
METHODOLOGY DOCUMENT 

for the 

ECOlogical Structure-Activity Relationship Model 

(ECOSAR) 

Class Program 

 

 
ESTIMATING TOXICITY OF INDUSTRIAL CHEMICALS  

TO AQUATIC ORGANISMS USING THE 

ECOSAR (ECOLOGICAL STRUCTURE-ACTIVITY RELATIONSHIP) CLASS 

PROGRAM 

 

Version 2.0 

 
Contributors: 

 

Kelly Mayo-Beana, Kendra Moran-Brucea, William Meylanb, Peter Ranslowc, Michelle Locka, J. 

Vince Nabholza*, Justine Von Runnenb, Lauren M. Cassidyb, Jay Tunkelb 

  
a
Office of Pollution Prevention and Toxics 
U.S. Environmental Protection Agency 

1200 Pennsylvania Ave.  

N.W. Washington, DC 20460 

* Deceased 
 

b
SRC, Inc. 

6225 Running Ridge Road 

North Syracuse, New York 13212 
 

c
Consortium for Environmental Risk Management, LLC  

Evansville, IN 47708 

 

 

October 2017



DISCLAIMER 

 

This document has been reviewed and approved for publication by the Risk Assessment Division 

of the Office of Pollution Prevention and Toxics, U.S. Environmental Protection Agency (U.S. 

EPA/OPPT). Approval does not signify that the contents necessarily reflect the views and 

policies of all Offices/Divisions in the Environmental Protection Agency, nor does the mention 

of trade names or commercial products constitute endorsement or recommendation for use. 

 

The ECOSAR model and underlying methodology presented in this document have been 

developed over a period of 30 years by EPA/OPPT, EPA contractors, and/or others in the 

scientific and technical community to screen chemicals in the absence of data. EPA/OPPT has 

made this screening level model, along with many other tools, available to industry and other 

stakeholders in the hopes that use of the models in the early stages of research and development 

or prior to submission of notifications to the Agency, will result in safer chemicals entering 

commerce. 

 

Other chemical screening methodologies have been developed and are in use by other Agencies, 

chemical companies and other stakeholders. The U.S. EPA recognizes that other models are 

available and that these models can also be of value in chemical assessment efforts. Models 

provide estimations with an inherent degree of uncertainty and therefore, valid measured data are 

always preferred over estimated data. If no measured or analog data are available, models such 

as the ECOSAR Class Program may be used to predict toxicity values that can be used to 

indicate which chemicals may need further testing or characterization. 
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1. INTRODUCTION TO THE U.S. EPA NEW CHEMICALS PROGRAM UNDER THE 

TOXIC SUBSTANCES CONTROL ACT (TSCA)  

 

The U.S. Environmental Protection Agency’s (U.S. EPA’s) methodology for hazard and risk 

assessment of new chemicals, which integrates quantitative structure-activity relationship 

(QSAR) models and expert systems into the hazard and exposure analysis, has been used for 

30 years and reflects several specific regulatory requirements that define the framework under 

which the U.S. EPA must operate. 

 

Section 5 of TSCA requires manufacturers and importers of new industrial chemicals to submit a 

Premanufacture Notice (PMN) to U.S. EPA/OPPT 90 days before they intend to begin 

manufacturing or importing a new chemical. U.S. EPA/OPPT must evaluate the chemicals for all 

aspects of health and safety and determine whether the substance may present an unreasonable 

risk of injury to human health or the environment. OPPT must make a risk-based decision on the 

regulatory outcome of the chemical within these 90 days. The PMN can otherwise be 

manufactured or imported. 

 

In addition to this demanding 90-day review period, another constraint is that of the large 

number of PMN chemicals submitted each year (approximately 1,000), only 10% of the 

submissions include environmental toxicity data. In response to this data-poor situation, U.S. 

EPA/OPPT developed “estimation methods” that are used to fill data gaps where little or no 

experimental measured data exist. These approaches include analog analysis, chemical class 

analogy, mechanisms of toxicity, QSARs, and professional judgment. In order to quickly 

complete an assessment for each new chemical, the Agency uses computerized QSAR models 

and expert systems to make estimates for physical/chemical properties, environmental fate, 

ecological toxicity, human health toxicity, and chemical releases and exposures in an effort to fill 

data gaps (U.S. EPA 2003a). These estimates are used to support the U.S. EPA/OPPT chemical 

management decisions within the TSCA framework and to assist the Agency in determining the 

most appropriate regulatory decisions for each new chemical based on the potential risks. 

 

This technical reference manual focuses on the scientific approach and underlying methodology 

for the assessment of aquatic hazards using the U.S. EPA/OPPT computerized QSAR tool called 

the ECOSAR (ECOlogical Structure Activity Relationship) Class Program. 

 

2. U.S. EPA DEVELOPMENT OF ECOTOXICITY QSARS AND THE ECOSAR CLASS 

PROGRAM 

 

During the 1970s, many investigators began examining the relationships between chemical 

properties and toxicity to aquatic and terrestrial organisms. Among the leaders in this area was 

the U.S. EPA’s Office of Research and Development, National Health and Environmental 

Effects Research Laboratory (NHEERL) in Duluth, MN (NHEERL-Mid-Continent Ecology 

Division [NHEERL-MED]; formerly known as the Environmental Research Laboratory-Duluth). 

In the mid-1970s, researchers at this U.S. EPA laboratory developed and later published a QSAR 

for predicting the bioconcentration of neutral organic chemicals in fish based upon the 

octanol/water partition coefficient (Kow) (Veith et al. 1979). In 1979, a long-term research 

program was initiated to develop aquatic toxicity QSARs for industrial organic chemicals (Veith 
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et al., 1983). Between 1981 and 1983, U.S. EPA/OPPT supported development of additional 

QSARs and the New Chemicals Program staff evaluated and adopted 13 of these equations for 

use in predicting toxicity to fish, aquatic invertebrates, and green algae. Over time and with 

continued support from OPPT, the ORD scientists measured the toxicity of over 800 chemicals 

in fathead minnows (Russom et al., 1997). From this research, U.S. EPA developed additional 

QSARs for assessing acute effects for at least a dozen classes of chemicals for both freshwater 

and marine fish toxicity. In subsequent years, emphasis was shifted toward QSARs for chronic 

toxicity. Based on this early research at U.S. EPA and other data evaluation efforts (Konemann 

1981, Hermens et al., 1984), it became apparent that the Kow was the major physical-chemical 

attribute correlating a chemical structure to toxic effect for nonreactive neutral organic 

chemicals. The most frequently used relationship is the logarithm of the Kow value versus the 

median toxicity (LC50 and EC50) value. 

 

The initial development of the computerized version of ECOSAR released in the early 1990s 

focused on log Kow-based predictions for neutral organics based on the early research from the 

U.S. EPA. Over the years as U.S. EPA/OPPT gained assessment experience and new toxicity 

data through the New Chemicals Program, many new QSARs were developed for additional 

chemical classes addressing both acute and chronic effects. Expansion of the ECOSAR program 

has continued in U.S. EPA/OPPT to assist scientific staff in developing a complete standard 

toxicity profile for each chemical reviewed to characterize the potential aquatic hazard concerns. 

This standard profile consists of: 

 

Acute Effects: 

Fish 96-hr LC50  

Daphnid 48-hr EC50  

Algae 72- or 96-hr EC50 

 

Chronic Effects:  

Fish ChV  

Daphnid ChV  

Algae ChV 

 

The ChV, or Chronic Value, is defined as the geometric mean of the no-observed-effect 

concentration (NOEC) and the lowest-observed-effect concentration (LOEC). This can be 

mathematically represented as: ChV = 10^([log (LOEC × NOEC)]/2) 

 

Toxicity to these surrogate species (fish, aquatic invertebrates, and aquatic plants) is used to 

predict toxicity to a general aquatic community. U.S. EPA/OPPT has focused resources on 

models for aquatic toxicity to freshwater organisms because most releases of industrial chemicals 

go to freshwater bodies. Although some terrestrial and marine species data were available in 

some cases and programmed into ECOSAR, terrestrial and marine species are only evaluated on 

a case-by-case basis depending on the manufacturing, processing, and use of the chemicals. The 

current version of ECOSAR strives to provide estimates for all six standard freshwater aquatic 

toxicity endpoints listed above for each class programmed into ECOSAR. The methods 

employed to derive these estimates are discussed within this manual for the purposes of model 
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transparency and is intended to accompany the ECOSAR Class Program, which has been 

developed by U.S. EPA for use on a personal computer. 

 

ECOSAR v. 2.0 (and updates) can be downloaded from the EPA’s website at: 

https://www.epa.gov/tsca-screening-tools/ecological-structure-activity-relationships-ecosar-

predictive-model 

 

3. CHEMICAL CLASSES WITHIN ECOSAR 

 

ECOSAR contains a library of class-based QSARs for predicting aquatic toxicity, overlaid with 

an expert decision tree for selecting the appropriate chemical class based on chemical structure. 

ECOSAR version 2.0 is programmed to identify 111 chemical classes and allows access to 704 

QSARs for numerous endpoints and organisms1. This manual presents information on how 

ECOSAR derives toxicity values for three general types of chemicals:  

 

(1) Neutral Organics: Neutral organic chemicals are nonionizable and nonreactive and act 

via simple nonpolar narcosis generally thought of as a reversible, drug-induced loss of 

consciousness (general anesthesia). This general narcosis is often referred to as baseline 

toxicity (Franks and Lieb 1990, Veith and Broderius 1990). The types of chemicals that 

are known to present general narcosis include, but are not limited to, alcohols, ketones, 

ethers, alkyl halides, aryl halides, aromatic hydrocarbons, aliphatic hydrocarbons, 

cyanates, sulfides, and disulfides. 

 

(2) Organic Chemicals with Excess Toxicity: Some types of organic chemicals present a 

more specific mode of toxicity based on the presence of reactive functional groups 

(Hermens 1990). These chemicals can be more toxic than predicted by baseline toxicity 

equations to one or more aquatic organisms. Chemicals that exhibit excess toxicity 

include, but are not limited to, acrylates, methacrylates, aldehydes, anilines, beta-

diketones (linear forms), benzotriazoles, esters, phenols, aziridines, and epoxides. 

Separate QSARs have been developed for several chemical classes identified as 

presenting excess toxicity to at least one or more species. It should be noted that some 

organisms are more sensitive to certain classes of compounds than others (i.e., 

herbicide-like chemicals may present significant toxicity only to green algae), so the 

designation of “excess toxicity” may not pertain to all organisms. For a full list of the 

current classes of excess toxicity programmed within ECOSAR, see Appendix 1. 

 

(3) Surfactant (Surface-Active) Organic Chemicals: A surfactant is briefly defined as a 

material that can greatly reduce the surface tension of water when used in very low 

concentrations. Surfactants do not typically dissolve in water; instead, they form 

micelles (dispersed aggregates of the surfactant molecules). Many different types of 

chemicals have surfactant properties and there is no sharp distinction between those 

that do and those that don’t. In general, a compound with a polar functional group (e.g., 

carboxylate or sulfonate) with a long (>10 carbon) nonpolar chain can be considered a 

                                                           
1 Please note that in an earlier version (1.11) of ECOSAR, the fish 14-day QSAR equations in all cases, except the 
epoxides, poly class, were removed. 
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surfactant. Types of chemicals often designed with surfactant properties are detergents, 

wetting agents, and emulsifiers. Within ECOSAR, the surfactants are grouped by total 

charge into four general divisions: anionic (net negative charge), cationic (net positive 

charge), nonionic (neutral), and amphoteric (positive and negative localized charges) 

surfactants. The QSARs for surfactants can be linear or parabolic and the toxicity is 

often related to the size of the hydrophobic component (i.e., number of carbons) or the 

number of repeating hydrophilic components (i.e., ethoxylates). See Appendix 2 for 

further discussion of these types of chemicals. 

 

(4) Polymer Organic Chemicals: Polymers are broadly defined as materials made up of 

smaller repeating subunits.  Low Molecular Weight (MW <1000) polymers and 

monomers can generally be assessed the same as neutral organics or other organic 

chemicals with excess toxicity. Polymers are categorized by relative molecular weight 

compositions. See Appendix 2 for further discussion of these types of chemicals. 

 

4. ECOSAR METHODS FOR DERIVING EQUATIONS 

4.1 Traditional QSAR Development using Experimentally-Measured Data 

 

The QSARs in ECOSAR for both neutral organics and classes with excess toxicity are based on 

a linear mathematical relationship between the predicted log Kow values and the corresponding 

log of the measured toxicity values (mmol/L) for a suite of training set chemicals within each 

class of interest. The studies collected for the training set chemicals in ECOSAR undergo an 

extensive data validation step to ensure appropriateness for inclusion in the model. ECOSAR 

study criteria articulate that the toxicity should be measured at pH 7 (approximating 

environmental conditions), the total organic carbon content should not exceed 2 mg/L, the water 

hardness should be approximately 150 mg/L CaCO3, results should be adjusted to, or measured 

at, 100% active ingredient, and flow-through measured is preferred over static nominal, etc. Data 

received or identified in the open literature that is not accompanied with full study details to 

confirm conditions are often not considered appropriate for model development. Therefore, 

many measured ecotoxicity data points can be found in the open literature that are not considered 

suitable for inclusion in the ECOSAR model. 

 

When collecting studies for inclusion in the training sets, standard test species were preferred as 

identified in the U.S. EPA Office of Chemical Safety and Pollution Prevention (OCSPP) 

guidelines for aquatic toxicity testing (https://www.epa.gov/aboutepa/about-office-chemical-

safety-and-pollution-prevention-ocspp). For freshwater fish data, species frequently include 

bluegill sunfish (Lepomis macrochirus), common carp (Cyprinus carpio), fathead minnow 

(Pimephales promelas), guppy (Poecilia reticulate), rainbow trout (Oncorhynchus mykiss), red 

killifish (Oryzias latipes), or zebrafish (Brachydanio rerio). For freshwater invertebrates, species 

frequently include Daphnia magna or Daphnia pulex. For freshwater algae, species frequently 

include Desmodesmus subspicatus or Pseudokirchneriella subcapitata. Therefore, the equations 

in ECOSAR are derived from surrogate species of fish, zooplankton, and phytoplankton. While 

these surrogate species can comprise several genera as well as families, the equations are not 

intended to assess toxicity to only those species, but rather to the general trophic levels they 

represent (fish, aquatic invertebrates, and aquatic plants). 
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In the latest version of ECOSAR, the log Kow values for each training set chemical is predicted 

using the KOWWIN program from U.S. EPA’s Estimation Programs Interface Suite 

(EPISuite™) model (Meylan and Howard 1995). Previous versions of ECOSAR (up to model 

version 0.99g) used Kow values as calculated by Biobyte’s CLogP program. All QSARs were 

derived using predicted log Kow values for the training set chemicals to minimize potential 

measurement variability that may arise from inconsistent laboratory test conditions, inaccurate 

measurements for chemicals with higher Kow values (whose log Kow value is often hard to 

measure), or where pH conditions can affect a chemical’s partitioning based on pKa 

considerations among other issues. There were also many cases where log Kow values were not 

available for chemicals that had measured toxicity data. Therefore, log Kow values had to be 

estimated in order to use the chemicals within the training sets of the model. Although ECOSAR 

will accept user-entered log Kow values and recalculate the estimates on-the-fly, when there is 

uncertainty in reliability of available measured values for a query chemical, it is recommended 

that the predicted log Kow values be used. After collecting the training set information for each 

chemical including estimated log Kow and valid toxicity results, regression techniques are applied 

to the class-specific data sets to derive mathematical relationships between log Kow and toxicity 

(often called the resulting algorithm). These resulting class-specific equations typically take the 

form of y = mx + b, where “y” represents the toxic effect concentration (i.e., log LC50 in 

mmol/L) and “x” represents the log Kow value. Using these resulting linear equations, toxicity 

values (mmol/L) for untested chemicals may then be calculated in a three-step process: (1) select 

the appropriate class using the ECOSAR class definitions, (2) input the measured or estimated 

log Kow value of the molecule into the mathematical regression equation to estimate the toxic 

effect concentration (mmol/L), and (3) use molecular weight of the subject chemical to convert 

the estimated effect concentration from mmol/L to mg/L for use in aquatic toxicity hazard 

profiles. The computerized ECOSAR program is designed to automatically complete all three 

steps when providing estimates based on the user’s chemical input. However, if a user is 

manually deriving toxicity estimates using the equations provided in the ECOSAR HELP Menu, 

then the resulting estimate in mmol/L must be multiplied by the molecular weight of the 

substance to convert the toxicity value to mg/L. 

 

In reviewing the QSAR Equation Documents provided in the ECOSAR HELP Menu for each 

chemical class, it can be noted that some equations have a greater number of training set 

chemicals than others. For example, the neutral organic 96-hour fish LC50 QSAR was based on 

toxicity values for 296 chemicals. In contrast, the fish 96-hour LC50 QSAR for haloketones 

(2 free H) was based on only 5 toxicity values. The differences come from a lack of aquatic 

toxicity data and knowledge base for many of the classes with excess toxicity. In all cases, as 

new data for these classes become available either through the New Chemicals Program or in the 

open literature, every effort is made to integrate valid data into each training set and refine the 

equations and classes as needed. 

4.2 QSAR Development for Data Poor Chemical Classes with Excess Toxicity 

 

As discussed previously, the mode of toxic action for non-reactive, non-electrolytic neutral 

organic chemicals is narcosis; however, some chemical classes have been identified as having a 

more specific mode of toxic action following review of measured data submitted under the New 

Chemicals Program. For these chemicals, toxicity is again correlated to the log Kow values of the 

chemicals. For these classes, data show that the amount of excess toxicity to one or more 
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organisms will generally decrease with increasing log Kow values (decreasing solubility). A 

visual representation of this relationship using fish 96-hour LC50 data for the neutral organics and 

acrylates classes is presented in Figure 1. 

 

Figure 1: Example Class with Excess Toxicity 

 
 

 

 

The plot shows that at a certain log Kow, resulting toxicity values for the class with excess 

toxicity and the neutral organic class converge. This convergence relationship holds true for most 

classes presenting excess toxicity where data and information have been collected in the New 

Chemicals Program. If the equation for neutral organics is plotted against equations for other 

classes with excess toxicity, the data indicate that excess toxicity decreases with increasing log 

Kow. This means that chemicals tend to act more like neutral organics at higher log Kow values 

(Hermens 1990). Above the convergence point, data generally indicate that the hydrophobicity of 

the molecules leads to “no effects at saturation,” otherwise known as the log Kow cutoff. In 

general, the log Kow cutoff for QSARs predicting acute effects is equal to 5.0. Above log Kow of 

5.0, the decreased solubility of these lipophilic chemicals results in “no effects at saturation” 

during a 48- to 96-hour test. For chronic exposures, the applicable log Kow range is extended up 

to 8.0. The difference in log Kow cutoffs between acute and chronic tests is expected as the 

hydrophobic nature of a test substance might not allow equilibrium to be achieved within the 

standard exposure durations for acute tests, but may ultimately be achieved during chronic 

studies. See Figure 2 for a visual representation of this relationship for a subset of classes using 

acute fish 96-hour data sets. 
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Figure 2: Plot of Octanol-Water Partition Coefficient vs. Fish Acute Toxicity for 
Several Chemical Classes 

 
 

Reference: Octanol-Water Partition Coefficient (log P) Cut-Offs and Predicted Magnitude of 

Fish Acute Toxicity (expressed as median lethal concentration, LC50) for Several Chemical 

Classes Using Equations from: Clements, R.G., Nabholz, J.V., ECOSAR: A Computer Program 

for Estimating the Ecotoxicity of Industrial Chemicals Based on Structure Activity 

Relationships,U.S. EPA, OPPT (7403), Technical Publication, 748-R-93-002, 1994. 

 

Drawing upon this relationship, one can create QSARs for data-poor classes whose limited 

measured data indicate that the class is, in fact, presenting excess toxicity. In the absence of a 

robust data set, the neutral organic low Kow cutoff data point may be used in addition to a single 

measured toxicity value for a data-poor class to give a 2-point regression equation. This 

technique is similar to applying read across by interpolation between two measured analog 

values. These techniques were employed for data-poor classes within ECOSAR that have an 

N = 1 (representing the single data point) + 1 (representing the NO cutoff data point) 

designation in the QSAR Equation Documents provided in the ECOSAR HELP Menu, but 

show data for only one chemical in the data table. It can be inferred that the second point used 

in the equation is that for the neutral organics log Kow cutoff. As discussed in the previous 

paragraph, at this log Kow cutoff point, almost all classes of chemicals will tend to act like 

neutral organics. In cases where this relationship was used to derive QSARs within ECOSAR, 

chemicals with low log Kow values ranging from -2 to 3 were preferred in order to increase the 

confidence in the slope of the line; however, these values were not always available. This 

technique could also be applied when only two or three data points are available for a class of 

compounds at very close log Kow intervals giving rise to uncertainty in the true slope of the 

equation. An example of this type of ECOSAR QSAR is shown in Figure 3 and Table 1. 
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Figure 3: Two-Point QSAR Example 

 
 

Table 1: Data Table for Phenol Amines Algal 96-h EC50C QSAR Equation 

CAS No. Chemical Name M.W. 

log Kow 

(CLogP) 

log Kow 

(EPI ) 

log 

Kow 

(M) 

Algal 

96-h EC50 

(mg/L) 

Log Algal 

96-h EC50 

(mmol/L) 
Reference (Meas 

log Kow) 

Reference 
(Algal 96-h 

EC50) 

NK 2-Amino-4-
methylphenol 123 1.1 1.1 1.16 4.6 -1.43 

Debnath, AK et al. 
1992 

DUL 

 Kow Limit  6.4 6.4   -3.97 NO Cutoff NO SAR 

          

SAR data not included in 
Regression Equation: 

       

         

Data not included in SAR:         

          

      *no effects at saturation   

 

In Version 2.0 of ECOSAR, nonpolar narcosis (baseline toxicity) is not displayed if a chemical is 

a member of a class with excess toxicity. 

4.3 Application of Acute-to-Chronic Ratios (ACRs) in ECOSAR 

 

The techniques described in this section are estimation methods used by OPPT for filling some 

data gaps. ECOSAR version 1.11 used these techniques in an effort to complete a standard 

freshwater aquatic toxicity profile and to provide assessors with an indication of potential 
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toxicity using the best available knowledge in the absence of experimentally measured data for a 

chemical or class. This methodology is continued in the current version 2.0. Results from this 

type of analysis should, if possible, be considered in a weight-of-evidence approach or with data 

on analogous chemicals. As new data become available either through the U.S. EPA’s New 

Chemicals Program or identified in open literature, the QSARs will be updated by the addition of 

new training set chemicals and associated data. 

 

The techniques described in this section are employed by ECOSAR when measured data are 

lacking within a class to derive empirically-based QSARs for a standard toxicity profile (e.g., 

actual toxicity data for a green alga were not available to derive a ChV QSAR). In order to use 

this technique to estimate toxicity for an acute or chronic endpoint with little or no supporting 

measured data, the corresponding acute or chronic toxicity values or an empirically-derived 

QSAR equation must be available, respectively, for the same class and the same species. From 

that empirical data, established ACRs can be applied, along with consideration of the trends in 

toxicity related to log Kow values to derive a QSAR equation for an endpoint with limited 

supporting data. The following example illustrates this approach. However, if no acute or chronic 

measured data were available within a class for a particular species, then the following methods 

could NOT be applied for that class, resulting in an endpoint gap in the ECOSAR output file for 

those endpoints. 

4.3.1 Step 1: Determine the Appropriate ACR to Apply 

 

The ACR is an empirically derived ratio of acute values to chronic values (acute value/chronic 

value), that is class-specific in some cases. The most accurate ACRs are derived when the acute 

and chronic toxicity values are measured in the same study or concurrent studies done by the 

same investigator, with the same species, using the same batch of chemical, and under similar 

test conditions. ACRs reported in the literature vary broadly. In most cases, it is difficult to 

calculate class-specific ACRs because only a small number of comparable tests are available or 

the validity of literature data could not be checked. To date, valid experimental data for 

developing a universally accepted class-specific ACR model is limited because rarely are such 

data available (Ahlers et al. 2006, Raimondo et al. 2007). In general, accepted ACRs for fish and 

daphnid are set at 10 within the U.S. EPA/OPPT New Chemicals Program. Studies on ACRs 

have been conducted within the European Union (EU) using only test results in accordance with 

the EU Technical Guidance Document (TGD) for environmental risk assessment and they have 

determined ACR values of 10.5 for fish and 7 for daphnid (Ahlers et al. 2006). Others have 

calculated ACRs using same-species pairs of acute and maximum allowable toxicant 

concentration (MATC) values and found the median value for fish and aquatic invertebrates to 

be 8.3 (Raimondo et al. 2007). All of these values are considered to be in general agreement. 

Information obtained from analyzed databases indicates that the ACRs are lower for algae and 

other aquatic plants than for fish and invertebrates. Algae/plant EC50s are not actually based on 

lethality, but rather on growth rate or biomass productions. For the case of unicellular algae, 

which usually constitute the most common information, the tests from which EC50s (acute) and 

ChVs (chronic) endpoints are derived are shorter duration studies typically lasting 3-4 days.  

These data cover several generations, and in most cases, acute and chronic values are obtained 

from the same study. The ACR for algae that is currently used in the U.S. EPA/OPPT New 

Chemicals Program is 4. The derivation of this value is based on direct comparison of the 1999 

neutral organics green algae 72-/96-hr EC50 equation to that of the 1999 neutral organics green 
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algae ChV equation within ECOSAR. ACR research for green algae is limited compared to that 

for fish and invertebrates. Studies on ACRs have been conducted using only test results in 

accordance with the EU TGD for environmental risk assessment indicating that appropriate 

median ACRs for green algae are closer to 5.4 (Ahlers et al. 2006). The difference between the 

U.S. EPA/OPPT algal ACR value of 4 and those calculated using EU TGD methods may be 

explained by EU TGD’s use of the NOEC to set a chronic toxicity value, whereas the U.S. 

EPA/OPPT uses the ChV (geometric mean of the LOEC and NOEC) to characterize chronic 

toxicity. This leads to a slight difference in the calculated ACR for algae, but as with fish and 

invertebrates, both are generally in agreement. 

 

There are a few class-specific ACRs employed in ECOSAR version 2.0. ACRs can range from 1 

to 26 depending on species, chemical class, and available measured data. Multiple ACRs 

measured for one species and one class of chemical, or many species for one class of chemical 

are log normally distributed; therefore, the ACR for the species and/or for the chemical class is 

the geometric mean of the available ACRs. If a measured ACR is known for a class, then the 

measured ACR is used. If an ACR is not known for a chemical class, then an ACR of 10 is 

generally applied for fish and daphnid, and an ACR of 4 is used for green algae. The ACRs used 

in ECOSAR are shown in Table 2. 

 
Table 2: ACRs for Chemical Classes by Species 

 ACR 

Class Fish Daphnid Green Algae 

Neutral organics 10 10 4 

Classes with excess toxicity 10 10 4 

Polycationic polymers* 18 14 4 

Nonionic surfactants 5 5 4 

Anionic surfactants 6.5 6.5 4 

*Currently, no computerized QSARs are programmed in ECOSAR; see Appendix 2. 

 

It has been discussed that the use of fixed ratios to extrapolate from acute to chronic toxicity can 

be problematic, because some chemicals may show different modes-of-action under short- and 

long-term conditions. Also, data indicate that ACRs for chemical classes may be related to a 

chemical’s log Kow value. That is, as log Kow decreases within a class, the ACR increases (or as 

log Kow increases, the ACR decreases). ACRs for most chemicals with lower log Kow values are 

expected to be roughly 10 for fish (10 being the fixed ratio for fish), but decrease to 1 as log Kow 

values increase to ≥8 (Nabholz et al. 1993a). The steps described below for derivation of a 

predicted QSAR will take into account not only the application of ACRs to predict endpoints, but 

also the expected trends between log Kow and associated ACRs. 

4.3.2 Step 2: Determine the Estimated Toxicity Value from the Measured QSAR 

Equation 

 

ACRs can be applied directly to a given toxicity value to determine the corresponding acute or 

chronic value on a case-by-case basis, if measured data are available. ACRs can also be used to 

derive an endpoint-specific QSAR equation within a chemical class when the corresponding 

empirically derived QSAR equation and ACR for that class are available. The corresponding 
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measured QSAR equation must have been developed for the same species (e.g., daphnid), and 

must be from the same class (e.g., pyrroles/diazoles chemical class). The pyrroles/diazoles 

QSAR for D48 and DChV will be used to illustrate this QSAR development approach used in 

ECOSAR. Figure 4 presents the D48 QSAR equation as derived from the measured data for the 

pyrroles/diazoles class graphed with the neutral organics line. 

 

Figure 4: Acid Halide F96 QSAR Equation 

 
 
From this Acid Halide F96-hour equation, the log of the estimated toxicity value (LC50) is 

determined assuming a log Kow value of 0 (x = 0). 

 

Equation 1: Log F96(Kow = 0) LC50 = (-0.4869*0) - 0.2329 = -0.2329 mmol/L 
 

Next, the ACR is applied to the resulting F96(Kow = 0) value (F96/ACR) to derive the FChV(Kow = 0) 

 

[Note: log (F96 LC50/10) = log F96 LC50 - log 10, where log 10 = 1] 
 

Equation 2: log FChV(Kow = 0) = log F96 LC50 - log 10 = -0.2329 - log 10 = -1.2329 mmol/L 
 

Note: If an acute value was to be calculated from a chronic value, then log 10 would have been 

added instead of subtracted (e.g., log (FChV*10) = log FChV + log 10). 

 

In the example above, the resulting toxicity value (1.2329 mmol/L) is the log of the estimated 

chronic toxicity value corresponding to log Kow of 0, which can then be used as the first data 

* 
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point. Figure 5 shows this data point graphed with the neutral organics line. In general, this 

approach makes the basic assumption that the chronic toxicity is 1/10 of the acute toxicity value 

for a given chemical class. 

 

Figure 5: Estimated FChV Point (0, -1.2329) Graphed with the Neutral Organics 
Line 

 

4.3.3 Step 3: Regression through Neutral Organics Convergence Point to Create 

Estimated QSAR Equation 

 

After the log chronic toxicity value (log FChV) in mmol/l at log Kow = 0 is determined from 

step 2, the third step is to derive a QSAR equation for the class using analog analysis procedures, 

which are often employed in the U.S. EPA New Chemicals Program when data are lacking for a 

particular endpoint. Discussion in Section 3 (Chemical Classes with Excess Toxicity) stated that 

the mode of toxic action for most neutral organic chemicals is assumed to be narcosis. However, 

some organic chemical classes have been identified as having a more specific mode of toxicity. 

For these chemicals, the toxicity was typically related to the Kow value of the chemical and as the 

Kow value increased, the toxicity decreased. At a given Kow value, the toxicity of those chemicals 

was not significantly different from the toxicity of the equivalent neutral organic with similar log 

Kow. This convergence point for chronic effects to all aquatic organisms was typically seen at 

8.0, though some exceptions exist. Using this convergence relationship and the estimated chronic 

data point derived above, a line can be regressed from the chronic data point through the neutral 

organics chronic log Kow cutoff of 8.0 to create a resulting estimated QSAR equation. 

Calculating the chronic effect at log Kow = 0 minimizes the potential uncertainty in the slope of 

the line, which could potentially increase if values closer to the log Kow cutoff (8.0) were used 

for development of the equation. 

1 
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Using the estimated FChV(Kow = 0) and the neutral organic chronic log Kow cutoff of 8, the line is 

regressed and an equation is determined as depicted in Figure 6. 

 

Figure 6: Final FChV QSAR For Acid Halides 

 

 

Table 3 represents an example data table that will be presented for a QSAR when this technique 

is used to derive an equation. The summary paragraph provided for each QSAR will include 

information on the estimation technique, and the results provided in the ECOSAR output file will 

be flagged with a note to the user. 

 
Table 3: Data Table for the Acid Halide FChV QSAR Equation 

CAS 
No. 

Chemical 
Name M.W. 

log Kow 
(CLogP) 

log 
Kow 
(EPI ) 

log 
Kow 
(M) 

Fish ChV 
(mg/L) 

Log Fish ChV 
(mmol/L) 

Reference 
(Meas. Kow) 

Reference 
(Fish ChV) 

   0 0   -1.18  1/10 F48 Acid 
Halide SAR 

 Kow Limit  8 8   -6.20 NO Cutoff NO SAR 

          

SAR Data Not Included in 
Regression Equation: 

       

         

Data Not Included in 
SAR: 

        

          

      * indicates no effects at saturation 
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To date, 548 QSARs have been developed based on training sets with empirically measured data, 

and 161 QSARs have been derived using one or more of the techniques described above for a 

total of 111 classes of organic chemicals. The HELP Menu in the ECOSAR Class Program 

contains QSAR Equation Documents for all QSARs within each chemical class to provide 

transparency in the QSAR methods and supporting measured data. Most of the QSARs are for 

acute and chronic toxicity to fish, daphnids, and green algae; however, acute and chronic QSARs 

have been developed for other organisms where data were available such as mysid shrimp, sea 

urchin, and earthworms. 

 

5. INTERPRETING ESTIMATES FROM ECOSAR AND EVALUATING TOXICITY 

RESULTS 

 

Selection of the appropriate QSAR within ECOSAR is based on a variety of information 

depending on the chemical class. This includes factors like the chemical structure, chemical 

class, log Kow, molecular weight, physical state, water solubility, number of carbons or 

ethoxylates (or both), and percent amine nitrogen or number of cationic charges (or both) per 

1000 molecular weight. The most important factor for selecting an appropriate QSAR is the 

chemical class, since the QSARs in ECOSAR are class-specific. 

 

To estimate the toxicity to aquatic organisms of neutral organics and organic classes with excess 

toxicity, the log Kow and molecular weight are required. In general, when the log Kow is ≤5.0 for 

fish and daphnid, or ≤6.4 for green algae, ECOSAR provides reliable quantitative (numeric) 

toxicity estimates for acute effects. If the log Kow exceeds those general limits, empirical data 

indicate that the decreased solubility of these lipophilic chemicals results in “no effects at 

saturation” during a 48- to 96-hour test. For chronic exposures, the applicable log Kow range to 

derive reliable quantitative (numeric) values is extended up to log Kow 8.0. If the log Kow of the 

chemical exceeds 8.0, which generally indicates a poorly soluble chemical, “no effects at 

saturation” are expected in saturated solutions even with long-term exposures (Tolls et al. 2009). 

Some specific classes may have slightly different acute toxicity upper limits, but in general, a log 

Kow of 8 is the standard cut-off for chronic effects. The class-specific log Kow limits are 

presented in the ECOSAR output files. The user should always review these limits to determine 

when “no effects at saturation” are expected for a query chemical. ECOSAR does not perform 

this comparison within the model. 

 

In addition to the log Kow limits, an important determinant of the toxicity of a chemical, 

especially for solids, is its water solubility. If an organic chemical is a solid at room temperature, 

then the melting point should be entered into ECOSAR because of the effect that it has on the 

estimation of the water solubility. Assuming that the Kow is constant, the higher the melting point 

of a neutral organic chemical, the lower its water solubility. The water solubility of a chemical 

should be compared with the predicted toxicity value derived for a chemical. If the toxicity value 

is significantly greater than the measured or predicted maximum water solubility, then an effect 

is not expected to occur in a saturated solution. See Figure 7 for the step-by-step procedure for 

determining no effects at saturation for solids, based on water solubility. 
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Figure 7: No Effect at Saturation for Solids 

 
 

Molecular weight may also be considered to determine the absorption cutoff limit for aquatic 

organisms. As the molecular weight of a chemical increases above 600, passive absorption 

through respiratory membranes decreases significantly. Therefore, for chemicals with molecular 

weights >1000, it has been assumed that such absorption is negligible. Although ECOSAR is not 

recommended for chemicals with molecular weights >1000, there is no restriction on chemical 

input into the system. Therefore, the user must also perform this comparison of molecular weight 

to determine appropriateness of results. For surface active chemicals such as cationic polymers, 

molecular weight is not limiting because the toxic effect is not due to absorption. For example, 

some polycationic polymers with molecular weights in excess of 1,000,000 are highly toxic 

because they act directly on the respiratory membranes of aquatic organisms. 

 

6. DOMAIN OF ECOSAR EQUATIONS AND INTERPRETING SUPPORTING DATA 

TABLES IN THE QSAR EQUATION DOCUMENTS 

 

In the development of the ECOSAR equations for neutral organics and classes with excess 

toxicity, the training sets generally include chemicals with log Kow values in the range of -3 to 8 

and molecular weights <1000. However, the domain of the model is considered to be larger than 

the descriptor range of the training set of chemicals. As discussed in previous sections, it has 

been determined through empirical data that for acute toxicity endpoints, chemicals with a log 

Kow value >5.0 are generally expected to have no effects at saturation. For chronic effects, 

chemicals with a log Kow value >8.0 are expected to have no effects at saturation. Although the 

individual equations may not have been not built using chemicals with log Kow values >5.0 and 

>8.0 respectively, the model can still make accurate qualitative determination of potential 

toxicity under environmental conditions for chemicals outside the log Kow descriptor domain. 

For classes where studies were available that exceed the log Kow limits, the data have been 

provided in the QSAR Equation Documents under the section labeled “SAR Data not included in 

Regression Equation”. NOTE: Log Kow cutoffs can be class specific where data indicated a 

departure from this general trend of 5.0 for acute effects and 8.0 for chronic effects. The log Kow 

limits for each class will be presented in the output file from ECOSAR. 
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An example of a technical reference sheet that provides data for chemicals above the log Kow 

limits is provided in Figure 8 for the mono epoxides chemical class, which has a log Kow cutoff 

of 5.0 for 96-hour LC50 data for fish. The “*” in the Table 4 denotes “no effects at saturation” 

which was the result of the study. When interpreting the QSAR Equation Documents for each 

class/equation, the number of chemicals in the training set is represented by N = x + y where “x” 

equals the number of studies used in actual equation development and “y” equals: (1) log Kow 

cutoff as discussed in Section 4.2; and/or (2) SAR Data Not Included in Regression Equation. 

 

There is also a section in each data table where studies are presented for chemicals that fall 

within the class, but the validity of the test could not be confirmed and the data point was 

therefore not used to support the QSAR. Studies where validity, test conditions, or other 

generally important parameters could not be confirmed are provided under the section “Data Not 

included in SAR”. The studies listed in this section are not counted towards the derivation of N 

as discussed in the previous paragraph. 

 

Figure 8: Supporting Data for Chemical above the Log Kow Cutoff for a QSAR 

 
SAR Epoxides, Mono 7/2010 
 

ESTIMATED TOXICITY: 
The fish 96-h LC50 values used to develop this SAR were measured and the octanol- 
water partition coefficients (Kow) were calculated using the computer program, 
KOWWIN (Version 1.67). The SAR equation used to estimate toxicity is: 

 

Log 96-h LC50 (mmol/L) = -0.5459 (log Kow) + 0.0922 

 
The LC50 is in millimoles per liter (mM/L); N = 7 + 2; and the Coefficient of 
Determination (R2) = 0.9457. To convert the LC50 from mM/L to mg/L, multiply by the 
molecular weight of the compound. 
 
Maximum Log Kow: 5.0  
Maximum MW: 1000 
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Table 4: Data Table for the Mono Epoxides 

CAS No. Chemical Name M.W. 
log Kow 
(CLogP) 

log Kow 
(EPI ) 

Log Kow 
(M) 

Fish 96-h 
LC50 

(mg/L) 

Log Fish 
96-h LC50 
(mmol/L) 

Reference 
(Meas. log Kow) Reference (Fish 96-h LC50) 

75-21-8 Ethylene oxide 44 -0.8 -0.05 -0.3 84 0.28 
Hansch et al., 
1995 

Conway et al., 1983 

106-92-3 Allyl glycidyl ether 114 -0.33 0.45  30 -0.58  Bridie et al., 1979 

CBI CBI 156 -0.54 1.1  54 -0.46  P98-___ 

122-60-1 Phenyl glycidyl ether 150 1.1 1.6  43 -0.54  Bridie et al., 1979 

000000-00-0 1,2-Epoxyhexane 330 2.8 3.5  3.2 -2.01  8e-13697 

000000-00-0 1,2-Epoxyoctane 330 2.8 3.5  5.6 -1.77  8e-13697 

CBI CBI 228 3.3 3.7 3.29 5 -1.66 Aster P98-___ 

 Kow Limit  5 5   -2.78 NO Cutoff NO SAR 

          

SAR Data Not Included in Regression Equation: 

CBI CBI 411 4.1 4.5 3.2 * * Not Specified P98-___ 

          

Data Not Included in SAR: 

72-20-8 Endrin 381 2.9 5.5 5.25 0.00041 -5.97 
Debruijn et al., 
1989 

U.S. EPA WQC, 1986; excess 
toxic 

2443-39-2 
9,10-Epoxystearic 
acid 

298 5.1 6.4  1.5 -2.30  Leach and Thakore, 1975 

      * indicates no effects at saturation  
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Due to the programmatic need to make a decision for all chemicals submitted and because there 

is currently no consensus on a single approach for the evaluation of the domain of applicability, 

it is the practice of the U.S. EPA/OPPT to implement external domain evaluations on a case-by- 

case basis. In cases where the chemicals appear to be outside the domain, the potential 

uncertainty associated with that prediction is not quantified by mathematical and statistical 

evaluations of domain, but rather, the potential uncertainty in the estimate is assessed 

qualitatively by staff and managers within the context of the decision that needs to be made or 

the regulatory action the decision may support (U.S. EPA 2003b). 

 

7. INTERNAL PERFORMANCE OF ECOSAR AND TRAINING SET EQUATIONS 

DOCUMENTS 

 

Ideally, a QSAR model should be accompanied by full disclosure of the internal performance 

information for the training set chemicals including chemical names, structural formula, raw 

data, data for descriptor variables, data quality, data processing methods, methods for selection 

of variables, and any statistical methods employed in the derivation of the QSAR (OECD 

2004a). 

 

Information specific to the individual QSAR equations are provided in the QSAR Equation 

Documents included in the HELP Menu of ECOSAR. These QSAR Equation Documents 

provide internal performance measures such as coefficient of determination (r
2
) and all descriptor 

values for each of the QSAR equations programmed into ECOSAR. However, it is not possible 

for EPA to assemble and release all of the information regarding internal performance of 

ECOSAR in an effort to promote transparency of the model. Some of the information contained 

within the predictive system is confidential business information (CBI) collected by EPA under 

the New Chemicals Program and is therefore restricted from being revealed. Only personnel with 

TSCA CBI clearance and members of Congress can access the information, thereby prohibiting 

dissemination of the information publicly. However, when CBI data were used in the 

development of a QSAR, this is noted in the technical reference sheet. Chemical identity of these 

chemicals is masked (name and structure) along with the CAS number. 

 

8. EXTERNAL PREDICTIVITY OF ECOSAR 

 

An objective external evaluation of the predictive accuracy of a model is always desirable when 

determining its usefulness within a specified framework. However, it is often difficult to perform 

a truly representative evaluation of the predictivity using standard external performance 

measures without first considering the context within which a QSAR model will be used to 

support chemical management decisions. It is important to understand these parameters before 

commencing an external evaluation, as different situations or classification schemes may lead the 

assessor to different conclusions regarding the appropriateness of a particular model. 

 

In its simplest design, an external evaluation uses chemicals not employed in the development of 

the model and takes the form of a direct comparison between the experimental and estimated 

values for the chemicals. When the predicted endpoint is quantitative (provides a numeric value), 

a regression analysis is performed comparing the experimental and estimated data to ascertain 
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the coefficient of determination (r
2
) for the model. This coefficient of determination is used as a 

surrogate measure for the predictivity. The higher the r
2 

value, the greater the correlation 

between experimental and estimated values, the better the predictive accuracy of the model. 

There have been numerous external validation exercises performed on ECOSAR by third parties 

and results are available in the public domain. The r
2
 is a statistically appropriate measure for the 

predictivity of a model; however, in some cases, it may not reflect the true predictive power of a 

QSAR within a particular decision-making framework. For example, regulatory bodies often use 

a set of preliminary classification criteria to make decisions regarding the potential fate and 

effects of chemicals and may not actually require the use of the discreet experimental or 

estimated values themselves. These classification schemes typically define ranges to allow the 

hazard assessors to make more qualitative calls regarding the chemical of interest. Within the 

U.S. EPA/OPPT New Chemicals Program, QSARs and classification schemes are used in 

screening and priority setting to identify potentially hazardous chemicals of concern that need 

additional resources or scrutiny from the universe of general industrial chemicals. Therefore, 

within the context of this regulatory framework, the predictivity of the model seems more 

appropriately measured when the quantitative values are overlaid on the respective classification 

schemes in order to truly represent how many times the estimates led the hazard assessor to the 

right conclusions within that framework. Unlike the more traditional statistical approaches, this 

classification technique allows the models to be evaluated directly for their applicability within a 

given regulatory/decision-making framework (OECD 2006, Tunkel et al. 2005). A list of 

supporting validation exercises performed in conjunction with EPA and other stakeholders on the 

ECOSAR model is provided below. 

 

 External Peer Reviews 

An independent peer review of ECOSAR was conducted as part of the development of the 

Organization for Economic Cooperation and Development’s (OECD) guidance, The 

Principles for Establishing the Status of Development and Validation of (Quantitative) 

Structure-Activity Relationships [(Q)SARs] (OECD 2004a). 

 

 Participation in U.S.-EU Validation Exercise 

U.S. EPA participated with the EU in a large-scale verification study of ECOSAR to 

compare SAR predictions with the results of data from testing. That study (OECD 1994, U.S. 

EPA 1994) found our methods to be accurate 60-90% of the time depending on the endpoint 

assessed. 

 

 International Collaboration in Development of Effective Predictive Tools 

ECOSAR was included in OECD’s Report on the Regulatory Uses and Applications in 

OECD Member Countries of (Q)SAR Models in the Assessment of New and Existing 

Chemicals (OECD 2006). Subsequently, the OECD solicited U.S. EPA to include ECOSAR 

into the OECD QSAR Application Toolbox, which was developed starting in 2006. Inclusion 

in the OECD toolbox requires specific documentation, validation, and acceptability criteria 

and subjects ECOSAR to international use and review, providing a means for receiving 

additional and ongoing input for improvements. In an evaluation of a number of predictive 

tools used to profile chemicals and group them together based on similar toxicity, ECOSAR 

was the top performer (http://www.oecd.org/document/23/0,3343,en_2649_34379_33957015

_1_1_1_1,00.html#Additional_information_on_the_QSARs_Application_Toolbox). 

http://www.oecd.org/document/23/0%2C3343%2Cen_2649_34379_33957015_1_1_1_1%2C00.html#Additional_information_on_the_QSARs_Application_Toolbox
http://www.oecd.org/document/23/0%2C3343%2Cen_2649_34379_33957015_1_1_1_1%2C00.html#Additional_information_on_the_QSARs_Application_Toolbox
http://www.oecd.org/document/23/0%2C3343%2Cen_2649_34379_33957015_1_1_1_1%2C00.html#Additional_information_on_the_QSARs_Application_Toolbox
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the ECOSAR Class Program 
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1. OECD (Organization for Economic Cooperation and Development). (2006) Report on the 

Regulatory Uses and Applications in OECD Member Countries of (Quantitative) Structure-

Activity Relationships [(Q)SAR] Models in the Assessment of New and Existing 

Chemicals. Organization for Economic Cooperation and Development, Paris; 

ENV/JM/MONO(2006)25. 

 

2. Eriksson, L; Johansson, E; Wold S. (1997) Quantitative Structure-Activity Relationship 

Model Validation. In: Chen, F; Schuurmann, G; eds. Quantitative Structure-Activity 

Relationships in Environmental Sciences - VII. Pensacola, FL: SETAC Press, pp. 381-397. 

 

3. OECD (Organization for Economic Cooperation and Development). (2004a) The Principles 

for Establishing the Status of Development and Validation of (Quantitative) Structure- 

Activity Relationships [(Q)SARs]. Organization for Economic Cooperation and 

Development, Paris; ENV/JM/TG(2004)27. 

 

4. OECD (Organization for Economic Cooperation and Development). (2004b) Annex 6: 

ECOSAR. In: Annexes to the Report on the Principles for Establishing the Status of 

Development and Validation of (Quantitative) Structure-Activity Relationships [(Q)SARs]; 

ENV/JM/TG(2004)27/ANN. 

 

5. OECD (Organization for Economic Cooperation and Development). (2004c) Comparison of 

SIDS Test Data with (Q)SAR Predictions for Acute Aquatic Toxicity, Biodegradability and 

Mutagenicity on Organic Chemicals Discussed at SIAM 11-18. Organization for Economic 

Cooperation and Development, Paris; ENV/JM/TG(2004)26. 

 

6. Posthumus, R; Sloof, W. (2001) Implementation of QSARS in Ecotoxicological Risk 

Assessments. Research for Man and Environment/National Institute of Public Health and 

the Environment (RIVM), Bilthoven, Netherlands; RIVM report 601516003. 

 

7. Zeeman, M; Rodier, D; Nabholz, J. (1999) Ecological Risks of a New Industrial Chemical 

Under TSCA. In: Ecological Risk Assessment in the Federal Government. U.S. White 

House, National Science & Technology Council, Committee on Environment & Natural 

Resources (CENR), Washington, DC; CENR/5-99/001, pp. 2-1 to 2-30. 

 

8. Kaiser, KL; Niculescu, S; Mckinnon, M. (1997) On Simple Linear Regression, Multiple 

Linear Regression, and Elementary Probabilistic Neural Network with Gaussian Kernel’s 

Performance in Modeling Toxicity Values to Fathead Minnow Based on Microtox Data, 

Octanol/Water Partition Coefficient, and Various Structural Descriptors for a 419-

Compound Dataset. In: Chen, F; Schuurmann, G; eds. Quantitative Structure-Activity 

Relationships in Environmental Sciences-VII, Pensacola, FL: SETAC Press, pp. 285-297. 
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9. OECD (Organization for Economic Cooperation and Development). (1994) US EPA/EC 

Joint Project on the Evaluation of (Quantitative) Structure Activity Relationships (QSARS). 

OECD Environment Monographs No. 88. Organization for Economic Cooperation and 

Development, Paris, France; OECD/GD(94)28. 

 

10. U.S. EPA (Environmental Protection Agency). (1994) US EPA/EC Joint Project on the 

Evaluation of (Quantitative) Structure Activity Relationships (QSARS). U.S. 
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DC; EPA 743-R- 94-001. 
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Development, Paris, France; OECD/GD(94)28. 
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Assessing the Ecological Risks of a New Chemical Under the Toxic Substances Control 
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Development, 
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APPENDIX 1: EXISTING ECOSAR QSARS UPDATE MARCH 2015 

 

Aquatic 

Terrestrial 

Freshwater Saltwater 

Lemna 
gibba 

Frog 
tadpole 

 Acute 

Fish 
14-d 

Sediment 
Invert 10-d 

Chronic Acute Chronic 

Sea 
urchin 

 
Chemical Class Fish Daphnid Algae Fish Daphnid Algae Fish Mysid Algae Fish Mysid Algae Earthworm Snail 

Acid halides X X X   1/10 
F96 

1/10 D48 X  X   1/10 
M96 

      

Acrylamides X X X   X X X X X  1/10 
F96 

(SW) 

X       

Acrylates/fumerate/
maleates 

X X X   X 1/10 D48 X X X  1/10 
F96 

(SW) 

1/10 
M48 

      

Aldehydes (mono) X X X   X 1/10 D48 X X   1/10 
F96 

(SW) 

       

Aldehydes (poly) X X X   1/10 
F96 

X X            

Aliphatic amines X X X   X X X D D D D D D      

Alkoxy silanes X X X   1/10 
F96 

1/10 D48 X            

Amides X X X   X X X X X  X X     X  

Anilines (amino-meta) X X X   1/10 
F96 

X 1/4 
GA96 

           

Anilines (amino-ortho) X X X   1/10 
F96 

1/10 D48 1/4 
GA96 

           

Anilines (amino-para) X X X   1/10 
F96 

1/10 D48 X            

Anilines (hindered) X X X   1/10 
F96 

1/10 D48 X            

Anilines (unhindered) X X X   X X X  X   X       

Azides                    

Aziridines X X 4x GChV   1/10 
F96 

1/10 D48 X            

Azonitriles                    

Benzodioxoles X X    X X  X X          

Benzotriazoles X X X   X X X            

Benzoylcyclohexanedione 10x 
FChV 

X X   X X X X X          

Benzyl alcohols X X X   X 1/10 D48 X D D          

Benzyl amines                    

Benzyl halides X X X   X 1/10 D48 X  X          

Benzyl imides X X    1/10 
F96 

1/10 D48             
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Aquatic 

Terrestrial 

Freshwater Saltwater 

Lemna 
gibba 

Frog 
tadpole 

 Acute 

Fish 
14-d 

Sediment 
Invert 10-d 

Chronic Acute Chronic 

Sea 
urchin 

 
Chemical Class Fish Daphnid Algae Fish Daphnid Algae Fish Mysid Algae Fish Mysid Algae Earthworm Snail 

Benzyl ketones                    

Benzyl nitriles X X X   X X X X X   X       

Benzyl thiols                    

Bromoalkanes                    

Caprolactams                    

Carbamate esters X X X   1/10 
F96 

1/10 D48 X            

Carbamate esters, oxime X X X   X X X X D  X        

Carbamate esters, phenyl X X X   X X X D   D D       

Carbonyl urea X X X   X X X     D       

Diazoniums, aromatic X     1/10 
F96 

             

Diketones X X 4x GA96   1/10 
F96 

X X            

Epoxides, mono X X X   X 1/10 D48 X D   D        

Epoxide, mono acid 
substituted 

                   

Epoxides, poly F14d X mono 
GA96 

X  1/10 
F96 

1/10 D48 1/4 
GA96 

           

Esters X X X   X X X X X D 1/10 
F96(S

W) 

X     X  

Esters, dithiophosphate X X X   X X X D D          

Esters, imidic                    

Esters, 
monothiophosphate 

X X X   X X X X X D D X     X  

Esters, phosphate X X X   X D X X X D X X       

Esters, phosphinate X X    1/10 
F96 

1/10 D48  X X  1/10 
F96(S

W) 

1/10 
M96 

      

Esters x 10                    

Halo amines                    

Halo benzamides                    

Halo epoxides X X 4x 
GAChV 

  1/10 
F96 

1/10 D48 X            

Halo esters X X    1/10 
F96 

1/10 D48             

Halo ethers X     1/10 
F96 
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Aquatic 

Terrestrial 

Freshwater Saltwater 

Lemna 
gibba 

Frog 
tadpole 

 Acute 

Fish 
14-d 

Sediment 
Invert 10-d 

Chronic Acute Chronic 

Sea 
urchin 

 
Chemical Class Fish Daphnid Algae Fish Daphnid Algae Fish Mysid Algae Fish Mysid Algae Earthworm Snail 

Halo ketones (2 free H) X X X   X 1/10 D48  X           

Halo-nitros                    

Haloacetamides X X X   X X X X X  X      D  

Haloacids X X X   1/10 
F96 

X X            

Haloimides X X    X 1/10 D48             

Halonitriles X X X   X 1/10 D48 X X X  1/0 
F96(S

W) 

1/10 
M96 

      

Halopyridines X X    X 1/10 D48  D   D        

Hydroquinones X X X   1/10 
F96 

1/10 D48 X            

Hyrdazines X X X   1/10 
F96 

1/10 D48 X  X  X X       

Imide acids                    

Imides X X X   X X X  X          

Isothiazolones X X X   1/10 
F96 

1/10 D48 X            

Ketone alcohols X X X   1/10 
F96 

1/10 D48 X            

Malonitriles X X X   1/10 
F96 

1/10 D48 X D   D        

Melamines X X X   X 1/10 D48 1/4 
GA96 

           

Methacrylates X X X   1/10 
F96 

1/10 D48 X            

Neonicitinoid X X X   X X X X X   X       

Nereisotoxin X  X   1/10 
F96 

 X            

Neutral organics X X X  X X X X X X D X X D    X  

Nicotinoid X X X   X 1/10 D48 X            

Nitrile alpha-OH X     1/10 
F96 

             

Nitro alcohols X X X   X X X            

Nitro-/nitroso-benzamides X     1/10 
F96 

             

Nitrile esters                    

Omadine         X X  1/10 
FChV 
(SW) 

1/10M
ChV 
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Aquatic 

Terrestrial 

Freshwater Saltwater 

Lemna 
gibba 

Frog 
tadpole 

 Acute 

Fish 
14-d 

Sediment 
Invert 10-d 

Chronic Acute Chronic 

Sea 
urchin 

 
Chemical Class Fish Daphnid Algae Fish Daphnid Algae Fish Mysid Algae Fish Mysid Algae Earthworm Snail 

Oxetanes X X X   1/10 
F96 

1/10 D48 X            

Oxyamine X X    1/10 
F96 

1/10 D48             

Peroxy acids X X X   1/10 
F96 

1/10 D48 X            

Peroxy esters X X X   1/10 
F96 

X X            

Phenol amines X X X   1/10 
F96 

X X            

Phenols X X X   X X X  D D      D X  

Phenols, poly X X X   X X X D D D D D D      

Phosphine oxide X X    1/10 
F96 

1/10 D48             

Phthalonitriles X X    X 1/10 D48             

Polyaliphatic nitriles X X X   1/10 
F96 

1/10 D48 X            

Polynitroanilines X X 4x GChV   X X X            

Polynitrobenzenes X X X   X X X X   1/10 
F96 

(SW) 

       

Polynitrophenols X X D   X X D X   1/10 
F96(S

W) 

       

Propargyl alcohol X X X   X 1/10 D48 1/4 
GA96 

           

Propargyl amines                    

Vinyl/Allyl/ Propargyl 
alcohol, hindered 

X X X   1/10 
F96 

1/10 D48 X            

Propargyl carbamates                    

Propargyl halide X X    X 1/10 D48  D D          

Pyrroles/Diazoles X X X   X X X  X          

Pyrethroids X X D   X X D X X  X X       

Pyridine-α-acid X  X   1/10 
F96 

 X            

Quinones X X X   1/10 
F96 

X 1/4 
GA96 

 D   D       

Rosins X X X   1/10 
F96 

1/10 D48 X            
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Aquatic 

Terrestrial 

Freshwater Saltwater 

Lemna 
gibba 

Frog 
tadpole 

 Acute 

Fish 
14-d 

Sediment 
Invert 10-d 

Chronic Acute Chronic 

Sea 
urchin 

 
Chemical Class Fish Daphnid Algae Fish Daphnid Algae Fish Mysid Algae Fish Mysid Algae Earthworm Snail 

Schiff bases-azomethine X X X   1/10 
F96 

1/10 D48 X X   1/10 
F96 

(SW) 

       

Silamines                    

Substituted ureas X X X   X X X X X  X X       

Sulfonyl ureas X X X   X X X  X   1/10 
M96 

  D    

Thiazolidinones X X    1/10 
F96 

1/10 D48             

Thiazolidinones-acids X     1/10 
F96 

             

Thiocarbamate, di (Fe 
salts) 

                   

Thiocarbamates, di (free 
acid) 

X X X   1/10 
F96 

X 1/4 
GA96 

           

Thiocarbamate, di (Mn 
salts) 

                   

Thiocarbamates, di 
(substituted) 

X X X   1/10 
F96 

1/10 D48 X            

Thiocarbamate, di (Na 
salts) 

                   

Thiocarbamate, di (Zn 
salts) 

                   

Thiocarbamates, mono X X X   X X X X X D         

Thiocyanates X X X   X X X X X          

Thiols & mercaptans X X X   1/10 
F96 

1/10 D48 X            

Thiomethacrylates  X     1/10 D48             

Thiophenes X X X   1/10 
F96 

1/10 D48 X            

Thiophthalimides X X X   X 1/10 D48 X  X          

Thiotetrazoles   X     1/4 
GA72 

           

Thiourea X X X   1/10 
F96 

1/10 D48 X            

Triazines, aliphatic X X X   1/10 
F96 

1/10 D48 X            

Triazinetriones                    

Triazines, aromatic X X X   X X X X X  X X       
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Aquatic 

Terrestrial 

Freshwater Saltwater 

Lemna 
gibba 

Frog 
tadpole 

 Acute 

Fish 
14-d 

Sediment 
Invert 10-d 

Chronic Acute Chronic 

Sea 
urchin 

 
Chemical Class Fish Daphnid Algae Fish Daphnid Algae Fish Mysid Algae Fish Mysid Algae Earthworm Snail 

Triazole pyrimidine 
sulfonamides 

D X X   D X X            

Triazoles X X X   X X X X X  X X       

Vinyl/Allyl /Propargyl 
alcohols 

X X X   1/10 
F96 

1/10 D48 X            

Vinyl/allyl aldehydes X X X   1/10 
F96 

1/10 D48 1/4 
GA96 

           

Vinyl/allyl amines                    

Vinyl/Allyl/Propargyl 
esters 

X X X   1/10 
F96 

1/10 D48 X  D          

Vinyl/Allyl/Propargyl 
ethers 

X X X   1/10 
F96 

1/10 D48 X          X  

Vinyl/allyl halides X X X   X X 1/4 
GA96 

X X        X  

Vinyl/allyl ketones X X X   X 1/10 D48 1/4 
GA96 

X X  X 1/10 
M96 

      

Vinyl/Allyl/ Propargyl 
nitriles 

X X X   X X X            

Vinyl/allyl pyrazole/
pyrroles 

X                   

Vinyl/Allyl/Propargyl 
sulfones 

X X X   1/10 
F96 

1/10 D48 X            

Vinyl/allyl thiocarbamates                    

"D" indicates classes with inadequate data to complete a QSAR 
“X” indicates QSARs with adequate empirical data 
"1/X" endpoint or "X" endpoint indicates that an ACR was used 
 

755 Endpoints covered in ECOSAR 
543 Endpoints with empirically derived QSARs  
51 Endpoints with just data and no QSAR 
161 QSARs derived using ACRs 
704 Total Predictive QSARs available from ECOSAR version 1.1 
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APPENDIX 2: GENERAL DISUCSSION ON SURFACTANTS AND POLYMERS   

 

There are a number of publications by U.S. EPA staff discussing the ecological assessment of 

polymers, dyes, and surfactants. Computerized QSARs are currently only available in ECOSAR 

for surfactants and dyes. However, assessment methodologies and rules of thumb do exist for 

ecological assessment of polymers. Methods discussed in Appendix 2 for polymers represent a 

condensed summary of the reference: Boethling, R; Nabholz, JV. (1997) Environmental 

Assessment of Polymers under the U.S. Toxic Substances Control Act. In: Hamilton, JD; 

Sutcliffe, R; eds. Ecological Assessment of Polymers Strategies for Product Stewardship and 

Regulatory Programs. New York, NY: Van Nostrand Reinhold, pp. 187-234. For more in-depth 

information on polymer assessment, interested assessors are encouraged to read the full 

document. 
 

Another useful resource for evaluation of these types of materials is: Nabholz, JV; Miller, P; 

Zeeman, M. (1993b) Environmental Risk Assessment of New Chemicals Under the Toxic 

Substances Control Act (TSCA) Section Five. In: Landis, WG; Hughes, JS; and Lewis, MA; eds. 

Environmental Toxicology and Risk Assessment, ASTM STP 1179. Philadelphia, PA: American 

Society for Testing and Materials. pp. 40-55. 

 

Additionally, information on many of these surfactant and polymer classes can be found within 

the EPA/OPPT New Chemical Category Report posted on the EPA website at: 

http://www.epa.gov/oppt/newchems /pubs/cat02.htm. 
 

Surfactants 

 

QSARs are available in ECOSAR for four general classes of surfactants. These four general 

classes are categorized by overall charge and include anionic surfactants (such as linear alkyl 

benzene sulfonates), cationic surfactants (such as quaternary ammoniums), nonionic surfactants 

(such as alkyl ethoxylates), and amphoteric surfactants (such as ethoxylated beta-amine 

surfactants). Various subclasses are listed within the four general surfactant groups for ease of 

use only, noting that these subclasses do not currently have separate QSAR equations 

programmed into ECOSAR. For example, if an assessor is unsure which of the four general 

surfactant classes to use, but knows the molecule is a “fatty acid,” they could clearly identify 

what surfactant class is appropriate to estimate toxicity by selecting the fatty acids subclass 

(which is listed under the anionic surfactants class). However, in practice, all of the subclasses 

listed under each of the four surfactant classes are estimated using the same set of QSARs. 

 

Over the years, U.S. EPA/OPPT began to collect additional subclass-specific data through the 

New Chemicals Program and drafted many new subclass-specific SAR tables. These methods 

have not yet been converted to computerized algorithms for the ECOSAR model, nor have the 

complete SAR tables been published in supporting documentation since much of the data 

includes CBI. Therefore, users of ECOSAR should be aware that U.S. EPA/OPPT may often 

evaluate surfactants submitted under the New Chemicals Program using unpublished SARs that 

are not currently available in this tool. However, descriptions of the surfactant QSARs currently 

programmed into ECOSAR are provided in the following paragraphs. 

 

http://www.epa.gov/oppt/newchems/pubs/cat02.htm
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Anionic Surfactants: The QSARs for anionic surfactants are parabolic, and toxicity is related to 

the size of the hydrophobic component (i.e., number of carbons) when the size of the hydrophilic 

component remains constant. Toxicity is generally observed to be greatest when the carbon chain 

equals 16. The size of the hydrophobic component, usually a linear alkyl carbon chain, can be 

estimated by simply counting the number of carbons in the hydrophobic alkyl chain. If the 

toxicity of a mixture of anionic surfactants, which vary only in carbon chain length, is to be 

estimated, then the weighted average of carbons in the alkyl chains (for liner alkyl benzene 

sulfonates excluding aromatic benzene ring) should be determined and used as input to the 

model. If you have multiple substitutions (diester), one would enter the total number of carbons. 

However, if the compound being evaluated is a mixture of varying unspecified substitutions 

(e.g., mono and diesters) and varying chain length (e.g., C6-C10), it makes the assessment 

infinitely more complicated due to this parabolic relationship and the myriad of potential 

structures that comprise the mixture. However, without percent composition information, it is 

difficult to know what would actually drive the true toxicity profile for the mixture in the 

environment. In these cases, the hazard assessor might run all potential configurations and select 

the worst case, or the estimated profiles may be supplemented with analog data on the actual 

mixtures, if available. Anionic classes may include fatty acids, alkyl benzene sulfonates, alkyl 

sulfonate and carboxylic acid, alkyl sulfonates, carboxylic acids, phosphinothioic acid esters 

(free acids), phosphorothioic esters, and other general anionic surfactants. Anionic surfactants 

class is also one of the few classes identified as having class-specific ACRs that are applied to 

estimate chronic toxicity values. The current QSARs are: 

 
Class Organism Endpoint Equations 

ANIONIC SURFACTANT FISH 96 LC50 10^((((AVG_NUM_CARBONS - 16)^2) - 10.643)/12.9346)  

ANIONIC SURFACTANT DAPHNID 48 LC50 10^((((AVG_NUM_CARBONS - 16)^2) – 42.466)/12.368)  

ANIONIC SURFACTANT ALGAE 96 EC50 10^((((AVG_NUM_CARBONS - 16)^2) - 10.643)/12.9346)  

ANIONIC SURFACTANT FISH 28 NEC 10^((((AVG_NUM_CARBONS - 16)^2) - 10.643)/12.9346)/6.5  

ANIONIC SURFACTANT DAPHNID 21 NEC 10^((((AVG_NUM_CARBONS - 16)^2) - 10.643)/12.9346)/6.5  

ANIONIC SURFACTANT ALGAE 21 NEC 10^((((AVG_NUM_CARBONS - 16)^2) – 42.466)/12.368)/1.4  

 

Cationic Surfactants: To determine the toxicity of a cationic surfactant, it is necessary to know 

the number of carbon atoms in the hydrophobic chain. The QSARs for cationic surfactants are 

linear and the toxicity potential is related to the size of the hydrophobic component (i.e., the 

number of carbons is >C16, or <C16). Cationic classes may include quaternary aliphatic amines, 

phosphoniums, quaternary ammoniums, sulfoniums, and other general cationic surfactants. The 

current QSARs are: 

 
 

Class  Organisms Endpoint Equations 

SURFACTANTS, CATIONIC, <C16 FISH 96 LC50 10^(5.43 -0.37) * AVG_NUM_CARBONS) 

SURFACTANTS, CATIONIC, <C16 DAPHNID 48 LC50 10^(2.07 -0.13) * AVG_NUM_CARBONS) 

 
SURFACTANTS, CATIONIC, >=C16 SNAIL 96 LC50 10^((0.087 * AVE_NUM_CARBONS) - 1.56) 

SURFACTANTS, CATIONIC, >=C16 FISH 96 LC50 10^((0.023 * AVG_NUM_CARBONS) - 0.092) 

SURFACTANTS, CATIONIC, >=C16 DAPHNID 48 LC50 10^((0.115 * AVG_NUM_CARBONS) - 1.64) 
 

Nonionic Surfactants: Toxicity for the nonionic surfactants was calculated in a similar manner 

to the general neutral organics QSAR class, and is based on the modified log Kow. The toxicity 



33  

estimation was affected by the number of carbons, the number of branches occurring in the 

structure, and the total number of propoxy and ethoxylate units, contributing to the size of the 

hydrophobe. Therefore, the number of ethoxy groups and the average carbon chain length must 

be known to use these QSARs. These QSARs are designed for chemicals with alkyl chains 

between C8 and C18, and propoxy/ethoxylate groups between 3 and 15. The surfactant QSARs 

developed by U.S. EPA/OPPT are predominantly based on surfactants where the hydrophobic 

component is composed of a single linear chain of carbons and/or chains of ethoxylate units. 

Surfactants that have complex hydrophobic components are assessed by calculating the Kow of 

the complex hydrophobic component alone and determining which aliphatic alkyl (carbon) chain 

has an equivalent Kow. Toxicity estimates were based on this equivalent chemical structure. 

Nonionic classes may include alkyl ethoxylates and other general nonionic surfactants. The 

current QSARs are: 

 
Class   Organisms Endpoint Equations 

SURFACTANTS, NONIONIC FISH 96 LC50 -0.4293 * (Modified log Kow) - 0.2818 

SURFACTANTS, NONIONIC DAPHNID 48 LC50 -0.54 * (Modified log Kow) + 0.1223 

SURFACTANTS, NONIONIC ALGAE 96 EC50 -0.5401 * (Modified log Kow) + 0.2156 

SURFACTANTS, NONIONIC FISH ChV -0.3565 * (Modified log Kow) - 1.0181 

SURFACTANTS, NONIONIC DAPHNID ChV -0.4601* (Modified log Kow) - 0.4474 

SURFACTANTS, NONIONIC ALGAE ChV -0.6123 * (Modified log Kow) + 0.0838 

SURFACTANTS, NONIONIC COMPOSITION FISH 96 LC50 -0.4793 * (Modified log Kow) - 0.0600 

SURFACTANTS, NONIONIC COMPOSITION DAPHNID 48 LC50 -0.5767 * (Modified log Kow) + 0.3280 

SURFACTANTS, NONIONIC COMPOSITION ALGAE 96 EC50 -0.5789 * (Modified log Kow) + 0.3851 

SURFACTANTS, NONIONIC COMPOSITION FISH ChV -0.3699 * (Modified log Kow) - 0.9480 

SURFACTANTS, NONIONIC COMPOSITION DAPHNID ChV -0.4805 * (Modified log Kow) - 0.3460 

SURFACTANTS, NONIONIC COMPOSITION ALGAE ChV -0.6356 * (Modified log Kow) + 0.189 0 

 

Amphoteric Surfactants: The QSARs for amphoteric surfactants are linear. To determine the 

toxicity of an amphoteric surfactant, it is necessary to know the number of carbon atoms in the 

hydrophobic alkyl chain and the number of ethoxylate units present in the molecule. These 

QSARs are designed for chemicals with alkyl chains between C8 and C18. Amphoteric classes 

may include alkyl nitrogen ethoxylates and ethomeen surfactants. The current QSARs are: 

 
Class   Organisms Endpoint Equations    

SURFACTANTS AMPH. C8 FISH 96 LC50 10^((0.122 * NUM_ETHOXYLATES) + 1.022) 

SURFACTANTS AMPH. C8 DAPHNID 48 LC50 10^((0.122 * NUM_ETHOXYLATES) + 1.022) 

SURFACTANTS AMPH. C8 ALGAE 96 EC50 10^((0.122 * NUM_ETHOXYLATES) + 1.022) 

SURFACTANTS AMPH. C9 FISH 96 LC50 10^((0.116 * NUM_ETHOXYLATES) + 0.794) 

SURFACTANTS AMPH. C9 DAPHNID 48 LC50 10^((0.116 * NUM_ETHOXYLATES) + 0.794) 

SURFACTANTS AMPH. C9 ALGAE 96 EC50 10^((0.116 * NUM_ETHOXYLATES) + 0.794) 

SURFACTANTS AMPH. C10 FISH 96 LC50 10^((0.112 * NUM_ETHOXYLATES) + 0.553) 

SURFACTANTS AMPH. C10 DAPHNID 48 LC50 10^((0.112 * NUM_ETHOXYLATES) + 0.553) 

SURFACTANTS AMPH. C10 ALGAE 96 EC50 10^((0.112 * NUM_ETHOXYLATES) + 0.553) 

SURFACTANTS, AMPH. C14 FISH 96 LC50 10^((0.086 * NUM_ETHOXYLATES) - 0.348) 

SURFACTANTS, AMPH. C14 DAPHNID 48 LC50 10^((0.086 * NUM_ETHOXYLATES) - 0.348) 

SURFACTANTS, AMPH. C14 ALGAE 96 EC50 10^((0.086 * NUM_ETHOXYLATES) - 0.348) 

SURFACTANTS, AMPH. C15 FISH 96 LC50 10^((0.079 * NUM_ETHOXYLATES) - 0.566) 

SURFACTANTS, AMPH. C15 DAPHNID 48 LC50 10^((0.079 * NUM_ETHOXYLATES) - 0.566) 
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SURFACTANTS, AMPH. C15 ALGAE 96 EC50 10^((0.079 * NUM_ETHOXYLATES) - 0.566) 

SURFACTANTS, AMPH. C16 FISH 96 LC50 10^((0.074 * NUM_ETHOXYLATES) - 0.796) 

SURFACTANTS, AMPH. C16 DAPHNID 48 LC50 10^((0.074 * NUM_ETHOXYLATES) - 0.796) 

SURFACTANTS, AMPH. C16 ALGAE 96 EC50 10^((0.074 * NUM_ETHOXYLATES) - 0.796) 

SURFACTANTS, AMPH. C17 FISH 96 LC50 10^((0.069 * NUM_ETHOXYLATES) - 1.057) 

SURFACTANTS, AMPH. C17 DAPHNID 48 LC50 10^((0.069 * NUM_ETHOXYLATES) - 1.057) 

SURFACTANTS, AMPH. C17 ALGAE 96 EC50 10^((0.069 * NUM_ETHOXYLATES) - 1.057) 

SURFACTANTS, AMPH. C18 FISH 96 LC50 10^((0.063 * NUM_ETHOXYLATES) - 1.316) 

SURFACTANTS, AMPH. C18 DAPHNID 48 LC50 10^((0.063 * NUM_ETHOXYLATES) - 1.316) 

SURFACTANTS, AMPH. C18 ALGAE 96 EC50 10^((0.063 * NUM_ETHOXYLATES) - 1.316) 

 

Polymers 

 

Average Molecular Weight (MWn), Monomer, and Low Molecular Weight (LMW) 

Material Composition Categories: When assessing polymers that fit into category 1 above, it 

may be more relevant to find a discrete representative structure with MW of <1000 and assess 

this structure using ECOSAR or other methods of aquatic hazards estimation. Polymers that fit 

into category 2 above may require assessment of the polymer itself, but further assessment of the 

low molecular weight components of the polymer mixture may also be needed to fully 

characterize the aquatic hazard. If no data on the compound are available, then ECOSAR or 

other methods for aquatic hazard estimation can be used to assess the LMW components. Lastly, 

polymers that contain large amounts of residual monomers may require assessment of the 

monomer to fully characterize the aquatic hazards associated with the mixture. 

 

Insoluble, Non-Dispersible Polymers: Polymers that are insoluble and non-dispersible are not 

expected to be toxic unless the material is in the form of finely divided particles. Most often, the 

toxicity of these polymer particles does not depend on a specific reactive structural feature, but 

occurs from occlusion of respiratory organs such as gills. For these polymers, toxicity typically 

occurs only at high concentration; acute toxicity values are generally >100 mg/L and chronic 

toxicity values are generally >10 mg/L. This is generally considered a low concern for aquatic 

hazard. 

 

Nonionic Polymers: These polymers are generally of low concern for aquatic hazard, due to 

negligible water solubility. Two exceptions exist. The first is for nonionic polymers that have 

monomers blocked in such a way as to use the polymer as a surfactant or dispersant, which may 

cause toxicity to aquatic organisms. The second is for nonionic polymers with significant 

oligomer content (i.e., ≥25% with MW <1000; ≥10% with MW <500), which may be a concern 

on the basis of bioavailability of the LMW material. In this case, the LMW oligomers, if they are 

<1000 MW, can be assessed using ECOSAR or other methods for aquatic hazard assessment. 

 

Anionic Polymers: There are two classes of polyanionic polymers known to be toxic to aquatic 

organisms; polyaromatic sulfonic acids are moderately toxic to aquatic organisms and 

polycarboxylic acids are moderately toxic mainly to green algae. However, the high molecular 

weight of these polymers indicate that they will not be absorbed through the surface membranes 

of these organisms. Toxicity of these chemicals is the result of chelation of nutrient metals and/or 

surface activity. In most cases, the structure and distance between the anionic groups determines 

the level of toxicity. 
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Polyanionic polymers with average molecular weight (MWn) >1000 that are soluble or 

dispersible in water may pose a concern for direct or indirect toxicity. These polymers are 

further divided into two subclasses: poly(aromatic acids) and poly(aliphatic acids). 

 

 Poly(aromatic acids): These chemicals are usually poly(aromatic sulfate/carboxylate) 

structures and generally are of moderate hazard concern to aquatic organisms, with acute 

LC50/EC50 values between 1 and 100 mg/L, depending upon the exact structure of the 

polymer. Monomers associated with toxicity include carboxylated/sulfonated 

diphenolsufones, sulfonated phenols, sulfonated cresols, sulfonated diphenylsulfones, and 

sulfonated diphenylethers. Monomers usually associated with low aquatic toxicity 

concern include sulfonated naphthalene and sulfonated benzene. 

 

The toxicity of this type of polymer appears to be moderate and not affected by water 

hardness. Toxicity can be estimated by an analog approach using test data available for 

polymers of known composition. A collection of data on polymers of this type is 

available in Boethling and Nabholz (1997; Table 10.4, pp. 207-208). 

 

 Poly(aliphatic acids): This type of polymer is made up of repeating carboxylic acid, 

sulfonic acid, and/or phosphinic acid monomers. At pH 7, this polymer type generally 

exhibits low toxicity toward fish and daphnid, with L/EC50 values >100 mg/L. However, 

there may be toxicity hazard concerns for green algae; toxicity to algae is believed to 

arise from chelation of nutrients. 

 

The toxicity of this type of polymer can be assumed to be low for fish and daphnids. 

Green algae toxicity can be determined using an analog approach with test data collected 

for similar polymers of known composition. The toxicity is highly dependent on the 

structure of the polymer, with space between repeating acid units and addition of non-

chelating groups affecting toxicity. A collection of data on polymers of this type is 

available in Boethling and Nabholz (1997; Table 10.5, p. 209).  

 

Water hardness has been shown to mitigate the toxicity of poly(aliphatic acid) polymers 

to green algae. As water hardness increases, toxicity tends to decrease. This is due to the 

abundance of chelating cations that “fill” the chelation sites of the polymer, allowing 

more nutrients to remain in the water. In many cases, a mitigating factor (MF) can be 

applied to the estimated toxicity values. The appropriate MF, if any, can be discerned 

from Boethling and Nabholz (1997; Table 10.6, p. 212). 

 

Cationic Polymers: Polycationic polymers that are soluble or dispersible in water may exhibit 

toxicity to aquatic organisms related to overall charge density of the molecule. Cationic groups, 

or those that may be expected to become cationic, are generally those with primary, secondary, 

and tertiary amines and/or quaternary ammoniums; however, phosphonium and sulfonium 

cations may also fall into this category. The molecular descriptor used to predict toxicity for 

these polymers is equivalent charge density as determined from chemical structure. There are 

several factors that influence the estimate of aquatic toxicity in cationic polymers, which are 

discussed below. 
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 Cationic Atom: The most common atoms that may have net positive charge include, but 

are not limited to, nitrogen (ammonium), phosphorus (phosphonium), and sulfur 

(sulfonium), with nitrogen constituting the cationic atom in >99% of polymers. 

 

 Percent Amine Nitrogen (%A-N): The percent of amine nitrogen (or other cationic 

atom) is used in the cationic nitrogen polymer SARs for estimation of aquatic toxicity. 

Nitrogens directly substituted to an aromatic ring, nitrogens in an aromatic ring, amides, 

nitriles, nitro groups, and carbo diimides are not counted for determining %A-N.  

 

%A-N can be determined using the following equation: 

 

%A-N = [typical wt% of amine subunit in polymer] × [number of cationic nitrogens in 

subunit] × [atomic weight of N] ÷ [MW of amine subunit] 

 

For smaller polymers, where the total number of nitrogens per polymer molecule is 

known, or non-polymers that may have toxicity similar to cationic polymers, the %A-N 

can be determined as: 

 

%A-N = 100 × [number of amines in compound] × 14.01 [atomic weight of N] ÷ [MWn 

of polymer] 

 

 Polymer Backbone: In addition to the cation-producing group, polymers of this type are 

assessed according to their backbone, which can be carbon-based, silicone-based (i.e., Si-

O), or natural (chitin, starch, tannin).  

 

The SAR equations in Table A-1 express toxicity as the log of [effect level] as a function of 

%A-N. The equations are organized by species and polymer backbone. In addition, there may 

be different consideration based on the %A-N; at high %A-N, typically 3.5-4.3%, it has been 

found that the aquatic hazard no longer correlates with increasing %A-N and is essentially 

constant. At this point, the aquatic hazard is based on the geometric mean of similar polymers 

with measured data. In many cases, a MF may apply to the calculated effect levels from the 

SAR equations below. A discussion of the MF follows the section on amphoteric polymers at 

the end of this appendix. 
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Table A-1: SAR Equations for Estimating Aquatic Toxicity of Polycationic Polymers as a Function 
of the Polymer Backbone 

 Carbon-based Silicon-based Natural-based 

Fish acute* If %A-N ≤3.5; log [fish 
96-hr LC50] = 1.209 ­ 
0.462 × %A-N 
 
If %A-N >3.5; fish 96-hr 
LC50 = 0.28 mg/L 

If %A-N ≤3.5; log [fish 96-
hr LC50] = 2.203 - 0.963 × 
%A-N 
 
If %A-N >3.5; fish 96-hr 
LC50 = 1.17 mg/L 

Data indicate that acute 
toxicity toward fish will be 
similar or less than that 
for carbon-based 
backbone polymers. 
SAR analysis should 
employ the nearest 
analog method. 

Daphnid acute* If %A-N ≤3.5; log 
[daphnid 48-hr LC50] = 
2.839 - 1.194 × %A-N 
 
If %A-N >3.5; daphnid 
48-hr LC50 = 0.10 mg/L 

Data indicate that acute 
toxicity toward daphnids 
will be similar or less than 
that for carbon-based 
backbone polymers. SAR 
analysis should employ 
the nearest analog 
method. 

If %A-N ≤4.3; log 
[daphnid 48-hr LC50] = 
2.77 - 0.412 × %A-N 
 
If %A-N >4.3; daphnid 
48-hr LC50 = 11 mg/L 

Green algal acute* If %A-N ≤3.5; log [green 
algae 96-hr EC50] = 
1.569 - 0.97 × %A-N 
 
If %A-N >3.5; green 
algae 96-hr EC50 = 
0.040 mg/L 

Data indicate that acute 
toxicity toward green 
algae will be similar or 
less than that for carbon-
based backbone 
polymers. SAR analysis 
should employ the 
nearest analog method. 

Data indicate that acute 
toxicity toward green 
algae will be less than 
that for carbon-based 
backbone polymers. 
SAR analysis should 
employ the nearest 
analog method. 

Fish chronic* ACR of 18 ACR of 18 ACR of 18 

Daphnid chronic* ACR of 14 ACR of 14 ACR of 14 

Green algal chronic* If %A-N ≤3.5; log [green 
algae ChV] = 1.057 - 1 
× %A-N 
 
If %A-N >3.5; green 
algae ChV = 0.020 mg/L 

Use the SAR for 
methodology above for 
carbon-based backbone 
polymers 

Data indicate that 
chronic toxicity toward 
green algae will be less 
than that for carbon-
based backbone 
polymers. SAR analysis 
should employ the 
nearest analog method. 

*Please note conditions for application of MFs provided earlier in this appendix. 
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Amphoteric Polymers: These polymers contain both positive and negative charges in the same 

molecule. The toxicity of these polymers is dependent on cation-to-anion ratio (CAR = ratio of 

cations to anions in the molecule) and the overall cationic charge density. Determination of the 

CAR can be done by comparing the sum of the mole ratios of all cationic monomers to the sum 

of the mole ratios of all anionic monomers. As with cationic polymers, toxicity increases with 

cationic charge density. In addition, when charge density is constant, toxicity tends to increase 

with increasing CAR. Estimating toxicity is a multistep process for this type of structure. First 

the %A-N and base toxicity are calculated using similar methodology discussed above. Next the 

CAR is determined. The CAR is used to calculate the toxicity reduction factor (TRF), which is 

used to adjust the base to toxicity to produce the final toxicity effect level. No SARs or TRFs 

currently exist for fish and daphnid chronic effects; however, the effect level can be estimated 

from the corresponding acute effect level using the ACR listed above in the table for cationic 

polymer. In this case, the TRF should be applied to the acute effect level before using the ACR. 

 

Predicting Amphoteric Polymer Toxicity 

 

Step 1 Calculate base toxicity using appropriate cationic polymer methodology (vide supra) 

 

Step 2 Determine the CAR; this can be done using the following method: 

 

Sum of mole ratio of cationic monomers ÷ sum of mole ratio of anionic monomers 

 

Step 3 Calculate the TRF using the appropriate equation for the species of interest. 

 

Fish Acute TRF (96-hour LC50): Log [TRF] = 1.411 - 0.257 × CAR  

 

Daphnid Acute TRF (48-hour LC50): Log [TRF] = 2.705 - 0.445 × CAR  

 

Green Algae Acute TRF (96-hour EC50): Log [TRF] = 1.544 - 0.049 × CAR 

 

Green Algae Chronic TRF (96-hour ChV): Log [TRF] = 1.444 - 0.049 × CAR 

 

Step 4 Multiply the base toxicity by the TRF to give the final predicted toxicity effect level. 

 

Note: In cases where chronic endpoints are estimated using an ACR, apply the ACR 

after the TRF is applied to the acute endpoint; no further TRF is applied to the chronic 

endpoint. 

 

As with the effect levels predicted for cationic polymer, these value may be adjusted using a MF 

discussed below. 

 

Application of a MF for cationic and amphoteric polymers organic content in surface 

waters may affect the measured toxicity of cationic and/or amphoteric polymers to aquatic 

organisms. 
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It has been shown that dissolved organic content (DOC), particularly humic and other acidic 

chemicals, reduces the toxicity of cationic and amphoteric polymers to the aquatic environment. 

Standard aquatic hazard testing media (OECD) usually has a low total organic content (TOC), 

which may result in artificially high toxicity of polycationic and amphoteric polymers in those 

media. Surface waters tend to have higher TOC and DOC than what is used in standard (OECD) 

aquatic toxicity testing media. It has been shown that DOC, particularly humic and other acidic 

compounds, reduces the toxicity of cationic and amphoteric polymers to the aquatic 

environment. Due to this, the aquatic hazard may be overestimated in laboratory testing of this 

type of polymer, which, in large part is what the SAR methods are based on. In order to correct 

for TOC in actual surface water versus that in laboratory testing media, a MF can be calculated, 

based on testing done with standard media compared to testing done with media containing a 

standard 10 mg/L TOC as humic acid, to apply to the aquatic effect levels estimated using SAR 

equations. The MF is dependent on the overall charge density, calculated as %A-N, for the 

polymer. Several conditions and/or structural features have been shown to affect the mitigation 

factor, which are discussed below. 

 
 MF for polymers that are formed by the random reaction of monomers and have 

minimal oligomer content (i.e., <25% with MW <1000; <10% with MW <500): 
 

For charge density where %A-N is ≥3.5: MF = 110 
 

For charge density where %A-N is 3.5 - 0.7: Log [MF] = 0.858 + 0.265 × %A-N 

 

For charge density where %A-N is <0.7: Do not use a MF for these cases; MFs have not 

been established, but are expected to be <7 

 

 Conditions affecting the MF value: 

 

It has been shown that as the LMW component composition increases, the MF 

decreases. For chemicals with high LMW component compositions, do not apply a MF. 

 

The MF has been shown to be decreased by the addition of ethoxy groups, or ethoxy 

ether groups, substituted directly on the nitrogen (i.e., N(CH2CH2O)n), with the MF 

being decreased for each additional group of this type bonded to the nitrogen. 
 

If a single ethoxy group is attached, the MF is multiplied by 0.67  

If two ethoxy groups are attached, the MF is multiplied by 0.33  

If three ethoxy groups are attached, the MF is essentially 0 

Cationic Dyes 

 

Cationic dyes may exhibit toxicity to aquatic organisms in a similar manner to cationic polymers. 

As with cationic polymers, during acute exposure, the toxicity of these dyes is believed to be 
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mostly the result of their activity on the surface membrane, while chronic exposure also results in 

systemic toxicity. Dyes with delocalized cationic charges may be more toxic, followed by dyes 

with four localized charges, then three localized charges, etc. Most commercial dyes contain 

impurities that may, in part, be responsible for some of the toxic effects seen in these dyes. Acid 

dyes are moderately toxic only to green algae, which results more from shading of the algae by 

the dye rather than from direct toxic effects. Data on which to validate this assumption are 

lacking in most PMN submissions. 


