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Global methane inventories

Globally averaged CH4 mole fractions throughﬁﬂpiem.hﬂr_zm.?
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1. Is this a real growth?
2. CH, +-OH - -CH; + H,0
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Edited by Sam Carana for Arctic-news blogspot.com Year Ed Dlugokencky, NOAA RIGMDA

Q1: Our approach indicates that significant OH-related uncertainties in the CH,
budget remain, and we find that it is not possible to implicate, with a high degree
of confidence, rapid global CH, emissions changes as the primary driver of recent

trends when our inferred OH trends and these uncertainties are considered.

Rigby et al., 2017 (PNAS)

3. If the growth is real, what is causing it?
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Schwietzke et al., 2016 (Nature)

Microbial sources (wetlands, ruminants, rice, landfill/waste, termites)
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Schwietzke et al., 2016 (Nature)

......the recent temporal increases
in microbial emissions have been
substantially larger (than from
fossil fuel)

Schaefer et al., 2016 (Science)

.....POst-2006 source increases are
predominantly biogenic, outside
the Arctic, and arguably more
consistent with agriculture than
wetlands
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How reliable are the isotope data?

Turner et al., 2017 (PNAS)
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....a large overlap in isotopic signatures of
fossil fuel and non-fossil
methane........analysis presented here
demonstrates that an increase in fossil-
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fuel methane sources could be a major

® Stolper et al. microbial

© Stolper et al. thermogenic

contributor to the renewed growth in
atmospheric methane since 2007

Wang et al., 2016 (Science)
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We have to consider how these predictions
agree with global livestock population trends

Production of Cattle in World + (Total)
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% growth since 2006 (as million tons oil eq.)
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Wecht et al., 2014

US methane accounting controversy

BRENAS

40 to 90% higher

Table 1. U.S. Fluxes of Methane in 2004 [Tg a than USEPA’s
Source Type EPA [2013]° EDGAR v4.2° Miller et al. | es;:mates k9
Total 472+19 370+ 14
Anthropogenic 28.3 (24.6, 32.3) 25.8 445+19 30.1+1.3
Livestock 8.8 (7.7, 10.4) 8.5 16.9+6.7 122+1.3
Natural Gas and Oil 9.0(7.2,13.4) 6.3 7.2+0.6
Landfills 5.4 (2.5, 7.9) 5.3 58+0.3
Coal Mining 2.7 (2.3, 3.2) 3.9 2.4+0.3

CrossMark
& click for updates

® rex

Livestock methane emissions in the United States

The recent study by Miller et al. (1) provides
a comprehensive, quantitative analysis of an-
thropogenic methane sources in the United
States using atmospheric methane observa-
tions, spatial datasets, and a high-resolution
atmospheric transport model. The authors
conclude that “. . .emissions due to rumi-

beef and dairy cattle requirements and
ranged from 3.8 (calves < 500 Ibs live
weight), to 9-10 (cattle on feed or other
steers and heifers > 500 lbs), 11 (beef
cows), and 22 kg/d (dairy cows). Methane
production rates were estimated at 8-13
(cattle on feed) or 20 ¢/ke (all other cate-

be unsubstantiated by the above “bottom-
up” approach. There is a need for a detailed
inventory of manure systems for all farm
animal species and categories, which will
help to more accurately estimate greenhouse
gas (and ammonia) emissions from animal
manure in the United States.
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US cattle population trends
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Objectives

 There is a need for spatially-accurate emission
inventories for non-CO, GHG emissions

e Using a bottom-up approach, estimate livestock
(cattle, swine, and poultry) methane emissions in
the contiguous United States

 Develop a spatially-explicit, gridded (0.1° x 0.1°)
methane emissions inventory and maps for the
livestock sector

e Compare this bottom-up analysis with other
existing gridded inventories (Maasakkers et al.,
2016 and EDGAR)
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Inventory development
process: enteric

Methane emissions from enteric fermentation (Gg/yr)

Retrieval of cattle inventory

data by state and county = Feed dry matter intake (DMI; kg/head/d) x methane
¢ emission factor (g/kg DMI) x 365 (d/yr) x county
animal population by animal category (head)

Categorization by animal
class

Cattle: database includes estimates for 3,063 counties
Swine and poultry: databases included 469 and 728
counties, respectively

Generation of feed intake and diet
composition data for each animal

category
GLOBAL NETWORK individual animal database
Generation of emission factors based (>5,200 individual dairy cow data)
on feed intake and diet composition
for each animal category Less complex models requiring only DMI, or
* DMI plus NDF had predictive ability similar to
more complex models

Estimation of county-level enteric
methane emission

Niu et al., in preparation
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The Feed and Nutrition Network

Global Research Alliance |nternationa|
on Agricultural GHG . .
collaboration in database

- development: THE

GLOBAL NETWORK

PROJECT
1 Research Networks,
including FNN

Livestock Research Group
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Dairy database
(n =5,249)

Europe; n=3,015

from 82 studies

South America; n = 108
from 3 studies

North America; n=1,932 Australia & New Zealand;
from 65 studies n =194 from 5 studies
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Enteric CH, Production Models

Model Development Model Performance
Level Model Predictor RMSPE, %
1 GEI Level GEl 15.8
2 DMI Level DMI 15.6
3 DMI & NDF Level DMI, NDF 14.5
A NN 2. EE | awval NNl FE 1R Q

Conclusion: simpler models had predictive
ability close to complex models

O LIVl LLTVUI L_\IVI 10.1

9 Performance ECM, MP 17.7
10 Animal Level DMI, EE, NDF, MF, BW 14.5
11 Animal without DMI Level  EE, NDF, MP, ECM, BW 16.3
- IPCC, 2006 GEl 16.1

IPCC, 1997 GEl 16.6

Niu et al., in preparation
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Dry matter intake estimation

DMI) or Net Energy of Maintenance (NEy,) intakes for various categories of gate

Cattle category® DMI (kg/head/d) or NE,, intake (Mcal/head/d) equations® Source
Beef cows DMI = SBW®” x (0.0194 + 0.0545 x NE,) NRC*?
Dairy cows

Dry cows DMI = 0.0968 x BW®7® NRC*

Lactating cows* DMI =0.372 x FCM + 0.0968 x BW%7> NRC*
Bulls DMI = 0.0968 x BW?" NRC*
Beef replacement heifers NE,, intake = BW®7 x (0.2435 x NE,, - 0.0466 x NE,,> - 0.1128) + NE,, NRC?
Dairy replacement heifers® DMI = BW®” x (0.2435 x NEr, - 0.0466 x NE* - 0.1128) + NE, NRC*
Cattle on feed DMI = [BW®7® x (0.2453 x NEy — 0.0466 x NEyn? — 0.0869)] + NE NRC®
Heifer and steers (>500 Ibs or 227 kg live weight)q NE,, intake = BW®”® x (0.2435 x NE,~0.0466 x NE,*-0.1128) NRC?
Calves (<500 Ibs or 227 kg live weight) DMI = [BW®"® x (0.2453 x NE, — 0.0466 x NE,* —0.1128)] + NE,, NRC®
“Based on NASS®,
SBW, shrunk body weight (0.96 x full BW), kg; N, net energy of maintenance concentration in the diet, Mcal/kg dry mattef; BW, body weight,

kg; FCM (4% fat-corrected milk), kg/d = (0.4 x milk production, kg/d) + [15 x (milk fat, % + 100) x milk production, kg/d].

‘Stage of lactation was omitted from the DMI equation. Average daily milk yield and milk fat content specific to each state were used to calculate
DMI for that state®.

INo adjustments were made to the DMI equation, including for the last trimester of pregnancy.

*Heifer and steers that are not replacement heifers or cattle on feed.
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Table 1. Cattle categories, inventories, dry matter intake (DMI), and methane emission factors used to estimate county-level enteric emissions
for the continental United States

2012 cattle Live Source for DMI NEm Predicted DMI, Methane Methane
inventory, x weight, or NEm intake concentratior, kg/d (lower and emission yield, emission factor
Cattle category® 1,000 head® kg* equations? Mcal/kg® upper bounds)?  g/kg DMI (lower g/head/d (lower|
and upper and upper
bounds)’ bounds)?
Beef cows (1) 28,860 613 NRC1&12 1.09 9.4(7.5,11.3) 22 (19.5, 24.5) 207 (147, 277)
Dairy cows (2) (9,262)
Dry cows 1,762 670 NRC* N/A 12.7 (10.2, 22 (19.5, 24.5) 280 (199, 375)
15.3)
Lactating cows" 7,500 670 NRC? N/A 22.9(18.3, 19 (15.2, 22.8) 436 (278, 628)
27.5)
Bulls (3) 2,125 920 NRC® N/A 16.2 (12.9, 22 (19.5, 24.5) 356 (252, 476)
19.4)
Beef replacement 5,636 406 NRC* 1.12 8.2 (6.6, 9.8) 22 (19.5, 24.5) 180 (128, 241)
heifers (4)
Dairy replacement 4,785 409 NRC% 1.19 8.5(6.8,10.2) 19 (15.2, 22.8) 161 (103, 232)
heifers (5)
Cattle on feed (6) 14,377 441 NRC? 2.05 10.3 (8.3, 12.4) 10 (7.5, 12.5) 103 (62, 155)
Heifer and steers (>500 12,084 325 NRC* 1.41 7.5(6.0,9.0) 22 (19.5, 24.5) 165 (117, 220)
Ibs or 227 kg live
weight)' (7)
Calves (<500 lbs or 227 14,209 123 NRC? 1.41 3.7(2.9,4.4) 19 (15.2,22.8) 70 (45, 101)

kg live weight) (8)

2Based on NASS*,

PAnimal inventories from the 2012 Census of ;ﬁ«grlculture14 total cattle =91, 338 162; dr\;r COWS = 15% of all dairy cows.

‘Reference: categories 1, 3, 4, 5,
9For DMI equations, see Table S.
“Dietary concentration of Net E

Anele et al.V’,

fReference: for categories 1 and 2 (dry cows), from Herd et al
3,4, and 7, from Herd et al.??; and for category 6, based on?

rata

!

eatpgory 6, from Anele et al.'’.

&4%, Lower and upper bounds were based on + 1 SD from the original publications

23-25.

y 5, from Dairy NRC??; category 6, from
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Inventory development process:
manure emissions

e Manure emission estimates were calculated using published US EPA
protocols and factors

* Methane emission from manure (kg/yr) = (Animal population x VSE x B )
x [ (WMS,; x MCF,) + ..... + (WMS, x MCF, )] x (Methane density)

* National Agricultural Statistic Services (NASS) data was utilized to provide
animal populations
— Cattle values were estimated for every county in the 48 contiguous states of
the United States

— Swine and poultry estimates were conducted on a county basis for states with
the highest populations of each species and on a state-level for less populated
states

. | e emissions were taken from
USEPA: -18% (lower) and +20% (upper)
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Gridded inventory maps

 County-level total enteric and total manure methane values were
allocated based upon the relative percentage of feed sources
(based on USDA-NASS CropScape data) within each county

e All emission rasters were projected to geographic coordinates
(latitude/longitude, WGS84 datum) and resampled to 0.1 decimal
degree cells

e Gridded emissions inventories were produced for:

— | Cattle enteric

— | Cattle manure management
— | Total cattle emissions

— | Total manure emissions

— | Total combined emissions

— The gridded inventory can be accessed at: Penn State Gridded
Livestock Methane Inventory.



https://psu.box.com/s/xjiye6mdya3qp3mxht2d6lnrnij4ioyw
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Figure 1. Gridded (0.1° x 0.1°) county-level livestock methane emissions for the contiguous
United States: Enteric fermentation, cattle (panel A); Manure management, cattle (panel B),
Manure management, cattle, swine, and poultry (panel C), and Cattle enteric and livestock
(cattle, swine, and poultry) manure management (panel D, which is the sum of A and C).
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Total methane emissions

Table 2. Comparison of methane emissions from the livestock sector across alternate bottom-up emissions inventories

Year Average annual emissions from the continental United States (Gg/year)

Emissions inventory

Enteric fermentation Manure management Total
EDGAR® 2010 6,580° 2,148° 8,728
Maasakkers et al.*? 2012 6,433" 2,534¢ 8,967
USEPA! 2012 6,433 2,611° 9,044
This study 2012 6,201 (4,197, 8,582)"¢ 2,715 (2,226, 3,258)1 8,916 (6,423, 11,840)¢
*All species.
bCattle only.

‘Cattle, swine, and poultry.
dLower and upper bounds in parentheses.

» Comparable total methane emissions between our
analysis and USEPA or EDGAR
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» However, the spatial distribution of emissions differed

ficantly from that of EDGAR (and USEPA)
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Gridded differences in emissions between
bottom-up approaches

Current analysis vs. USEPA .. Current analysis vs. EDGAR
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Lyon et al., 2015 vs. this analysis: 25 counties in
the Barnett Shale region of Texas
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Conclusions

Atmospheric methane concentrations are increasing since 2006
— Reasons are unknown

— Cannot be attributed to a specific source based on isotopic
data

For inventory purposes, DMI| and methane yield are sufficient to
estimate cattle enteric methane emission factors

Manure emission factors are more complex (very diverse
manure systems!)

Good agreement in total emission estimates among bottom-up
approaches (this analysis, USEPA, EDGAR)

— Large discrepancies in spatial distribution of emissions
Conclusions from top-down inventories that use inaccurate

spatial distribution emission data from gridded bottom-up
inventories may be misleading
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