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Motivations & Goals

* Long term & high resolution: effectiveness of control strategy
* Bottom-up estimates: uncertainties & long time to compile

* Top-down estimates: satellite & CTM



Recent NO, trend studies for China
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* Comparison of top-down (EKF & EnKF) and bottom up estimates
(Ding et al., 2017)
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Motivations & Goals

* Long term & high resolution: effectiveness of control strategy
* Bottom-up estimates: uncertainties & long time to compile
* Top-down estimates: satellite & CTM

Kalman filter: large number of nodes and memory
4D-Var: time consuming
Mass balance: nonlinear chemistry & smearing from transport

Goal 1: Facilitate long-term inversion of NO, & SO, emissions.

* Chemical interactions
Goal 2: Assimilate multispecies observations and optimization

 Correlated emissions
Goal 3: Sector-based inversion



Goal 1: Hybrid inversion

Method
Evaluation using pseudo observation test
Top-down NO, emissions for China

Global top-down NO, emissions



Methods

* Model: GEOS-Chem chemical transport model and its adjoint
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Meteorological input from Goddard Earth Observing System (GEOS)

Simulate chemical reactions, transport of species, convection and deposition
Resolution: 0.5 latitude x 0.667 longitude, 47 vertical layers (from surface to P =
0.01hPa)

Domain:0°N ~ 50°N, 70°E ~ 150°E

Adjoint model adjust emissions at each model grid cell based on observations and
bottom-up emissions

shttg:“www.geos-chem.orc.yz



Methods

 Observations:

OMI NO,
- NASA standard L2 product for China
- Compare standard product with DOMINO
retrievals in global inversion



Methods

* Inversion approaches:

4D-Var:
- adjust emissions independently in each grid cell
- takes into account transport and chemical reactions
- computationally expansive

Mass balance:
- scale emissions by the ratio of observed & simulated column
- computationally cheap
- limited by nonlinear chemistry and smearing from transport

Hybrid 4D-Var / Mass balance:
- blend of accuracy and efficiency



Hybrid inversion for NO,

Hybrid method:
Base year (2010): 4D-Var
Other years (2005-2012): use 2010 4D-Var posterior for mass balance.



Hybrid inversion for NO,

Hybrid method:
Base year (2010): 4D-Var
Other years (2005-2012): use 2010 4D-Var posterior for mass balance.

Scaled emissions in pseudo observation test
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Hybrid inversion for NO, emission in China




Comparison of hybrid posterior
Seasonality of NO, emissions in China
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Larger seasonality and year-to-year variation in top-down emissions

Top-down estimates are more consistent with bottom-up emissions
in the summer. (Qu et al., JGR, 2017)



Comparison of hybrid posterior

Trend of NO, emissions in China

11
ol f
5 9t |
=z
0o
«w 8
c
'9 A LR N N I
g 7 " % wh ® T
- . g "Sagyguunnt
Ll gpunt® L
6
5 ! L ! I L !
2005 2006 2007 2008 2009 2010 2011 2012
Initial MB 4D-Var, 2010 Hybrid Mijling et al., 2013 East China ======== Hybrid East China

Bottom-up (anthropogenic emission from MEIC [Liu et al., 2016] plus GEOS-Chem prior natural emissions)
Bottom-up (anthropogenic emission from Xia et al. [2016] plus GEOS-Chem prior natural emissions)

- Top-down estimate has smaller emissions and emission
growth rate over China. (Qu et al, IGR, 2017}



Hybrid inversion for global NO,




Standard
product

DOMINO

T
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- Decreased NO, column density in East US, Europe and Japan




Standard
product

DOMINO
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- Decreased NO, column density in East US, Europe and Japan

- Increased NO, column density in Asia, Australia, Africa and South America
r




Standard
product

DOMINO

1 [%/month]
- NO, column mainly increases in Asia;




Standard
product

DOMINO

0.33 1 [%/month]
- NO, column mainly increases in Asia; decrease in US, Europe and Japan




Standard
product

DOMINO

0.33 1 [%/month]
- NO, column mainly increases in Asia; decrease in US, Europe and Japan
- Different trend in Australia, south India and Africa




Globa rend from OMI, 2010-2015, 95%CI

| NO, t

L“‘-—;,;' i =r “f;:t_?* . 1 : e
" wdm oy, - 5 =
Standard
product
DOMINO

-{ -0.33

- NO, column decrease in East China;

1 [%/month]




Global NO, trend from OMI, 2010-2015, 95%§3I
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NO, column decrease in East China; increase in west US, Japan




Global NO, trend from OMI, 2010-2015, 95%§3I
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- NO, column decrease in East China; increase in west US, Japan
- Larger increasing trend from DOMINO retrieval

- Trends: robust versus retrieval sgeciﬁc
r



emissions, SP, 95%CI

ICompare w/ column trend:

-Similar in US, Europe, China

1 [%/month



Goal 2: Assimilate & optimize multispecies

Method

Evaluation using pseudo observation test

4D-Var & hybrid inversion

Comparison with in-situ measurements



Model & Observations

* Model: GEOS-Chem adjoint, nested China, 0.5° x 0.667°.
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* Observations:
OMI NO, & SO,, NASA standard L2 product



Pseudo observation test: multispecies optimization
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- Better performance of joint 4D-Var (by 7.1%) and mass balance (by 5.6%) than
single species inversion



Pseudo observation test: multispecies optimization
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- Better performance of joint 4D-Var (by 7.1%) and mass balance (by 5.6%) than
single species inversion



Pseudo observation test: multispecies optimization

100 1 ] 1 I 1 ] 1 1

1 VarJ: 4D-Var jointly
Observe single species, { VarS: Sum of two individual

optimize both species 4D-Var o
MBJ: Mass balance jointly

1 MBS: Sum of two individual
] mass balance
OptS: Optimize SO, emissions
1 OptN: Optimize NO, emissions
] ObssS: Observe SO, column
ObsN: Observe NO, column
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- Better performance of joint 4D-Var (by 7.1%) and mass balance (by 5.6%) than
single species inversion
- Largest decrease of NMSE if observe and optimize both species at the same time



Impact of multispecies observations on posterior emissions

Single species observations
Step 1: 4D-Var[ —
Jan, 2010 T~

Posterior—prior SO,

Posterior—prior NO, %

[T I ]
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- Differences occur mostly in low emission regions.

- Changes of SO, emissions (70%) have little effect on NO, concentration (< 5%), so
incorporating NO, observation does not change SO, emissions much.

- In remote region, increase of NO, leads to increase of OH, and decrease of SO, column.
s




Top-down SO, emissions
Step 2: MB for trend
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- Trend of emissions and column densities are different; meteorology
lead to 7% changes of SO, SCD at national level



Top-down SO, emissions
Step 2: MB for trend
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- Trend of emissions and column densities are different; meteorology

lead to 7% changes of SO, SCD at national level

- Top-down emissions is lower than bottom-uE estimate by ~100%
r



Evaluation of SO, emissions using in-situ measurements

China, Jan, 2010
Beijing

== Prior
== Posterior
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- GEOS-Chem timeseries is relatively consistent with observations



Evaluation of SO, emissions using in-situ measurements
China, Jan, 2010

Beijing Tianjin Xianghe
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- GEOS-Chem timeseries is relatively consistent with observations

- GCSO, is lower in Tianjin & Xianghe, but similar with in-situ measurements in Beijing
O OBOEBOBRBRERERERERBREY r



Evaluation of SO, emissions using observations

China, Jan, 2010
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- GEOS-Chem SO, column bias high compared to OMI observation




Evaluation of SO, emissions using in-situ measurements

India, Jan, 2010
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- SO, concentration in Delhi, Karnataka, Maharashtra and Tamil Nadu
has been decreased and match better with in-situ measurements



Evaluation of NO, emissions using in-situ measurements

India, Jan, 2010
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- Lower NO, concentration from GEOS-Chem probably due to coarse

grid resolution and few measurements
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Goal 3: Sector-based inversion




Sector-based inversion
Motivation: Emissions are correlated through the amount of fuel

combustions (Emission = species emission factor x fuel)

Observe NO, and SO, column density.

Optimize 7 sector-specific grid-cell emission scaling factors: industry,
energy, residential, aviation, transportation, ship and agriculture.
Apply scaling factors to NO,, SO,, CO, NH;, BC, OC and NMVOC



Sector-based inversion
Motivation: Emissions are correlated through the amount of fuel

combustions (Emission = species emission factor x fuel)

Observe NO, and SO, column density.

Optimize 7 sector-specific grid-cell emission scaling factors: industry,
energy, residential, aviation, transportation, ship and agriculture.
Apply scaling factors to NO,, SO,, CO, NH;, BC, OC and NMVOC.

* No prior emissions constraints.
Changes of NO, emissions in 4D-Var inversion (Jan, 2010, posterior - prior)

[ T _
-lel2 - -3.3ell1 3.3ell ~_1el2 molec/cm?/s
- Sector-based and species-based inversions have similar decrease of model

error (~70%), but converge to different solutions.
- Next step: Will evaluate through in-situ measurements.




Su mmar ry

e Develop a hybrid inversion that is more accurate than basic
mass balance and less time-consuming than 4D-Var

e Different trend between column density and emissions

* Assimilating SO, observations affect NO, posterior emissions

* Smaller posterior NO, (1-18%) and SO, (¥100%) emissions than
bottom-up estimates in China

* Simulated NO, concentrations are generally smaller than in-situ
measurements; SO, simulation could be improved by the
inversion depending on the location/bottom-up emissions

* Build up sector-based formulation to address the correlation
among species

=Quetal, Monthly top-down NO, emissions for China (2005-2012):
a hybrid inversion method and trend analysis, JGR, 2017.



Methods

Hybrid 4D-Var / Mass balance

Base year (2010): 4D-Var
Other years (2005-2012): use 2010 4D-Var posterior for mass balance.

Motivation:
- Use 4D-Var to correct impact from transport

- Model / MB is sensitive to the prior emissions — more accurate

than MB
- Computationally cheaper than 4D-Var

Inverse Modeling
Atmospheric “forward” model gives C = kE

Monitoring site
| D measures

! lﬁl concentration C

(fuel burned) X (emission factor) Inverse model £ = k7C
> a priori “bottom-up” estimate = “top-down” estimate

E. +o0
E, + o, e = Ve



SO, [ppbv]
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Evaluation of SO, emissions with observations

SO, at Beijing Miyun
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Generally lower simulated SO2 concentration than in-situ
measurements

Higher simulated SO2 column compared to OMI observations
Less SO2 in-situ measurements than satellite observations



Evaluation of NO, emissions using in-situ NO, measurements

Beijing
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- GCsimulation has lower NO, concentration and worse correlation
with observations, probably due to coarse grid resolution



Evaluation of NO, emissions using observations

China, Jan, 2010
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- Increased NO2 column due to spatially correlated error of emissions
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