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PREFACE

This report documents the findings and recommendations
of a Rand Corporation study on the health effects of air
pollution. The study was funded by the U.S. Environmental Protection
Agency under Cooperative Agreement No. CR811040-01-0. It represents the
first phase of a three-phase project evaluating the relative abilities
of several analytical approaches to measure pollution effects. The data
analyzed were collected in Seattle and Dayton during the Health
Insurance Experiment (HIE) that Rand conducted for the Department of
Health and Human Services. The second phase will extend the analysis to
HIE data from other cities and to other data sets. These results will
then be used in the third phase to measure the health effects of air
pollution.

Those effects are important for formulating federal programs for
pollution control. Comparing the benefits with the costs of control
will enable federal lawmakers and regulators to decide on a cost-
effective level of control. Since the study considers several
pollutants, Phase II output may be helpful to regulators who must decide
where to concentrate scarce pollution control resources. Our

methodology and findings should also be of interest to several other

groups:

All parties interested in air quality, especially in decisions
regarding the Clean Air Act and regulations issued under its
authority.

. Epidemiologists interested in the health effects of ozone and
other pollutants.

Statisticians and social scientists interested in the
application of statistical procedures to panel data, especially

procedures designed to draw precise inferences from limited

data.



SUMMARY

BACKGROUND
It is widely known that air pollution adversely affects health.

1

The "killer fogs" of London amply demonstrated that very high
concentrations of air pollutants can kill people. Controlled laboratory
studies have also identified adverse short-term effects of high levels
of pollutants on lung function and other physiological indicators. An
analysis done in Southern California found that people living in a
highly polluted area had poorer health than those in a cleaner location.
However, studies of pollution at the more moderate levels encountered by
almost all Americans have been much less conclusive. Some have not been
able to detect significant health effects; others have yiclded mixed
results--relationships in the expected direction in some cases,
associations between increasing pollution and improving health in
.others.

The question, then, is why research into air pollution has not been
more successful at measuring health effects. One possible reason is
that many of the studies done to date have had one or more
methodological shortcomings. Some, for instance, have confounded the
effects of air pollution with those of risk factors such as smoking.
Others have not accounted for the possibility that people with
respiratory problems might move to places with cleaner air, leaving a
healthier population behind in the polluted area. .Generally, data have
not been available for analyzing day-to-day health responses of general
populations to pollution episodes. Finally, there has been some
difficulty in deciding what diseases to look for as evidence of health
effects.

Whatever its cause, the lack of reliable assessments of the health
effects of air pollution has hampered regulatory agencies interested in
comparing the value of health improvements obtained through good air

quality with the costs of controlling pollution.
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OBJECTIVES AND APPROACH

This study has two objectives: to examine the health effects of
air pollution on a general population in mederately polliuted cities. and
to apply a battery of disparate analytical approaches to an especially
attractive set of data collected with the same data methods in two
widely separated cities, Seattle and Dayton.

The data we analyzed were collected during The Rand Corporation’s
Health Insurance Experiment (HIE). This data set is attractive for our

present purpose for several reasons:

. It is a sample of the general population, not of some group
selected for a particular characteristic, e.g., susceptibility
to air pollution.

. Data were collected in cities with pollution levels typical of
U.S. cities in general.

. Several general health measures, such as use of medical
services and time lost to illness, were recorded daily for
several thousand people over three to five years.

. These were supplemented by other general measures, such as
overall health status and lung function, in addition to data on
specific diseases and chronic health problems.

. The data included information on smoking and other risk
factors, and other potential confounding variables and risk

factors.

We employed a simple cross-sectional analysis and three panel
analyses. The cross-sectional analysis estimated pollution effects by
pairing all individual yearly responses (e.g., time lost to illness over
the course of a year) with the corresponding individual yearly pollution
exposures. This analysis treated all responses the same; vearly
responses from the same person and from different people were all
regressed together. The panel analyses, on the other hand, tracked
responses from the same individual or population over time. These

analyses were as follows:
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. An analysis that used the aggregated exposure and response of

the whole population on a daily basis. Comparing the whole
fixed populaticn with itself from one day to the next
eliminated any bias resulting from geographical sorting on t
part of sickly people.

® An analysis that took advantage of within-city data on
variations in pollution by using the day-to-day health
responses of individuals. This approach employed recently
developed statistical methods designed to draw more precise
consistent estimates. It eliminated geographical sorting bi
by estimating responses for each person separately; thus, ea
person acted as his own control. The individual responses w
then analyzed together.

. An analysis that estimated the change in individuals' health
over the entire course of the HIE as a function of their
cumulative exposure to pollution over that period. Using
change in individual health status as the dependent variable

should reduce the sorting bias.

RESULTS

We found the individual day-to-day approach te be the most
promising. It vielded negative associations of air pollution with
health for all pollutants examined except for ozone. Half of those
associations were significant at the 1 percent level. Because this
approach, unlike the others, was applied only in Seattle and because
is quite expensive, we recommend that it be tested further.

The aggregated day-to-day method yielded a number of
counterintuitive results. We do not have a good explanation for the
"misbehavior" of this approach. The annual cross-sectional analvsis
the analysis of changes in health status over the course of the study
vielded generally insignificant resulis for all pollutants except ozo
We recommend further application of these methods also.

While the effects measured for the pollutants generally varied w
the analytical method, ozone was found to have consistently positive

associations with health, most of them significant at the 10 percent
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level or better. The most probable explanation is that at the low
levels of ozone encountered in these two sites, ozone is correlated with
something else that produces short-run beneficial effects, such as

good weather.

LIMITATIONS

The most important limitation of the HIE was its exclusion of the
elderly, who are often regarded as being among the most susceptible to
air pollution. That exclusion also precluded an examination of the
effects of air pollution on mortality. Finally, the five-year run of

the HIE confined the analysis to short- and medium-term effects.

CONCLUSION

We have identified a promising method for measuring the healch
effects of air pollution. However, before accepting this method or
discarding others, it is important that they all be tested further to
determine whether the results we have derived so far are more generally
applicable. We believe that the most efficient way to complete the

testing would be through the further analysis of panel data.
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I. INTRODUCTION

BACKGROUND

It has long been accepted that air pollution degrades the health of
persons exposed to it. Epidemiological studies have demonstrated
quantitative relationships between episodes of air pollution and acute,
short-term health losses. In laboratory studies, pulmonary function has
responded negatively in humans occupying closed chambers into which air
pollutants have been pumped. As for chronic, long-term effects, the
Chronic Obstructive Respiratory Disease Study conducted by the
University of California, Los Angeles, has shown larger annual
decrements in lung function in persons living in Glendora, California,
than in less polluted Lancaster, California (Detels et al.,
forthcoming). Air pollution caused a number of deaths in the infamous
"killer fogs'" of London and Donora, Pennsylvania. It is suspected that
air pollution has caused other deaths more insidiously through chronic
exposure (see, e.g., Lave and Seskin, 1977).

However, many observational studies of the effects of air pollution
have yielded results that have been suggestive at best. They have shown
that a given pollutant may affect a susceptible person under certain
circumstances while having no effects, or even counterintuitive effects,
for others. For example, Portney and Mullahy (1983) arrived at mixed
results that were quite sensitive to the analytical approach emploved.

There may be several reasons why these studies have not been able
consistently to measure the adverse effects of air pollution. First,
the measures used may not have been sensitive enough to detect an
effect, or mav have been applied where no effect exists. The effect may
be so small that it may be obscured by random variation, or it may
require carefully controlled conditions if it is to be measured. If
only sensitive persons are affected and then only marginally, sample
populations examined to date may have been too small. For instance, if
only one percent of sensitives respond adversely, a population would
have to contain several hundred sensitives to allow detection of the

effect.



The second possible reason for failure to detect an effect is the
difficulty of defining the effect. Air pollution is not associated with
any specific disease. Respiratory effects of ambient air pollution have
generally been observed only in persons with lung function already
compromised by some condition such as asthma. Individuals with
unimpaired respiratory systems report a variety of effects of short-
term exposure, including headache, eye irritation, malaise, depressiomn,
and general irritability. Persons exercising in high levels of ozone
may experience nausea. Long-term exposure may have other effects.
Cigarette smoking, which is similar in some respects to breathing air
pollutants, increases the long-term risk of lung and bladder cancer,
ischemic heart disease, and other conditions. The sum of the effects of
air pollution could be quite large, while none of the diverse individual
effects may be large enough to measure. There is little basis for
grouping the effects prior to amalysis, given their diversity. The
common association with a given pollutant that would allow grouping has
not been discovered vet.

The third reason is a complex of methodological and data problems.
These include the use of data aggregated over populations, unreliable
estimates of pollution exposure, lack of detail on health outcomes, and
incomplete data on population characteristics that may be correlated
with air pollution exposure. Manv studies have relied on cross-
sectional data on a population's health outcomes, instead of on data
recorded at more than one point in time. With cross-sectional data,
pollution effects are underestimated if susceptible persons have moved
to areas with better air quality.

Finally, it is possible that these methodological difficulties are
not responsible for the inconsistent and negative results generated so
far. It may be that air pollution has no significant negative health
effect on most persons exposed to it, at least not at the levels
occurring in most American cities. (Of course, we know that air
pollution at high levels has serious and immediate adverse health

effects.)



Obvious policy implications arise from the inability to obtain
consistent and reliable measurements of the adverse health effects of
air pollution, especially at moderate levels. Health officials and
environmental groups have expressed concern over those effects for many
years. This concern has been shared by a broad enough cross-section of
the general public to lend support to the passage of numerous tederal,
state, and local laws regulating air quality. A growing realization of
the burden that those laws place on the national economy has recently
given rise to a more critical approach to the data linking air pollution
to adverse health effects. Although Congress mandated clean air policy
with respect to human health, regulatory agencies are increasingly
concerned with comparing the costs of regulation with the benefits,
monetary or otherwise, that can be realized from it. For example, if
ozone had no effects at the levels usually encountered, but moderate
levels of suspended particulates proved more costly in terms of health
effects than the measures taken tc control them, then regulators could
focus on reducing particulates. With no available systematic
measurements of the health effects of air pollution, however, it is not
possible to estimate the benefits of air quality regulation--if indeed

there are any.

OBJECTIVES AND METHODS

This report discusses work in progress conducted by The Rand
Corporation under the sponsorship of the U.S. Environmental Protection
Agency, the purpose being to examine the effects of air pollution on
several indicators of health outcomes and health-related costs. For
this research we have analyzed data from a panel study of the nonaged
population in two cities with moderate levels of pollution, Dayton,
Ohio, and Seattle, Washington. We have been able to examine the
sensitivity of the measured effects to the use of alternative analyvtical

approaches, in particular panel and cross-sectional techniques.



The Data

We were enjoined by EPA to use available data, rather than collect
new data specific to our purpose. The principal advantages of using an
existing data base are that the substantial costs of data collection
have already been incurred, and the studyv's results will be available
much sooner. There are also serious limitations, however: (1} The data
may not be ideal because they were collected for another purpose. As we
shall see below, a major drawback of the general population data sets is
the lesser quality of the air pollution exposure measures that we can
derive; the measurement error in the exposure estimates will yield
biased estimates of the adverse effects of air pollution. (2) The
population studied may not be fullyv appropriate to the analysis at hand.
(3) Using existing data sets means that we are conducting an
observational study, and such studies can yield estimates that are badly
biased (and in some cases, the bias is of indeterminate sign, a priori).
In the case of air pollution studies, the risk is that individuals who
are more susceptible to air pollution will move to less polliuted areas
(e.g., Tucson), thus confounding the observed air pollution exposure
with the unobserved sickliness of the individual. That confounding wiil
yvield underestimates of the adverse effect of air pollution.

Air quality data analvzed in this research are drawn from Storage
and Retrieval of Aerometric Data (SARCAD) and some state agencies.
Health outcome data are drawn from Rand's Health Insurance Experiment
(HIE), conducted from 1974 to 1982 under a contract with the U.S.
Department of Health and Human Services. HIE data were collected at six
sites around the country. The analysis in this report is limited to
data from the two largest sites, Seattle and Davton.

We used the HIE data for several reasons. First, theyv include
measurements of the use of medical services, and time lost due to 1illness
(e.g., from work or school) or due to restricted activity. Thus, we
can examine the effects of air pollution on several health outcomes.
Second, the data are measured continuously or repetitively over time,
enabling us to assess the sensitivity of the results to using both cross-
sectional and panel approaches to estimating the adverse effects of air

pollution. Third, it contains data on the prevalence of diseases at the



outset of the experiment and on their incidence over the course of the
experiment, and on the occurrence of new episodes or exacerbations of
illnesses. Information is available on measures of physiological variables
over time, e.g., lung function at entry to and exit from the study. Thus,
the HIE data allow the assessment of physiological changes that may be
significant but too small to result in disease within the course cf the
experiment. The HIE also includes data on socioeconomic status, health
status, health habits (e.g., smoking), and race and other demographic
variables. Such variables are important because they include risk factors
and confounding variables that must be controlled for if the effects of air
pollution are to be properly estimated. Fourth, outcomes are recorded
as they occur, allowing the elucidation of short-term effects through
correlations with daily pollution and weather data.

Other data sets were evaluated for use in this study. The reasons
for not accepting them are given in App. A.

Despite its advantages. the HIE does have four major limitations.
First, the sample excludes individuals who are over 62, eligible for
Medicare, on Medicare disability., severely handicapped, in the military,

or in households in the top 3 percent of the income range. The elderly

and the ill are believed to be especially susceptible to the adverse
effects of air pollution. As a result, estimates based on the HIE
understate the full social effects of air pollution. Conclusions about
threshold concentrations required for adverse effects may also be
biased. Second, HIE sites were chosen for their variation in access to
health care services. This limits the validity of intersite comparisons
of pollution effects, since pollution effects would be confounded with
variations in site characteristics that affect the use of services
(e.g., time delay in getting a doctor's appointment). Third, we had to
infer pollution exposure based on available ambient air quality data,
because the HIE data had already been collected. Thus, we could not
obtain the more reliable estimates of individual exposure that could be
derived from a microenvironmental analysis or personal monitoring. As a
result, our estimates of the response to air pollution will be biased
systematically toward zero (i.e., finding no effect). Fourth, this is
an observational study rather than a randomized trial. To the extent

that individuals may move or alter their behavior to minimize the adverse



effects of air polliution, we will systematically understate the effects
of air pollution. In some of the results reported below, we have used
panel data techniques to reduce this bias, but we cannot be sure that
the techniques completely solve this problem.

The HIE and the variables drawn from it are discussed fully in Sec.

Analytical Approach

In assessing the adverse effects of air polluticn on health
outcomes--use of services, time lost to illness, and health status--
there are two major dimensions over which we have varied our analysis.
The first dimension is the choice between cross-sectional and panel
approaches to the estimation. The second is the length of time over
which we look for the effects of pollution.

Cross-sectional vs. Panel Approaches. 1In our analyvsis, we have
used both cross-sectional and panel approaches in estimation. In the
cross-sectional approach, we assign to each individual measures of his
air pollution exposure based on the ambient air pollution at his work
and home locations. By comparing the health outcomes of different
pecple with different exposures, we can estimate the association of air
pollution with those outcomes.

The cross-sectional approach is simple, but may lead to
misestimates cf the effect of air pollution for several reasons. The
most important is that people may have sorted themselves cut across air
pollution zones based on their sickliness or other unobservable or
imperfectly observable characteristics. That is, cross-secticnal data
may lead to biased estimates if the unobservable characteristics of the
populations studied are correlated with the observed explanatory
variables, including air pollution exposure.

For example, if air quality is too poor, individuals susceptible to
air pollution's adverse effects may leave the area studied or die. The
studies of respiratorily impaired persons in Tucson by Lebowitz,
Knudson, and Burroughs (1978) includes people who moved there in part
because of the perceived benefits of desert air for persons with lung
problems. In our study, asthmatics and other susceptibles may move from

the more to the less polluted areas of the city. In either case, areas
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with different levels of pollution would have a different mix of healthy
and sick individuals, with the cleaner areas having more sick people.
Comparing health outcomes cross-sectionally would understate the adverse
effects of air pollution, because the unobserved extra sickliness in
cleaner areas would dilute the effect of air pollution on the estimates.
In fact, if the geographical sorting is pronounced, we cculd find that
higher air pollution is associated with "better' outcomes, e.g., lower
use of medical services.

Cross-sectional estimates can also be biased in the other
direction, that is, they can overstate the effects of air pollution.

For example, if smokers are less likely to move away from smoggy areas
and if smoking behavior is imperfectly controlled for in the analvsis,
then cross-sectional estimates would attribute part of the adverse
effect of smoking behavior to air pollution.

In either case, cross-sectional data can lead to biased estimates.
Without further information, the researcher cannot bound or estimate the
magnitude of the bias, nor determine its direction.

Despite the problem of bias from geographical sorting, we use a
cross-sectional approach as one way to analyze the effects of air
pollution on each individual in the sample.! Each point on our
regression line thus pairs one person's health outcome in a given vear
of the study with his or her exposure to air polliution that vear. By
comparing those results with our panel results, we can get some idea of
the empirical value of the former, which could be useful in assessing
the validity of other cross-sectional studies.

In the panel analyses, we use the presence of repeated observations
on each individual to control for unobservable individual
characteristics. Thus., in a panel study, we do not have to rely on the
untestable cross-sectional assumption that the unobserved
characteristics are uncorrelated with the observed independent

variables, including air pollution exposure.

'Our approach is not always a pure cross-sectional one. In the
analysis of annual outcomes, we use data from the same pecople in
different years. However, the data are analvzed using the same
assumption used in cross-sectional analysis, that the error term is
independent of the covariates, especially air pollution.



Panei analyses have three other major advantages over a Cross-
sectional study. First, our panel studies can take advantage of finer
detail on timing of health events than do cross-sectional studies. The
finer detail permits better estimates of the weather and air pollution
exposure than is possible with data aggregated over longer periods of
time. Less precise estimates of air pollution can result in
underestimates of its effects on health. But, second, with a panel
study, we can still check any assumptions about the differences between
short- and long-term effects by examining the response in daily as well
as annual data. Third, our panel analyses retain the movers and deaths
occurring in the sample after baseline measurements, whereas in a pure
retrospective cross-sectional design, those who moved or died are not
around when the data are collected.

Nevertheless, panel studies have two major shortcomings relative to
cross-sectional studies. First, due to the higher cost of collecting
panel data, panel studies typically have fewer participants than can be
studied in a cross-sectional analysis. This smaller sample size recduces
the precision available for detecting adverse effects. Seccond, panel
methods, such as before-and-after comparisons, are limited to detecting
short- and intermediate-term effects, because the time tframe for the
panel is frequently only a few vears.

Duration of Effect. We have used a variety of time frames for our
analyses, because air pollution may result in both shcrt-term énd
intermediate-term adverse effects (long-term effects cannot be analvzed
using these data, which were collected over a three-to-five-yvear
period). A concern over irreparable damage has led to some emphasis on
intermediate to long-term effects in studies of susceptibles and
mortality. However, we need to remember that major social costs may

rise from short-term responses in a general population. The losses per
individual mav be small in a general population, but the large number of
individuals can make for a large total loss.

In what follows, we have examined the effects of pollution exposure
on use of services and time lost to illness in terms of both short-
term responses (daily responses to daily air quality variation). and a

somewhat longer-term annual analysis. We have also examined the effects



of poliution exposure on health status in terms of both short-term
responses (air quality in the most recent month) and intermediate-term
responses (average exposure over a two-and-a-half to five-year period).

Specific Approaches Employed. We have not taken all possible
combinations of outcomes and time frames for both cross-sectional and
panel approaches. Some combinations were preciuded by data limitations.
For example, we do not have daily data for our general health status and
lung function measures. Some combinations were omitted because the cost
would have exceeded any likely benefit. For example, a cross-sectional
approach to short-term daily fluctuations in time lost to illness seemed
unduly expensive.

Four sets of analyses are reported below. The first, in Sec. IIlI,
is essentially a cross-sectional approach to annual responses for use of
medical services and time lost to iliness.

The second set, in Sec. IV, considers the effect of recent air
polliution levels on a set of daily observations on the proportion of the
population ill or visiting a health provider. There is thus one¢ data
point for the whole population for each dayv of the study. Because the
population is fixed over time and because individuals are not being
compared with other individuals, we avoid the problem of there being
unobserved population characteristics (e.g, susceptibility) that are
correlated with pollution exposure, e.g., through geographical sorting.
(The population effectively acts as its own control.)

Our third set of analyvses, in Sec. V, examines the effect of air
pollution on a set of daily observations for each person individually,
rather than collectively. Because we follow an individual over time, we
again avoid the problem of unobserved characteristics that are
correlated with air pollution exposure. This analysis has the potential
for improving on the sccond approach because it uses exposure estimates
that are tailored to the individual;. this should reduce any misestimate
from using a single air pollution exposure value for a whole
metropolitan area.

Our final approach, in Sec. VI, examines the effects of air
pollution exposure (cumulative since the beginning of the study) on
individual health status at the end of the study. Each individual's

exit health is regressed on air pollution and entrance health. This



variant on a before-and-after comparison nets out any unobservable
characteristics that mav be correlated with air pollution exposure.
We apply each of these four methods to estimate the effects of air

pollution on one or more of the following health variables:

. Probability of use of any outpatient health care services

® Expenditures on outpatient health care services per user

. Time lost to illness (including time lost from work, school,
and other usual activity)

. A subjective measure of general health (tested for its
reliability)

. Lung function

In the next section, we discuss the data we analvzed. Subsequent

sections describe each of our methods and their results.

LIMITATIONS

In examining our results and conclusions, it is well to keep the
limitations of our study in mind. The most important is that this is an
observational and not an experimental study. Although the study relies
on data from a randomized study, the randomization was for health
insurance, not air pollution. Families with members who are susceptible
to air pollution may choose to live in less poliuted areas. As
discussed above, this can lead to biased results. While our panel
techniques are an improvement over cross-sectional approaches in
reducing geographical sorting bias, they do not yield the kind of safe
conclusions that can be drawn from experiments.

Second, in this study, we have not been able to examine the effect
of air pollution on life expectancy. The sample is not large enough to
look at mortality in the nonaged. The exclusion of the aged makes it
doubly difficult to discern changes in survival, by reducing the sample
size and by excluding the group at highest risk. 1In addition, the
exclusion of the elderly means that our estimates of other health effects
are understated. For example, the elderly are believed to be especially
susceptible to air pollution. They also account for a disproportionate

share of total time lost to illness, and of medical expenditures.




Third, our measure of exposure to air pollution is based on ambient
monitoring sites linked to residence and work locations. The measure
could be improved if we had data on housing and work characteristics
(e.g. type of space heating or air conditioning), or if we knew actual
individual exposures directly. The error in our measures probably
biases our estimates of the effects of air pcllution toward zero.

Finally, this report is limited to two sites; hence, at this point

we do not know how generalizable our results are.
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Il. DATA AND SAMPLE

The data for this analysis are drawn from two sources. First, the
source of data on sociodemographic variables, health status and habits,
use of health services, and time lost due to illness is the Health
Insurance Experiment (HIE). Second, the sources of data on air quality
and weather are Storage and Retrieval of Aerometric Data (SAROAD), the
‘Washington State Implementation Plan (SIP) data bases, and the National

Weather Service.

THE HEALTH INSURANCE EXPERIMENT
The HIE is a randomized trial of the effects of different health
insurance arrangements on the demand for health services and the health

status of individuals.?!

The HIE enrolled families in six sites:
Dayton, Ohio; Seattle, Washington; Fitchburg, Massachusetts; Franklin
County, Massachusetts; Charleston, South Carolina; and Georgetown
County, South Carolina. This analysis uses data from the Seattle and
Dayton sites. In each site, families enrolled for either three or five
years.

Families participating in the experiment were assigned to 14
different fee-for-service or two prepaid group practice insurance plans.
The fee-for-service plans had different levels of cost sharing, which
varied over two dimensions: the coinsurance rate and an upper limit on
out-of-pocket expenses. The coinsurance rates (percentage paid out-
of-pocket) were 0, 25, 50, or 95 percent for all health services. Each
plan had an upper limit (the maximum dollar expenditure or MDE) on out-
of-pocket expenses of 5, 10, or 15 percent of family income, up to a
maximum of $1,000. Beyond the MDE, the insurance plan reimbursed all

expenses in full. One plan had different coinsurance rates for

inpatient and ambulatory medical services (25 percent) than for dental

!Newhouse (1974) and Brook et al. (1979), provide fuller
descriptions of the design. Newhouse et al. (1979) discuss the
measurement issues for the second generation of social experiments, to
which the HIE belongs. Ware et al. (1980) discuss many aspects of data
collection and measurement for health status.




and ambulatory mental health services (50 percent). Finally on one
plan, the families faced a 95-percent coinsurance rate for outpatient
services, subject to a $150 annual limit on out-of-pocket expenses per
person ($450 per family). In this plan, all inpatient services were
free, so that, in effect, this plan had an outpatient individual
deductible. All plans covered the same wide variety of services.?

Two groups were enrolled in a prepaid group practice or health
maintenance organization (HMO) in Seattle only. The HMO in this study
is Group Health Cooperative of Puget Sound (GHC), a nonprofit
organization that has been operating in the Seattle metropolitan area
since 1946. The first of these two groups is the GHC experimentals,
which is a random sample of the Seattle population that was not enrolled
in GHC at the beginning of the experiment. This group received all
services free of charge at GHC. If GHC did not provide the service, the
plan fully covered services received outside GHC. The second group is
the GHC controls, which is a random sample of families that had been
enrolled at GHC for at least one year in 1976. The GHC control group
received all care at GHC free of charge except for limited cost sharing
on drugs, supplies, and outpatient mental health services.

To study methods effects, the HIE had three other randomized
subexperiments. First, to increase precision in measuring changes in
health status, some households were given a preexperimental physical
examination; to test for a possible stimulus to utilization, the
remaining households received no examination. Second, to measure sick-
and work-loss days, and telephone utilization, some households filled
out a diary on contacts with the health care system and on time lost to
illness. To test for a stimulus of reporting on the use of services,
some households filled out no forms, some filled them out weekly, and
some biweekly. Third, to test for transitory aspects of the study, some

households were enrolled for three years, others for five years.

2See Clasquin (1973) for a discussion of the reasons for the HIE
structure of benefits. Nonpreventive orthodontia and cosmetic surgery
(not related to preexisting conditions) were also not covered. In the
case of each exclusion, it is questionable whether anything could have
been learned about steady-state demand during the three-to-five-year
lifetime of the experiment. Also excluded were outpatient psychotherapy
services in excess of 52 visits per year per person.



Families were enrolled as a unit with only eligible members
participating. No choice of plan (or other experimental treatment) was
offered; the family could either accept the experimental plan or choose
not to participate. To prevent refusals, families were given a lump-
sum payment equal to their worst-case financial risk associated with the
plan; thus, no family was worse off financially for being in the study.?

In Seattle, we found no unintended differences between the group
that accepted and the group that refused the offer to participate in the
study; see Manning et al. (1984). A similar analysis shows no

difference in Dayton; see Newhouse et al. (1982).

THE SAMPLE

The sample is a random sample of each site's population, but the
following groups were not eligible: (1) those 62 years of age and-
older; (2) those with incomes in excess of $25,000 in 1973 dollars (or
$§56,000 in 1983 dollars); (3) those eligible for the Medicare disability
program; (4) those in jail and those institutionalized in long-term
hospitals; (5) those in the military or their dependents; and (6) those
with service-related disabilities.

The sample used in this analysis includes enrollees during each
full year that they participated. We excluded data on partial years of
participation by newborns, adoptees, suspended participants (e.g., those
who joined the military), participants who left the study before its
completion, and people who moved out of the Seattle and Dayton areas.®

A person who, for example, attrited in year 2, was included in vear 1 if

*Families were assigned to treatments using the Finite Selection
Model (Morris, 1979). This model is designed to achieve as much balance
across plans as possible while retaining randomization; that is, it
reduces correlation of the experimental treatments with health,
demographic, and economic covariates.

The family's nonexperimental coverage was maintained for the family
by the HIE during the experimental period with the benefits of the
policy assigned to the HIE. 1If the family had no coverage, the HIE
purchased a policy on their behalf. Thus, no family could become
uninsurable as a result of their participation in the study.

“Out-of-area moves were excluded so that we could inexpensively
calculate the exposure of each participant.




he participated for all of that year. We excluded such cases because
the statistical models used in this study for expenditures require equal
time periods for each observation; that is, because they do not allow
convolution of observations.” Thus, the people who participated for only
part of a year could appear to be different when their underlying
behavior was in fact the same. The omission of individuals enrolled for
a part year does not bias our comparisons because these individuals used
health services at the same rate as full-year individuals with similar
characteristics (see Manning et al., 1985, for Seattle; a similar
analysis is under way for other sites).

For specific analyses, the sample was further reduced because of
missing data. For example, in the analysis of time lost due to illness,
we include only those individuals who filed health diaries for two
years. Individuals who were randomly assigned to the no-health-diary

subexperiment or who did not file the required forms were excluded.

Independent Variables

We used five groups of independent variables: insurance plan and
other experimental treatments, health status measures, smoking
variables, sociodemographic and economic measures, and measures of
exposure to various pollutants. These variables are described below.

Insurance Plan Variables. We have used dummy variables to
represent the insurance plans, one for each of the following insurance
plans: the GHC-controls; any fee-for-service plan with out-of-pocket
cost-sharing (25-percent, 50 percent, or 95 percent) for the family; and
a fee-for-service insurance plan with a family coinsurance rate of zero
percent (free care). The GHC experimental plan was the omitted group in
Seattle and the free fee-for-service plan was the omitted group in
Dayton against which comparisons were made.

Measures of Health Status. We used four measures of health status
to increase the precision of our estimates of the consumption of
ambulatory medical services: (1) general health perceptions; (2)
physical limitations; (3) chronic disease status; and (4) mental health
status. Each of these measures is based on the self-administered
Medical History Questionnaire for individuals 14 years or older.

Measures for children are based on questionnaires filled out by parents.
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All of the health status data used in this report were collected at the
beginning of the study; a summary description of each is presented
below.

The General Health Index (GHI) is a continuous score from O through
100 based on 22 questionnaire items for individuals aged 14 and over and
7 items for children (aged less than 14). The items measure perceptions
of health at present, in the past, and in the future; the items also
measure believed resistance to illness and health worry. GHI refers to
health in general and does not specify a particular component of health.
The construct is a subjective assessment of personal health status. The
reliability and validity of GHI have been extensively studied and
documented (Ware, 1976; Davies and Ware, 1981; and Eisen et al. (1980)).

One reason we chose the GHI was that the results of extensive
validity testing could be used to place some perspective on observed
differences resulting from air quality. For instance, the impact of
chronic diseases, everything equal, is 5.6 points for hypertension and
10 points for chronic obstructive pulmonary disease or diabetes (Brook,
1983). People with FEVl/predicted FEV15 of 45 percent or less had a GHI
25 points lower on average than those with 91 percent or more. The
death rate in the study was 25/1,000 for those with GHI under 63,
6/1,000 for those with GHI from 63 to 76 and 1/1,000 for those with GHI
from 76 to 100.

The physical limitations measure is scored dichotomously (PHYSLM:
1 =.1imited, 0 otherwise) to indicate the presence of one or more
limitations due to poor health. It is based on 12 questionnaire items
for adults and S5 items for children measuring four categories of
limitations: self-care (eating bathing, dressing); mobility (confined,
or able to use public or private transportation); physical activity
(walking, bending, lifting, stooping, climbing stairs, running); and
usual role activities (work, home, school). The reliability and
validity of these measures have been studied and documented by Stewart

et al. (1977, 1978, 1981a, 1981b), and Eisen et al. (1980).

*Forced expiratory volume in one second is a measure of lung
function.
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The disease measure is a simple count of the number of diseases or
problems (out of a possible 26), for individuals aged 14 or more
(Manning, Newhouse, and Ware, 1982). The disease list includes kidney
disease and urinary tract infections, eye problems, bronchitis, hay
fever, gum problems, joint problems, diabetes, acne, anemia, heart
problems, stomach problems, varicose veins, hemorrhoids, hearing
problems, high blood pressure; hyperthyroidism, and ten other diseases
or problems.

The Mental Health Inventory (MHI) is based on 38 questionnaire
items measuring both psychological distress and psychological well-
being, as reflected in anxiety, depression, behavioral and emotional
control during the last month, general positive effect and interpersonal
ties. The reliability and validity of this measure has been studied and
documented by Veit and Ware (forthcoming); Ware, Veit, and Donald
(forthcoming); Ware et al. (1979, 1980); and Wiliiams et al (1981). We
used a similar construct for children aged 5 to 13, based on 12
questionnaire items (Eisen et al., 1980).

Smoking Variables. The model used in our analysis also contained
covariates for smoking status. These included dummy variables for
whether an individual was a cigarette smoker, an exsmoker, a never
smoker in a family of a smoker, and a never smoker in the household of
an exsmoker. A never smoker in a family of never smokers is the omitted
group. The categories are defined to be mutually exclusive.

Other Covariates. The model used in our analysis also included
covariates for age, sex, race, family income, and family size. With the
exception of family size, the data were collected before or at
enrollment in the study.

Table 2.1 provides means for a number of these variables for the
enrollment sample. Additional details on health status are available in

Sec. VI.



Table 2.1

SAMPLE CHARACTERISTICS

Dayton Seattle

Standard Standard

Variable N Mean Deviation N Mean Deviation
Age 1139 6.069 17.141 3095 25.535 15.978
Female 1139 0.524 0.500 3095 0512 0.500
EDUCDEC 1139 12.325 2.692 3095 13.012 2.409
Income[1] 1019 29600 13990 2986 37000 18300
AFDC 1019 0.048 0.214 2986 0.057 0.230
Black 1139 0.111 0.314 3095 0.027 0.161
Family size 1139 3.873 1.780 3095 3.395 1.578
GHINDX([2] 1139 73.183 7.818 3059 73.476 15.539
DISEA[3] 530 13.732 9.585 2178 11.900 8.626

NOTE: N indicates numbers of complete users.

[1] In June 1984 dollars.

[2] In Dayton, this is a replacement value based on responses
to questions about health, pain, and worry.

[3] Count of chronic health problems, adults only.

Exposure Estimation

Assessing the relationships between health outcomes and exposure
requires an estimate of the exposure of individuals to air pollution.
Ideally, personal monitoring and microenvironmental analysis in
workplace, home, and other places in which these individuals spend time
could have provided this estimate. Unfortunately, we could not
personally monitor the participants or  conduct surveys to obtain these
better estimates, because this research was initiated well after the HIE
data collection effort ended. Instead, we used the SAROAD data base to
estimate the exposure for each residence and work location based on air
pollution levels at nearby local monitoring stations.

Data Sources. The HIE provided data on the residence location zip
code of each participant at his entry into the study, and the date and
location of each new permanent change in address thereafter. The HIE
also provided data at intervals of approximately every six months on the

labor force status of all adults, and the zip code for each employer on



the date surveyed. We use these two sets of data to implement a crude
microenvironmental analysis.

We obtained daily data on air pollutants from SAROAD for the
criteria pollutants (total suspended particulates (TSP), sulfur dioxide,
nitrogen dioxide, oxidants, and carbon monoxide) for the Seattle-Everett
and Dayton areas, including some outlying areas. We obtained data on
the coefficient of haze and additiomnal NO2 data from the Department of
Ecology for the state of Washington. The National Weather Service
provided data on precipitation and temperature (minimum, maximum, and
average daily values). In each case, the data covered the same period
of time as the experimental period of the HIE, which was November 1974
through February 1980 in Dayton, and January 1976 through September 1981
in Seattle.

The number of monitoring sites for each pollutant varied by city
and over time. We were able to use data from only a subset of the
stations. Some stations were operational for only part of the period,
and some had incomplete data when operational. To avoid possible data
quality problems, we used only those stations which consistently
reported air pollution levels over a sufficiently long time period. Our
criteria for consistent reporting were that the monitoring site had to
have at least six consecutive months of data for the pollutant of
interest, and that each month had to include at least fifteen days of
data. In the case of TSP, we generally accepted months with at least
four 24-hour measurements, because TSP is routinely measured every six
days.®

Missing Values. We did accept data from monitoring sites with
minor breaks or gaps in their daily or hourly values, because monitoring
sites are down for routine maintenance. For monitoring sites with
missing hourly or daily values in a specific day, we replaced the
missing values with imputed values based on the diurnal pattern of
pollution levels, estimated from an additive two-way ANOVA model that
identified the diurnal pattern and the effect of the day. For TSP, we

used a similar model to impute missing daily values based on the day of

the week pattern.

‘We made exceptions to the general criteria on the number of days
in a month when the station was the only one reporting in that month.
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Estimating Daily Exposures. The process for estimating daily
exposures for each person involved three steps: calculating daily
summaries for each monitoring site, creating a location history for each
individual, and matching each individual's location history to
monitoring sites.

For each monotoring site collecting hourly data, we calculated
daily summaries of the pollutant levels. These included daytime and
nighttime averages and maximums. The daytime values were based on
readings from 8 AM to 6 PM and nighttime from from 6 PM to 8 AM. The
analytic day was defined as the period from 6 PM on the previous
calendar day to 6 PM on the day in question. This seemed to be a
behaviorally more meaningful definition of a day than the usual midnight
to midnight definition.

We developed a daily time series for each individual's daytime and
nighttime locations, using the residence and work data described above.
For the nighttime location, we used the home zip code, because our work
data did not include information on which shifts were worked. For the
daytime location for workers, we used the work zip code of the employer
mentioned on the temporally nearest survey of work information. For
children and for adults without paying jobs (e.g., housewives and the
retired), we used the home zip code. We assumed that children attended
neighborhood schools. For all individuals, we used the home zip code
for the weekend. The HIE data on employment did not provide the
information necessary to do a finer breakdown of work days and hours. _

We then linked, day by day, each person's daytime and nighttime zip
code to the daily summary for the geographically nearest monitoring site
for each pollutant. The distance between the individual zip code and
the monitoring station was measured using the latitude and longitude of
the zip code's post office and the monitoring site's location. Although
it would have been preferable to match the population center of mass for
each zip code, we believe that the approximation error is minor in our
case. Zips with high population densities have small areas, leading to
only a small error in distance. Zip codes with low densities and large
areas were typically in rural areas with clean air and few alternatives

for matching. Tables 2.2 and 2.3 show the frequency of individuals by
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Table 2.2

SEATTLE RESIDENCE ZIP CODES ANb MAP COORDINATES

Zip Code Count Percent Latitude Longitude
98002 228 7.37 47.31 122,23
98003 103 .33 47.31 122.51
98004 45 1.45 47.58 122,17
98005 9 0.29 47 .61 122..15
98006 44 1.42 47.61 122.15
98007 101 3.26 47 .61 122, L5
98008 27 0.87 47.50 122.23
98011 78 2.52 772 122.22
98020 155 5.01 47.79 122,34
98022 3 0.10 47.21 121..99
98027 35 1.13 47.56 122.07
98031 124 4.01 47 .40 12225
98033 188 6.07 47 .68 122..19
98036 94 3.04 47 .84 122.29
98040 7 2.38 47 .58 122.19
98043 56 i.81 47.80 122.30
98047 25 0.81 47.27 122,25
98052 49 1.58 47 .64 122.15
98055 135 4.36 47 .48 122.20
98062 4 0:13 47 .47 122..36
98072 2 0.06 47.7 122.16
98100 3 0.10 47.63 122,33
98101 5 0.16 47.61 122,33
98102 29 0.94 47.63 122.31
98103 101 3.26 47 .68 122.34
98104 3 0.10 47 .60 122.33
98105 42 1.36 47 .66 122,31
98106 63 2.04 47 .52 122,35
98107 22 0.71 47 .68 122,37
98108 18 0.58 4752 122, 3
98109 24 0.78 47.59 122.36
98111 3 0.10 47 .63, 122.33
98112 35 1.13 47 .63 122..33
98115 103 3.33 47 .68 122.30
98116 38 1.23 47.55 122.38
98117 46 1.49 47.63 122.33
98118 61 1.97 47.56 122.28
98119 48 1.55 47.63 122 .36
98121 3 0.10 47.61 122,34
98122 56 1.81 47 .61 122.31
98125 57 1.84 47.71 122.30
98126 12 0:39 47 .54 122.37
98133 60 1.94 47.73 122.34



Table 2.2 (cont.)

Zip Code Count Percent Latitude Longitude
98136 51 1.65 47.53 122 .39
98144 59 1.9% 47.59 122 .29
98146 27 0.87 47.48 122 .35
98148 5 0.16 47 .44 122 .31
98155 37 1.20 47.75 122.29
98166 48 1.55 47 .43 122.34
98168 131 4.23 47 .47 122.30
98177 40 1.29 47 .73 122.36
98178 35 113 47.50 122.25
98188 63 2.04 47 .40 122.28
98199 29 0.94 47 .65 122.40
98201 40 129 47.96 122,23
98203 56 1.81 &7 .97 122.20
98204 62 2.00 47.92 123 .20
98206 3 0.10 47 .96 122.23




Table 2.3

DAYTON RESIDENCE ZIP CODES AND MAP COORDINATES

Zip Code Count Percent Latitude Longitude
45305 44 3.86 39.64 84 .07
45324 47 4.13 39.80 84.02
45342 52 4.57 39.66 84.27
45377 60 5.27 39.89 84.19
45402 2 0.18 39.76 84.19
45403 45 3.95 39.76 84.15
45404 135 1.32 39.79 84.17
45405 52 4.57 3979 84.22
45406 15 1.32 39.7 84.24
45407 34 2.99 39.76 84.22
45408 32 2.81 39.74 84.22
45410 19 1.67 39.75 84.16
45414 44 3.86 39.82 84.21
45415 47 4.13 39.82 84.2
45417 19 1.67 39.75 84.25
45418 32 2.81 39.72 84.2
4541 78 6.85 39.71 84.16
45420 65 5.71 39.72 84 .14
45424 157 13.78 39.83 84.14
45426 14 1.23 39.80 84.2
45427 15 1.32 39.75 84.2
45429 44 3.86 39.68 84.15
45431 24 2.11 39.77 84.10
45432 78 6.85 39.74 84.10
45439 9 0.79 39.69 84.22
45440 19 1.67 39.66 84.11
45449 7 0.61 39.67 84 .24
45459 70 615 39.65 84.19
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home location on the first day of the study, and the corresponding
latitude and longitude. Table 2.4 and 2.5 show the monitoring sites
used in our analysis for each pollutant, and their latitude and
longitude.

These daily summaries for each individual provided the exposure
data for the analysis of the individual daily time series of episodes of
sickness (see Sec. V) and provided the basis for longer-term summaries.
For each pollutant, we calculated each individual's monthly, yearly, and
study-long average and maximum exposure to each pollutant. We also
calculated the average of the daily maximums.

For the aggregate time series, we used a different approach to
estimating air pollution exposure. For that analysis, we used only one
observation for each day. In both Dayton and Seattle, we u;ed the
readings from downtown monitoring sites as our estimate of air pollution
exposure. Clearly, this approach misestimates the exposure of
individuals who live some distance from the central area. To use better
individual estimates requires either doing a cross-sectional analysis or
turning to the individual time series analysis.

Tables 2.6 and 2.7 provide summar§ statistics on the daily
pollution levels for calendar year 1976 used in the aggregated time
series. Because the values are from centrally located monitoring
locations, the pollution levels present a worst-case summary for the
daily levels. Tables 2.8 and 2.9 provide a summary of the annual level
of exposure for the pollutants used in the annual analysis of Sec. III.
The unit of observation is a person for one year. Hence, each area of
the two cities is weighted by the number of people who live and work
there, fully adjusted for changes in residence and employ&ent. Tables
2.10 and 2.11 provide a summary of the cumulative exposure for each
pollutant over the course of the study for the pollutants used in the
before-and-after analysis of health status in Sec. VI. The unit of
observation is a person. Hence each area of the two cities is weighted

implicitly by the amount of time that people live and work there.
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Table

9

/,
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DAYTON MEASURING STATIONS AND MAP COORDINATES

Station Latitude Longitude CO COH  NO2 OZONE S02 TSP
0800001G01 39.83 84.42 X
1100001G01 39.63 84.17 X
1260001G01 40.00 83.80 X X
1660002G01 39,77 84.21 X
1660003G01 39.76 84.19 X
1660014G01 39.76 84.19 X
1660015G01 39.77 84.18 X
1660017G01 39.75 84.24 X
1660019G01 39.81 84.19 X X X X X
1660021G01 39.75 84.13 X
1660022G01 39.70 84.31 X
1660025G01 39.76 84.20 X X X X
1660026G01 39.75 84.19 X
1940001G01 39.74 84.63 X
2040001G0O1 39.79 84.03 X
2040003G01 39.83 84.00 X
2440002G01 39.63 84.37 X
2640001G01 40.10 84.63 X
2640002G01 40.10 84.61 X
2985001G01 39.87 84.14 X
3240002G01 39.70 84.14 X
3240003G01 39.73 84.19 X
4280002G01 39 65 84.28 X X
4500001G01 39.79 84.13 X X
4500002G01 39.80 84 .35 X
4500003G01 39.85 84.33 X
4500004G01 39 .79 84.13 X X
4500005G05 39.64 84 .22 X
4550001G01 39.71 84.21 X
4760001G01 39.94 84.02 X
4790001G01 39.74 84.39 X
5100001G01 39.72 84.18 X
5520002G01 40.14 84.23 X X X
5520003G01 40.14 84.24 X
5520004G01 40.14 84.21 X
5640001G01 39.84 84.72 X
6380001G01 39.93 83.81 X
6380002G01 39.95 83.76 X
6380003G01 3991 83.77 X
6380004G01 39.92 83.81 X X X
6580001G01 39.96 84.17 : b4
6660001G01 39.80 84.30 X
6680001G01 40.04 84.20 X
6880001G01 39.90 84.21 X
6880003G01 39.89 84.20 X
7300001G01 39.96 84.33 X
7670001G01 39.81 84.03 X
7720001G01 39.70 83.93 X
7720002G01 39.71 83.93 X
7740001G01 39.80 83.89 X
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Table 2.5

Station Latitude Longitude COH NO2 OZONE 502 TSP
0100003101 47.31 122.23 X
0120002101 47.61 122.20 X
0120004F01 47.61 122.20 X
0180001F01 47.57 122.62 X
0180002101 47.58 122.61 X X
0640003101 47.98 122.21 X X X
0960001101 47 .40 122.23 X X X X
0960002101 47.39 122.23 X
0980001I03 47.70 121.79 X
0980010F01 47.55 122.04 X
0980013101 47.33 122.31 X X
0980014102 47.35 122.46 X
1560002F01 47.16 122.51 X X X
1760002101 47 .48 122.20 X
1760003101 47 .48 122.21 X
1840001101 47 .60 122.33 X
1840001P01 47.60 122.33 X
1840007101 47 .66 122 .39 X
1840009101 47.62 122 ..35 X X
1840057102 47.56 122.27 X X X
1840058101 47.45 122.28 X X
1840059F01 47 .54 122 .33 X X X
1840066102 47.57 122 .35 X
1840068101 47.52 122,32 X
1840072F01 47.56 122 31 X
1840073101 47.70 122.34 X X
1840074F01 47.60 122 .33 X
1840079F01 47.60 122 .33 X
1840080F01 47 .57 122 31 X
2100001101 47.40 122 .22 X X
2140001101 47 .25 122. 44 X
2140001P01 47 25 122 .43 X
2140003101 47.27 122.51 X X X
2140004102 47.26 122.41 X X
2140005101 47.30 122.42 X X X
2140006101 47 .24 122.40 X
2140013101 47.28 122.52 X
2140015101 47.23 122.43 X X
2140017F01 47.20 122.49 X X
2195001101 47 .46 122.25 X
ST1776K64B 47.51 122.30 X X
ST2718P46B 47.09 122.62 X
ST2718P47B 47.11 122.64 X
ST3100S05B 48.08 122.19 X X
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Table 2.6

1976 DAILY AIR POLLUTION LEVELS:
SEATTLE AGGREGATED TIME SERIES

Pollutant
Average Average Maximum
Measure SO2 COH Ozone
Mean 0.00977 0.788 0.0284
Std. Dev. 0.00964 0.518 0.0132
Quantiles
100 0.0642 2.492 0.07
99 0.0454 2.368 0.07
95 0.0260 1.817 0.05
75 0.0150 1.082 0.04
50 0.0071 0.602 0.03
25 0.0021 0.388 0.02
5 0.0004 0.226 0.01
1 0 +0.156 0.01
0 0 0.105 0
n 251 362 257
NOTE: Sample sizes vary due to incomplete
pollutant data.

Table 2.7

1976 DAILY AIR POLLUTION LEVELS:
DAYTON AGGREGATED TIME SERIES

Pollutant

Average Average Average Maximum Average

Measure S0, COH TSP Ozone NO,
Mean 0.0152 0.273 106.44 0.0718 0.0244
Std. Dev. 0.0127 0.159 40.21 0.0396 00113
Quantiles

100 0.0893 1.026 277.0 0.190 0.0648
99 0.0625 1.018 232.6 0.173 0.0592
95 0.0368 0.610 180 0.150 0.0438
75 0.0212 0.350 128 0.095 0.0315
50 0.6112 0.234 99 0.065 0.0226
25 0.0061 0.160 79 0.040 0.0158

5 0.0021 0.101 2 0.020 0.0083
1 0 0.087 33 0.010 0.0054%4
0 0 0.087 17 0.005 0.0035
n 310 102 366 361 332
NOTE: Sample sizes vary due to incomplete pollutant

data.



ANNUAL AIR POLLUTION SUMMARY: SEATTLE

Pollutant

Average Average Average Maximum
Measure 802 COH TSP Ozone
Mean 0.0101 0.603 60.83 0.1203
Std. Dev. 0.0025 0.117 i5.02 0.0340
Quantiles
100 0.0143 0.889 123.81 0.17
99 0.0143 0.880 112 76 0.17
95 0.0135 0.863 92.58 0.17
723 0.0122 0.662 66.62 0.16
50 0.0102 0.608 57.89 0.12
25 0.0089 0.5352 51.18 0.10
5 0.0052 0.425 41.84 0.07
1 0.0047 0.320 40.13 0.06
0 0.0041 0.280 25.46 0.05
Unit$S
n 9707 7609 9707 9707

NOTE: Sample size for COH is lower due to incomplete COH
data in some vears.

Table 2.9

ANNUAL AIR POLLUTION SUMMARY: DAYTON

Pollutant

Average Average Average Maximum

Measure S0, COH TSP Ozone
Mean 0.0105 0.189 70.17 0.155
Std. Dev. 0.0039 0.053 13.01 0.033
Quantile

’ 100 0.0265 0.313 120.26 0.200
99 0.0160 0.284 106.81 0.200

95 0.0154 0.275 97.14 0200

75 0.0145 0.249 76.71 0.190

50 0.0112 0.170 67.28 0.145

25 0.0073 0.1406 60.66 0.127

5 0.0049 0.130 53.65 0.115

i 0.0048 0.127 47 .32 0.089

0 0.0005 0.097 52.27 0.170

N 3989 2156 3992 3992

NOTE: Sample sizes vary due to incomplete
COH data for some years.



Table 2.10
AVERAGE EXPOSURE OVER THE STUDY: SEATTLE
(n = 2386)
Pollutant
Average
Average Average Maximum Average
Measure S0, TSP Daily Ozone COH
Mean 0.0101 61.02 0.0294 0.642
Std. Dev. 0.0018 10.98 0.0013 0.088
Quantiles
100 0.0123 108.22 0.0328 1.038
99 0.0122 100.17 0.0321 0.821
95 0.0119 83.42 0.0313 0.821
75 0.0115 67.10 0.0301 0.683
50 0.0111 59.45 0.0296 0.637
25 0.0084 53.27 0.0286 0.581
5 0.0067 46.92 0.0272 0.505
1 0.0065 43.85 0.0261 0.456
0 0.0061 42.05 0.0254 0.448
Table 2.11
AVERAGE EXPOSURE OVER THE STUDY: DAYTON
(n = 956)
Pollutant
Average
Average Average Maximum Average
Measure S0, TSP Daily Ozone COH
Mean 0.0113 70.47 0.0524 2.341
Std. Dev. 0.0021 11.04 0.0062 0.273
Quantiles
100 0.0141 102.49 0.0695 2.723
99 0.0141 98.42 0.0659 2.722
95 0.0141 92.97 0.0637 2.711
75 0.0139 76.10 0.0585 2,617
50 0.0110 68.31 0.0501 2.431
25 0.0095 61.28 0.0479 2.025
5 0.0080 57.23 0.0447 1.949
1 0.0079 513259 0.0437 1..931
0 0.0079 51.86 0.0431 1.855
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Unit of Analysis

The unit of analysis is a person-year for the annual analysis, a
day for the aggregated and individual time services analysis, and a
person for the cumulative health status analysis. See the following

sections for further details.

Dependent Variables

In this report, we focus on three sets of health outcomes: use of
health services, time lost due to illness, and health status. Here we
provide a brief overview of the outcomes. The following sections
provide greater detail.

Use of Health Services. We have confined our analysis largely to
medical services delivered in an ambulatory setting, excluding
outpatient psychotherapy and dental services.’ In Dayton, we use actual
expenditures as a measure of the use of medical services. In Seattle,
we use imputed expenditures so that we may include the GHC participants
in the analysis. Excluding that group would degrade our precision
substantially. For GHC participants, expenditures include both in- and
out-of-plan use. Claims filled by participants provide data on the
amount and type of fee-for-service use. Abstracted medical records
provide data on amount and type of use at GHC (see Goldberg, 1983). We
use expenditures where poséible rather than visits because expenditures
reflect the intensity of the service provided as well as the frequency
of use. In the aggregated time series analysis, we use the probability
of any use on that day.

Because GHC does not bill its patients for services rendered, there
is no readily available, preexisting measure of the aggregate value of
procedures provided. Instead, we have imputed a value to procedures
provided by GHC based on the California Relative Value Study codes. To
preserve comparability, the same imputation has been made for procedures

provided in the Seattle fee-for-service sector. See Manning et al.
(1984) for further details.

’In Seattle we also exclude drugs and supplies, because we have not
developed an imputation algorithm for drugs and supplies obtained at
GHC.



Time Lost to lllness. We examine the association of air pollution
(daily or annual) and the amount of time that an individual is ill. The
HIE provides data on days lost from work, school, or usual activities
from the health diary system. For children, we know when a child was
ill or took time off from school or merely restricted his or her
activities. For adults, we know when a person missed work or restricted
activities because of illness. We know the dates involved if a person
(e.g., a mother) missed work or school in order to visit a doctor or to
care for another family member. In the case of workers, we have data on
sick-leave provisions and know if the time off was used for a particular
sick-loss day. The HIE data on time lost to illness do not contain any
information on symptoms or diagnoses. Therefore, it is impossible to
separate sick-loss days related to air pollution from those which are
not. '

Health Status. We also examine the association between air
pollution and changes in health status between the beginning and end of
the study. The HIE collected data on subjective assessments of health
as well as obtaining objective measures of lung function, cholesterol,
and other physiological conditions.

We use the general health index (GHI) described earlier as a single
unifying measure of health status. Data for this subjective assessment
were collected at entry into the study, and annually thereafter.

Because data were collected for everyone, we can examine effects in a
general population.

In addition to a general measure, the HIE collected data on the
presence and severity of the more common chronic health diseases and
problems. In this study, we use seven measures related to

cardiopulmonary problems:

(1) The shortness-of-breath scale is a five-point scale ranging
from no shortness of breath to severe shortness of breath. The
scale is based on responses to four questions on a self-
administered questionnaire (Rosenthal et al., 1981).

(2) Chronic bronchitis is based on self-reported information
regarding phlegm production, prior diagnosis, and treatment by

a physician (Foxman, Lohr, Brook, et al., 1982).
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(3) Hay fever is a three-point scale, with separate categories for
never had hay fever, had hay fever in the past but not the last
12 months, and had hay fever in the last 12 months (Beck et
al.; 1981; 1983)-

(4) An eight-point scale for asthma for children (aged 5-13) with a
value of 0 for those who did not have asthma in the last 12
months, and values 1-7 that are based on the duration of the
condition in the past 12 months (Beck et al., 1981, 1983).

(5) A seven-point scale for chest pain, with categories
corresponding to the frequency of chest pain from no-chest pain
to chest pain almost every day (Rosenthal et al., 1981).

(6) Exercise Pain is a three-point scale with categories for never

\ have chest pain, have pain when walking fast or uphill, and
have pain when walking normally on level ground (Rosenthal et
al., 1981). This measure differs from the prior one, in that
it covers chest pain while exercising. Used only in Dayton
because measure (5) was not available for that site.

(7) For individuals over 20, the HIE provides data on lung function
from spirometry tests. We use a measure of forced expiratory
volume in one second (FEVl) as a percentage of FEV1 predicted
using age, sex, and height regressions. The coefficients for
these prediction equations are from Knudson et al. (1976).

This measure is available for a random 60 percent of the sample

at enrollment and all of the samples at exit from the HIE.

These measures are fully documented in a series of Rand Reports
under the governing title Conceptualization and Measurement of
Physiologic Health for Adults, in the volumes for congestive heart
failure, chronic obstructive airway disease, hay fever, and angina
pectoris. For children aged less than four, see Measurement of

Physiologic Health for Children.



I11. INDIVIDUAL ANNUAL APPROACH: METHODS AND RESULTS

METHODS

Our first set of results is based on comparisons of the annual use
of outpatient medical services and time lost to illness with an
estimated annual exposure to air pollution for each individual. For
this analysis, we thus have one observation per person per year, with a
maximum of five vears of data, i.e., five observations per person. As
noted in Sec. II, estimates of each individual's exposure to air
pollutants have been made by mapping residence and work locations to the
nearest monitoring stations. These estimates are corrected ror change
of job and residence.

We use two estimation techniques. First, for expenditures on
medical services, we use a two-part model. One part is a probit
regression model for the probability that a person will use outpatient
medical services during the course of the year. The other is a weighted
least-squares equation for the logarithm of expenditures for those
persons who did use outpatient medical services. (See App. B for
further details.) The only difierence between the Dayton and the
Seattle analyses of expenditures is that we include the costs of drugs
and supplies in the Davton numbers. Other analyses have shown that the
demand for these products derives largely from outpatient visits.

For time lost to illness, we use a negative-binomial regression
model for the number of days with any school or work loss or restricted
activity during the year; this model is similar to the one used in
Hausman. Wise, and Ostro, 1983 (see App. B). data are based on biweekly
reports of time lost due to illness. We use the negative binomial
rather than a Poisson model because the data exhibit overdispersion.

The estimation techniques used here operate on the same assumption
used in cross-sectional analvses. That assumption is that the
unobserved determinants of the use of ambulatory medical services and of
time lost to illness are uncorrelated with the explanatory variables.
That is a reasonable assumption to make for the insurance variables,

because the insurance coverage was randomly assigned to each family.
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Thus, each insurance plan has the same mix of sickly and healthy
individuals. However, for this analysis, it is more important that the
assumption hold for the air pollution variables, and, unfortunately, it
is less likely that it does. Levels of air pollution were not randomly
assigned. Families with members who are susceptible to the adverse
effects of air pollution may choose to live in less polluted areas. To
the extent that the HIE measures of health status measure the true
health status with error, the measurement error in health status may be
correlated with air pollution exposure, and the estimates may be biased.
Put another way, the analytical techniques do not use the repeated
observations on each person to purge the estimates of any tendency for
more sickly individuals (net of the HIE health status measures) to live

in less polluted areas.!®

RESULTS
Use of Medical Services

Table 3.1 presents the estimated coefficients for the two-part
model for annual ambulatory expense in Seattle and Dayton.? The data
come from claims filed at the time of service use. All pollutants
were entered into the model together, so the coefficient for cach
pollutant represents the partial effect of that pollutant aione and
excludes the effects of any correlated pollutants.

None of the effects on ambulatory expenses are significant, cxcept
for those of ozone and COH on expenditures per user in Seattle. The
ozone effect, however, is in the unexpected direction: Higher levels
are associated with lower expenditures on health. As a matter cf fact,
all effects of increased ozone and TSP appear beneficial. The effects
of 502 vary. On the whole, the effects on expenditures appear to be
more significantly counterintuitive than those on probability of use.

Also, air pollution appears to be associated with beneficial results

'We do adjust for intrafamily correlation and intertemporal
correlations using a random-effects specification. However, this
assumes that the errors are uncorrelated with the explanatory variables.
1f there is adverse selection into cleaner areas of each city, that
assumption does not hold for air pollution.

2C0 is excluded from Seattlie, COH from Dayton, and NO, from both

because of missing data and confounding with other variables.
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Table 3.1

EFFECTS OF AIR POLLUTION ON USE OF AMBULATORY MEDICAL SERVICES
(T-STATISTICS IN PARENTHESES)

Seattle
(Log) (Log)
Probability Expenditures Probability Expenditures
Pollutant of Any Use per User of Any Use per User
SO +.2008 -2.6246 +0.0908 -0.0503
(+1.35) (-0.51) (+0.82) (-0.67)
(0]0] =2 e -0.0240 +0.008
(-0.115) (0.07)
TSP -0.0014 =-0.,0011 -0.209 -0.189
(=0.55) (-0.51) (=0.92) (-1.16)
Ozone =0.1213 -5.8020 -0.127 -1.161
(-1.63) (-2.71) (-0.75) (-1.29)
Coefficient
of haze +0.2036 +0.1828 i i
(+#0.77) (+1.78)

more consistently in Dayton than in Seattle. But again, almost all of

If we

combine the results from the two parts of the model, we find no

these "effects" are not significantly different from zero.

significant effect of air quality on the use of ambulatory medical
services in either city.

Because susceptibles may respond differently to air pollution than
the rest of the population, we examined them in a separate analysis. We
defined an individual as susceptible if he suffered from hay fever,
asthma, or shortness of breath. Use of outpatient services in Dayton
increased in response to greater levels of air pollution, not to an
extent that could be considered significant (X2(8) = 12.14), but to a
much higher degree than one would expect at random (p = .5). In large

part, this result is due to a greater likelihood of use of services by
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susceptibles as CO and TSP levels increase (t = 1.55 and 1.98,
respectively). In Seattle, we had a larger sample of susceptibles. The
analysis there showed mixed results, but there were significant
increases in total expenses with falling ozone (t = -2.44) and TSP (t =

-1.69).

Time Lost to lliness
Table 3.2 gives elasticities of air pollution with respect to time

lost to illness for Seattle and Dayton.?

The number of days lost to
illness was not significantly related to annual air pollution for most
pollutants in both cities. The exceptions were TSP in Seattle and ozone
in Dayton, both of which are associated with decreasing time losses to
illness. In fact, almost all the insignificant effects were also in the

"wrong' direction.

Table 3.2

ELASTICITIES OF AIR POLLUTION WITH RESPECT
TO TIME LOST TO ILLNESS

Seattle Dayton
Pollutant Coefficient (t-Statistic) Coefficient (t-Statistic)
TSP -0.643 -2.16 -0.352 -0.81
] -0.024 -0.73 +0.034 +0:19
Ozone -0.034 =095 =0.598 =193
co, =5 - -0.262 -0.63
COH -0.510 -1.50 i b

’The elasticities indicate the proportional change in time lost for
a doubling of air pollution. For example, a 100 percent increase in
ozone in Seattle would result in a 3.4 percent decrease in time lost to
illness.
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DISCUSSION

We find that the use of ambulatory medical services and time lost
to illness generally dec not increase from vear to vear or from place to
place as air pollution levels increase. In fact, we observe that ozone
is significantly, counterintuitively associated with expenditures for
medical services in Seattle and with time lost to illness in Dayvion. It
is thus possible that, at levels encountered in those cities, increases
in ozone are associated with beneficial effects on health. For exampie,
vears with high ozone may be warmer, sunnier years with less sickness.
The ozone variable may be picking up these omitted weather variables.
The inclusion of a dummy variable for vear should reduce this bias.

There are several possible explanations for the gencral lack of

significant findings:

. The absence of a true effect.
J The sorting out of individuals across pollution zones.
* The use of annual rather than daily data.

. Omitted weather variation from vear to vear.

The second and third of these might be ruled out bv changing the

analytical approach.

Geographical Sorting

Although we have used data from a randomized trial, this study of
air pollution is observational, because we have not randomized
individuals to differing levels of air pollution. If people with
respiratory problems are more likely than healthy people to live in
areas with better air quality, then the estimates of the adverse effects
of air pollution could be biased downward to the point that the
coefficients have the wrong sign.

To investigate further the potential for geographical sorting. we
reestimated the effect of air pecllution with a fixed-effects model for
use of ambulatory medical services and for time lost to illness:; there
is a fixed effect for each individual. In each case, we regressed the

annual ambulatory expenses, stated as a deviation from each person's
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mean, on the levels of the four pollutants, each stated as a deviation
from each person's mean. By taking each person's independent and
dependent variables as deviations from his own mean, we allow each
person to act as his own control; see Maddala (1971). In effect, we
changed the individual annual analysis from a cross-sectional to a panel
study. The results for expenditures in both cities and for time lost to
illness in Seattle were estimated by ordinary least squares.® We did
not attempt to estimate the parameters of a fixed-effect version of the
two-part model.

Applying the fixed-effects model in Seattle reduced the beneficial
effect of ozone on total ambulatory expenditures to insignificance (t =
-0.75) and changed the beneficial effects of the other pollutants to
adverse effects, though still insignificant ones; the overall test
statistic was F(&4,6041) = 0.47. Applying the fixed-effects model to
expenditures in Dayton yielded insignificant and perverse effects for

TSP and SO2 (overall F(4,3920) = 4.96).

Using Annual Data

The lack of significant results may be attributable to the
inappropriate aggregation of an individual's responses over time. Colds
and other sicknesses may occur in the winter, while air pollution is
highest in the summer or spring. Using air pollution values based on
regional variation in spring air quality to explain behavior driven by
winter-versus-spring differences is inappropriate. For instance, in
Dayton, the period of highest ozone levels occurred in July 1976, but
most of the use of health services in that year, especially for
respiratory problems, occurred during the late fall through early
spring. Thus, the highest ozone reading could not have caused the
greater part of the use of services for that year. In addition, the use
of annual averages for air pollution and annual expenditures largely
ignores the importance of short-term fluctuations in air quality and
illness. Annual values are less variable than monthly or daily values.
The less variable the independent measure, the less precision for its

coefficient.

“We did not correct the standard errors for the negative
correlations among observations induced by taking observations as
deviations from individual means.



We have used two other approaches to estimate the adverse effects
of air pollution on use of medical services and time lost to illness.
Both take fuller advantage of the information in the time series of
daily (rather than annual) values, and the second controls for

geographical sorting. The next two sections describe these approaches,

their limitations, and their results.



IV. AGGREGATED DAY-TO-DAY APPRCACH

To take full advantage of the available day-by-day information on
variations in health outcomes and air pollution, we have used two
related methods. The first of these aggregates the responses across
individuals so that we have one observation for each day. This method
is not affected by individuals' sorting themselves out geographically on
the basis of their susceptibility to pollution. We do not compare the
responses of geographically separate individuals with each other,
because we look at a fixed population. The second method examines each
individual's daily time series separately, using the Whittemore-Koru

technique; the latter approach is described in the next section.

DATA AND METHODS

The sample for the analysis of time lost to illness consists of all
individuals who were assigned to file health diaries with HIE. Although
the diaries ran into the third year in Seattle and the fourth year in
Davton, we eliminated the partial data from those vears to ensure against
seasonal imbalance in the analvsis. Also, the health diary data for the
first vear in Dayton were not available from the H1E. Thus, we used the
data from HIE vears 2 and 3 in Dayton and 1 and 2 in Seattle. These tuc
pairs of years happened to match each other very closely on the calendar.

To allow comparability with the time-lost results, the sample for
analyzing the use of medical services consists of all HIE participants
present in Seattle for years 1 and 2 and in Davton for years 2 and 3.

For each day, we tallied the number of individuals in this
subsample and the number reporting any physician visits, dayvs in a
hospital, sick loss, work loss, or restricted activity. We used a
maximum-likelihood logistic regression model to estimate the association
of each day's air quality level with the proportion of the population
reporting each health outcome (any visit, any hospitalization, any sick

loss, or any work loss)!.

'Because of the staggered enrollment dates in the experiment, the
population at risk varied by month. The results are weighted to reflect
the differences in sample size.



The analyses we report here are those with lag times between
poliutant level and health effect that were found to capture most of the
effect without losing information because of gaps in the pollution time
series. For pollutants other than ozone, each day's health outcomes are
estimated as a function of the logarithms of that day’'s and the
preceding two days' average pollutant concentrations. Estimation of
ozone is the same except that daily maximums are used instead of daily
averages.

The independent variables include air quality variables, along with
indicator variables for day of the week and month of the vear. Wwe
included the daily and monthly variables to avoid confounding true air
pollution effects with true daily and seasonal effects. Air quality
varies markedly by day of the week and season of the vear. often in the
same direction as daily and seasonal health effects. For example, air
pollution levels are lower on weekends, and so are use of services and
time lost to illness. Part of the lcwer use of services is due to
reduced availability of phvsician services (except for emergency
departments) on weekends. Part of the lower time lost to illness is due
to the fact that schools are closed and few people work weekends. As a
result of including monthly and daily dummies, our estimation procedure
controls for variation between days of the week and months of the vear
in estimating the effects of air quality.

Our data include measures of air pollution levels taken at a single

point in each city.?

In both cities, we analyze for SO, and ozecne. TSF
was included in the Dayton analysis but not in Seattle, where TSP was
measured every sixth day; including TSP in Seattle would have reduced
substantially the number of observations. In Seattle, COH was used as a
proxy for TSP. NO, and CO were also included only in the Davton

analysis. Because of gaps in the daily data for individual pollutants

and lack of overlap among the pollutant time series, we focus on ecach

? Because we have only one data point for each day, we could use
only one value of air pollution level for each pollutant. We used
values from a centrally located, usually downtown monitor. See the
"Exposure' discussion in Sec. II.
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pollutant taken one at a time. Using the intersection of the six time
series would have dramatically reduced our precision. Hence, the effect
reported here is the marginal rather than the partial effect, because we

have not controlled for other pollutants.

RESULTS
Use of Ambulatory Services

As shown in Table 4.1, only ozone has significant effects on use of
ambulatory health services in Seattle (when the other two pollutants are
included in the model). The signs for 802 and Ozone are as expected--
increases in air pollution are associated with higher probability of
visiting a physician. However, the magnitudes of these adverse effects

of air pollution are small. For SO a 100-percent degradation in air

23
quality is associated with a 0.5-percent increase in the proportion of
the population visiting a doctor. For ozone, there would be a
4.3-percent increase. A 100-percent increase in COH is associated with
a 0.9-percent decrease in visits.

In Dayton, the aggregated day-to-day analysis shows a significant
association at the 10 percent level or better between the likelihood of

visiting a medical provider and the level of NO2 and SOZ’ and at better

Table 4.1

RESPONSE TO AIR QUALITY: EFFECTS OF A 100-PERCENT INCREASE IN
AIR POLLUTION ON DAILY PROBABILITY OF A VISIT IN SEATTLE

X2(3) for
% Before % After Percentage Air Pollution
Pollutant 100% Change 100% Change Change [a] Parameters

COH 1.486 1.473 -0.9 38.11(b]
SO 1.475 1.482 +0.5 4.00
Ozone 1.481 1.544 +4.3 7.74[c]

NOTE: Percentage in first column differs by pollutant
because of different gaps in time series.

[a] 100% x [(col 2 - col 1)/col 1].

[b] Results significant at 1 percent level.

[c] Results significant at 10 percent level.



than the l-percent level for ozone, and TSP (see Table 4.2). However,
in contrast to Seattle, the signs are not as expected for these
pollutants: Increases in these pollutants are associated with a lower
rather than a higher probability of a visit. Only CO exhibits an
adverse effect of increased air pollution. As in Seattle, the
magnitudes of all effects of air pollution are quite small, with a
100-percent degradation in air quality leading to less than a four-

percent change in the number of individuals seeking medical care.

Hospital Days

The effects of air pollutant concentrations on the likelihood of
being in the hospital was generally insignificant in both cities. This
lack of significance is largely attributable to the rareness of
hospitalization. The one exception to this pattern was TSP in Dayton
(X2(3) = 21.28). 1In this case, a 100-percent degradation in air quality

was associated with a 33-percent increase in use of services. The
Table 4.2

RESPONSE TO AIR QUALITY: EFFECTS OF A 100-PERCENT INCREASE
ON AIR POLLUTION ON DAILY PROBABILITY OF A VISIT IN DAYTON

Proportion Visiting Physician

X2(3) for
% Before % After % Air Pollution

Pollutant 100% Change 100% Change Change[a] Parameters
NO2 1.251 1.223 =2.2 7.57[b]
SO2 1.203 1.179 -2.0 7.20([b]
co 1.255 1.289 +2.0 7 28.19(c]
TSP 1.236 1.189 -3.6 23.06[c]
Ozone 1.239 1.194 -3 .8 12.96[¢]

NOTE: Percentage in first column differs by pollutant because
of different gaps in time series.

[a] 100% x [(col 2 - col 1)/col 1].

[b] Results significant at 10 percent level.

[c] Results significant at 1 percent level.



magnitude of this effect is implausibly large. In Dayton, most of the
other pollutants--80,, CO, and ozone--did have effects in the expected
direction, i.e., mor; pollution was associated with higher use. In

Seattle, however, SO, and ozone exhibited beneficial but statistically

insignificant effects.

Time Lost Due to lllness

Tables 4.3 and 4.4 show the effects on time lost to illness
associated with each of the pollutants in Seattle and Dayton. In
Seattle, lower levels of SO2 and ozone were significantly associated
with higher levels of time lost to illness, but the magnitude of the
estimated effect was small. COH was not associated with significant
changes in time lost due to illness. A doubling of the levgl of ozone
would be associated with a fall in this proportion by about 10 percent.
This association of air quality and time lost to illness is largely the
result of sick-loss time, because the results for work loss are even
less significant than one would expect from random variation.

A larger effect was found in Dayton, where a 100-percent increase

in ozone concentration was associated with a 13-percent increase in time

2
lost to illness (X (3) = 26.15). The effects of NO2 and 507 in Dayton
Table 4.3

EFFECTS OF A 100-PERCENT INCREASE IN AIR POLLUTION ON
DAILY PROBABILITY OF ANY TIME LOST TO ILLNESS IN SEATTLE

X2(3) for
% Before % After Percentage Air Pollution
Pollutant 100% Change 100% Change Change [a] Parameters

COH 2.826 2.782 -1.6 2.25
50, 2.668 2.589 -3.0 15.09(b]
Ozone 2.679 2.412 -10.0 12.97(c]

[a] Includes sick and work loss.
[b] 100% x [(col 2 - col 1)/col 1].
[c] Significant at 1 percent level.



Table 4.4

EFFECTS OF 100-PERCENT INCREASE IN AIR POLLUTION ON
DAILY PROBABILITY OF ANY TIME LOST TO ILLNESS IN DAYTON

Percentage I11 [a]

5
x7(3)
for Air

% Before % After % Pollution

Pollutant 100% Change 100% Change Change[b] Parameters

NO, 3.042 2.902 -4.6 12.80[c]
50, | 2.294 2.805 -4.1 15.98[c]
Co 3.095 3.031 -2.1 1.56
TSP 3.070 3.033 -1.2 1.21
Ozone 3.038 3.423 +12.7 26.15[c]

[a] Includes sick and work loss.
[b] 100% x [(col 2 - col 1)/col 1].
[c] Significant at 1 percent level.

were also significant but of the wrong sign. Both CO and TSP had

insignificant effects.

DISCUSSION

The aggregated day-to-day approach displays a mixed set of
associations between air quality and our health outcomes. In Seattle,
increases in ozone concentration were associated with a higher
probability of using ambulatory medical services but lower probability
of being sick. 802 was negatively associated with seeing a physician,
but positively associated with time lost to illness. In Dayton, higher
CO has a significant adverse effect on the likelihood of visiting a
medical provider, while higher TSP has an adverse effect on being

hospitalized. Higher levels of ozone were associated with higher levels

of time lost due to illness.
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However, the results are only partially in agreement with our
expectations. We also found that higher levels of NOZ’ 502’ TSP, and
ozone were significantly associated with lower likelihood of visiting a
provider. Higher levels of NO2 and 502 were associated with lower
levels of time lost to illness.

A priori, we expected that time lost to illness would be more

responsive to air quality than use of services, for four reasons:

(1) One can suffer ill effects and report them as restricted-
activity days without incurring the opportunity costs of not
attending school or going to work, and without paying the price
of a visit to see a physician.

(2) It may take some time to see a physician because of delays to
appointment for nonemergency care. During that period, the
adverse effects of air pollution may disappear.

(3) Individuals suffering from cardiopulmonary problems may be able
to treat themselves for minor adverse effects when sick,
relying on a physician for treatment of only the more serious
episodes.

(4) Both cities have only moderate levels of air pollution. As a
result, we might expect few episodes of illness that are severe

enough to be presented to a physician.

Here, we have disaggregated the data to a behaviorally more
meaningful time frame. Why do we still obtain this mixed set of
results? Again, either there is no effect large enough to be detected
with these data, given the pollution levels in Seattle and Dayton, or
the results are biased by our methods. For example, the omission of
meteorological variables could have led to an omitted variables bias;
during Phase II of this project, we will add such variables to the list
of explanatory variables.

Also with this method, we aggregated across individuals to avoid
the potential bias that would occur if sicker individuals moved to
cleaner areas; in principle, the population acts as its own control. To

do that required using a single source of air quality data, which came



from a downtown monitor. Thus, the air quality data measure pollution
with error for much of the sample, especially those living in cleaner
areas. This measurement error could bias the estimated coefficients
toward zero.

In the next section, we use a technique developed by Whittemore and
Korn to avoid the statistical problems in both the individual annual and

in the aggregated day-to-day approaches.
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V. INDIVIDUAL DAY-TO-DAY APPROACH: METHODS AND RESULTS

In this section we discuss the individual day-to-day analysis based
on the approach proposed in Whittemore and Korn (1980). This approach
is carried out in two stages. First, we estimate each individual's
daily health outcome as a function of his or her daily aerometric
exposures soO as to assess the kndividual-specific response. Each
individual serves as his or her own control in this analysis. Then, we
pool the individual-specific responses and carry out a secondary
analysis, the meta-analysis, in which we assess the overall response to
aerometric attributes in the population. This second stage allows us to
answer three key questions: First, do the people in the population on
the average fall ill more often on polluted days than on clean days?
Second, do individuals in the population respond the same or differently
to air pollution? Third, if they respond differently, are their
responses related to their known characteristics? (For example, are
children more sensitive to air pollution than adults?)

We begin by describing the Whittemore-Korn model and its
application to the HIE data. We then show how we derived the sample we
analyzed. Finally, we present the results of the second-stage analysis
for the full sample and for sickly and healthy subsamples. Appendié C
presents further results of the first-stage analysis, along with

comparisons of other subsamples.

THE WHITTEMORE-KORN MODEL
Synopsis

In the Whittemore-Korn model, the unit of analysis is usually taken
as a person-day. (It is possible to consider other time units such as
hours or weeks, but the twenty-four-hour period is usually the most
convenient to work with. The HIE data are collected in daily units.)
For each individual in the target population, say, the ith person, and
for each day in the study period, say, the tth day, the model specifies
a logistic regression model for the daily probability of the person's

being sick:



logit(p, ) = B, + Zj Brgp ™ Bij , (D)

where Pyt is the ith person's probability to be sick on the tth day;

xijt is the level of the jth explanatory variable (e.g., aerometric
value) for the ith individual on the tth day; Bij is the ith person's

.th . . .th
response to the j explanatory variable; the intercept for the i

person, SiO’ is the logit of the probability of the ith person's being
sick on a day when the levels of all explanatory variables are zero.

We use a random-effects (variance components) model to specify a
distribution of individual responses, Bij' The model specifies a meta-

distribution for the individual responses as follows:

..~ N, 1.2, 9
Bys ~ N, 1) (2)

where Kj is the average response to the jth explanatory variable. If

all individuals have the same response to the jth explanatory variable,

all Bij are identical and equal Xj. If individuals differ in their

responses to the jth explanatory variable, the ﬁi.'s are different from
Xj; the differences Bij - Xj are the between-individual differences.
The average magnitude of the between-individual differences (in the
sense of L? distance) is given by Tj. (If the individuals have
identical responses, the corresponding parameter 1 is zero.) The model
(2) given above is usually known as the random-effects or (variance
components) model. We will test separately the hypotheses that Xj =0
and Tj = 0; the two hypotheses together are equivalent to the global
null hypothesis that Bij = 0.

When there are between-individual differences, it might be
desirable to relate them to observed characteristics of the individuals.
For example, one might be interested to know whether the individual's
response to air pollution is related to smoking, i.e., whether a smoker
might be more sensitive to air pollution than a nonsmoker. We are
currently only capable of carrying out this analysis for dichotomous
characteristics. For example, we can compare smokers with nonsmokers,
but we cannot relate the individual responses to a continuous specifi-

cation for smoking, such as the number of cigarettes smoked per day.
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For a dichotomous characteristic, we can partition the population
into two subpopulations, one corresponding to each level of the
characteristic. We then apply a random effects model similar to model
(2) to each subpopulation, and compare the parameters ¥ and 1t for the
two subpopulations. If the characteristic being studied is related to
the individual responses, the average response ¥ for the two
subpopulations should differ. For example, if only smokers were
sensitive to air pollution, the average response ¥ for smokers would be
nonzero, while the average response ¥ for the nonsmokers would be zero.
If the relationship between the individual responses and the
characteristic being studied explains all of the between-individual
differences, the parameters T would be zero for both subpopulations.

The main advantage of the Whittemore-Korn model is that each
individual serves as his or her own control, which avoids the
confounding problems with the cross-sectional methods used in Sec. V.
Furthermore, since the model provides estimates of each individual's
responses, it allows great flexibility in the meta-analysis on
differential susceptibility. We can contrast any two subpopulations
defined in terms of any observed dichotomous characteristic for the
individuals. Thus, this model improves on the average-response
specification in the aggregated daily approach.

The Whittemore-Korn model also allows us to calculate each person's
response to a local estimate of the pollution he or she is exposed to.
Again, this is an improvement over the aggregated day-to-day approach,
which uses one daily pollution value for everyone, introducing
measurement error into the analysis.

One limitation of the model is that it applies only to short-term
effects. Another limitation is that, empirically, the model cannot be
applied to people who are healthy almost all the time or to people who
are sick almost all the time. The logistic regression model usually is
not estimable (identifiable) for those people. For example, consider a
person who is healthy all the time. The empirical probability is zero
that the person will be sick on either a polluted day or a clean day.
The logit of the empirical probability zero is minus infinity. The
effect of air pollution for this person is therefore (minus infinity) -

(minus infinity), which is indeterminate.



Toward the end of this section, we will discuss how we restrict our
analysis to those people with more than a few sick days and more than a
few healthy days over a period of up to two years, and discuss the

implications of this restriction.

Application

For the health outcome in this analysis, we use a combination of
restricted activities, school loss, and work loss as given in the
biweekly health diary. For each person in the sample on each day in the
study period, if the person reported either a day with restricted
activities due to health reasons, school loss, or work loss, the day is
treated as a sick day; otherwise the day is treated as a healthy day.

Because of limitations in the data, we need to make some revisions
in the Whittemore-Korn model in order to apply it appropriately. One of
the important findings in Whittemore-Korn (1980) is the autocorrelation
between daily disease statuses. For the same person, the day after a
sick day is more likely to be a sick day than a day after a healthy day,
everything else being the same. For most people in our sample, there
are too few days-after-a-sick-day to allow reasonable estimation of this
effect; for example, for a person with ten sick days we have only ten
opportunities to estimate the probability of being sick the day after a
sick day. Therefore, for most of our analysis we delete all days after
a sick day and focus on the estimation for days after a healthy day. In
other words, we only estimate the probability for the transition from
the healthy status into a sick episode; a sick episode is dated to the
first day of a series of consecutive sick days. We do, however, take up
separately the questions of the length of sick episodes and how the

length of the episodes responds to air quality.

SAMPLE AND DATA
Sample and Health Qutcome

The maximum number of people that could be used in this analysis is
2901--the number of HIE participants were assigned to file health

reports while in the Seattle metropolitan area.! On the average we have

!The individual day-to-day approach has not yet been applied to the
Dayton sample. That will be done during the second phase of the research.
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630 daily reports per person. The maximum number of days possible for
each person is 731. However, some of the participants moved out of the
Seattle area before the end of the health report study period and some
failed to file all required health reports.

The HIE participants averaged 4.34 sick episodes per person. The
distribution of sick episodes was fairly skewed. More than ten percent
of the HIE participants had no sick episodes. The median value was 3
episodes. The maximum value was 77.

As discussed earlier, the logistic regression model is usually not
estimable when the number of sick episodes is too low, so we need to
restrict the analysis to people with more than a few sick episodes. We
have chosen to include only those people with more than the median
number of episodes (3). This leaves us with 1249 persons. However,
those people report 10,582 sick episodes, which is more than 80 percent
of the total number of sick episodes. Therefore, in terms of the number
of sick episodes, the loss due to this restriction is minor.

The restriction to people with more than a few sick episodes can be
viewed as an optimal strategy to make the best use of analytic
resources. The people with a few episodes contribute less information
than the people with one episode. (As discussed above, the response of
a person who is healthy throughout the study period is undefined, and
thus contributes no.information at all.) In the next subsection, we
examine empirically the implications of this strategy.

The restricted sample of 1249 persons with more than three episodes
yields an average of 684 daily health reports per person. That average
exceeds that for the whole sample because people with fewer health
reports are more likely to have three or fewer episodes and therefore be
deleted according to the restriction rule.

Not all person-days with health reports can be used in the
analysis. As discussed above, we use a sick episode instead of a sick
day as the health outcome, so we have to delete all days immediately
following a sick day. Furthermore, some days cannot be used in the
analysis because of missing air pollution data. With those deletions,

we have an average of 425 days per person.
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There are a few people with very few days available for analysis.
We choose to restrict to people with at least 100 days available for
analysis. This restriction deletes 11 people and leaves us with 1238
persons in the final analysis sample. They average 429 days per person

and 8.5 sick episodes each.

EXPLANATORY VARIABLES

For this analysis, we use three groups of explanatory variables:
air pollution measures, meteorological measures, and calendar effects.

The air pollution data are from SAROAD and the Washington State
Department of Ecology. The following daily air pollution measures are
used: daily average of sulphur dioxide (SOZ)’ daily average of
coefficient of haze (COH), daily average of TSP, daily maximum hourly
average of ozone, and daily maximum hourly average of nitrogen dioxide
(NOZ)' Air pollution at a person's residence or work location is
assumed to be the same as that at the nearest monitoring site (see the
discussion of exposure in Sec. II).

Values of the various air pollution measures are distributed over
days in a somewhat skewed fashion. The statistical measure of skewness
ranges between one and two. Had the skewness been larger, the results
of the analysis might have been dominated by a few outliers and would
thus have been unstable. In such situations, it is necessary to
transform the skewed variable to get more stable results. Given the
moderate amount of skewness, we choose not to apply transformations.

We also use daily minimum temperature and daily precipitation data
from the National Weather Service. Because meteorological measures are
available from only one weather station, those values are assumed to
apply to all residences and work locations.

The distribution of precipitation is very skewed, because more than
half of the days have no precipitation. If the effect of precipitation
were of primary interest in this study, one might specify the effects of
precipitation as two entries in the logistic regression--one an
indicator variable for a day with precipitation, the other the amount of
precipitation (or a transformed amount). However, since the effect of
precipitation is not of primary interest in this study, we use a simple

linear specification.



- 54 -

In addition to the aerometric data, we use two calendar-related
covariates to control for possible confounding effects. The first is an
indicator variable for weekday versus weekend; this is a possible
confounding factor because the levels of air pollution are usually
higher on weekdays than on weekends, and people are more likely to
report sickness during weekdays than during weekends. The second is an
indicator variable for the first week of each two-week health report
period. Because we use a self-administered diary that might not have
been filled out daily, the accuracy of reporting in the earlier part,
say, the first week, might be different from that in the latter part,
say, the second week.

The aerometric attributes are closely interrelated, e.g., ozone is
generated from a photochemical process and usually has low or null
levels on rainy days. Therefore, we expected substantial correlation
among our explanatory variables. Explanatory variables that are highly
correlated might be nearly collinear, i.e., one of the explanatory
variables might be nearly a linear combination of some of the others.
In such cases, the logistic regression model might not be estimable or
might be ill-conditioned, and the estimated results would be unstable.
Most of the pollution measures are indeed significantly correlated, but
the magnitudes of the simple and multiple correlations are all moderate;
the largest ones are under 0.6 (see Tables C.1, C.2, and C.3). Thus,

collinearity among the explanatory variables is not a major concern.

GENERAL RESULTS
On applying the random-effects model to estimate the average

responses and standard deviations of individual differences, we obtain
the results given in Table 5.1. For four of the pollution measures
(SOZ’ COH, TSP, and NOZ)’ the average effect of pollution is positive,
indicating that there is a higher probability of having a sick episode
on a polluted day than on a clean day. For two of the four (SOZ’ NOZ)’
the effect is statistically significant at the one percent level. The
average effect for ozone is negative and statistically significant, as

is the effect for minimum temperature, which is negative and
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Table 5.1

META-ANALYSIS BASED ON THE RANDOM-EFFECTS MODEL
SUMMARIES FOR THE AEROMETRIC EFFECTS OVER
THE FINAL ANALYSIS SAMPLE (N=1238):
AVERAGE RESPONSES

Aerometric Estimated z
Attribute Coefficient Statistie
SO2 (ppm) 7.94 6.12

COH 0.0150 0.38

TSP (ug/m?) 0.00061 1.50
Ozone (ppm) -3.46 -4.46

NO2 (ppm) 1:33 3.18
Minimum temperature (F) -0.0132 -8.12
Precipitation (in.) 0.684 12.8

statistically significant. The average effect for precipitation is
positive and statistically significant.

Table 5.2 summarizes the results for the average effects based on
the random-effects model and on another approach to correcting the
analysis for the instability of outliers--analyzing individual z

statistics (see App. C). While the two sets of results are not
Table 5.2

SIGNIFICANCE OF THE AVERAGE RESPONSES

Aerometric Random-Effects Individual
Attribute Model z Statistics

802

COH
TSP
Ozone
NO2

&

+ 0+ + o+
(..

Minimum temperature - * - %
Precipitation + +

NOTE: +: average response is positive;
-: average response is negative;
effect is statistically significant
at the 5-percent level.
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identical, they do not contradict each other: There are no instances in
which one approach gives a statistically significant positive result and
the other method gives a statistically significant negative result.

The two approaches both indicate that ozone has a significant
association with lower probabilities of sick episodes. The two
approaches also agree that higher minimum temperature is significantly
associated with lower probabilities of sick episodes, and that
precipitation might be associated with a higher probability of sick
episodes.

The random-effects model indicates that SO2 has a significant
association with higher probabilities of sick episodes, which is not
corroborated in the individual z statistic approach. If we accept the
association estimated from the random-effects model as real, the
magnitude of the association can be interpreted as follows. The meta-
analysis estimates that an increase of one ppm SO, is associated with an
increase of 7.94 logit units in the probability o; a sick episode. If
the average 802 level in downtown Seattle triples from its present 0.01
ppm to 0.03 ppm, the primary federal standard level for the annual
average, the probability that the average person would experience a sick
episode would increase by 0.16 logit units. For most people the
probability of having a sick episode is small on any day, so the logit
scale is very well approximated by the logarithm scale. An increase of
0.16 in the logarithm of the probability of having a sick episode is
equivalent to multiplying the probability of a sick episode by 1.17.

For the final analysis sample on the average, this is equivalent to a
increase from 0.020 sick episodes per person-day to 0.023.

Equivalently, a 10-percent increase in SO2 would cause sick
episodes per person-day to go from 0.02 to 0.0202. The effects for
other pollutants are smaller. For COH, sick episodes would increase to
0.02002. For TSP, the same increase would raise sick episodes to
0.0201. For ozone, sick episodes would fall to 0.0188. For NO,, sick
episodes would increase to 0.0201. i

As discussed above, an advantage of the random-effects model is
that it allows estimation of the standard deviation for between-
individual differences. These are given as the tau parameters in Table

5.3. For three of the aerometric attributes, COH, NOZ’ and minimum



Table 5.3

META-ANALYSIS BASED ON THE RANDOM-EFFECTS MODEL
SUMMARIES FOR THE AEROMETRIC EFFECTS OVER
THE FINAL ANALYSIS SAMPLE (N=1238):
BETWEEN-INDIVIDUAL DIFFERENCES

Aerometric z
Attribute Tau Statistic
802 (ppm) 0.0 0.00

COH 0.348 1.98

TSP (ug/m?) 0.00156 0.41
Ozone (ppm) 5.54 1.38

NO2 (ppm) 5:53 4.24
Minimum temperature (F) 0.0193 3.28
Precipitation (in.) 0.0 0.00

temperature, there is a statistically significant between-individual
difference, i.e., the individuals in our sample do not respond similarly
to these aerometric attributes. For two of the three, the tau parameter
is much larger than the average responses given in Table 5.1.

Therefore, a significant fraction of the people might have a response in
the opposite direction from the one given by the average response. For
example, the tau parameter for NO2 is 5.53, while the average response
is 1.33 (both given in terms of logit per ppm N02.) If we take those
estimates as true values, we calculate that the probability of a
negative response (opposite the direction given by the average response)
for any given individual is 0.405. Thus, about 40 percent of the people

have a negative association between NO, and sick episode, while about 60

2
percent have a positive association.

We also found a strong negative association between the
coefficients and their standard errors (see Figs. C.8-C.14 in App. C).
There are two possible explanations for this unexpected phenomenon.
First, there may be a negative association between the true individual
coefficients and their true standard deviations. We find this
possibility unlikely because of the consistency of the negative

associations across the different pollutant and aerometric variables.

Second, the observed negative associations may be a statistical
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artifact. We conjecture that the small sample bias of the maximum
likelihood estimates of the logistic regression coefficients may be the
cause. In particular, individuals with smaller numbers of sick episodes
may tend to have larger (negative) biases. Since these same individuals
will tend to have larger standard errors of their coefficients, this
could lead to the observed negative associations in Figs. C.8-C.14.

Fortunately, we are in the position to be able to test this
conjecture by performing some computer simulations in the second phase
of this project. By using the observed independent variables and
simulating random sick episodes based on the logistic regression model,
we will see if there is a negative association between the simulated
estimated coefficients and their standard error. Since in this
simulation we will know that there is no association between the true
individual coefficients and their standard deviations, we will determine
if the small sample bias of the estimated coefficients is the cause of
the negative association.

The verification of this type of small sample bias would have
important implications for the present analyses and for other studies
using the Whittemore-Korn model. First, it would suggest that the down-
weighting of the coefficients with the larger standard errors is
appropriate since they are likely to be more biased. If this were the
case, then the random-effects analysis would be more appropriate than
the z analysis. Secondly, it would suggest improvements in the methods
of analysis using the Whittemore-Korn model to reduce the small sample

bias.

COMPARISON OF SICKLY AND LESS SICKLY SUBPOPULATIONS

In this subsection, we contrast the responses to air pollution on
the part of sickly people with those of less sickly people. The first
criterion we use for sickliness is the number of sick episodes, rather
than the presence or severity of disease.

We compare the responses for those with 7 or more sick episodes
(the sick subpopulation, containing 655 individuals, 53 percent of the
final analysis sample) with those with 4 to 6 sick episodes (the less
sickly subpopulation, containing 583 individuals, 47 percent of the

final analysis sample.)



- 59 -

The average responses for the two subpopulations are given in
Tables 5.4 and 5.5. The column "z for the contrast" in Table 5.5 gives
the z statistics for the difference between the average responses in the

two subpopulations.

Table 5.4

META-ANALYSIS BASED ON THE RANDOM-EFFECTS MODEL
SUMMARIES FOR THE AEROMETRIC EFFECTS OVER
THE SICK SUBPOPULATION (N=655):

AVERAGE RESPONSES

Aerometric Estimated z for the
Attribute Coefficient Attribute Efficiency
502 (ppm) 5.12 3.33 0.711
COH 0.00811 0.18 0.722
TSP (ug/m?) 0.00060 1.24 0.708
Ozone (ppm) -3.60 -3.91 0.711
NO2 (ppm) 1.11 223 0.704
Minimum temperature (F) -0.0125 -6.43 0.697
Precipitation (in.) " 0.576 937 0.751
Table 5.5
META-ANALYSIS BASED ON THE RANDOM-EFFECTS MODEL
SUMMARIES FOR THE AEROMETRIC EFFECTS OVER
THE LESS SICKLY SUBPOPULATION (N=583):
AVERAGE RESPONSES
Aerometric Estimated z for the 2z for the
Attribute Coefficient Attribute Contrast
802 (ppm) 14.9 6.07 3.39
COH 0.0435 0.58 0.40
TSP (ug/m?) 0.00043 0.54 -0.18
Ozone (ppm) -3.45 -2.34 0.09
NO2 (ppm) 2.20 ©2.89 1.21
Minimum temperature (F) -0.0151 -5.08 -0.73
Precipitation (in.) 1.01 9.46 3.54
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The only two aerometric attributes with significantly different
responses are 802 and precipitation. The less sickly subpopulation is
more responsive to 807--almost three times more; it is also more
responsive to precipization--almost twice more. This result is
surpriSing because in the random-effects model for the final analysis
sample as a whole (Table 5.3), we found no between-individual
differences for SO2 or precipitation. As discussed above, we expected
to detect differential susceptibility only for those aerometric
attributes with significant between-individual differences. For the
final analysis sample, we found significant between-individual
differences only for NO2 and COH. We therefore expected that those
would be the two potential candidates for subpopulation comparisons.

For the other attributes, the random-effects model for the final
analysis sample indicated that all individuals had the same response, so
we did not expect to see any difference between subpopulations. It is
especially surprising that the subpopulation difference is statistically

significant only in SO, and precipitation, the only two aerometric

attributes with zero eztimates for tau in the final analysis sample.
These two attributes would have been the least likely to have any
between-individual differences. We do not have a good explanation for
this result.

The discrepancy in the response of the less sickly and sickly to
802 and precipitation implies that there are some important limitations
for the generalizability of the results obtained through the
Whittemore-Korn method. As discussed above, we have chosen to include
in the final analysis sample only those individuals with more than three
sick episodes. We therefore have to question whether our results are
generalizable to the "very healthy'" people with three or fewer sick
episodes. Where the comparisons between sickly and healthy people
result in null findings, we might infer that the "very healthy" people

might have the same response. However, the positive SO, finding

2

indicates that people's responses to 802 are associated with their

health. Thus, the response of the "very healthy" people to S0, cannot

be inferred from our analysis.
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If we regard the average responses given in Table 5.4 for the
sickly subpopulation and those given in Table 5.1 for the final analysis
sample as two unbiased sets of estimates of the same unknown true
parameters, then it is of interest to know how much more information we
gain from the inclusion of the less sickly subpopulation. In other
words, because the estimates in Table 5.1 are based on 1.89 times as
many people as the estimates in Table 5.4, do we gain almost twice the
information? We would expect not, because the precision of the.
coefficients of the less sickly people should be less than that of the
coefficients of the people with more sick episodes. The results are
given as the "efficiency" column in Table 5.4. The efficiency is based
on the precision of the estimated average responses. For each
aerometric attribute, the efficiency is ratio of the variance of the
average coefficient in Table 5.1 to the average coefficient in Table
5.4. For all aerometric attributes, the efficiency of the sickly
subpopulation is about 70 percent. In other words, the near doubling of
the number of individuals from the 655 sickly persons to the 1,238 in
the final analysis sample, owing to the inclusion of the 583 less sickly
persons, only increases the effective sample size by about 43 percent
(i.e., 70 must be multiplied by 1.43 to get to 100). In other words,
the amount of information for each healthy person is less than half that
for each sickly person.

It appears reasonable to conclude that the more sick episodes a
person has, the more information we can expect the person to contribute.
This confirms our earlier conjecture that restricting the analysis to
people with more than a few sick episodes is an optimal strategy to make
the best use of analytic resources.

Tables 5.6 and 5.7 give the between-individual differences within
each of the two subpopulations. In terms of estimating the tau
parameter, the standard deviation of between-individual differences, the
sickly subpopulation has efficiencies of about 80 percent. Thus, for
estimating tau, the near doubling of sample size with the inclusion of
the less sickly subpopulation increases the effective sample size by only

about 25 percent. In other words, each sickly individual contributes



Table 5.6

META-ANALYSIS BASED ON THE RANDOM-EFFECTS MODEL
SUMMARIES FOR THE AEROMETRIC EFFECTS OVER
THE SICK SUBPOPULATION (N=655):
BETWEEN-INDIVIDUAL DIFFERENCES

Aerometric z for the
Attribute Tau Attribute Efficiency
802 (ppm) 3. 37 0.17 0.801
COH 0.381 2.16 0.827
TSP (ug/m?) 0.00279 1.14 0.756
Ozone (ppm) 6.48 1.68 0.788
NO2 (ppm) 5.87 4.27 0.798
Minimum temperature (F) 0.0214 3.57 0.793
Precipitation (in.) 0.00 0.00 0.867
Table 5.7
META-ANALYSIS BASED ON THE RANDOM-EFFECTS MODEL
SUMMARIES FOR THE AEROMETRIC EFFECTS OVER
-THE LESS SICKLY SUBPOPULATION (N=583):
BETWEEN-INDIVIDUAL DIFFERENCES

Aerometric z for the z for the

Attribute Tau Attribute Contrast

SO2 (ppm) 0.00 0.00 -0.07

COH 0.00 0.00 -0.82

TSP (ug/m*) 0.00 0.00 -0.42

Ozone (ppm) 0.00 0.00 -0.68

NO2 (ppm) 1.76 0.186 -1.68

Minimum temperature (F) 0.00 0.00 -1.47

Precipitation (in.) 0.00 0.00 0.00

about four times the information that a less sickly individual
contributes to the estimation of tau.

For the less sickly subpopulation, all the aerometric attributes
except NO2 have no between-individual variation; even the tau parameter
for NO2 is statistically insignificant. Thus, although there appear
to be some nontrivial differences in the tau parameters within each
subpopulation, none of the differences is statistically significant

(from the column "z for the contrast' in Table 5.7).
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We also examined differences in individual responses to air
pollution and weather for two other definitions of sickliness. First,
we split the subpopulation into those with FEV1 greater or less than
that expected given the individual's sex, age, and height. Second, we
split the population into those with or without symptoms of chronic
obstructive pulmonary disease. For both comparisons, we found no
statistically significant differences in either the average responses or

between-individual responses. (See App. C for details.)

COMPARISONS OF OTHER SUBPOPULATIONS

We have also examined differences in responses between children and
adults (18 and over) and between smokers and nonsmokers. For both sets
of comparisons, there were no statistically significant differences in
average responses to air pollution. However, there was significantly
less between-individual variation in children's responses to NO, than in

2
adults'. (See App. C for details.)

LENGTH OF EPISODE

We also examined how the length of the episodes varied with air
quality. The dependent variable was the logarithm of the number of days
in the episode. The independent variables included the same set of
nonaerometric variables used above. For the air quality measures, we
included the air pollution on the first day of the episode and on the
prior day. The response was estimated using a fixed effects model; that
is, each individual's variables were taken as a deviation from that
person's mean, and OLS was used on the deviated data.

We found no statistically significant associatiomn between air
pollution and the length of the episode F(10, 10386) = 1.06. Thus, we
believe that the response of time lost to illness (in days) is largely

captured by the number of episodes of illness.
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VI. INDIVIDUAL STUDY-LONG APPROACH: METHODS AND RESULTS

Our final approach was to analyze the intermediate-run effects of
cumulative exposure to air pollution over two-and-a-half to five years
upon the change in each individual's health from the beginning to the
end of the study. Each individual serves as his or her own control and

provides one data point for the estimation of effects.

METHODS
Sample

The samples for the study-long, health-effects analysis consisted
of the 2,386 people in Seattle and the 956 in Dayton for whom we had the
following information: (1) enrollment and exit health-status data, and
(2) 30 or more months of residence or work location data, so we knew the
levels of pollution they were exposed to. By design, everyone who
completed the study except newborns should have had medical history
questionnaire enrollment data.' Thus, restricting the sample to those
with enrollment information costs very little in precision. One of the
health measures, lung function, was collected in the screening
examination that was given to all adults at exit, but to a randomly
selected 60 percent at entry. For this measure, we had to use an
efficient statistical method for combining the 60 percent with entry
values with the other 40 percent (Dagenais, 1971).

Restricting the sample to those with extensive pollution data
excludes those who moved early, and also the approximately 10 percent of
enrollees who did not complete the study for whom we have no exit
information. Most of those people left during the first year. Since
the pollution levels differ from season to season and year to year,
average pollution exposure for individuals with short periods of
pollution data differed systematically from that for people who stayed
in the study longer, and including them would have confounded the

results. Since we have exit health information on those who moved, we

'Form and item nonresponse were very low on enrollment data
collection.
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did include people who moved after staying most of the time where we

could monitor pollution levels.

Dependent Variables

We assessed effects on the HIE's General Health Index, a summary
integrative measure of health perceptions, and a set of respiratory
health indicators. The GHI is based on answers to 22 questions for
adults and seveﬁ items for children (aged less than 14) that assess
health generally.? It is scaled from 0 (worst health) to 100 (best
health). The average for our full adult sample is 71, with a standard
deviation of 15.

For adults,® our respiratory health indicators included
FEVl/predicted FEVl, a general measure of lung function, which should be
sensitive to widespread mild effects on the order of minor changes in
smoking behavior.® We also used self-reported hay fever, chronic
bronchitis, shortness of breath, and frequency of chest pain (in Dayton,
pain when exercising) as measures of self-reported illness. For
children less than 14, we used two measures of illness: hay fever and
asthma. Information on all these measures is displayed in Table 6.1 for
Seattle; the Dayton values are similar.

The health measures were also used to define a susceptible group
for separate analysis. We hoped that this would shed light on overall
general results and give more precision to analyses of rarer problems.
The susceptible group of adults used in these analyses were those over
18 at enrollment who reported chronic bronchitis, congestive heart
failure, chest pain, or shortness of breath. These were 354 out of
1,502 adults in the Seattle sample and 120 out of 661 adults in the
Dayton sample. In the Seattle sample, there were 64 children who could

reasonably be deemed "susceptible'"; in Dayton, there were too few to

2There were actually two questionnaires, one used at entry in
Dayton and the other at entry in Seattle and at exit in both cities.

3*The cutoff age used by the HIE for adulthood varied with the
measure.

“Lung capacity depends on height, age, and sex, as well as disease.
We control these factors using the results of Kory et al. (1961) and
Kory and Smith (1974). See Foxman et al. (1982) for details.
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Table 6.1

EXIT VALUES OF DEPENDENT VARIABLES USED IN ANALYSIS

Direction
Standard of Better Time Period
Variable Mean Deviation Range  Health Considered

Adult GHI 72 15 0-100 - --
Hay ‘fever status 1.44 0.8 1-3 s last year
Shortness of breath 0.17 0.5 0-4 = last 3 months
Chronic bronchitis

(phlegm) 0+12 0.4 0-3 o last year
Chest paina 0.3 1.1 0-6 i last year
Exercise pain 0.08 0.3 0-2 = last year
Lung function (per-

cent pred. FEVl) 100 18 21-164 + --
Child GHI 77 15 30-100 + --
Hay fever status 1.34 0.7 1-3 == last year
Asthma status 0.43 1.7 0-8 -- last year

4Chest pain used in Seattle.

b ; ; ; . .
Exercise pain used in Dayton because chest pain not available.

even attempt a statistical analysis (because hay fever was not on the

Dayton enrollment child-health questionnaire.

Air Quality Variables

In this analysis, we began with six measures of air quality:
average TSP, SOZ’ COH, and CO; average daily maximum ozone; and maximum
hourly ozone over the course of the study. (See the discussion of
exposure in Sec. II for more details.) The maximum hourly ozone measure
was used only in Seattle, since that measure did not exhibit enough
geographical variation in Dayton to make it useful. CO was used in
Dayton but not Seattle. All measures except maximum hourly ozone were
averaged over the full period for which we had data. Correlation
analyses showed that the various measures of long-run air quality were

relatively independent in Seattle, with COH and SO, having a pairwise

2
~ correlation of 0.45, and the rest of the pairwise correlations all below
0.25. We dropped COH from the Dayton analysis because we found COH,
SOZ’ and ozone to be highly correlated. TSP and CO were not correlated

with any of the other measures. For most analyses, we split the
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population by exposure quartiles for each measure and contrasted those
whose air quality was in the worst one-fourth and the second-worst one-
fourth against those in the best half. Because there did not appear to
be strong nonlinearities in health effects, we can use the measures
directly. The results with continuous measures of air pollution are
quite similar to the results with indicator variables.

Because air quality can have short- and long-run effects on health
status, we also used measures of air quality in the month preceding
measurement at the start and end of the study. We expected that the
general health measures--General Health Index, lung function--would be
most affected by immediate experience. Also, the shortness-of-breath
scale was based on recall of only the most recent three months. Even
the other specific disease measures, which asked for experience over the
past year, could have been colored by recent experience. By taking the
difference between air quality at the exit exam and at the eﬁrollment
exam, we obtain a measure that is independent of long-run average
experience, and should capture short-run effects on the final outcome.
In Seattle, the enrollment SO2 values were unusual--negatively
correlated with the long-run average--so we used only the exit value.
In Dayton, SO2 was measured for only half the participants at exit, so

we used only the enrollment values as an independent variable.

Model

Did air quality over the course of the study affect health at exit?
To answer that question, we used regression methods to estimate effects
of exposure history controlling for initial value of health, age, sex,
race, education, smoking history, and time in study (3 or 5 years).
Because health is stable over time, the most important explanatory
variable is the health measure at enrollment. This can be incorporated

in three ways: First, by looking at changes over time:
Health (exit) - health (entry) = a + b1 x age + (D)

b2 x pack years . . . + ¢, * ozone + c, X TSP
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Second, by bringing health at entry to the right-hand side and not
constraining its coefficient to be one:

(2) Health (exit) = d x health (entry) + a + b, x age + €2)

1

b2 x pack years . . . + c, x ozonme + c, X TSP
Third, by omitting entry health altogether--dropping d x health (entry)
from Eq. (2):

Health (exit) = a + b1 x age + b2 x pack years . . . (3)

+ ¢, x ozonme + c, X TSP
The advantage of Eq. (3) is that long-term effecfs on people whose air
quality exposure is fairly stable over time will also be seen in health
at entry, so that taking differences as in the top two equations will
dilute the apparent effects of lifetime air quality. The disadvantage
of the last (cross-sectional) approach is that it is very vulnerable to
bias arising from selection by people of where they live and work.
Equation (1) is best against bias, but is overly affected by random
variation of health at entry. In Eq. (2), the regression method selects
the appropriate weight to put on health at enrollment, and this middle

specification is the one presented most often in this section.

RESULTS
Adults

The GHI is the most aggregate measure of health effects studied.
For adults, the effect on general health status exerted by each air
quality measure taken separately is shown in Table 6.2. Dashes indicate
t-values less than one in absolute value, and the blanks on the best
quarter indicate it was the group against which the others were
compared. Maximum hourly ozone measure had significant adverse effects

in Seattle. People in the worst two quarters for average daily maximum
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Table 6.2

EFFECTS OF SINGLE POLLUTANTS ON ADULT GENERAL HEALTH INDEX

Ozone Ozone
Variable TSP SO2 COH  Average Max. co
Seattle (N = 1640)
Worst quarter =1.0 e =1.0 -1.92 --
Second-worst -1.4 0.9 s -2.3a S
Second-best -1.4 -- b == =
Best (reference group) = = i - s
Dayton (N = 661)
Worst - . -= i
Second-worst -2.5 —= = SR
Second-best -2.1 - -- =22

Best (reference group) == == == El=

NOTE: See subsection on methods for interpretation of GHI.
Numbers represent average differences in average GHI from those
with least pollution exposure. Only coefficients with a t-value
greater than 1 in absolute value are shown. Blanks indicate that
the variable was not included.

aSignificant at 0.05 level.

ozone had a GHI score of more than 2 points lower than those living in
the best areas by that measure. This is about one-fourth the difference
found between those with diabetes or chronic obstructive pulmonary
disease and those nondiseased adults in the sample. In Dayton, however,
there was no effect of ozone. Other air quality measures in Dayton and
Seattle had less significant adverse effects, except for SOZ’ which had
an insignificant positive effect in Dayton. These results and further
results for lung function were not sensitive to a number of minor
variations: (1) whether the entry and exit exam values were used; (2)
whether air quality measures were split by quartiles (as in Tables 6.2
and 6.3) or entered linearly (as in Table 6.4); (3) whether teenagers
were included or not; and (4) whether air quality measures were
considered one by one, as in Table 6.2, or all at once, as in the
subsequent tables. Thus, in Tables 6.3 and subsequently, the results
give partial effects of each pollutant controlling for the others. The

initial value of GHI was by far the most important predictor of exit GHI.
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Table 6.3

REGRESSION COEFFICIENTS FOR GENERAL ADULT POPULATION,
SPLIT BY QUARTILES: SEATTLE

Shortness Chronic

Lung Hay of Bronchitis Chest
Variable GHI Function Fever Breath (Phlegm) Pain
Initial measure 0.60% 0.44* 0.72% o0.35% o0.28% a.21%
Ozone
Max, worst quarter =i 4.72 -0.12% 0.06 -0.04 e
Max, second worst - 2.82 -- 0.092 -- +0.12
Avg, worst quarter -3, 1% i -= -- 0.03 —
Avg, second worst -5 g2 2.4 - -- +0.11
TSP
Worst quarter -- 2.4 -0.08 -- -0.04 -0.27a
Second worst -- 2.1 -0.04 -- -0.04 -0.09
COH
Worst quarter -- -- -- -- -- --
Second worst -1.3 -- =0.05 -0.05 -- --
802
Worst quarter -- -- -- 0.06 0.03 --
Second worst +1.1 1.3 -- 0.04 -0.03 --
Other variablesb
Sample size 1,499 1,235 1,499 1,296 1,338 1,346
R2 0.38 0.34 0.54 0.26 0.15 0.11

NOTE: Adults defined as 14 and over for GHI and hay fever, 18 and over
for shortness of breath, chronic bronchitis, and chest pain. See subsection

on methods for interpretation of GHI. Only coefficients with t-values greater
than 1 are shown.

dsignificant at 0.05 level.

b ; ;
Age, female, female x age, nonwhite, four measures of smoking
behavior, education, time in study (3 or 5 years).
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As shown in Tables 6.3 and 6.4, better lung function was associated
with poor air quality in Seattle, and the association with ozone was
significant. For the other four measures, a high score indicates more
disease, so a negative sign (as in hay fever) shows a positive
association of hay fever with good air quality, and positive signs (as
in the shortness-of-breath scale) show a positive association of
shortness of breath with poor air quality. For these diseases, higher
TSP is consistentlf associated with better health, and higher SO2 often
with worse health, in Seattle. However, virtually all of these effects

are not significant at the 5 percent level. There were fewer effects in

Table 6.4

EFFECTS ON GENERAL ADULT POPULATION, ENTERED CONTINUOUSLY: SEATTLE

Shortness Chronic

Lung Hay of Bronchitis Chest
Variable GHI Function Fever Breath (Phlegm) Pain
Initial measure 0.60 0.47 0.72 0.34 0.28 0.21
Ozone max e 74 =255 079 =073 sE
t -- 2.76%  -2.80% 1.02 1.14 --
Ozone average -678 613 16 11.50 10, 90 =
t -2.54°% 1.64 1.26 1.08 1,28 --
TSP average -- -- -0.0044 -- -0.002 -0.006
t -- - -2.57% -- -1.68 -1.992
COH average 5:7 -- 0.35 - - i
€ 1.3 -- 1.69 -- -- --
SO2 average -- -- -- -- -- --
t -- - - - -- -
' b
Other variables
Sample size 1,499 14313 1,499 1,296 1,338 1,346
R2 0.38 0.54 0.26 0.15 0.09

NOTE: See notes for Table 6.3.
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Dayton, as shown in Tables 6.5 and 6.6. Indeed, most of Table 6.5 is
blank.

In Seattle, results for the susceptible population are generally
less significant, because the sample is much smaller (Tables 6.7 and
6.8). The negative coefficients relating the GHI to air quality are as
large as those for the general population, but they are not significant.
The consistent associations between poor air quality and better lung
function are not present in the susceptible group, and indeed, the
effects of ozone are reversed. The associations between bad air quality

and shortness of breath are much larger in the susceptible group.

Table 6.5

EFFECTS ON GENERAL ADULT POPULATION, SPLIT BY QUARTILES (DAYTON)

Shortness Chronic
Lung Hay of Bronchitis Exercise

Variable GHI Function Fever Breath (Phlegm) Pain
Initial measure 0.68 0.68 0.60 0.56 0.39 0.30
Ozone

Worst quarter - -- =0 .19 =i -0.06 -0.05

Second worst -- -- -- 0.13 -- --
TSP

Worst quarter -- -- -0.19% -- -- --

Second worst -- -- - -- -- --
COH

Worst quarter -- -- - =i -- --

Second worst -- 2 =is 0.09 -- -0.05
SO2

Worst quarter -- -- -= i -- --

Second worst -- -- -0.19a -- -- --

. b

Other variables

Sample size 661 494 637 540 546 572

r? 0.39 0.41 0.27 0.29 0.20 0.20

NOTE: See notes for Table 6.3.
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Table 6.6

EFFECTS ON GENERAL ADULT POPULATION, ENTERED CONTINUOUSLY: DAYTON

Shortness Chronic

Lung Hay of Bronchitis Exercise

Variable GHI Function  Fever Breath (Phlegm) Pain
Initial measure 0.68 0.65 0.61 0.56 0.39 0.30
Ozone - -- -18 == -7 b3
t et B -2.39 = -1.64 -1.13
TSP average -- -- -0.005 e =i -
t = -- -2.01 == = -
CO average - -- -- 0.16 P -0.10
t -- -- -- 1:12 i -1.56
SO2 average i == -75 - = i ) -
t -= -- -2.80 =im == -

: b

Other variables

Sample size 661 523 637 540 546 572

R2 0.38 Sim 0.27 0.29 0.20 0.20

NOTE: ' See notes for Table 6.3.



EFFECTS ON SUSCEPTIBLE ADULT

Table 6.7

POPULATION, SPLIT BY QUARTILES: SEATTLE

Lung Shortness Chronic
Func- Hay of Bronchitis Chest
Variable GHI tion Fever Breath (Phlegm) Pain
Initial measure 0.6 0.53 0.65 0.32 0.19 0.21
Ozone
Max, worst quarter — -- i == T e
Max, second worst -2.4 -- -- 0.11 - --
Avg, worst quarter -2.0 -3.60 s - i ST
Avg, second worst -- -- -- o e 0.27
TSP
Worst quarter =2.1 -- =0.11 0.12 - --
Second worst =i == =i == -0.09 -0.31
COH
Worst quarter = -- -- == -- --
Second worst —i -- 0.20 -0.16 - i
SO2
Worst quarter -- - -- 0.212 == --
Middle quarter -- 2.70 -- 0.15 -- 0.49%
Other variablesb
Sample size 352 291 335 316 332 351
R2 0.42 0.46 0.50 035 0.20 0.19

NOTE: See notes

for Table 6.3.
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Table 6.8
EFFECTS ON SUSCEPTIBLE ADULT POPULATION, ENTERED CONTINUOUSLY: SEATTLE
Lung Shortness Chronic
Func- Hay of Bronchitis Chest
Variable GHI tion Fever Breath (Phlegm) Pain
Initial measure 0.6 0.51 0.66  0.31 0.20 0.20
Ozone max - - -3.5 - - -
t -- -- -1.56 -- -- e
Ozone average -850 -- -- 42.5 25 ==
t -1.48 -- -- 1.35 1.00 -
TSP average -0.13 -- -0.007 =t £ ==
t ~1:5 -- -1.5 =i S ==
COH average 9.8 -- 0.68 -- i -1.41
t 1.05 -- 1.34 -- -= -1.39
SO2 average S -- e s =5 90
t -- -- -- -- -- 1.79
. b
Other variables
Sample size 352 319 335 316 332 351
R2 0.42 -- 0.50 0.33 0.20 0.16
NOTE: See notes for Table 6.3.



In Dayton, the effects of air pollution on the health of
susceptibles are insignificant (Table 6.9 and 6.10), as would be
expected from the insignificant effects on the general population. The
negative coefficients relating the GHI to air quality are larger than
those for the general population, but they are not close to significant.
The associations between poor air quality and better lung function, less
hay fever, and less exercise pain are more consistent and stronger in
the susceptible group. The results for exercise pain are the most
striking. Since "never exercise because of chest pain' is scored the

same as pain while exercising, this correlation is not the result of

Table 6.9

EFFECTS ON SUSCEPTIBLE ADULT POPULATION, SPLIT BY QUARTILES: DAYTON

Lung Shortness Chronic
Func- Hay of Bronchitis Chest
Variable GHI tion Fever Breath (Phlegm) Pain
Initial measure 0.56 055 0.55 0.53 0:: 27 0.15
Ozone
Avg, worst quarter i == -0.32 =0:51 =r= -0.31
Avg, second worst -- 6 -- == = -0.26%
TSP
Worst quarter =5 e - == e -0.31°%
Second worst =5 4 -- =i i -
Co
Worst quarter -- 7 -- i e =032
Second worst = 5 =i - == =i
SO2
Worst quarter i = == == - 0.20
Second worst S =5 - = == S
. b
Other variables
Sample size 122 103 121 115 115 116
R2 0.46 0.56 0.34 0.39 0.22 0.43

NOTE: See notes for Table 6.3.
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Table 6.10

EFFECTS ON SUSCEPTIBLE ADULT POPULATION, ENTERED CONTINUOUSLY: DAYTON

Lung Shortness Chronic
Func- Hay . of Bronchitis Exercise
Variable GHI tion Fever Breath (Phlegm) Pain
Initial measure 0.64 0.40 0.47 0.54 0.21 0.08
Ozone average i 378 -26 =45 -25 -36
t == 1:29 =125 =1.53 -1.:56 -2.41
TSP average -- 0.13 -0.008 - -- -0.012
t == 1.05 =1.17 A i -2.48
CO average =7 .. 5 -- -- -- == -0.58
t -1.04 -- -- - i -2.29
502 worst . - 1,776 -- -61 ==
t =i 2.18 = ] -1.16 --
Other variables
Sample size 116 108 115 115 115 116
R2 0.43 i 029 0.34 0.21 Q.37

NOTE: See notes for Table 6.3.

people staying inside. Perhaps it reflects selection out of low-air-
quality areas by people with angina.

In the model that produced the results in Tables 6.3 through 6.10,
exit health was a linear function of entry health and other variables.
We also looked at two other specifications. First, we used change in
general adult GHI and lung function, entry to exit, as the dependent
variable, i.e., Model (1) above. The results for effects of air
pollution on changes in health were similar to results for exit health
values regressed on initial. This is not surprising since both the GHI
and lung function are quite stable over time. Thus, the coefficients of
the initial measure shown in the tables on general adult health are not
too different from +1 (the value implicitly assumed by studying

changes).



Second, we considered the purely cross-sectional results of
regressing exit GHI and lung function values on cumulative exposure to
air pollution during the study period. These results are shown in
Tables 6.11 and 6.12. Since there is no adjustment for the stable
differences between people, much less of the variation in the health
measures is explained (R2 is much smaller).

In Seattle, the associations with air quality for both the GHI and
lung function stay the same. Since both the change in health and exit

health are similarly correlated with air quality, it seems that the

Table 6.11

EFFECTS OF POLLUTANTS ON HEALTH IN SEATTLE:
A CROSS-SECTIONAL ANALYSIS

General General
Health Lung Health Lung
Index Function Index Function
Variable (End) (End) (Start) (Start)
Ozone
Max, worst quarter S 4.9 = e
Max, second worst -1.1 3.5a -1.4 3.1
Avg, worst quarter -1.6 [ e B
Avg, second worst -3.0°2 2.5 -- --
‘ISP
Worst quarter -- -- -- -6.12
Second worst -- -- -- -2.4
COH
Worst quarter - - —— —=
Second worst -- -- -- --
SO2
Worst quarter =i == = i
Second worst -- - =1.5 -4.2a
Other variablesb
Sample size 1,642 1,235 1,649 667
R2 0.08 0.04 Q.17 0:13

NOTE: See notes for Table 6.3.
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Table 6.12

EFFECTS OF POLLUTANTS ON HEALTH IN DAYTON:
A CROSS-SECTIONAL ANALYSIS

General General
Health Health
Index Lung Index Lung
(End) Function (Start) Function
Variable Susceptibles (End) Susceptibles (Start)
Ozomne
a a
Worst quarter -8 -8 =11 -6
Second worst -- -62 -4 -5
TSP
Worst quarter =5 -5 =5 -3
Second worst -6 -3 == -4
co
Worst quarter -- -- -- --
Second worst g8 -- -4 . =5
502
Worst quarter -- -- _— o
Second worst -7 =4 s o
Other variablesb
Sample size 116 265 116 265
R2 0.32 0.:23 0::39 0.23

NOTE: See notes for Table 6.3.

initial value, the variable used to adjust for stable differences, must
not be highly related to subsequent air quality. This conjecture is
somewhat borne out by the last two columns of Table 6.11. General
health is not greatly associated with subsequent ozone, and poorer lung
function is associated with higher TSP and SO2 levels. How can health
change and exit health be associated with pollution levels during the
study while initial health is not? One possible explanation is
geographical sorting prior to the study. Another is that air quality
before the study started is not highly correlated with subsequent air

quality, and that there are noticeable medium-run responses to the

change. Another explanation is that the increased precision of the
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before-and-after technique reveals something missed by the cross-
sectional approach.

In Dayton, on the other hand, the cross-sectional analysis yields
consistent positive associations between low air quality and both the
GHI and lung function. Contrasting the cross-sectional with the
longitudinal analyses, we see that poor health may be related to low air
quality cross-sectionally, but that the relationship does not increase
over time. The cross-sectional relationship may be due to selection or
previous long-term exposure, but exposure over the three years of the
study does not seem to have had many effects.

We incorporated variables representing air quality for the month
before the initial and final exams. These short-term effects on
physiological measures were generally weak, but in the right direction
(adverse). Because short-term air quality was not highly correlated
with long-term air quality, inclusion or exclusion of short-term
measures had little effect on the estimated effects of long-term air

quality.

Children

The GHI for children under 14 was associated with air quality in
Seattle in a peculiar way (Tables 6.13 and 6.14). There were strong
associations of better health with higher levels of TSP and lower levels
of ozone. Hay fever was not associated with air quality, but higher
levels of ozone were related to more asthma.

The Dayton results were more consistent, if unexpected. Higher
levels of all air pollutants were associated with better general health
and less hay fever (Table 6.15). Several of these effects were
significant. Asthma was not associated with air quality.

The sample of susceptible children in Dayton was too small to be
analyzed. Even in Seattle, the sample of susceptible children with
complete information was so small that only very large effects would
have been significant. No such effects were found, but the right halves
of Tables 6.13 and 6.14 show some marginal effects. The (positive)
effect of TSP on general health disappears, but otherwise the results

for sickly children are similar to the results for all children.
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Table 6.13

EFFECT OF AIR QUALITY ON HEALTH IN CHILDREN UNDER 14,

SPLIT BY QUARTILES:

SEATTLE

All Children

Susceptible Children

General Hay General Hay

Variable Health Fever Asthma Health Fever Asthma
Initial value 0.42%  0.63%  0.52%  0.45%  0.08 0.542
Ozone

Max, worst quarter -- -- -- -- .- =1 %

Max, second worst 3.1 -- 0.82 -- o —_

Avg, worst quarter 3 B2 -- 0.92 -5 - 1.6

Avg, second worst -2.6 -- 0.4 i - -
TSP

Worst quarter 6.42 = -- -- i o

Second worst 8.6a -- -- -- — —
COH

Worst quarter L -- -- -6 -- _—

Second worst -- -0.17 -- -- — -
SO2

Worst quarter = 0.14 -0.4 == i -1.0

Middle quarter -- -- -- -= T -
Other variablesb

Sample size 630 423 251 0.41 0.19 0.51

R2 0.25 0.34 0.27 64 63 37

aSignificant at 0.05 level.

b . ;
Age, female, female x age, nonwhite, two measures of parental smoking

behavior, parents' education, time in study (3 or 5 years).



Table 6.14

EFFECTS OF AIR POLLUTION ON HEALTH IN CHILDREN UNDER 14,

ENTERED CONTINUOUSLY:

SEATTLE

Variable

All Children

Susceptible Children

Asthma

Initial value

Ozone max
t

Ozone average
t

TSP average
t

COH average
t

SO2 average

t

Other variablesb

Sample size

R2

053

-130
=1:55

251

General Hay
Health Fever Asthma
0.43 0.12 0.51
187 -9.8 --
1.12 -1.06 --
-- -- 1,123
-- -- 2.02
-- 4.0 7.8
-- 2.39 ° 1.40
-- -82 -419
i =101 =1.41
64 63 37

-39 0.24 0.50

NOTE: See notes for Table 6.13.
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Table 6.15

EFFECT OF AIR QUALITY ON HEALTH IN CHILDREN UNDER 14,

SPLIT BY QUARTILES: DAYTON
General Hay

Variable Health Fever Asthma
Initial Value 1.04 -- 0.41
Ozone

Avg, worst quarter 7.5% =i =

Avg, second worst 6.52 =i i
TSP

Worst quarter L =021 o

Second worst -- -0.22 0.49
(6]0]

Worst quarter 4.6 -0.462 ==

Second worst -- -0.17 --
802

Worst quarter - 0.29 E=

Second worst -- -- --
Other variablesb

Sample size 283 269 109

R2 0.19 0.10 0.37

NOTE: See notes for Table 6.13.
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CONCLUSIONS

In the general Seattle sample, GHI seemed adversely affected by
ozone, and better lung function was associated with most of the measures
of air quality. The picture for specific diseases is less clear. Among
susceptibles, both the negative effects on general health and the
positive effects on lung function are less significant; indeed, ozone
may have a negative effect on lung function, but the results are not
significant enough for clear interpretation. Either the effects are
weak, or there are simply not enough susceptibles here to show much.

For children, most of the results are in the "right" direction, but few
are significant.

Effects in Dayton were even less significant than those in Seattle,
and many showed an unexpected association of better health with poorer
air quality (Table 6.16). In fact, we did not find a single significant
effect of lower air quality in Dayton. The general health of adults was

unrelated to air quality, but hay fever and lung function in susceptible
Table 6.16

EFFECT OF AIR QUALITY ON HEALTH IN CHILDREN UNDER 14,
ENTERED CONTINUOUSLY: DAYTON

General Hay
Average Health Fever Asthma
Initial Value 1.12 - 0.39
Ozone average 1410744 - 20 =
t 3.26 =1, 07 ==
TSP average 0.10 -0.006 ==
t 1.26 -1.42 -
CO average 6.4 -0.51 ==
t 1.46 -2.07 o
SO2 average 2,026 e =
t 1:90 =i i
. b
Other variables
Sample size 283 269 109
R2 0.19 0.08 0.35

NOTE: See notes for Table 6.13.
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groups and hay fever and general health in children were associated

in the "wrong" way. Ozone, in particular, was generally related to
better health. Specific health problems showed even more insignificant
results than the general health measures. The main reason for the lack
of significant effects in Dayton is probably sample size.

This study of intermediate range effects used a before-and-after
method instead of the cross-sectional approach most commonly seen.
Using initial status as a control reduces the problem of selection bias,
but allows us to look only at changes over the course of observation
(here 3 or 5 years). The cross-sectional approach will be relatively
better if people do not move much and select work and home locations
independently of pollution levels, and if air pollution effects on
health are gradual. If people do move in such a way that health is
correlated with pollution, then cross-sectional studies can be quite
misleading. As it turned out, the cross-sectional results differed
between Seattle and Dayton, evidence that selection may be more
responsible for these observed results than accrued damage to health.
Ideally, one would like a before-and-after design with a very long
period for health effects to appear, but follow-up in such studies is

difficult and expensive.
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VIlI. DISCUSSION

The results in the preceding sections exhibit a mixed set of
associations between air pollution and the three classes of health
outcomes: use of outpatient medical services, time lost due to illness,
and health status. They also exhibit a mixed set of results depending
on the method used to estimate the adverse effect of air pollution. In
many cases, higher levels of air pollution are associated with better
health outcomes.

Closer examination reveals several patterns. Two of those are of
special note because they dominate the overall pattern of "perverse"
results, where higher levels of air pollution are associated with better
health outcomes. First and most striking is the large number of
significant results for ozone. Ozone was responsible for many of the
significant effects--largely positive (beneficial) in the case of
outpatient health expenditures and time lost to illness, and both
positive and negative (adverse) in the case of the health status
measures. There were positive estimates for ozone from both the annual
(cross-sectional) and panel results and from both the short-term and
intermediate-term results.

~ The second trend is the large number.of significant results
obtained in the aggregated day-to-day approach, which is a panel
analysis for a fixed population. Three duarters of the estimated
effects are significant at the 10 percent level, and half are
significant at the 1 percent level. Of the significant results, half
are positive (beneficial). All of the pollutants except CO have at
least one significant and "perverse" positive effect.

In contrast, the individual daily analysis in Seattle (based on the
random-effects model) yields negative (adverse) estimates for all of the
pollutants except ozone. 802 and NO2 are statistically sigﬁificant for
the average person at the 1 percent level.

The other panel analysis was the examination of air pollution
effects on health status. Except for ozone, we observed few

statistically significant effects of air pollution on health status.



This was was true for both sites, for children and adults, for the
general population, and for the susceptible (i.e., sickly) population.
We did observe some significant results for some of the scales for
specific diseases. The significant results were of mixed sign. Of the
18 non-ozone results, only one was significant at the 10 percent level.
If there were no true effect, we would expect to see about two
significant findings just at random at the 10 percent level.

The results for the annual analyses are mixed. Those results are
obtained by allowing for correlated responses in a manner that ignores
the possibility that individuals may geographically sort themselves out
in response to air pollution. Hence, the method has embedded in it the
same potential for bias that exists in pure cross-sectional approaches.
Except for ozone, only 2 out of 18 results are significant at the 10
percent level. One is negative (adverse) and the other positive
(beneficial). If there were no true air pollution effect, we would
expect to get one positive and one negative significant result at
random.

By and large, the results for the pollutants other than ozone are
not statistically significantly different from zero, aside from those
obtained from the aggregated daily approach. For the other three
methods, no pollutant showed more than two significant effects out of an
average of eight possibilities each.

The effects of pollution on health did not vary in any easily
generalizable way between Seattle and Dayton. The overall effects of
pollution were the same for each city as they were for both taken
together, i.e., generally mixed and insignificant with a tilt toward the
positive. Breaking it down by pollutant, there were many instances of
varying results, but the general summary given above for both cities
together could apply almost as well to each considered separately.

Our several analyses of susceptibles provided results that were
consistent with those of the population as a whole. However, the
failure to find a greater sensitivity to pollution among susceptibles
probably reflects our lack of precision. For example, in the before-
and-after comparisons of the intermediate term effects of air pollution
on health status, we generally found larger effects for susceptibles.

These larger effects were not large enough to compensate for the
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reduction in sample size. In a general population study of the nonaged,
there are few very susceptible individuals.

This summary of our findings should not be construed to mean that
air pollution has no appreciable or significant adverse effect on health
outcomes. There are a number of methodological reasons why we could
have obtained these largely null findings, or in the case of ozone, a
counterintuitive result. In the following, we discuss these findings

with special attention to the methodological lessons to be drawn.

OZONE

It is so commonly assumed that air pollution is bad for health
under all circumstances that our finding that ozone is frequently
associated with significant beneficial short-run effects seems puzzling.
There are a number of methodological or threshold explanations for why a
pollutant would show no ill effect on health in a given study. It is
more difficult to understand how an air pollutant could be consistently
found to have a significant association with improved health. We
suspect that the ozone results are due to a confounding of ozone with
meteorology or some other omitted variables that have an independent and
beneficial effect on health outcomes. The levels of ozone in these two
cities may be low enough that the adverse effects of ozone are
outweighed by any beneficial effects of the omitted but correlated
explanatory variables.

Our ozone findings are not inconsistent with chamber studies and
prior observational analyses. Chamber studies have indicated that ozone
exposure at levels as high as 0.3 to 0.4 ppm can be tolerated without
adverse effects by individuals sitting quietly in the chamber (Adams et
al., 1981). Exercising individuals demonstrate acute effects at much
lower levels, usually starting around 0.20 to 0.24 ppm (Avol et al.,
1983; Brookshire et al., 1982; Delucia and Adams, 1977; Evans et al.,
1976). Experts in chamber studies indicate that susceptible individuals
under exercise conditions may respond adversely at 0.12 ppm, the federal
standard (Adams et al., 1981). Only a small number of the chamber
studies have used levels below 0.12 ppm. Few have recorded effects
below about 0.2 ppm, even for exercising individuals (Folinsbee et al.,

1978; Javitz et al., 1983).
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Thus, there are no chamber data to suggest that ozone
concentrations well below the federal standard produce measurable or
appreciable short-term adverse effects. The effects threshold appears
to fall somewhere- between 0.12 and 0.4 ppm, depending on the
susceptibility and activity of the exposed person.

A number of studies have suggested no ozone effect or even a
positive effect on free-living populations, especially where ozone
levels studied have not been high. For instance, reanalysis of data
from Houston by Javitz et al. (1983) at SRI International indicates a
small, consistent drop in the probability of symptoms as the ozone level
increased from zero to concentrations of 0.03 to 0.09 ppm. Once ozone
levels reached 0.12 ppm, the probabilities of many symptoms began to
increase and continued to do so as ozone levels rose further, thus
replicating the findings of the chamber studies. It should be noted
that these are symptoms and not lung function measures.

The levels of ozone to which our sample was exposed fell well below
the range at which the chamber and Javitz studies showed adverse
effects. Seattle experiences very little ozone exposure over the one-
hour federal standard. The exposure in Dayton is substantially greater,
but even the highest concentrations did not exceed 0.2 ppm--below the
ozone level at which most chamber studies have shown effects for
exerciSing individuals.

The ozone results may reflect the confounding of ozone with some
omitted but beneficial variable. For example, the absence of variables
on cloud cover may impart a small but statistically significant bias to
the results from the individual daily time series if individuals in
Seattle are less likely to be ill or feel blue when it is sunny.! A
similar bias may have been introduced into the aggregated daily time
series by the omission of meteorological variables.

. Alternatively, the ozone effect may be related to the short-term
positive reaction that many people have on being exposed to light
negative ions. Negative ions are produced by electrical equipment

(including ionizers, of course), thunderstorms, sunshine, and wind.

'!0ur analyses adjust for precipitation and temperature, but not
sunshine.
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Regardless of the source, production of negative ions is almost
invariably accompaniéd by the production of low levels of ozone. The
positive reaction to negative ions may reduce symptoms, the recognition
of symptoms, or complaints of symptoms. In our study, these would
translate into fewer visits to physicians and less sick loss.

Despite the short-run positive association of ozone with healthier
outcomes at low levels of pollution, there may be underlying and ongoing
damage associated with this low-level ozone exposure which would only be
expressed in long-term effects. The health status findings for ozone in
Seattle are consistent with a longer term adverse effect, when the short
term use of services and sick-loss exhibit a positive association.
Detels et al. (forthcoming) report possible long-term effects of oxidant
exposure, including possible cumulative damage associated with ozone
concentrations below 0.10 ppm. Obviously, further research into this

entire problem would be very helpful.

METHODS EFFECTS
Aggregated Daily Time Series

Our results are sensitive to the methods used to do the analysis.
In particular, the aggregated day-to-day approach yields many
significant findings, most of which are of the wrong sign, i.e., they
indicate a beneficial association of air pollution with health outcomes.
For a given pollutant, the effects do not even have the same sign for
the two different sites and the two outcomes analyzed. Despite the
significance of the results, the magnitude of the effect is typically
quite small. A doubling of the air pollution level is usually
associated with a change in the health indicator of about 2 to &
percent.

Why the aggregated daily approach "misbehaves" is an open question
at this point. Given the size of the inference statistics and the small
effects of a doubling in the level of air pollution, it is clear that
this method has the precision to pick up small effects, including those
where a doubling of the air pollution level would be associated with
changes in visit rates and sick-loss of only 2 percent. We suspect that
the aggregated time series may be picking up the beneficial aspects of

other factors correlated with higher levels of air pollution. A likely



suspect is the day-to-day variation in meteorological conditions; our
specification controlled for monthly and day of the week effects, but
not cloud cover, temperature, or precipitation. Whatever the
explanation, this easy-to-use method clearly requires more scrutiny
before a decision is made as to whether it should be applied routinely

in measuring air pollution effects.

Individual Daily Time Series

In contrast, the individual daily approach consistently yielded
estimates of adverse effects of air pollution on time lost to illness--
with the exception of ozone. On that basis alone, this technique may be
the more promising for valuing the benefits of regulating air quality
than the aggregated daily time series approach. In addition, there are
two methodological rationales for favoring the individual time series
approach. First, in this approach, we use the individual as his or her
own control and estimate the response to air quality and weather, rather
than trying to get some sort of average response over a population that
is quite heterogeneous in the response. Thus, we can tell whether
susceptibles or smokers or children are more or less responsive than the
rest of the population by doing a meta-analysis on the estimated
individual responses. Second, allowing each person to act as his or her
own control reduces certain exposure and data problems. If a person
lives in a dusty or poorly ventilated house, and dust affects the
person's behavior, it will be captured in his or her coefficients.
Third, we can do a much better job of estimating individual exposures in
the individual daily approach than in the aggregated approach. In the
former, we can use our estimate of the person's exposure, based on work
and home locations. In the latter, we can use only one value of each
pollutant for everyone, so we measure the individual's exposure with
more error. That measurement error yields biased estimates of the true
response to air pollution.

This study was the first to apply this technique to a general
population. The pattern of adverse effects of air poilution detected in
a moderately polluted city is evidence that the technique can detect the
adverse effects of air pollution when other techniques (e.g., cross-

sectional or aggregated time series) fail to give meaningful results.



Before we make too much of this finding, however, we should remember
three things: First, this is in essence a case study of the technique
and is subject to all the limitations of a case study. Second, the
method yielded an unexpected negative correlation between the parameter
estimates and their standard errors. And third, the individual daily
approach is a costly one. Nevertheless, we find the results interesting
and the theoretical arguments convincing enough to warrant further study
of this technique. In the second phase of this research for EPA, we
will examine this technique more closely. That work will include (1)
simulation analysis to study the question of correlation between the
coefficients and their standard errors; and (2) applications of this

technique to other outcomes and to data from the Dayton site.

Annual ‘("Cross-Sectional”) Analysis

For the reasons stated in the Introduction, we had expected the
annual ("cross-sectional) approach to have the greatest likelihood of
producing "perverse'" results. Instead, except for ozone, the annual
cross-sectional analysis basically showed no effects for air pollution
on the use of health services or time lost to illness. There are five
possible explanations for this. First, the absence of a result is
consistent with there being a true adverse effect that is wiped out by
the sorting phenomenon. If individuals who are more susceptible to the
adverse effects of air pollution move to less polluted areas of the
city, then the estimated effects of air pollution will be biased toward
zero or could have the "wrong" sign. Although we used very good
measures of health status, relative to those available on most general
population data sets, the measures are not perfect and our estimates
could be biased. Second, there may be no true effect in the range we
are observing and sorting may not be a problem. Third, the absence of
an effect could be due to aggregating over a year. The largest illness
effects may occur in the winter and the highest pollution levels in the

summer. The annual analysis should not "see'

that time difference, and
thus would find no association. Fourth, the use of an estimate of air

pollution exposure based on ambient air at monitoring sites will contain
a substantial amount of measurement error. All other things equal, this

measurement error will bias the estimates of air pollution toward zero
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in proportion to the ratio of the measurement error to the true error in
the equation (see Theil, 1971, pp. 607-615). Thus, there could be a
small but important true adverse effect of air pollution that would not
be detected because we relied on a proxy for true air pollution
exposure. Fifth, we may not have detected an adverse effect of air
pollution because of lack of variation in the exposure measure. As the
tables in the appendix on exposure indicate, there is much less
variation in average exposure over a period of a year, than there is
over a period of a day. Most of what little variation we do have at the
annual level is due to geographical differences in pollution levels.

The smaller the variance in the explanatory variable (e.g., SOZ), the

larger the standard error of its coefficient.

Intermediate-Term Health Effects

We had expected that the use of a variant of the before-and-after
comparison would allow us to detect some adverse intermediate-term
effects of air pollution. The technique has the advantages that: (1)
the individual acts as his or her own control, thus reducing any bias
from geographical sorting; and (2) the inclusion of entry health status
as a covariate should reduce the error variance substantially and
increase the precision of the regression, because health status is
fairly stable over time. However, we found that of the non-ozone
findings for general health status and adult lung function, there were
about as many significant results as one would expect at random.

Does this mean that there are no true health status effects in our
two cities at these moderate levels of pollution? We think such a
conclusion would be improper. The absence of a significant effect may
be attributable to lack of precision. Given the measures we had of
general health status, lung function, and the variation in air pollution
across individuals, we had the precision to detect an effect of air
pollution if it were as large as the adverse effects of smoking one-
half to one pack of cigarettes a day over the same period. That is a
very large effect, and most people would be concerned if air pollution
had a substantially smaller effect than that. The culprit for our lack
of precision is again the lack of variation in air pollution over

periods of time longer than a few days. (See the discussion of exposure
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in Sec. II for the variation in exposure across individuals.) Low
variation in the pollutant measure implies a large standard error on the
estimated effect of air pollution.

To get away from this problem of low precision, one needs to have a
data set with several characteristics. First, the number of
participants must be substantially larger. A tenfold increase in our
sample size would reduce the detective effect to that of five to seven
cigarettes a day. Second, there should be a wider range of variation in
the air pollution exposure of individuals. All other things equal, the
standard error of the estimate coefficient will go down as the square
root of the variance of the exposure measure. Third, an increase in the
number of susceptibles, who appear to have larger effects from air
pollution, would make it easier to detect an effect. Finally, better
measures of actual exposure (via personal monitoring or micro-
environmental analysis) would reduce the bias in the estimate
coefficient and enhance our ability to detect meaningful adverse effects
of air pollution.

Unfortunately, data sets with these characteristics and a
comprehensive set of measures on health outcomes (use of medical
services, time lost due to illness, and health status) collected on a
panel basis are expensive and time-consuming to generate. In the short
run, it will be important to see what we can learn from existing general
population data sets, despite their important flaws. One very promising
avenue of research is the further application of the Whittemore-Korn
technique to time series data on time lost due to illness and to the use
of medical services. Our work clearly suggests that this technique can
be useful in the assessment of short-term effects of air pollution.

Before embracing the individual daily approach or discarding the
others, however, it is important to realize that our findings are based
on only two sites. In fact, the individual daily approach was applied
to only one health outcome in one site. In addition, this is the first
time that this technique has been employed on a general population. The
only way to be sure that the patterns we have found are "real" is to do
further research in the same vein: including additional meteorological
data to control for factors which may explain the positive association

between ozone and health outcomes, and by applying a similar set of
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approaches to several cities or data sets. Ideally, future analysis
should include data from a long enough time series on people in a
general population to employ the individual daily time series approach.
Further research along those lines should allow us to reach a conclusion
as to which approach is the most effective for valuing the regulation of

air quality.
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Appendix A
SELECTION OF DATA

The first analytic choice we had to make was to select a data set
for the analysis. We looked for a data set with information on health
status, sick-loss days, and use of health services for a general
population (e.g., more than merely a subpopulation susceptible to
cardiopulmonary problems). Below we briefly describe the criteria that
we used in evaluating data sets, the advantages and disadvantages of
each data set, and our reasons for the final selection.

For the evaluation of effects of air pollution on health outcomes,

we examined the following data sets:

Health and Nutrition Examination Survey (HANES) I and II
Health Insurance Experiment (HIE)
Health Interview Survey (HIS)

National Medical Care Expenditures Survey (MNCES)

v W N

National Medical Care Utilization and Expenditure Survey

(MNCUES)

CRITERIA FOR EVALUATION

In evaluating the alternative data sets, we used seven criteria:

1. A preference foi panel over cross-sectional data.

2. The ability to create good synthetic (proxy) measures of air
pollution exposure. ]

The ability to create good synthetic measures of weather.
Comprehensiveness of a single data set.

Presence of valid and reliable measures of health status.

Adequate within-site data.

~N o W

Variation across sites in levels and types of air pollution.



Panel Versus Cross-Sectional Data

We would prefer a panel (cohort) data set over a cross-sectional
one. In a panel data set, the longitudinal measurements on each
individual allow us to control for unobservable characteristics of each
individual. Thus, we do not have to rely on the untestable cross-
sectional assumption that the unobserved characteristics are
uncorrelated with the observed independent variables (including air
pollution). If this assumption does not hold, cross-sectional data can
yield biased estimates of the effects of air pollution. The direction
and magnitude of the bias cannot be determined a priori. For example,
if smokers are less likely to move away from smoggy areas (and if the
smoking measure has measurement error), then cross-sectional data will
overstate the effect of air pollution on cardiopulmonary problems. If
individuals who are susceptible to cardiopulﬁonafy complaints move from
smoggy areas to less smoggy areas (and if the health status measure has
measurement error), then cross-sectional data understate the effects of
air pollution.

In contrast, with a panel data set these unobserved effects can be
netted out. For the ANOCOVA case, see the fixed effects model (Maddala,
1971; Searle, 1971). For our proposed methods for the analysis of short-
term health effects, see Whittemore and Korn (1980).

A panel study has three other major advantages over a cross-
sectional study. First, it usually provides finer detail on timing.

The finer detail on timing of health events allows us to create better
weather and air pollution exposure measures than is possible with data
aggregated over several months. The better the weather and exposure
measures, the lower the bias in the air pollution variable coefficients.
Second, panel data sets keep the movers and deaths in the sample,
whereas retrospective surveys frequently lose data on movers and deaths.
To the extent that air pollution may cause moves or earlier death, cross-
sectional data sets will tend to have sites with samples with different
unobserved characteristics, which will yield a biased set of estimates.
Third, with a panel data set, we can check any assumptions about
aggregation over time by examining the response in disaggregated as well

as aggregated form.
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Quality of Air Pollution Exposure Measure

Ideally, we would like to know each individual's history of
exposure to air pollution. This would include data on levels and timing
of all pollutants from any source--smoking, other indoor pollution
sources, and ambient air sources. Unfortunately, no existing data sets
continuously monitored each person's exposure to air pollution, with one
exception.! Instead, we must create synthetic measures based on
available data. These synthetic exposure estimates necessarily measure
exposure with substantial error. But that measurement error can be
reduced by selecting data sets that provide finer detail on geographic
location and the timing of health events.

This may be viewed as a classic errors-in-variable problem. Air
pollution exposure is measured with error because we do not have
continuous monitoring for each person. Instead, we use a proxy variable
such as a weighted average of surrounding monitoring stations. The
finer the level of data on work and home location, the closer the
synthetic measure will be to the person's true ambient air exposure.

The closer the measure to the true value, the smaller the variance in
measurement error and the smaller the bias in the estimated coefficient
for the air pollution variable (Maddala, 1977, pp. 292-294). Other
variables will also be affected by measurement error in the exposure
variable because the measurement error in one variable transmits bias to
all correlated independent variables. The finer the level of detail on
location, the less the transmitted bias will be.

The same argument holds for the quality of the temporal match of
health outcomes and air pollution exposure. Some data sets ask how much
time the respondent has lost from work or school due to illness during
the last several months. Without knowledge of the dates of illness, we
cannot create an accurate measure of air pollution that the respondent
was exposed to immediately before the illness. Similarly, we run the
risk that we will inappropriately estimate sickness from five months ago
as a function of last month's air pollution if we use a data set that

has information based on questions of the form: Have you ever . . .?

!The only data set available to date that continuously monitored
each person's air pollution exposure was collected in EPA's recent Urban
p p
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The quality of the match is especially important for transient
conditions. Some respiratory responses to air pollution are short-
term and not cumulative. The poorer the temporal match and the more
variable the exposure, the more likely we are to misestimate the effects

of air pollution on flare-ups of chronic respiratory diseases.

Quality of Weather Data Match

Ideally, we would like to control for the weather that an
individual- is exposed to in order to avoid attributing to air pollution
the adverse health effects associated with bad weather. For example,
Denver tends to have its worst air pollution in the winter. But winter
is also the season with the highest rate of cardiopulmonary problems.
Failure to control for weather would overstate the adverse effects of
air pollution if bad weather and air pollution were positively
correlated, and understate the effects of air pollution if the two were
negatively correlated. A data set that fails to provide sufficient
information on location and timing, to allow matching with weather data,

is therefore undesirable.

Comprehensiveness of Data Set

Ideally, we would use the same sample and variable specifications
for all health outcome measures. For example, we should avoid ﬁaking
health status outcomes frém one sample and sick loss from another. By
using the same sample, we have the same target population and the same
meaning for each independent variable. Thus, when we say the effect of
a variable is such and such, it means the same thing for each health
outcome.

By using the same data file, we can also measure the degree to
which the outcomes are correlated, that is, the extent to which large
changes in health status are associated with large expenditures and sick-
loss time. Knowing this correlation allows us to determine the pattern
of incidence of adverse effects. Are they limited to few people or to

many? If the responses are highly correlated, then we may be able to

Scale Study in Washington, D.C., and Denver, Colorado. However, that
data set does not contain any information on health outcomes.
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use a simple outcome measure as a good proxy for all the dimensions of

health.

Valid and Reliable Health Measures

For this analysis, we need valid and reliable measures of general
health status as well as the presence and severity of certain specific
health complaints (e.g., chronic bronchitis). We will need a general
health status measure if we are to detect the effect of air pollution on
health status in a population not suffering from chronic cardiopulmonary
problems. In such a population, the effect of air pollution may be
headaches, general malaise, and other "diffuse" problems.

We also need to measure the presence and severity of specific
cardiopulmonary problems. .The data on presence of a condition will
allow us to identify the population that is most susceptible to air
pollution and to measure that susceptibility. The data on severity of a
condition is important because we expect that the major effect of air
pollution is to worsen existing conditions instead of cause them in the
first place.

For both general and specific complaints, we would prefer objective
continuous measures (e.g., lung functions from a spirometric
examination) or scales based on multiple items over the commonly
available single-item response (e.g., How would you rate your health--
excellent, good, fair, poor?). The coarser measures have suppressed a
good deal of information about health status in their simplification.
That additional information would make it easier to detect smaller

adverse effects of air pollution.

-

Adequate Within-Site Data

In our original proposal, we suggested that all of the analysis
should be done within a site, with separate results for separate sites.
There were two major reasons for that suggestion. First, one unit of an
air pollution measure is not the same thing in two different sites
because different sites use different equipment and maintenance
schedules, and set different internal standards. Second, any omitted
variables correlated with site (and hence air pollution) can lead to

biased estimates of the response surface. Third, the response of those
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accustomed to air pollution exposure may be different for a given level
of pollutant from that of persons not so accustomed. Thus, while there
may be a dose-related response at each site, the response to a given
level may be quite different across sites.

The choice of panel versus cross-sectional data and a desire for
finer geographical and temporal detail are related to this point.
First, in a cross-sectional data set, all of the within-person variation
in air pollution exposure has been lost. If there is no within-person
variation for an individual in air pollution, we cannot identify the
individual component in the error term. To the extent that this
individual component may be correlated with health status or air
pollution exposure, the parameter estimates may be biased. Second, in a
cross-sectional data set, most if not all of the within-site variation
in air pollution has been lost if we cannot identify PSUs smaller than
SMSAs; staggered surveys such as the HIS are an exception. If there is
little or no within-site variation in air pollution, we cannot identify
the site-specific component in the error term; as Hausman, Ostro, and
Wise have shown, this can be important. 'Again, to the extent that
omitted site effects are correlated with unobserved variables (including
pollution mix and level), the parameter estimates will be biased. In
either case, whether there is bias or not, failure to account for
correlation among observations yields inefficient parameter estimates
and incorrect (biased upward) inference statistics.

In addition to possible bias and efficiency concerns, the
suppression of intrasite and intertemporal variation can cause a major
loss in precision. There is substantial intertemporal and intrasite
variation in air pollution, which is lost in cross-sectional data,
especially if the geographic detail is of low quality. The standard
deviation of a variable's estimated coefficient is inversely related to
the variance of the variable. Thus, eliminating intrasite and
intertemporal variation in air pollution reduces the variance in the
exposure measure, and increases the standard deviation of the estimated
coefficient.

Even if we pool all of the sites in the estimation phase, we would
like to have enough respondents in each site so that we could find

susceptibles in the heavily as well as lightly polluted sites. If this
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condition holds, we will be able to contrast the response of

susceptibles and nonsusceptibles to air pollution.

- Variance in Air Pollution Across Sites -

There should be substantial variation in the level and mix of air
pollutants. We need variation in the levels of air pollutants in order
to detect the response to air pollution. We need variation in the mix
to determine the different effects of each pollutant. For example, TSP

may be more cumulative while oxidants may be transitory in their impact.

ALTERNATIVE DATA SETS
Using the criteria just described, we examined five data sources:

HANES I and II, the HIE, the HIS, NMCES, and NMCUES.

HANES | and 1l

The HANES surveys by the National Center for Health Statistics
(NCHS) provide cross-sectional data on health and nutrition. Conducted
in 1971-1974 and 1976-1980, they provide data on some 28,00 and 21,000
individuals in national probability samples, respectively. HANES
determined the prevalence of a number of chronic conditions including
coughing, asthma, hay fever, and other cardiopulmonary conditions.
HANES I provides no self—reborted measure of the severity of each
respiratory complaint, but HANES II provides data on total work or sick-
loss days during the past 12 months that were attributable to
respiratory problems (other than flu and colds). There are no data on
dates of sick loss. Both versions have spirometry measurements of lung
function for some subset of the respondents. The only general measure
of health status is the question of whether health is excellent, good,
fair, or poor.

The HANES data have extremely limited information on use of health
services. Most questions are of the form: Have you ever seen a doctor
or been hospitalized for condition X? There is no information on how
much the person has spent on the condition, or when and how often he

spent it.



- 104 -

The ability to create synthetic measures of air pollution exposure
is limited. The available geographic detail specifies the respondent's
SMSA only, and then only for the largest SMSAs. Both HANES data sets
contain information on smoking. Neither contains information on other

indoor air pollution sources.

HIE

The Health Insurance Experiment is a randomized trial, designed to
study the effects of cost sharing in HMOs on the health status, health-
care use, and sick-loss of the nonaged population. The HIE enrolled
some 7,770 individuals in six sites (Dayton, Ohio; Seattle, Washington;
Fitchburg, Massachusetts; Franklin County, Massachusetts; Charleston,
South Carolina; and Georgetown County, South Carolina). While none of
these sites were extremely polluted during the mid- and late 1970s, when
the HIE data were collected, each had substantial air pollution. None
of them met federal ambient air quality standards during that period.

In addition to the exclusions common to all the other data sets
(e.g., the military and the institutionalized), the HIE excludes the
aged (62 and over) and the top seven percent of the income distribution.
These twin exclusions (especially the exclusion of the elderly), the
smaller sample size, the small number of sites, and the absence of a
severely pollutéd site are the HIE's major limitations.

The HIE is a panel study. It contains repeafed measurements of
health status (general and condition specific), as well as dated
information on health-service use and sick-loss days. The use-data
include information on diagnoses, procedures, and medication prescribed
and purchased. The general health status measure is a Likert-type
summated rating scale based on 22 questions. Thus, the construct is a
subjective assessment of personal health status. Its reliability and
validity have been extensively studied (Ware, 1976; Davies and Ware,
1981). Manning, Newhouse, and Ware (1982) have shown that this measure
performs significantly better than Excellent/Good/Fair/Poor in a study
of health-care utilization. The study contains several measures of
chronic and role limitations, the presence or absence of 26 chronic

conditions, and severity measures. For several of the chronic
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conditions, there exist multiple measures of prevalence and severity
based upon both self-report and physical examination (with lung function
measurement) by an M.D. The physical exam was administered to a random
subsample at enrollment in the study and to everyone at exit. The
report by Foxman et al. (1982) describes the measures for chronic
obstructive airway disease.

We can build better synthetic measures for the HIE than for any of
the other data sets. The HIE contains information on home zip code,
dates of moves, work zip code and hours worked, and (own and family
members ') smoking status and history. Thus, we can build exposure
measures that incorporate data from the monitoring stations not only
nearest to the respondent's home but also to his work location. This
definitely has less measurement error than an SMSA average variable.
Also, it allows us increased precision through capturing the within-
site variance in the air pollution measure.

The HIE has one further advantage over all other data sets. The
HIE randomly assigned insurance plans of varying levels of generosity to
enrollees. In other data sets, families can choose their own coverage
by buying individual policies or by selecting which work-related policy
should be used for dependents. In the HIE, random assignment breaks
that correlation so that we can determine what is sickliness (here in

the cardiopulmonary sense) and what is insurance coverage.

HIS

The Health Interview Survey conducted by HCHS is a continuing
survey of health-related problems in the United States. Although there
are repeated waves of the survey in each site, the survey does not
resample the same set of individuals, except by accident. As a result,
the HIS has to be considered a cross-sectional survey if the unit of
analysis is to be an individual. Although similar in content, there are
differences among the waves in the specific information elicited from
respondents. About 120,000 individuals are sampled each year.

HIS determined the prevalence and severity of several chronic
complaints including cardiopulmonary conditions (e.g., asthma,
bronchitis). The severity questions ask (1) whether the individual is

bothered by the condition all the time, often, once in a while, or
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never, and (2) when it does bother him, whether he is bothered a great
deal, some, or very little. Because HIS is a survey, there are no data
on lung function. The HIS data lack a general health measure but do
contain information on chronic and role limitations due to ill health,
and which chronic condition is the main source of that limitation.

The HIS data contain fairly detailed information on health-care
utilization and sick-loss days during the past two weeks. The survey
contains questions on medical and dental visits, hospitalizations, work
or school-loss days, bed disability days, and restricted activity days.
In some waves of the HIS, the date of the visit or sick-loss day is
provided.

The ability to create synthetic measures of air pollution is
limited. The available geographic detail specifies SMSA only, and that
only for the largest SMSAs. Because the responses on health-care use
and sick-loss are dated or limited to a specified two-week period, the
quality of the temporal match of health events and air pollution is
good. The quality of the temporal match is probably exceeded only by
that for the HIE data. The HIS contains information on smoking, but not

on indoor air pollution sources.

NMCES and NMCUES

These two surveys are very similar in content and construction.
NMCES was conducted by NCHSR on a national probability sample of 40,320
people. NMCUES was conducted by NCHS on a national probability sample
of 17,000 people plus 24,000 people from the Medicaid population of four
states. Each survey conducted repeated interviews for the same sample
of individuals, with all responses and health events dated. Thus, the
primary data are in panel form. Unfortunately, the public use files
released from these two surveys have aggregated the responses into a
cross-sectional data set.

The information on health status is more limited than on the other
data sets. The two surveys contain data on general health status (the
excellent/good/fair/poor question) as well as responses to questions on
chronic and role limitations. Information on the existence of a chronic
condition was collected only if there was a medical visit, sick-loss

day, or limitation due to that condition. Thus, an individual with a
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chronic condition in good control (i.e., no flare up) cannot be
distinguished from someone without the condition. To the extent that
air pollution aggravates a health condition, we cannot distinguish
prevalence from severity in these two surveys. The information on
conditions is not available in the cross-sectional version of the files.

Both NMCES and NMCUES have detailed information on health-care
utilization and sick-loss. These include visits, hospitalizationm,
expenditures, bed, disability and restricted-activity days, and the
condition for each. There is detailed information on insurance coverage
and reimbursement. Except for the HIE, this data set has the most
complete insurance information of the files considered.

The severest drawback of these data sets is their inability to
produce more than crude synthetic measures of air-pollution exposure.
The NMCUES is expected to identify the respondent by SMSA only if the
respondent is in one of the largest SMSAs. NMCES identifies census
region and SMSA size but does not name the SMSA. The quality of the
temporal match with the underlying file could be quite good because
health events are dated. For the cross-sectional versions, the temporal
match will be poor because we do not know when the event occurred over

the several months period surveyed. Neither data set has smoking data.

CHOICE OF DATA SETS

After reviewing the characteristics of the available data sets for
analyzing the adverse effects of air pollution on health outcomes, we
have decided to use the HIE. However, because the HIE has some
limitations, and other data sets some advantages, we propose that the
second phase of the RAND cooperative agreement with EPA use augmented
versions of some of the other candidate data files, If certdain of their
shortcomings can be overcome.

We prefer to use the HIE for our initial study because:

1. The HIE is a panel study while the others (in their present
form) are cross-sectional. As mentioned earlier, with panel
data on individuals, we can avoid the potential selection bias

in cross-sectional data sets.
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2. The HIE data can be augmented with both weather and air
pollution data to provide a better geographic and temporal
match than is possible with other data sets. This reduces the
measurement error in generating an estimate for air pollution
and weather exposure. The lower the measurement error, the
lower the errors-in-variable bias in the estimates of the air
pollution and weather coefficients.

3. The HIE has the most comprehensive set of health outcome
measures: health-care utilization (diagnosis, procedure, and
medications), sick-loss days, self-perceived health status
(general and condition specific), prevalence and severity of
chronic complaints, and lung function. Other data sets provide
only a subset of these data.

4. The health status measures in the HIE have been validated and
shown to be as reliable as or more reliable than those on other

data files.
The HIE has the following disadvantages:

1. The HIE's exclusion of the elderly is an important limitation
because they are a susceptible population that may behave
differently from the nonaged. The effects of this limitation
can only be studied by checking HIE results with other data
sets.

2. The HIE has a smaller sample size than the other data sets.
Nevertheless, given the lesser precision and the bias
associated with cross-sectional data with limited geographic
detail, the HIE's finer geographic and temporal detail will
partially offset this limitation.

3. The HIE sites cover a more limited range of air pollution. The
effect of this limitation can only be studied by checking HIE
results with other data sets that have a wider range of air

pollution levels.
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We believe that the advantages of the HIE outweigh its disadvantages.
The discussion above centered on measuring (dose) responses in
terms of health outcomes--utilization, health status, or sick loss--
as they relate to air pollution. One of the major purposes of our work
is to estimate how people value changes in levels of air pollution. To
do so, we will require measures of the value of changes in health-care
use, health status, and sick-loss induced by changes in air pollution.
We will need data on the cost of services, the value of health status,
and the opportunity cost of time. Of the data sets considered, only the
HIE, NMCES, and NMCUES provide data on the cost of health services. For
the cross-sectional versions of NMCES and NMCUES, the data have been
aggregated so that we cannot separate cardiopulmonary from other health
services (e.g., mental health treatment or maternity care). Of the data
sets considered, only the HIE has sufficient labor market data to
determine the opportunity cost of time. Work on this issue is now being
done as part of the HIE's research for the Department of Health and

Human Services. We hope to use these results in our evaluation of sick-

loss.

Two evaluation problems remain. First, it is necessary to evaluate
changes in health status. Second, none of the data sets available has
adequate sample or data to estimate the effects of air pollution on
mortality. Such an analysis will require the use of other files, or

novel ways of using existing files.
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Appendix B

STATISTICAL METHODS

To study the effect of air pollution on annual rates of illness and
use of services, we will examine the response of participants in terms
of their annual number of days lost due to illness and annual
expenditures for ambulatory medical care. Rather than rely on the more
common analysis of variance (ANOVA) or analysis of covariance techniques
(ANOCOVA), we have used a two-part model for ambulatory medical
expenditures and a negative binomial regression model for days of
illness. These choices were dictated by two characteristics of these
two health outcomes. First, a large proportion of the HIE participants
use no medical services or have no time lost due to illness. Second,
the distribution of expenses and days of illness is very skewed.

These characteristics imply that ANOVA and ANOCOVA techniques will
yield imprecise (though unbiased) estimates of the effects of air
pollution, even for a fairly large sample size such as that in the HIE.
As Duan, Manning, Morris, and Newhouse (1983) have shown for use of
medical services, a model that exploits the characteristics of the
distribution of utilization can provide more precise estimates.

In this appendix, we describe our statistical methods. The topics
include: the two-part model for estimating outpatient expenditures, and
the negative binomial regression model for estimating days lost to

illness.

TWO-PART MODEL FOR AMBULATORY MEDICAL EXPENSES

We use two equations to model the distribution of ambulatory
medical expenses. The first is a probit equation for the probability
that a person will receive any outpatient service during a year. This
equation separates users from nonusers and therefore addresses the first
characteristic described above. The second equation is a linear
regression for the logarithm of total annual outpatient medical expenses
of users. The log transformation of annual expenses for the group of
users reduces dramatically the undesirable skewness in the distribution

of expenses among users described as the second characteristic earlier.
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We therefore expect the estimates from this model to be more robust than
those that might be obtained from ANOVA and ANOCOVA models on
untransformed expenses.

More formally, the first equation is a probit equation for the

dichotomous event of zero versus positive ambulatory expense:

= X -
I \isl £

1a 1i°

> = NLBy 1)+

1i

E( x,) =0,

£ :
1i | i
where ambulatory expense is positive if Ili 2 0, 0 otherwise; and X, is
a row vector of given individual characteristics (e.g., air pollution
and age).

The second equation is a linear model on the log scale for positive

ambulatory medical expenses if the person receives any services:

Qn(AMBsi | I 2 0) = xiB2 + 8

11 — 247
where E(EZi | X5 Ili > 0) =0, X is a row vector of given individual
characteristics and s is i.i.d. For the last equation, the error is

not assumed to be normally distributed.

The likelihood function for this model is multiplicatively
separable because of the way the conditional densities are calculated.
The separability does not depend on any assumption of independence
between errors in the two equations. In fact, the errors may be
correlated. Separability implies that estimating the two equations by
maximum likelihood separately provides the global full information
maximum-likelihood estimates; see Manning et al. (1981), and Duan et al.
(1983, 1984). We therefore estimate the two equations separately.

If the error term ¢, in the (log) expense equation were normally

2
distributed, then the expected ambulatory medical expense would be
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E(AMBsi) = P, exp(xiB2 + 0282/2)

where
P, = Prob.i(AMBsi >0) = @(xiﬁl),
¢ = normal c.d.f.,

and where the factor exp(02/2) is the adjustment in the mean for

retransformation in the second (or conditional) equation if &, were

2
normally distributed. However, the normal assumption for &, is not

2
satisfied for the ambulatory expense data, because the residual
distribution is not normally distributed. As a result of this
nonnormality, the factor [exp(cZ/Z)] is not the correct adjustment in
the mean for the retransformation from the logarithmic scale to the
untransformed dollar scale and would lead to statistically inconsistent
predictions of the mean expenditure.

Instead of the normal retransformation, we use the smearing
estimates developed by Duan (1983). The smearing estimate, a
nonparametric estimate of the retransformation factor ¢ = E(exp(sz)), is
the sample average of the exponentiated least squéres residuals. The
smearing estimate is statistically consistent for the retransformation
factor if the error distribution does not depend on the characteristics
X

A consistent estimate of the>expected expense for ambulatory

medical services is therefore provided by
E(AMBsi) = py exp(xiBZ)¢

where
¢$ = I exp(fn Yi - xiﬁz)/n

where
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BZ is a consistent estimate of BZ.
Correlation in the Error Terms in the Two-Part Model

Although we have observations for several thousand person-years of
data, we do not have that number of independent observations. The error
terms in our equations exhibit substantial positive correlations among
family members and over time for individuals. These correlations exist
in both equations. Failure to account for these correlations in the
analysis would yield inefficient estimates of the coefficients and
statistically inconsistent estimates of the standard errors. As a
result, the inference statistics (t, F, and X2) calculated in the usual
way (without adjusting for these correlations) would be too large.

All inference statistics (t, F, XZ) reported in this report have
been corrected for correlation, using a nonparametric correction similar
to the random effects or intracluster model. The correction method is

fully described by Rogers (1983), based on prior work by Huber (1967).

NEGATIVE BINOMIAL MODEL FOR TIME LOST TO ILLNESS

We used a negative binomial regression model to estimate the
response of time lost to illness to air pollution. The negative
binomial distribution is an appealing model because it can yield a large
proportion of zero days and a skewed distribution of positive days;
thus, the model can address the two characteristics of time lost due to
illness mentioned earlier. The negative binomial model is more
appealing for days than a two-part model because the negative binomial
model has discrete outcomes while the two-part model has continuous
outcomes. The negative binomial regression model is more appealing than
a Poisson regression because the variance of days exceeds the mean; data
from a Poisson distribution should have equal mean and variance.

The negative binomial model can be generated from an underlying
Poisson model. Let each individual's (i's) days be drawn independently
from a Poisson distribution. If different individuals have different
rates that are sampled from a gamma distribution, then the observed

number of days follows a negative binomial distribution where



prob(days = n) =

The expected values for the sample mean and variance of annual days are

E(days) a/B

Var(days) = a(1+B)/B°.
As long as B is positive, the variance exceeds the mean.

In the results below, we assume that the parameter B can be
expressed as a linear combination of observed individual

Characterls thS .
211 = X. PR )
B 6]

where X, is row vector of given individual characteristics, including an
intercept. We assume that a is a constant.

As noted earlier, there is a substantial positive correlation among
family members in their number of days of illness. In the days results,
we have corrected the inference statistics for this positive
correlation. This correction is similar to that of the random effects
least-squares model or, equivalently, the intracluster correlation
model. The correction method is fully described by Rogers (1983), based
on prior work by Huber (1965).
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Appendi x C

INDIVIDUAL DAY-TO-DAY APPROACH: ADDITIONAL METHODS
AND RESULTS

CORRELATION COEFFICIENTS

Tables C.1 and C. 2 give the correlation coefficients for the
explanatory variables for the individual day-to-day (Whittenore-Korn)
anal ysi s. For each pair of explanatory variables, the upper entry in
the exhibit is the correlation coefficient, and the |ower entry is the
probability that the correlation coefficient is zero. Table C 3 gives
the multiple correlation coefficient for each explanatory variable with
the rest of the explanatory variables. The conclusions we draw from
this analysis are given in Sec. VII.

DESCRIPTIVE SUMMARIES OF INDIVIDUAL RESPONSES
Tables C.4 and C.5 and Figs. C 1 through C 21 sunmarize the

responses of the 1,238 persons who have nore than three sick episodes

and at least one hundred days available for our analysis. Table- C 4

gives the unweighted major summary statistics for the estinated

i ndividual responses; the results in the text section of Sec. V are for

a weighted analysis. The top part of the exhibit gives the average of

the individual responses along with other univariate sunmary

statistics.' The bottom part of the exhibit gives the correlation
coefficients and p values.' Further summary statistics and graphical

'The units are as follows: response to S0, is in ternms of logit
per ppm S0, response to COH is in logit per COH response to TSP is in

terns of logit per ug/m3, response to NG, is in logit per ppm NOZ'

response to mnimmtenperature is in logit per degree Fahrenheit,
response to precipitation is in logit per inch of precipitation.

*The number of properly estimated response coefficients to
precipitation is 1185 instead of 1238, the total number of persons in
the final analysis sanple. There are 53 persons in the final analysis
sanple who never had a sick episode on a wet day, so their response to
precipitation on the logit scale is mnus infinity.
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Table C. 1

CORRELATI ON CCEFFI CI ENTS FOR THE EXPLANATORY VARI ABLES | N BELLEVUE

S02AV COHAV TSPAV 0ZOMX NO02MX MINTEMP PRECIP WKDAY FIRSWEEK

S02AV 1.00000 0.49997 0.18866 0.10526 0.41334 -0.08572 -0.12815 0.10834 0.04797
0.0000 0.0001 0.0001 0.0044 0.0001 0.0206 0.0005 0.0034 0.1957
COHAV 0.49997 1.00000 0.39398 -0.35062 0.56904 -0.41058 -0.03169 0.19711 -0.03011
0.0001 0.0000 0.0001 0.0001 0.0001  0.0001 0.3923 0.0001 0.4163
TSPAV 0.18866 0.39398 1.00000 -0.07207 0.21604 -0.17676 -0.12084 0.15048 0.03795
0.0001 0.0001 0.0000 0.0514 0.0001 0.0001 0.0011 0.0001 0.3056
0ZOMX 0.10526 -0.35062 -0.35062 1.00000 -0.29838 0.42488 -0.012404 -0.02514 -0.00253
0.0044 0.0001 0.0514 0.0000 0.0001 0.0001 0.0008 0.4974 (9455
NO2MX 0.41334 0.56904 0.21604 -0.29838 1.000000 -0.19875 -0.13663 0.15546 0.02246
0.0001 9-001 59001 0.0001 0. 0000 0.0001 0.0009 0.0001 0.5861
MINTEMP  -0.08572 -0.41058 -0.17676 0.42488 -0.19875 1,00000 -0.01918 -0.02091 0.02936
0.0206 0.0001 0.0001 ~0.0001 0.0001 0.0000 0.6047 5725 0.4280
PREC | P -0.12815 -0.03196 -0.12084 -0.12404 -0.13663 -0.01918 1.00000 0.03979 0.02902
0.0005 0.3923 (0011 0.0008 0.0009 0.6047 0.0000 0.2827 0.4333
WKDAY 0.10834 0,19711 0.15048 -0.02514 0.15546 -0.02091 0.03979 1.00000 -0.00043
0.0034 0.0001 0.0001 0.4974 0.0001 5725 ©0.2827 00000 09907

FIRSWEEK  0.04797 -0.03011 0.03795 -0.00253 0.02246 0.02936 0.02902 -0.00043 1.00000
0.1957 0.41 0.3056 0.9455 (5861 0.4280 0.4333 0.9907 0.0000

Table C. 2

CORRELATI ON CCEFFI CI ENTS FOR THE EXPLANATORY VAR ABLES |N DOMNTOMN SEATTLE

S02AV COHAV TSPAV 0ZOMX NO2MZ MINTEMP  PRECIP WKDAY FIRSWEEK
S02AV 1.00000 0.49388 0.30115 0.09722 0.41303 -0.08544; 0,12846 0,10761 0.05276
0.0000 0.0001 0.0001 0.0086 0.0001 0.0210 0.0005 0. 0.1547
COHAV 0.49388 1.00000 0.40775 -0.38643 0.56779 -0..9935 -0.02913 0.20941 -0.03211
0.0001 0.0000 0.0001 0.0001 0.0001 0.0001 0.4316 0.0001 0.3860
TSPAV 0.30115 0.40775 1.00000 0.02248 0.29975 -0.10357 -0.11558 0.24736 0.00372
0.0001  0.0001 0.0000 0.5439  0.0001 0.0051 0.0017  0.0001 0.9199
0ZOMX 0.09722 0.09722 -0,38643 1.00000 -0.28469 0.40125 -0.09348 -0.04019 0.00674
0.0086 0.0001 0.5439 (0.0000 0.0001 0.0001 0.0114 0.2779  0.8557
NO2MX 0.41303 0.56779 0.29975 -0.28469 1.00000 -0.19875 -0.13663 0.15546 0.02246

0.0001 0.0001 0.0001 0.0001 0.0000 0.0001 0.0009 0.0001 0.5861
-0.08544 -0.39935 0.10357 0.40125 -0.19875 1.00000 -0.01918 -0.02091 0.02936

MINTEMP
0.0210 0.0001 0.0051 0.0001 0.0001 0.0000 0.6047 0.5725 0.4280
PREC | P -0.12846 -0.02913 -0.11558 -0.09348 -0.13663 -0.01918 1.00000 0.03979 0.02902
0.0005 0.4316 0.0017 0.0114 0.0009 0.6047 0.0000 0.2827 0.4333
WKDAY 0.10761 0.20941 0.24736 -0.04019 0.15546 -0.02091 0.03979 1.00000 -0.00043

0.00036 0.0001 0.0001 0.2779 0.0001 0.5725 0.2827 0.0000 0.9907

FIRSWEEK 0.05276 -0.03211 0.00372 0.00674 0.02246 0.02936 0.02902 -0.00043 1. 00000
0.1547 0.3860 0.9199 0.8557 0.5861 0.4280 0.4333 0.9907 0.0000
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summaries for the individual responses are given in Figs. C/| through
C17.

Ceneral |y speaking, the estimated individual responses have |ong-
tailed distributions characterized by a few outliers. For exanple, for
alnost all people, the response to sul fur dioxide ranges between plus
and mnus six hundred. However, there is one person whose response
(i.e., coefficient) to SO, is -1927, and another person response is 717

The estimated individual responses are very heterogeneous.  Sone
i ndividuals have a large nunber of episodes, so we have nore information
on their responses. The standard errors for those individuals estimated
fromthe logistic regression would be likely to be snall. For
individuals with the fewest episodes, the logistic regression node
m ght be ill-conditioned and the estimtes mght be unstable. For those
i ndividuals, the standard error mght be very large. Those individuals
are also likely to have large estinmated responses. Figures C 8 through
C.14 give the scatterdiagrams of the estimated individual responses by
the corresponding estimated standard errors. It can be seen that
practically all estimated individual responses which are utliers are
associated with large tandard errors.

Table C. 3

MULTI PLE CORRELATI ON COEFFI Cl ENTS
FOR THE AEROMETRI C DATA

Downt own
Attribute Bel | evue Seattle
S 0. 40 0.42
CH 0. 57 0.59
TSP 0. 25 0.24
QOzone 0. 26 0.35
NO2 0. 32 0.29
Precipitation 0.25 0.25
M ni mum t enp. 0.11 0.08




VARIABLE

S02AV
COHAV
TSPAV
0ZOMX
NO2MX
MINTEMP
PRECIP

1238
1238
1238
1238
1238
1238
1185

MEAN

-21.31056558
-0.48026882
-0.00454673

-18.36721365
-5.79224831
-0.00849611
-2.36195872

Table C 4

MAJOR SUMVARI ES OF THE | NDI VI DUAL RESPONSES

STD DEV

101.27916599
2.24799933
0.02400547

42.72269690
31.01832979
0.09201381

7.13577729

SUM

-26382.48018961
-594.57280312
-5.62885480
-22738.61050183
-7170.80340487
-10.51819023
-2798.92108612

MINIMUM

=1927.37167794
-26.81823368
-0.21143901
-312.54080879
-515.04540605

-0.90863745
-72.18282141

CORRELATION COEFFICIENTS / PROB > IRl UNDER HO:RHO=0 / NUMBER OF OBSERVATIONS

SO2AV

COHAV

TSPAV

0ZOMX

NO2MX

MINTEMP

PRECIP

S02AV COHAV TSPAV
1.00000 -0.08239 0.02421
0.0000 0.0037 0.3946
1238 1238 1238
-0.08239 1.00000 -0.13746
0.0037 0.0000 0.0001
1238 1238 1238

0ZOMX NO2MX MINTEMP

PRECIP

-0.02554 -0.18341 0.02005 0.02522

0.02421 -0.13746 1.00000

0.3946 0.0001 0.0000 0.3462

1238 1238 1238
-0.02554 0.21437 -0.02679
0.3693 0.0001 0.3462
1238 1238 1238
-0.18341 -016125 0.02237
0.0001 0.0001 0.4316
1238 1238 1238
0.02005 0.23503 -0.03233
0.4809 0.0001 0.2557
1238 1230 1238
0.02522 0.05996 0.04775
0.3858 0.0390 0.1004
1185 1185 1185

0.3693 0.0001 0.4809
1238 1230 1238
0.21437 -0.16125 0.23503
0.0001 0.0001 0.0001
1238 1238 1238
-0.02679 0.02237 -0.03233
0.4316  0.2557

1238 1238 1238
1.00000 0.06755 -0.20027
0.0000 0.0174 0.0001
1238 1238 1238
0.06755 1.00000 0.10795
0.0174  0.0000 0.0001
1238 1238 1238
-0.20027 0.10795 1.0000
0.0001 0.0001 0.0000
1238 1238 1238
0.17078 0.07133 -0.14170
0.0001 0.0140  0.0001
1185 1185 1185

0.3858
1185

0.05996
0.0390
1185

0.04775
0.1004
1185

0.17078
0.0001
1185

0.07133
0.0140
1185

-0.14170
0.0001
1185

1.00000
0.0000
1185

MAXIMU

717.3526014
7.5552934
0.1089210

137.4384898

96.0278276
0.6902243

5.6012901
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Table C. 5

MAJOR SUMVARI ES OF THE INDI VI DUAL z STATI STICS FOR THE | NDI VI DUAL RESPONSES

VARIABLE N MEAN STD DEV SUM MINIMUM MAX t MU
T1 1238 -0.04484522 1.02337494 -55.51838334 -4.57415889 3.4111633
T2 1238 -0.10446429 1.04585081 -129.32678990 -3.10154452 3.4335113
T3 1238 -0.07602341 0.99911932 -94.11698568 -2.81939992 3.3619862
T4 1238 -0.32343950 0.99B55742 -400.41810600 -3.32241690 2.8717092
T5 1238 -0.04400085 1.14199810 -54.47305559 -3.43162632 3.7636566
T6 1238 -0.21302980 1.12947762 -263.73089191 -4.13131252 3.6067947
T7 1185 0.02755357 0.88106644 32.65097658 -2.06813777 3.2595051

CORRELATION COEFFICIENTS / PROB > IRI UNDER HO:RHO=0 / NUMBER OF OBSERVATIONS

T1 T2 T3 T4 TS T6 T7
T1 1.00000 023740 0.03032 -0.12479 -0.18948 0.05386 0.07760
0.0000 0.0001 0.2865 0.0001 0.0001 0.0582 0.0075
1238 1238 1238 1238 1238 1238 ‘1185
T2 -0.23740 1.00000 -0.18316 0.20820 -0.30861 0.25993 0.05296
0.0001  0.0000 0.0001 0.0001 0.0001 0.0001 0.0684
1238 1238 1238 1238 1238 1238 1185
T3 0.03032 -0.18316 1.00000 -0.00876 ©0.01239 0.04067 (. 04694
0.2865 0.0001  0.0000 0.7581 0.6633 0.1526 (,1063
1238 1238 1238 1238 1238 1238 1185

T4 -0.12479 0.20820 -0.00876 1.00000 0.06902 -0.25948
0.0001 0.0001 0.7581 0.0000 0.0151 0.0001 (.0001
1238 1238 1238 1238 1238 1238 1185
T5 -0.18948 -0.30861 0.01239 0.06902 1.00000 -0.05179 0.05934
0.0001 0.0001 0.6633 0.0151 0.0000 0.0685 0.0411
1238 1238 1238 1238 1238 1238 1185
T6 0.05386 0.25993 0.04067 -0.25948 -0.05179 1.00000 -0.12379
0.0582 0.0001 0.1526 0.0001 0.0685 0.0000 0.0001
1238 1238 1238 1238 1238 1238 1185
T7 0.07760 0.05296 0.04694 .18405 0.05934 -0.12379 1.00000

0.0075 0.0684 0.1063 0.0001 0.0411 0.0001 0.0000
1185 1185 1185 1185 1185 1185 1185
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VAR LABLE=S02AV

MOMENTS
N 1238 SUM WGTS 1238
MEAN -21.3106 SUM -26382.5
STD DEV 101,279 VARIANCE  10257.5
SKEWNESS -6.34703 KURTOSIS 106.822
uss 13250715 css 12688190
cv ~475.253 STD MEAN 2.87846
T:MEAN=0 -7.40347 PROB> | T 0.0001
SGN RANK  -71568.5 PROB> S| 0.0001
BAR CHART
750+%
450+
e
]50+“*

.#*”N““l#“****“ﬂ#*“M““”““”N**H**“ﬂ“***”*“#*

.N“*”****“ﬂ*“***#“*ﬁ****ﬁ***“#**#***“M****“ﬁ*ﬁ**
-]50+“"#**“*ﬁ“

LR

e

~450+#*
K

-750+

.

-1050+

-1350+

-1650+

* MAY REPRESENT UP TO 12 COUNTS

Fig. C 1--Further summaries of the individual responses to SO

UNIVARIATE

QUANTILES(DEF=4) EXTREMES
100% MAX 717.353 99% 112.935 LOWEST HIGHES
75% Q3 26.3113 95% 76.1036 -1927.37 159.6
50% MED -4.76002 90% 54.2619 -593.428 178.35
25% Qi -46.423 10% ~-109.544 -552.25 194 .46
0% MIN =~1927.37 5% -156.522 -530.778 203.76
. 1%. -380.825 -509.253 711.35
RANGE 2644, 72
Q3-Q1 72.7343
4 BOXPLOT NORMAL PROBABILITY PLOT
1 * 750+ *
|
|
MSOT
1 0 | ++++
24 0 150+ R TR T L T
499 +---=- + AR RHHNRN R RN RN
561 Hecpaot PR 2T Y
105 0 -150+ Rl S 5
23 0 | HH++nHH
]5 L] 0N
L * ~450+¥%
u * |H
|
-750+
|
|
-10507
N
-1350+
I
|
-16507
|
1 * =1950+#
R U . T e T
-2 -1 +0 +1 +2

2
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VAR I ABLE=COHAV

MOMENTS
N 1238
MEAN -0.480269
STD DEV 2.248
SKEWNESS -2.42794
uss 6536.74
cY ~468.071

T:MEAN=0 ~7.51707
SGN RANK  -78759.5

BAR CHART
T+%
#

.*NNM**“HH

SUM WGTS
SUM

VARIANCE
KURTOSIS
CSs

STD MEAN
PROB>|T|
PROB>| S|

1238

-594.573

5.0535

20.0h33
6251.18
0.0638904

0.0001 -
0.0001

.**ﬂ*#“““**“*“***“***ﬁ***&**“““““#hﬁﬂ“*

HRRHARRRHAR RN RRERR A RRARR RN R R HRR R RN R RS

.*N"N*#*#*““*#M
.ﬁﬁﬂ*ﬁ
.*
.“
'*
.*
.*
_*
-27+“
ceacfommctocccteccmtonaatuncotocmntomentoa e

* MAY REPRESENT UP TO 11 COUNTS

Fig.

C. 2--Further

UNIVARIATE

QUANTILES(DEF=4)

100% MAX  7,55529
75% Q3 0.805572
50% MED -0,.271872
25% Q1 ~1.39697

0% MIN -26.8182

RANGE 34.3735
Q3-Q1 2.20254

# BOXPLOT
2 *

10 0
93 |
Y13 Hewe-- +
502 Feo~t.-
150 I
LYW7 0
10 0
6 #
1
1 *
1 *
1 #
1 *

sunmari es of

t he

99%
95%
90%
10%

5%

1%

EXTREMES
4.01823 LOWESY HIGHES
2.41h69 -26.8182 44,7786
1.80624 -17.7454 4.8626
~3.01064 =14,1523 5.h01
=4.13154 -12.2459 6.1885
~7.5M21 -9.99829 7.5552

NORMAL PROBABILITY PLOT

7+ »
++4HH4
$UHN RN RN
LE 2222 2228 0
L2 2 2 2.2 2% T8 Y
HURHRN g
AR RRER
PR
NN
I
l*
}_I
* o
* [
|
-27+%
B T P T T Tt TEpUyUPS YUPUPHPIS SUpRpUPR SUpUpa 8
-2 -1 +0 +1 +2
i ndi vi dual responses to COH



UNIVARIATE

VARIABLE=TSPAV

MOMENTS QUANTILES(DEF=Y4) EXTREMES
N 1238 SUM WGTS 1238 100% MAX 0.108921 99% 0.0452668 LOWEST HIGHES
MEAN -.00454673 SUM ~5.62885 75% Q3 0.00814413 95%  0.0270386 -0.211439 0.054557
STD DEV  0.0240055 VARIANCE , 000576263 50% MED~, 00189206 90% 0.0185103 -0.17474 0.063480
SKEWNESS -1.85532 KURTOSIS 11.8126 25% Q1 ~0.014718Y 10% -0.0287881 ~0.167015 0.078133
uss 0.73843 Css 0.712837 0% MIN -0.211439 5% -0.0417656 -0.149292 0.085432
Cv -5217.912 STH MEAN 0.00068226 1% -0.087032% -0, 145252 0.10892
T:MEAN=0 -6.66422 PROB>{T| 0.0001 RANGE 0.32036
SGN RANK -71555.5 PROB>1S) 0.0001 Q3-Q1 0.0228625
BAR CHART # BOXPLOT NORMAL PROBABILITY PLOT
0.11+# 1 i 0.11+ *
R 1 i *
¥ 2 * *
R 17 0 PR
JHRRRAR RN 93 | AR RN
CHMH NI NN RN 4§38 te--nm + W
L L T e T T " HE2 Heoda—t W
R II I Ty ey 156 { T T TUu
_0.05*-**“** “" 0 -0.05+ ER 2 2 2.8 0 FuY
# 9 0 PR
" 6 o *H
* 2 * *
* 2 » #*
»* 2 # *
» 2 » *
~0.21+% 1 * -0.214#%
BT e e T LT T T S N LT e s S s 1 ToT  2UPREPUE SEpIRpR WRpUpRpae PUpE Y S
* MAY REPRESENT UP TO 10 COUNTS ‘ -2 -1 +0 +1 +2

Fig. C 3--Further sumaries of the individual responses to TSP
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VAR ABLE=0ZOMX

MOMENTS
N 1238 SUM WGTS 1238
MEAN -18.3672 SUM -22738.6
STD DEV h2,1227 VAR IANCE 1825.23
SKEWNESS -1.3923 KURTOSIS 4.83137
uss 2675453 CSS 22517808
cv -232.603 STD MEAN 1.21422
T:MEAN=0 =15.1267 PROB>|T| 0.0001
SGN RANK 173278 PROB>| S| 0.0001
BAR CHART
130+#

K

.

L HR RN

SN0 00
A A M AL A AL A0 Sk MM A0 AL M MM ML 00 AL S 00 30 A0 0 ML AL A0 4L 3 f M 4
:**ﬁ**ﬂ*ﬁ“#ﬂ***ﬁ*ﬁ*ﬂ****l“**n***ﬂ#****“*ﬂMﬁ**
_u»«*nnun*««nu«*unu«*u*u*unnun*u
RIS T °
.&*ﬁ**ﬁ**ﬂ**

~QQ+HHHHEN
Rill
.*»
'“
.**

* MAY REPRESENT UP TO 7 COUNTS

100% M
75% Q
50% M
25% Q

0% M

RANGE
Q3-q

#
1

UNIVARIATE

AX
3
ED
1
IN

BOXP

*

QUANT ILES(DEF=4) EXTREMES

137.438 99% 67.0917 LOWEST HIGHES
8.17751 95% 34,5356 -312.541 78.567
-11.2775 90% 24.9338 ~253.312 82.017
-37,2712 10% -68.9922 ~250.404 83.310
-312.541 5% -95.9529 -216.287 87.097
1% ~169.929 -207.779 137.43
449.979
45,4487
Lot NORMAL PROBABILITY PLOT
130+ *
++
++4+HARNR
EX R 2.1 21 3
PRy FrT T
- [ 2 2.2 2 208
-t HH N4
La it EFYS
HHEH44
-90+ 44 HRHN
FET e T2
+4  HE
*H
HHW
#*
#
#
~310+#
R R e e Tl Py R T R R i T R T TP
-2 -1 +0 +1 +2

Fig. C 4--Further summaries of the individual responses to ozone
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UN
VAR ABLE=NO2MX
MOMENTS
N 1238 SUM WGTS 1238 100% MAX
MEAN -5.79225 SUM -7170.8 75% Q3
STD DEV 31.0183 VAR I ANCE 962,137 50% MED
SKEWNESS  -6.56881 KURTOS1S 87.4405 25% Qi
uss 1231698 cSs 1190163 0% MIN
cv -535.515 STD MEAN  0.881573
T:MEAN=0  -6.57036 PROB> | T| 0.0001 RANGE
SGN RANK  -63356.5 PROB> | S| 0.0001 Q3-Q1
BAR CHART # B
125+#% 1
4 5
_“”*”“““““**ﬂ““"ﬁ*#**“*ﬂ*“* “15 +
.ﬂ““”H“*#“**#“**ﬁ*ﬂ***“”**“#*“***ﬁ““***ﬁ“*ﬁ#“*ﬁ* 7“7 #*
BRI ‘ 58
L 8
o 1
o !
L 1
~5254# )
R e R kAt il Rl Ratetalal el Rl

* MAY REPRESENT UP TO 16 COUNTS

IVARIATE

QUANTILES(DEF=4) EXTREMES
96.0278 99% 40.0155 LOWEST HIGHES
9.50577 95% 25.6301 -515.04h5 52.715

~-1.80924 90% 18,5293 ~-392.219 58.785

-14,7215 10% -33.2001 -325.81 65.515

-515.045 5% -47.8865 -178.084 73.263

1% -94,5008 -130.306 96.027
611.073 .
24,2272
oxXpPLOT NORMAL PROBABILITY PLOT
125+ .

# ++++4++44
..... + HERHURAHRHAREAAR R R AR
-t - W W N NN

0 ER R R LT L R Y

# #

* #

* #

# #

* -525+%

L R e R e L ek attalat ettt 4
-2 -1 +0 +1 +2

Fig. C.5--Further summaries of the

i ndi vidual responses to NO)



VARIABLE=MINTEMP

UNIVARIATE

MOMENTS
N 1238 SUM WG S 1238
MEAN -.00849611 SUM -10.5182
STD DEV 0.0920138 VARJANC . 0.0084665h
SKEWNESS 0.2042 KURTOS 3 17.3102
uss 10,5625 CSss 10.4731
cv -1083.01 STD MEAKR 0.00261513
T:MEAN=0 -3.24884 PROB>}T| 0.00118993 RANGE
SGN RANK -72796.5 PROB>|S| 0.0001 Q3-Q
BAR CHART ¥
0.65+* 2
L 1
H 2
o 5
.”* ]8
.*#**N“ 67
.*Hﬁ*M*h**lh**Nﬂ**hn***ﬁ****ﬂﬁﬁ* 39“
.ﬂ““ﬂﬁ#“ﬁ##ﬁ“#*ﬂ“hﬁ**“*****ﬁﬁ*k*ﬁ*ﬁﬁ*ﬂ”***“Mhﬁﬁ** 6]2
0. 15+ HRHAHHHUNR 122
¥ 10
J* Yy
~0.95+* 1

* MAY REPRESENT UP TO 13 COUNTS

QUANTILES(DEF=4)

100% MAX 0.690224
75% Q3 0.0317862
50% MED-0.0126698
25% Q1 -0.0549098

0% MIN -0.988637

1.67886
0.086696
BOXPLOT
# 0.65+
w*
#
0
0
R P +
[P
0 =0.15¢
0
0
* ~-0.95+

Fig. C 6--Further summaries of the individual

99% 0.260319
95% 0.130782
90% 0.079235
10% -0.0987047
5% -0.132096
1% ~0.20627

EXTREMES
LOWEST HIGHES
~0.988637 0.43042
~0.386uU48 0.43113
" ~0.357694 0.4998
~0.347597 0.65408
~-0.308119 0.69022

NORMAL PROBABILITY PLOT

*
*
W
L2 T T T
ER T A AR ALE S )
+HENREARARRH AR
HAAHHREHRRR N N
HUHHHH NN R
LR 2 T
*
*
el e e R Tl T N R e L S
-2 -1 +1 +2

responses to mnimm tenperature
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VARIABLE=PRECIP

Fig. C 7--Further summaries of the individua

UNIVARIATE

responses to precipitation

MOMENTS QUANT I LES(DEF=Y4) EXTREMES
N 1185 SUM WGTS 1185 100% MAX 5.60129 99% k., 16602 LOWEST HIGHES
MEAN -2.36196 SUM -2798.92 - 75% Q3 0.929045 95% 2.1894 -72.1828 4.5210
STD DEV 7.13578 VARIANCE 50.9193 50% MED ~0.422678 90% 1.72042 -68. 3629 4. 6455
SKEWNESS ~-4,53062 KURTOS S 27.996 25% a1 -2.72283 10% -7.67185 -60.3907 4. 727
uss 66899 .4 CSS 60288.5 0% MIN ~-72.1828 5% -13.71778 -52.7428 5.021
cv -302.113 STD MEAN 0,207292 1% ~38.508 -47.3732 5.6012
T:MEAN=0 -11.3944 PROB>|T| 0.0001 RANGE 17,7841
SGN RANK -115168 PROB>|S| 0.0001 Q3-Q1 3.65188
MiSSING VALUE .
COUNT 53
% COUNT/NOBS h,28
BAR CHART # soxpLOT NORMAL PROBABILITY PLOT
7.5+# 5 | 7.5+ IR RN
T T T T e s BO6 +==m== + e Y T T Y Y T
B Ty I T T T L e e o) 57l Hoodaat [ T T T YT Y R
SRR 106 0 AL AR S SR T 22
Rz 1] 0 #hE4+ 4
L 18 # FErTwE)
W 10 * + *#
o 5 * #
=32.5+% 7 * ~-32.5+ ###
L -3 * #*
W y # *H
L 3 » *
W 1 # #*
:* 1 * #
W 1 * #
=72.5+% 1 * -72.5+%
B L T T Rt T bt St T T R R L e T T O L TTE U e
* MAY REPRESENT UP TO 12 COUNTS -2 -1 +1 +2
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PLOT OF S02AV*S1 LEGEND: A = 1 0OBS, B = 2 OBS, ETC.

SO02AV }
750 +
A
500 +
250 +
A AA A
DCFEBBB
CVZZZZLJEAAB AA
0 + D2ZZZZZTPEDAD
AIWZZZZXTNDAAB A
EGKJJKLIF DDA A
AAD BEEBDB AA .
-250 + AB BAA A NOTE: 480 OBS HIDDEN
A A A AA AA
A AB ABA AA
AA A
=500 + A A A )
A A
}—l
[y
~J
-750 + 1
-1000 +
-1250 +
-1500 +
-1750 +
A
-2000 +
mtmm—aa tocana Fommnn tomm—- tomm—- R Fomnn fmm——— R Fommm temmm- Fomm +--;--+ ----- - Hom e tomemn temmmaa L temm—— Foe
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S1

Fig. C 8--Scatterdiagram of estimated individual responses to SO, by the associated standard errors



PLOT Of COHAVH#S2 LEGEND: A = 1 OBS, B = 2 OBS, ETC.
COHAV } A
6 + A
A
A A AB A A A
BA AAB A A A A
3+ A BABAB DCA BDAA ABA
AABBEFBJCDHBHA BAAAAABB A A
AAAGDFHHGOHL IEEBDBA AAA  AAA A A
ABHIH I SOSQNMJHH I DCACBAAAA AA A
0 + ABGIKNSZTSKLQPIGFFCEAD BA AAA A NOTE: 6 OBS HIDDEN
CEMJKPKOMNSNJINHHBDBFEAC. ABAC  ABA
AACBOGIGDFEIIHIFFFCBEBC BACAA ABA A A
AAA DCCDBHCFAGGEBCBE AAABBAACA A
-3 4+ B  BBC ACDBBDBA CCABADBAA A A A
ABBBA AABDD BC AB A A B A AA A
BAAB AABA B A AA A B A A A
A A AB BB C D
-6 + A B A AA
AB A
AA A
A A A
-9 4 A A A
A
~-12  + A
|
}
| A
-15 +
-18 + A
-21 +
-24 o+
-27 o+ A
-|-+ ----- E - tomamm D tmm——— temee- R e R tommm- - fomm—— R tommm Fmmmm— tommmn Fomm—— tem——- e Femm—— N t--
0.0 0.5 1.0 1.5 20 2. 3.0 3.5 4o 4.5 50 55 6.0 6.5 7.0 7.5 8.0 8.5 9.0 9.5 10.0
s2

Fig. C 9--Scatterdiagram of the estimated individual

responses to COH by the associated standard errors
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Fig. C 10--Scatterdiagram of the estimated individual responses to TSP by the associated standard errors
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PLOT OF OZOMX¥SYy LEGEND: A = 1 0BS, B = g oBS, ETC.
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Fig. C. 11--Scatterdiagram of the estinmated individual responses to ozone by the
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PLOT OF NO2MX*S5 LEGEND: A = 1 OBS, B = 2 0BS, ETC,
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Fig. C 12--Scatterdiagram of the estinmated individual responses to NO, by the
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PLOT OF MINILMP¥S6 LEGEND: A = 1 OBS, B = 2 0BS, ETC.
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A A
0.4 +
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Fig. C 13--Scatterdiagram of the estimated individual responses to nmin. tenp. by the associated standard error
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Gven the heterogeneity of the estimated individual responses, the
unwei ghted summaries given in Table C.4 and Figs. C. 1 through C7 are
not very informative. The unweighted summaries given in these exhibits
do not account for the heterogeneity. Those summaries my be dom nated
by outliers that are highly inprecisely estinated. One way to get
around this problem would be to carry out weighted summaries of the
estimated individual responses,. with weights determned from the
estimated standard errors. The randomeffects nodel, whose results are
di scussed in Sec. VII, is simlar to that approach (it also allows the
estimation of between-individual differences).

Another way to account for account for heterogeneity in summarizing
is to examine the individual z statistics, which rescale the estimted
i ndi vidual responses by precision. Table C. 5 gives the nmajor sumaries
for the individual z statistics.. Figs. C 15 through C 21 give further
summaries of the individual z statistics for each aeronetric attribute.
The variable nane T1 refers to the z statistic for the individual
response to SO0, T2 refers to COH, T3 to TSP, T4 to ozone, T5 to NO, T6
to mnimum tenperature, and T7 to precipitation.

The results of the =z analysis vary somewhat fromthose of the
randomeffects nodel. For all the aeronetric attributes except
precipitation, the distributions of the individual z statistics are
reasonably close to a standard normal distribution: The standard
deviations for the individual z statistics given under the colum "STD
DEV' in Table C.5 are close to one, and the skewness and kurtosis given
in the "nmonents" sections of Figs. C. 15 through C. 20 are both small,
rangi ng between 0.1 and 0.3 . The normal plots given in Figs. C 15
through C 20 are reasonably close to straight lines, as they should be
if the distributions are close to a normal distribution. For
precipitation, the individual z statistics are somewhat skewed.

For all pollution neasures, the average z statistics given under
the columm "MEAN' in Table C.5 are negative, indicating that there is a
| ower probability for a sick episode on a polluted day than on a clean
day. The effect is statistically significant at the five percent |evel
for COH, TSP, and ozone. (See the entries "T: MEAN=0" and "PROB>|T]" in
the "monents" sections of Figs. C 15 through C.21.) The average z
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statistic for mnimum tenperature is also negative, indicating that when
the mininmum tenperature is higher, a sick episode is less probable. The
effect is statistically significant at the 5 percent level. The average
z statistic for precipitation is positive, indicating a higher
probability to have a sick episode on a wet day, but the effect is not
statistically significant at the 5 percent |evel

COMPARISON OF SUBPOPULATIONS

In the followi ng subsections, we expand on the discussion of
subpopul ations in Sec. VII. W begin by taking up two alternative
criteria for defining the sickly subpopulation, then proceed to
contrasts between adults and children and between snokers and
nonsnokers.

Sickly vs. Healthy

Lung Function. Another way we can classify people into healthy
and | ess healthy subpopulations is to use FEV,, as nmeasured during the
HE W define a person to be a high-FEV, person if his FEV, is higher
than that expected based on his sex, age, height and weight. Anmong 383
persons for whom we have FEV, neasurenents, 282 fall into this
subpopul ation; the other 101 are classified as |ow FEV, persons. For
both average responses and between-individual differences, none of the
conpari sons between these two subpopulations is statistically
significant. (See Tables C. 6 through C.9).

Pulmonary Susceptibility. W define a person to be susceptible to
pul nonary problems if he has one of the inportant pul monary diseases
such as asthma, enphysena, or hay fever. W have 422 persons who fal
into this category. For both average responses and between-individua
differences, none of the conparisons between these two subpopulations is
statistically significant. (See Tables C. 10 through C 13.)

Adults Versus Children

The conparison between adults and children is of interest for
several reasons. First, adults are usually nore nobile than children
because of work and other activities. Therefore our measure of air
pollution exposure is less accurate for adults than for children
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Table C. 6

META- ANALYSI S BASED ON THE RANDOW EFFECTS MODEL
SUMWARI ES FOR THE AEROVETRI C EFFECTS OVER THE
H GH FEV1 PERSONS: AVERAGE RESPONSES

(n = 282)
Aeronetric Esti mat ed z for the
Attribute Coeffi ci ent Attribute
S02 (ppre 0. 109E+02 0. 404E+01
COH -0.417E-01 -0.529E+00
TSP (ng/m>) 0. 152E- 02 0. 186E+01
Qzone (ppm -0. 378E+01 -0. 242E+01
NO2 (ppm 0. 113E+01 0. 140E+01
Mn. tenp. (F) -0. 625E-02 -0. 196E+01
Precip. (inch) 0. 668E+00 0. 624E+01

Table C. 7

META- ANALYSI S BASED ON THE RANDOW EFFECTS MODEL
SUMWARI ES FOR THE AEROVETRI C EFFECTS OVER THE
LOV FEV1 PERSONS:  AVERAGE RESPONSES

(n = 101)

Aeronetric Esti mat ed z for the z for the
Attribute Coeffici ent Attribute Cont r ast
S02 (ppm 0. 116E+02 0. 254E+01 0.13

COH 0. 153E+00 0. 104E+01 1.17

TSP (ug/m° 0. 834E- 03 0. 557E+00 -0. 40
Czone (ppm - 0. 865E+00 -0. 311E+00 0.92

NO2 (ppm 0. 126E+00 0. 718E-01 -0.52

Mn. tenp. (F) -0.127E-01 -0. 195E+01 -0. 89
Precip. (inch) 0. 888E+00 0. 509E+01 1.08
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Table C. 8

META- ANALYSI S BASED ON THE RANDOM EFFECTS MODEL SUMVARI ES
FOR THE AEROMETRIC EFFECTS OVER THE HI GH FEV,; PERSONS:
BETWEEN | NDI VI DUAL DI FFERENCES

(n = 282)
Aeronetric z for the
Attribute Tau Attribute
S02 (ppm 0. 651E+01 0. 320E+00
COH 0. 269E+00 0. 622E+00
TSP (ug/m3) 0. 000E+00 0. 000E+00
Qzone (ppm 0. 466E+01 0. 496E+00
NO2 (ppm) 0. 434E+01 0. 149E+01
Mn. temp. (F) 0. 168E- 01 0. 138E+01
Precip. (inch) 0. 000E+00 0. 000E+00

Table C.9

META- ANALYSI S BASED ON THE RANDOM EFFECTS MODEL SUMVARI ES
FOR THE AEROMETRI C EFFECTS OVER THE LOW FEV, PERSONS:
BETWEEN | NDI VI DUAL DI FFERENCES

(n = 101)

Aeronetric z for the z for the
Attribute Tau Attribute Cont r ast
S02 (ppm 0. 000E+00 0. 000E+00 -0.16
COH 0. 527E+00 0.117E+01 0.78

TSP (ug/m> ) 0. 520E- 02 0. 112E+01 1.01
Qzone (ppm 0. 714E+01 0. 646E+00 0.32

NO2 (ppm 0. 973E+01 0. 246E+01 1.88
Mn. tenp. (F)  0.348E-01 0. 223E+01 1.60
Precip. (inch) 0. 000E+00 0. 000E+00 0.00
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Table C. 10

META- ANALYSI S BASED ON THE RANDOM EFFECTS MODEL SUMMARI ES
FOR THE AEROVETRI C EFFECTS OVER THE SUSCEPTI BLES:
AVERAGE RESPONSES

(n = 422)
Aeronetric Esti mat ed z for the
Attribute Coeffici ent Attribute
S02 (ppm 0. 780E+01 0. 366E+01
COH -0. 754E-01 -0. 118E+01
TSP (ug/m> ) 0. 115E- 02 0. 168E+01
Qzone (ppm -0. 300E+01 -0. 235E+01
NO2 (ppm) 0. 132E+01 0. 182E+01
Mn. temp. (F) -0.128E-01 -0.471E+01
Precip. (inch) 0. 672E+00 0. 763E+01

Table C. 11

META- ANALYSI S BASED ON THE RANDOM EFFECTS MODEL SUMVARI ES
FOR THE AEROVETRI C EFFECTS OVER THE NONSUSCEPTI BLES:
AVERAGE RESPONSES

(n = 816)

Aeronetric Esti mat ed z for the z for the
Attribute Coefficient Attribute Cont r ast
S02 (ppm 0. 800E+01 0. 489E+01 0. 07

COH 0. 700E- 01 0. 142E+01 1.81

TSP (ug/m3) 0. 264E-03 0. 521E+00 1.04
Qzone (ppm -0. 372E+01 - 0. 381E+01 0. 45

NO2 (ppm 0. 138E+01 0. 274E+01 0. 07

Mn. temp. (F) -0.133E-01 -0. 660E+01 0.15
Precip. (inch) 0. 691E+00 0. 103E+02 0.17
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Table C. 12

META- ANALYSI S BASED ON THE RANDOM EFFECTS MODEL SUMMARI ES
FOR THE AEROMETRI C EFFECTS OVER THE SUSCEPTI BLES:
BETWEEN | NDI VI DUAL DI FFERENCES

(n = 422)
Aerometric z for the
Attribute TAU Attribute
S02 (ppm 0. 189E+01 0. 369E-01
CH 0. 270E+00 0. 779E+00
TSP (ug/m> ) 0. 342E- 02 0. 112E+01
Qzone (ppm 0. 619E+01 0. 107E+01
NO2 (ppm 0. 693E+01 0. 363E+01
Mn. temp. (F) 0. 216E-01 0. 246E+01
Precip. (inch) 0. 000E+00 0. 000E+00

Table C. 13

META- ANALYSI S BASED ON THE RANDOM EFFECTS MCODEL SUMVARI ES
FOR THE AEROVETRI C EFFECTS OVER THE NONSUSCEPTI BLES:
BETWEEN | NDI VI DUAL DI FFERENCES

(n = 816)

Aeronetric z for the z for the
Attribute Tau Attribute Cont r ast
S02 (ppm 0. 000E+00 0. 000E+00 0. 03

COH 0. 349E+00 0. 157E+01 0.40

TSP (ug/m3) 0. 000E+00 0. 000E+00 0.91
Qzone (ppm 0. 492E+01 0. 866E+00 0.31

NO2 (ppm) 0. 439E+01 0. 231E+01 1.84

Mn. temp. (F) 0.177E-01 0. 221E+01 0. 65
Precip. (inch) 0. 000E+00 0. 000E+00 0.00
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Second, because children spend nore tinme outside than adults, our
measures of air pollution exposure based on anbient nonitoring are nore
accurate for children than for adults. Third, adults encounter or
engage in nore activities that give them nonanbient exposures, such as
smoki ng and occupational exposures. Furthernore, it is conceivable that
adults and children mght have intrinsically different responses to air
pol | ution.

We distinguish adults and children at age 18. Thus, in the fina
anal ysis sanmple we have 780 adults and 458 children. W found children
to be significantly more responsive to nininmum tenperature; the average
response for children is nore than twice the average response for
adults. There is also significantly |ess between-individual variation
in children's responses to mninumtenperature and NO, (See Tables
C. 14 through C 17.)

Snmoki ng

A major source of nonanbient exposure is snoking. Anong the 780
adults in the final analysis sanple, we have 276 snokers and 504
nonsnokers.  For both average responses and between-individual
differences, none of the conparisons between these two subpopul ations
are statistically significant. (See Tables C 18 through C. 21.)

Among the 458 children in the final analysis sanple, we have 208
who live in a household with smokers and 250 who do not. For both
average responses and between-individual differences, none of the
conparisons between these two subpopulations is statistically
significant (see Tables C 22 through C 25.).
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Table C. 14

META- ANALYSI S BASED ON THE RANDOWM EFFECTS MODEL SUMVARI ES
FOR THE AEROMETRI C EFFECTS OVER THE ADULTS:
AVERAGE RESPONSES

(n = 780)
Aeronetric Esti mat ed z for the
Attribute Coefficient Attribute
S02 (ppm 0. 850E+01 0. 534E+01
COH 0. 271E-02 0. 568E- 01
TSP (ug/m>) 0. 560E- 03 0. 109E+01
Qzone (ppm -0.257E+01 -0.268E+01
NO2 (ppm 0. 166E+01 0. 319E+01
Mn. temp. (F) -0. 957E- 02 -0. 467E+01
Precip. (inch) 0. 636E+00 0.9686+01

Table C. 15

META- ANALYSI S BASED ON THE RANDOM EFFECTS MODEL SUMMARI ES
FOR THE AEROMETRI C EFFECTS OVER THE CHI LDREN:
AVERAGE RESPONSES

(n = 458)

Aeronetric Esti mat ed z for the z for the
Attribute Coefficient Attribute Cont r ast
S02 (ppm 0. 636E+01 0. 279E+01 -0.77

COH 0. 388E-01 0. 568E+00 0. 43

TSP (ug/m3 > 0. 4936- 03 0. 716E+00 -0.08
Qzone (ppm -0. 543E+01 -0. 412E+01 -1.76

NO2 (ppm 0. 7696+00 0. 112E+01 -1.04

Mn. temp. (F) -0. 205E- 01 -0. 787E+01 -3.31
Precip. (inch) 0. 776E+00 0. 853E+01 1.25
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Table C. 16

META- ANALYSI S BASED ON THE RANDOM EFFECTS MODEL SUMVARI ES
FOR THE AEROMETRI C EFFECTS OVER THE ADULTS
BETWEEN | NDI VI DUAL DI FFERENCES

(n = 780)
Aeronetric z for the
Attribute Tau Attribute
S02 (ppm 0. 000E+00 0. 000E+00
COH 0. 328E+00 0. 151E+01
TSP (ng/m>) 0. 312E- 02 0. 125E+01
Qzone (ppm 0. 650E+01 0. 156E+01
NO2 (ppm 0. 635E+01 0. 442E+01
Mn. tenp. (F) 0. 222E-01 0. 343E+01
Precip. (inch) 0. 000E+00 0. 000E+00

Table C 17

VMETA- ANALYSI S BASED ON THE RANDOM EFFECTS MODEL SUMVARI ES
FOR THE AEROMETRI C EFFECTS OVER THE CHI LDREN
BETWEEN | NDI VI DUAL DI FFERENCES

(n = 458)

Aeronetric z for the z for the
Attribute Tau Attribute Cont r ast
S02 (ppm 0. 613E+01 0. 342E+00 0.28
COH 0. 385E+00 0. 128E+01 0. 30

TSP (ug/m>) 0. 000E+00 0. 000E+00 -0.73
Qzone (ppm 0. 000E+00 0. 000E+00 -0.88

NO2 (ppm 0. 184E+01 0. 305E+00 -2.57
Mn. tenp. 0. 000E+00 0. 000E+00 -2.16
Precip. (inch) 0. 000E+00 0. 000E+00 0.00
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Table C. 18

META- ANALYSI S BASED ON THE RANDOM EFFECTS MODEL SUMMARI ES
FOR THE AEROMETRI C EFFECTS OVER SMOXKI NG ADULTS:
AVERAGE RESPONSES

(n = 276)
Aeronetric Esti mat ed z for the
Attribute Coefficient Attribute
S02 (ppm 0. 960E+01 0. 351E+01
CH . -0. 166E-02 -0. 205E-01
TSP (ng/m> ) 0. 771E- 03 0. 902E+00
Qzone (ppm -0. 424E+01 -0. 252E+01
NO2 (ppm) 0. 115E+01 0. 122E+01
Mn. tenp. (F) -0.103E-01 -0. 298E+01
Precip. (inch) 0. 609E+00 0. 545E+01

Table C. 19

META- ANALYSI S BASED ON THE RANDOM EFFECTS MODEL SUMVARI ES
FOR THE AEROMETRI C EFFECTS OVER THE NONSMOKI NG ADULTS:
AVERAGE RESPONSES

(n = 504)

Aeronetric Esti mat ed z for the z for the
Attribute Coefficient Attribute Cont r ast
S02 (ppm 0. 761E+01  0.382E+01 -0.59
COH 0. 827E-02 0. 142E+00 0.10

TSP (ug/m° > 0. 449E- 03 0. 701E+00 -0. 30
Czone (ppm -0. 172E+01 0. 147E+01 1.23

NO2 (ppm) 0. 189E+01 0. 303E+01 0.65
Mn. tenp. (F)  -0.910E- 02 0. 374E+01 0.28
Precip. (inch) 0. 651E+00 0. 800E+01 0.31
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Table C. 20

META- ANALYSI S BASED ON THE RANDOM EFFECTS MODEL SUMVARI ES
FOR THE AEROVETRI C EFFECTS OVER SMOXKI NG ADULTS:
BETWEEN | NDI VI DUAL DI FFERENCES

(n = 276)
Aeronetric z for the
Attribute Tau Attribute
S02 (ppm 0. 872E+01 0. 551E+00
COH 0. 401E+00 0. 129E+01
TSP (ug/m> ) 0. 345E- 02 0. 939E+00
Qzone (ppm 0. 679E+01 0. 922E+00
NO2 (ppm 0. 809E+01 0. 358E+01
Mn. temp. (F) 0.233E-01 0.221E+01
Precip. (inch) 0. 000E+00 0. 000E+00

Table C. 21

META- ANALYSI S BASED ON THE RANDOMH EFFECTS MCDEL SUMMARI ES
FOR THE AEROVETRI C EFFECTS OVER THE NONSMOKI NG ADULTS:
BETWEEN | NDI VI DUAL DI FFERENCES

(n = 504)

Aeronetric z for the z for the
Attribute Tau Attribute Cont r ast
S02 (ppm 0. 000E+00 0. 000E+00 -0.45

CCH 0. 199E+00 0. 476E+00 -0.81

TSP (ug/m3) 0. 281E-02 0. 799E+00 -0.25
Qzone (ppm 0. 620E+01 0.121E+01 -0.13

NO2 (ppm 0. 529E+01 0. 273E+01 -1.80

Mn. temp. (F) 0. 162E-01 0. 165E+01 -0.96
Precip. (inch) 0. 000E+00 0. 000E+00 0.00
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Table C. 22

META- ANALYSI S BASED ON THE RANDOM EFFECTS MODEL SUMVARI ES
FOR THE AEROMETRI C EFFECTS OVER EXPOSED CHI LDREN:

AVERAGE RESPONSES

(n = 208)
Aeronetric Esti mat ed z for the
Attribute Coefficient Attribute
S02 (ppm) 0. 790E+01 0. 207E+01
COH -0. 678E-01 -0. 617E+00
TSP (ug/m°) 0.377E-03 0. 349E+00
Qzone (ppm -0. 728E+01 - 0. 339E+01
NO2 (ppm 0. 334E+00 0. 293E+00
Mn. tenp. (F)  -0.241E-01 -0. 552E+01
Precip. (inch) 0. 739E+00 0. 500E+01

Table C. 23

META- ANALYSI S BASED ON THE RANDOM EFFECTS MODEL SUMVARI ES
FOR THE AEROMETRI C EFFECTS OVER THE NONEXPOSED CHI LDREN:

AVERAGE RESPONSES

(n = 816)
Aeronetric Esti mat ed z for the z for the
Attribute Coefficient Attribute Cont r ast
S02 (ppm 0. 491E+01 0. 170E+01 -0. 63
COH 0. 120E+00 0. 144E+01 1.37
TSP (ug/ms) 0.571E-03 0. 641E+00 0.14
Qzone (ppm -0. 431E+01 -0. 258E+01 1.10
NO2 (ppm) 0. 898E+00 0. 103E+01 0.39
Mn. temp. (F)  -0.178E-01 -0. 526E+01 1.14
Precip. (inch) 0. 798E+00 0. 692E+01 0.32
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Table C. 24

META- ANALYSI S BASED ON THE RANDOM EFFECTS MODEL SUMVARI ES
FOR THE AEROVETRI C EFFECTS OVER THE EXPOSED CHI LDREN:
BETWEEN | NDI VI DUAL DI FFERENCES

(n = 208)
Aeronetric z for the
Attribute Tau Attribute
S02 (ppm 0. 146E+02 0. 912E+00
COH 0. 462E+00 0. 106E+01
TSP (ug/m3) 0. 000E+00 0. 000E+00
Qzone (ppm 0. 000E+00 0. 000E+00
NO2 (ppm 0. 470E+01 0. 102E+01
Mn. temp. (F) 0. 193E-01 0. 108E+01
Precip. (inch) 0. 000E+00 0. 000E+00

Table C. 25

META- ANALYSI S BASED ON THE RANDOM EFFECTS MODEL SUMVARI ES
FOR THE AEROMETRI C EFFECTS OVER THE NONEXPOSED CHI LDREN:
BETWEEN | NDI VI DUAL DI FFERENCES

(n = 250)

Aeronetric z for the z for the
Attribute Tau "Attribute Cont r ast
S02 (ppm 0. 344E+01 0. 955E- 01 -0.76

COH 0. 000E+00 0. 000E+00 -0.91

TSP (ug/mS) 0. 000E+00 0. 000E+00 0.00
Qzone (ppm 0. 000E+00 0. 000E+00 0.00

NO2 (ppm 0. 000E+00 0. 000E+00 -0. 87

Mn. temp. (F) 0. 000E+00 0. 000E+00 -0.91
Precip. (inch) 0. 000E+00 0. 000E+00 0. 00
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