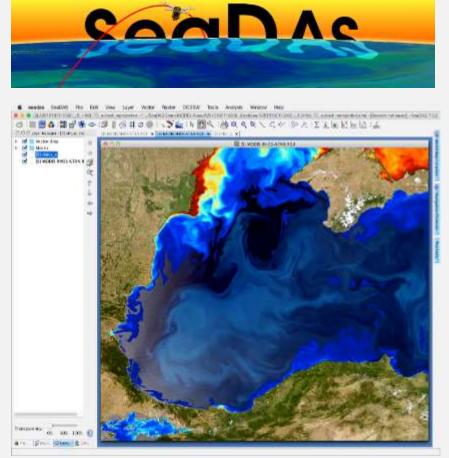
CyAN data processing details

• MERIS

- 2002-2007 2-week maximum value
 - Sensor irregularly viewed the US
- 2008-2012 1-week maximum value
 - Sensor regularly collected data over the US

Sentinel-3 OLCI

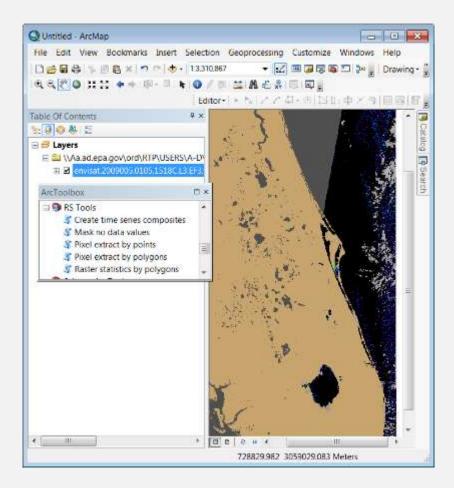
- 2017+ 1-week maximum value
- Data are validated in Stage 2 of 4
 - NASA's data maturity level details: <u>https://go.nasa.gov/2zk8BET</u>



Known Issues

- Ice can potentially register as high cyanobacteria concentrations
- The land mask may cover dry lakes, and may exclude other lakes
- Caution should be used where mixed pixels may occur at land/water interface
- Land mask does not have an accurate representation of Rhode Island's coastline
- Undetected thin clouds can potentially register as high cyanobacteria concentrations
- Retrievals are considered more robust for lakes ≥ 900 m, or 3 x 3-pixel array; smaller water bodies and rivers are not masked and may be erroneous
- Satellite data processing does not account for changes in water levels due to
 cycles, such as drought and flood

SeaDAS Software



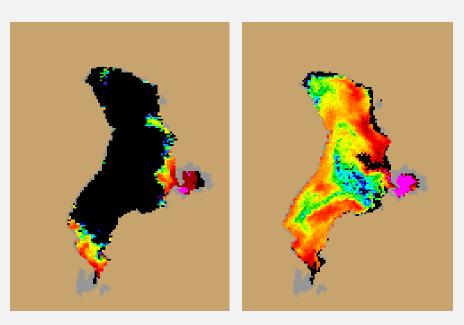
- Free and open source
- Processing, display, analysis, and quality control of a wide array of satellite data
- User community forum
- Basic tools
 - Time series composites
 - Pixel extract by points
 - Pixel extract by polygon
 - Statistics by polygon

Remote Sensing Tools

- ArcGIS Toolbox
- Basic tools
 - -Time series composites
 - -Pixel extract by points
 - -Pixel extract by polygon
 - -Statistics by polygon

15

Android Mobile Application

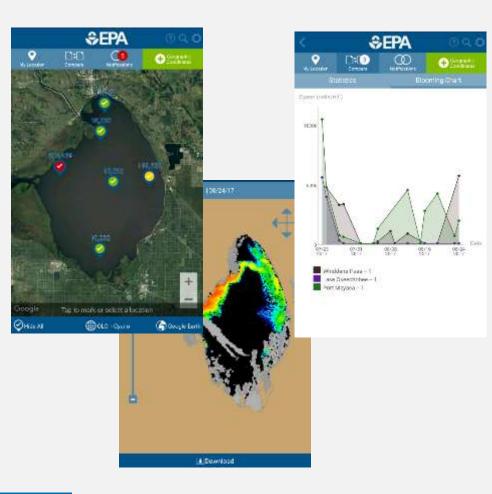

http://bit.ly/1KqBMUL

Source: Schaeffer et al. (*In Review*). Mobile device application for monitoring cyanobacteria harmful algal blooms using Sentinel-3 satellite Ocean and Land Colour Instruments. Environmental Modelling and Software.

- CyAN app provides intuitive satellite data handling and allows for passive reception of data
- Reduces time investment and daily burden of searching for satellite images
- Quick quantitative reporting, time series analysis, and view of synoptic images
- Supports a comprehensive management strategy through synoptic monitoring

Utah DEQ Case Study

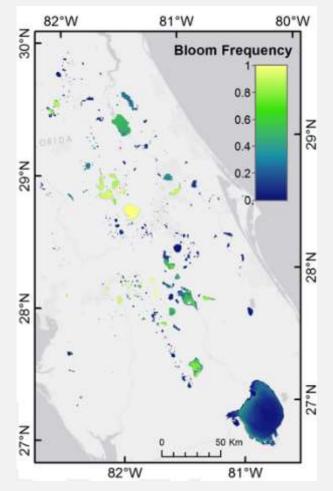
June 18, 2017



- UT DEQ and Department of Water Quality (DWQ) conducted routine monthly sampling, June 12, 2017
- Satellite imagery the following week indicated a bloom was developing
- DWQ scientists returned to the area, June 22, 2017
- June 29, DEQ issued an advisory, warning the public and pets to stay out
- Ben Holcomb, Utah DEQ statement:
 - "...provides UDWQ confidence that our in-situ, bloom-response data are representative...."
 - "...better target field sampling and more efficiently use our limited resources."
 - "...images are easily shared with response agencies as a useful visual communication aid."

16 Sentinel-3 OLCI imagery from ESA and processed by NOAA

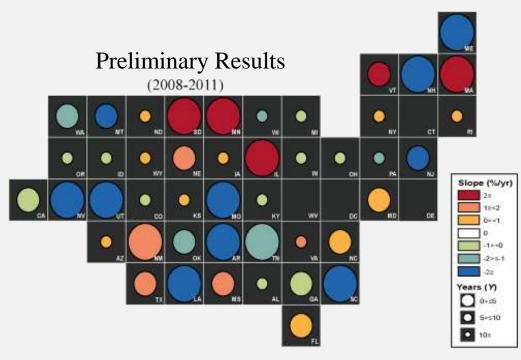
US Army Corps of Engineers Florida Case Study



- Lake Okeechobee
- CyAN app near real-time monitoring beta test case
- Rich Botta South Florida Water Management Division
 Jim Riley - US Army Corps of Engineers
 Frank Baker - EPA Region 4
- Testing app functionality for weekly (standard) and daily images

18

Quantifying Cyanobacteria *Frequency*


- How do we quantify bloom frequency?
 - Site-specific frequencies >100,000 cells/mL
- Derive relative exposure risk profiles from frequency data
- Ability to prioritize locations for management actions, e.g. surface water intakes or recreational waters

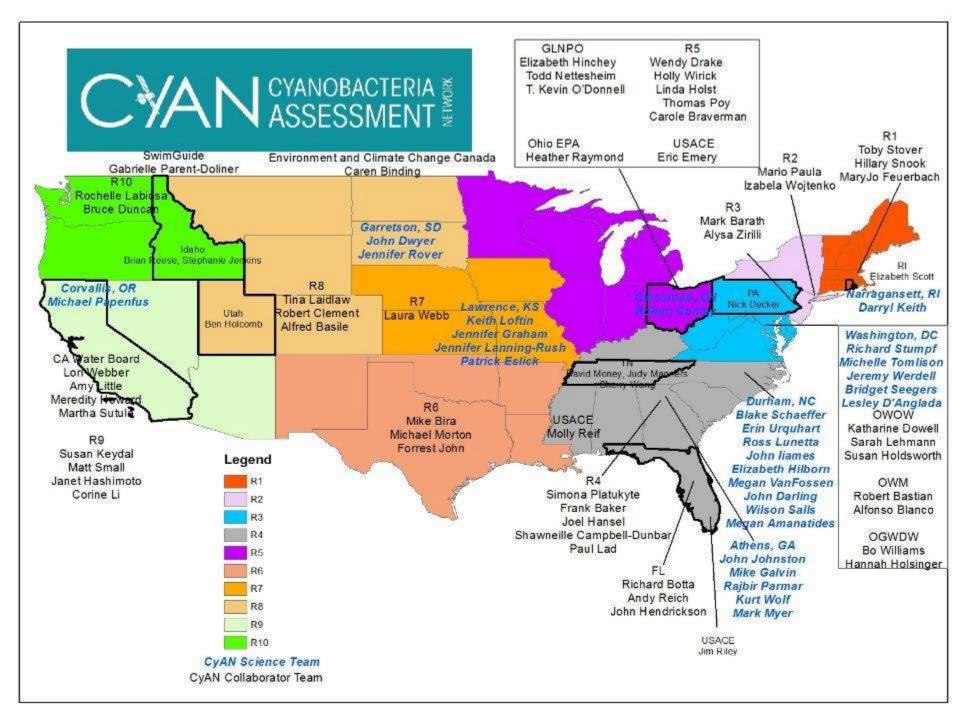
Source: Clark et al. 2017. Methods for monitoring cyanobacteria harmful algal blooms in recreational waters and drinking source waters with satellites. Ecological Indicators. 80:94-95.

19

Quantifying Cyanobacteria *Extent*

- How do we quantify the spatial extent of cyanobacteria?
- Time series analysis evaluated overall trend
- 2008-2012 and 2017+ for the continental US (CONUS)
- Each year report on status of HABs
 in the US by state

Source: Urquhart et al. 2017. A method for examining temporal changes in cyanobacteria harmful algal bloom spatial extent using satellite remote sensing. Harmful Algae. 67: 144-152.



Summary

- Harmful Algal Bloom and Hypoxia Research Control Act (HABHRCA) 2014
 - EPA responsible for monitoring of HABs in freshwater
- 2016 HABHRCA report identified:
 - Monitoring challenges: Sustaining monitoring programs and maintaining consistency of methods across monitoring programs
 - Recommendation: Ability to strengthen long-term HAB monitoring

CyAN Impacts:

- Consistent approach for determining CyanoHAB change, year-to-year, with long-term operational satellites
- Quantify cyanoHAB spatial extent and frequency of occurrence
- Support recreational waters and drinking water sources

For More Information

Contact:

Blake Schaeffer

Research Physical Scientist ORCID # 0000-0001-9794-3977 919-541-5571 schaeffer.blake@epa.gov

www.epa.gov/cyanoproject

Funding through NASA Ocean Biology and Biogeochemistry Program/Applied Sciences Program under proposal 14-SMDUNSOL14- 0001 and by EPA, NOAA, and USGS.