NPDES PERMIT NO. NM0024066

FACT SHEET

FOR THE DRAFT NATIONAL POLLUTANT DISCHARGE ELIMINATION SYSTEM (NPDES) PERMIT TO DISCHARGE TO WATERS OF THE UNITED STATES

APPLICANT

Town of Taos Wastewater Treatment Facility P.O. Box 250 Ranchos de Taos, NM 87557

ISSUING OFFICE

U.S. Environmental Protection Agency Region 6 1445 Ross Avenue Dallas, Texas 75202-2733

PREPARED BY

Quang Nguyen Environmental Engineer NPDES Permits & TMDL Branch (6WQ-P) Water Division VOICE: 214-665-7238 FAX: 214-665-2191 EMAIL: Nguyen.Quang@epa.gov

DATE PREPARED

February 14, 2018

PERMIT ACTION

Proposed reissuance of the current NPDES permit issued July 17, 2012, with an effective date of September 1, 2012, and an expiration date of August 31, 2017.

RECEIVING WATER – BASIN

Unnamed Arroyo - Rio Pueblo de Taos - Rio Grande Basin

DOCUMENT ABBREVIATIONS

In the document that follows, various abbreviations are used. They are as follows:

4Q3	Lowest four-day average flow rate expected to occur once every three years
BAT	Best available technology economically achievable
BCT	Best conventional pollutant control technology
BPT	Best practicable control technology currently available
BMP	Best management plan
BOD	Biochemical oxygen demand (five-day unless noted otherwise)
BPJ	Best professional judgment
CBOD	Carbonaceous biochemical oxygen demand (five-day unless noted otherwise)
CD	Critical dilution
CFR	Code of Federal Regulations
Cfs	Cubic feet per second
COD	Chemical oxygen demand
COE	United States Corp of Engineers
CWA	Clean Water Act
DMR	Discharge monitoring report
ELG	Effluent limitations guidelines
EPA	United States Environmental Protection Agency
ESA	Endangered Species Act
FCB	Fecal coliform bacteria
F&WS	United States Fish and Wildlife Service
mg/L	Milligrams per liter
μg/L	Micrograms per liter
MGD	million gallons per day
NMAC	New Mexico Administrative Code
NMED	New Mexico Environment Department
NMIP	New Mexico NPDES Permit Implementation Procedures
NMWQS	New Mexico State Standards for Interstate and Intrastate Surface Waters
NPDES	National Pollutant Discharge Elimination System
MQL	Minimum quantification level
O&G	Oil and grease
PCB	Polychlorinated Biphenyl
POTW	Publically owned treatment works
RP	Reasonable potential
SIC	Standard industrial classification
s.u.	Standard units (for parameter pH)
SWQB	Surface Water Quality Bureau
TDS	Total dissolved solids
TMDL	Total maximum daily load
TRC	Total residual chlorine
TSS	Total suspended solids
UAA	Use attainability analysis
USGS	United States Geological Service
WLA	Wasteload allocation
WET	Whole effluent toxicity
WQCC	New Mexico Water Quality Control Commission
WQMP	Water Quality Management Plan
WWTP	Wastewater treatment plant

In this document, references to State WQS and/or rules shall collectively mean either or both the State of New Mexico and/or the Pueblo of Taos.

I. CHANGES FROM THE PREVIOUS PERMIT

Changes from the permit previously issued July17, 2012, with an effective date of September 1, 2012, and an expiration date of August 31, 2017, are:

- 1. Sufficiently Sensitive Methods requirements have been added;
- 2. Limits for BOD₅ have been changed to 17/21 mg/L from 30/45 mg/L along with the mass loadings; and,
- 3. Mercury monitoring requirements have been revised.

II. APPLICATION LOCATION and ACTIVITY

As described in the application, the wastewater treatment plant is located at 1030 Dea Ln in Taos, Taos County, New Mexico. The effluent from the treatment plant is discharged into an unnamed arroyo that flows for approximately ³/₄ mile and then drains into the reach of the Rio Pueblo de Taos that is in Segment 122 (20.6.4.122 NMAC). The discharge is located on that water at latitude 36° 22' 24" N and longitude 105° 39' 21" W, in Taos County, New Mexico. Under the SIC Code 4952, the discharge is from a publicly owned treatment works (POTW) with a design capacity of 2.0 MGD serving a total population of 6602 that includes Town of Taos, Taos Pueblo, El Valle de Los Ranchos and El Prado.

As described in the application and a Compliance Evaluation Inspection dated June 14, 2017, the treatment processes for the facility is as follows:

The raw wastewater flows by gravity flow to the enclosed entrance works. The raw sewage is screened by parallel channels with bar screen and grinders. There is no manual bypass channel for influent flow. The removed solids are compacted by the grinder and screening process and sent to a hopper for final disposal at the Rio Rancho Landfill.

A station for septate haulers is located at the head works. In order to protect the WWTP process, septate haulers must test their loads for pH and other parameters before being allowed to dump the waste at the treatment plant. A log is kept of these loads.

Flow is then directed through a splitter box that sends the wastewater to either the East or West aeration basin. The basins from the old treatment plant have been reconfigured so that half of each basin has a series of fine bubble diffusers to create an aerated zone, and the other half of each basin has mixers only that constitute the anoxic zone. The water enters the basins in the anoxic zone and exits the basin past the aerobic zone. The anoxic zone had dense grey foam about 1-foot-thick on the surface. The east basin is currently off line due to some fine bubble diffusers inoperable at this time.

The partially treated wastewater then enters the Membrane Biological Reactor (MBR) system. The MBR consists of four basins with filters, aerators and mixers. The basins are run

simultaneously and in parallel. Return Activated Sludge is sent back to the splitter box past the grit removal basin. Waste Activated Sludge (WAS) is pulled from the return line. Wasting of solids is done every day for one to five hours depending on flow and Mixed Liquor Suspended Solids (MLSS). The MBR system can accommodate a much higher MLSS than other activated sludge processes, from 7,000 mg/L to 13,000 mg/L according to operators. The processed water is called Permeate Water. Permeate water is continuously sent to the Ultraviolet Disinfection system prior to discharge.

The UV chamber consists of two banks of lights with 14 modules of 8 bulbs each that are kept submerged by a weighted check dam. The lights are turned on 100% of the time. Following in the treatment train is a 12 inch Parshall flume and staff gauge with a secondary Drexelbrook flow measurement device. A portion of the flow is diverted to a golf course storage pond for reuse irrigation during the warm months of the year.

Waste Activated Sludge (WAS) is pulled from the return line. Wasting of solids is done every day for one to five hours depending on flow and Mixed Liquor Suspended Solids (MLSS). The sludge that consists of 2% - 5% solids is sent to the belt press for dewatering. A polymer coagulant is added to the solids. From the belt press solids are deposited into a large roll-off bin. When filled, the bin is taken to the Rio Rancho Landfill for final surface disposal.

III. RECEIVING STREAM STANDARDS

The general and specific stream standards are provided in NMWQS (20.6.4 NMAC, approved by EPA on June 8, 2017). The facility discharges into an unnamed arroyo thence to the Rio Pueblo de Taos in Waterbody Segment No. 20.6.4.122 of the Rio Grande Basin. The designated uses of the Rio Pueblo de Taos receiving water are coldwater aquatic life, fish culture, irrigation, wildlife habitat, livestock watering, and primary contact. The unnamed arroyo is now classified as a perennial water in NMAC Segment 20.6.4.99. The designated uses include: Warmwater aquatic life, livestock watering, wildlife habitat and primary contact.

The north bank of the Rio Pueblo de Taos, also known as the Rio Pueblo, is bordered by the Pueblo of Taos. The Pueblo of Taos has WQS approved by EPA on June 19, 2006, which apply to the northern half of the river, while State WQS applying to the southern half. The Pueblo of Taos WQS establish designed uses of the Rio Pueblo, below Los Cordovas as domestic water supply (including groundwater recharge), wildlife habitat, cold water fishery, irrigation, livestock watering & wildlife water, aquatic life (acute & chronic criteria), and primary human contact/ceremonial use.

IV. EFFLUENT CHARACTERISTICS

A quantitative description of the discharge(s) described in the EPA Permit Application Form 2A and addendum received March 17, 2017, June 23, 2017, and January 5, 2018 are presented below in Table 1:

Parameter	Max	Avg
Flow, million gallons/day (MGD)	1.20	1.03
Temperature, winter	20.30°C	13.65°C
Temperature, summer	22.10 °C	20.10 °C
pH, minimum, standard units (SU)	7.01 su	N/A
pH, maximum, standard units (SU)	8.13 su	N/A
Biochemical Oxygen Demand, (BOD)	10.90 mg/L	2.90 mg/L
Fecal Coliform (bacteria/100 ml)	7.80	10.90
Total Suspended Solids (TSS)	10.60 mg/L	6.80 mg/L
Ammonia (as N)	1.0 mg/L	1.0 mg/L
Total Residual Chlorine (ug/l)	3.00	2.18
Total Kjeldahl Nitrogen (TKN)	2.5 mg/L	1.21 mg/L
Nitrate plus Nitrite Nitrogen	15.00 mg/L	6.54 mg/L
Dissolved Oxygen (DO)	8.01 mg/L	7.83 mg/L
Phosphorus (Total)	3.0 mg/L	2.5 mg/L
Nitrogen (Total)	17.5 mg/L	7.75 mg/L
Total Dissolved Solids (TDS)	610 mg/L	377.2 mg/L

Table 1

Footnotes:

T - Total metal form

The facility has to sample and report all the priority pollutants identified in Part D, Expanded Effluent Testing Data of Form 2A. From that list, the pollutants in Table 2 were either tested above MQLs or were tested at levels above EPA MQL and reported as being non detect. When a pollutant was tested at a detection level that was greater than the EPA MQL then for screening purposes that pollutant was assumed to have a concentration at that detection level. For toxics that were tested at the minimum quantification level (MQL) and reported as less than the MQL, those pollutants are not shown.

Parameter	Max	Avg
Beryllium	2 ug/l	2 ug/l
Copper, T	4.05 ug/l	4.05 ug/l
Lead	0.75 ug/l	0.75 ug/l
Zinc, T	60 ug/l	60 ug/l
Hardness (as CaCO ₃)	250 mg/l	246.7 mg/l
Mercury	0.0231 ug/l	0.0012 ug/l
2-Chloronaphthalene	0.74 ug/l	0.25 ug/l

Table 2

A summary of the last 36 months of available pollutant data from January 2014 through January 2017, taken from DMRs shows no exceedances of permit limits for Mercury, pH, Ammonia, TRC, TSS, FCB, E. coli, or BOD₅. In addition to all the priority pollutants identified in Part D, the permittee sampled and tested for barium, strontium and uranium. The results are shown in Table 3.

Table 3	
Parameter	Concentration
Barium	0.054 mg/L
Strontium	0.207 pCi/L
Uranium	0.0026 mg/L

V. REGULATORY AUTHORITY/PERMIT ACTION

_ _ _

In November 1972, Congress passed the Federal Water Pollution Control Act establishing the NPDES permit program to control water pollution. These amendments established technologybased or end-of-pipe control mechanisms and an interim goal to achieve "water quality which provides for the protection and propagation of fish, shellfish, and wildlife and provides for recreation in and on the water" more commonly known as the "swimmable, fishable" goal. Further amendments in 1977 of the CWA gave EPA the authority to implement pollution control programs such as setting wastewater standards for industry and established the basic structure for regulating pollutants discharges into the waters of the United States. In addition, it made it unlawful for any person to discharge any pollutant from a point source into navigable waters, unless a permit was obtained under its provisions. Regulations governing the EPA administered NPDES permit program are generally found at 40 CFR § 122 (program requirements & permit conditions), §124 (procedures for decision making), §125 (technology-based standards) and § 136 (analytical procedures). Other parts of 40 CFR provide guidance for specific activities and may be used in this document as required.

It is proposed that the permit be reissued for a 5-year term following regulations promulgated at 40 CFR §122.46(a). The existing NPDES permit initially issued July 17, 2012, with an effective date of September 1, 2012, and an expiration date of August 31, 2017 is administratively continued until this permit is reissued.

VI. DRAFT PERMIT RATIONALE AND PROPOSED PERMIT CONDITIONS

A. OVERVIEW of TECHNOLOGY-BASED VERSUS WATER QUALITY STANDARDS-BASED EFFLUENT LIMITATIONS AND CONDITIONS

Regulations contained in 40 CFR §122.44 require that NPDES permit limits are developed that meet the more stringent of either technology-based ELGs, numerical and/or narrative water quality standard-based effluent limits, or the previous permit.

Technology-based effluent limitations are established in the proposed draft permit for TSS and BOD₅, and percent removal for both. Water quality-based effluent limitations are established in the proposed draft permit for fecal coliform bacteria, *E. coli* bacteria, TRC, and pH.

B. TECHNOLOGY-BASED EFFLUENT LIMITATIONS/CONDITIONS

Regulations promulgated at 40 CFR §122.44 (a) require technology-based effluent limitations to be placed in NPDES permits based on ELGs where applicable, on BPJ in the absence of

guidelines, or on a combination of the two. In the absence of promulgated guidelines for the discharge, permit conditions may be established using BPJ procedures. EPA establishes limitations based on the following technology-based controls: BPT, BCT, and BAT. These levels of treatment are:

BPT – The first level of technology-based standards generally based on the average of the best existing performance facilities within an industrial category or subcategory.

BCT – Technology-based standard for the discharge from existing industrial point sources of conventional pollutants including BOD, TSS, fecal coliform, pH, and O&G.

BAT – The most appropriate means available on a national basis for controlling the direct discharge of toxic and non-conventional pollutants to navigable waters. BAT effluent limits represent the best existing performance of treatment technologies that are economically achievable within an industrial point source category or subcategory.

The facility is a POTW. POTWs have technology-based ELGs established at 40 CFR 133, Secondary Treatment Regulation. Pollutants with ELGs established in this Chapter are BOD, TSS and pH. BOD₅ limits of 30 mg/L for the 30-day average, 45 mg/L for the 7-day average, and 85% percent (minimum) removal are found at 40 CFR §133.102 (a). TSS limits of 30 mg/L for the 30-day average, 45 mg/L for the 7-day average, and 85% percent (minimum) removal are found at 40 CFR §133.102(b). ELGs for pH are between 6-9 standard units (su) and are found at 40 CFR §133.102 (c). Regulations at 40 CFR § 122.45 (f)(1) require all pollutants limited in permits to have limits expressed in terms of mass such as pounds per day. When determining mass limits for POTWs or WWTPs, the plant's design flow is used to establish the mass load. Mass limits in Table 4 are determined by the following mathematical relationship:

Loading in lbs/day = pollutant concentration in mg/L * 8.345 lbs/gal * design flow in MGD

30-day average TSS loading = 30 mg/l * 8.345 lbs/gal * 2.0 MGD 30-day average TSS loading = 500 lbs

7-day average TSS loading = 45 mg/l * 8.345 lbs/gal * 2.0 MGD 7-day average TSS loading = 751 lbs

30-day average BOD₅ loading = 30 mg/l * 8.345 lbs/gal * 2.0 MGD 30-day average BOD₅ loading = 500 lbs

7-day average BOD₅ loading = 45 mg/l * 8.345 lbs/gal * 2.0 MGD 7-day average BOD₅ loading = 751 lbs

Technology-Based Effluent Limits – 2.0 MGD design flow.

Table 4				
EFFLUENT	30-Day Avg.	7-Day Avg.	30-Day Avg.	7-Day Avg.
CHARACTERISTICS				
Flow	N/A	N/A	Measure MGD	Measure MGD
BOD ₅	500 lbs/Day	751 lbs/Day	30 mg/L	45 mg/L
BOD ₅ , % removal,	≥85%			
minimum ^{*1}				
TSS	500 lbs/Day	751 lbs/Day	30 mg/L	45 mg/L
TSS, % removal,	≥85%			
minimum ^{*1}				

*1 % removal is calculated using the following equation: [(average monthly influent concentration – average monthly effluent concentration) \div average monthly influent concentration] * 100.

The facility will be required to maintain a log and kept at the facility showing the influent of BOD and TSS on a once per week frequency to be used to determine the removal percentage. This data is not required to be submitted but must be made available to EPA or its agents upon request.

C. WATER QUALITY BASED LIMITATIONS

1. General Comments

Water quality based requirements are necessary where effluent limits more stringent than technology-based limits are necessary to maintain or achieve federal or state water quality limits. Under Section 301 (b)(1)(C) of the CWA, discharges are subject to effluent limitations based on federal, state or tribal WQS. Effluent limitations and/or conditions established in the draft permit are in compliance with the State/Tribal WQS and applicable State water quality management plans to assure that surface WQS of the receiving waters are protected and maintained, or attained.

2. Implementation

The NPDES permits contain technology-based effluent limitations reflecting the best controls available. Where these technology-based permit limits do not protect water quality or the designated uses, additional water quality-based effluent limitations and/or conditions are included in the NPDES permits. State narrative and numerical water quality standards are used in conjunction with EPA criteria and other available toxicity information to determine the adequacy of technology-based permit limits and the need for additional water quality-based controls.

3. State and Tribal Water Quality Standards

The general and specific stream standards are provided in NMWQS (20.6.4 NMAC, approved by EPA on June 8, 2017). The facility discharges into an unnamed arroyo thence to the Rio Pueblo de Taos in Waterbody Segment No. 20.6.4.122 of the Rio Grande Basin. The unnamed arroyo is now classified as a perennial water in NMAC Segment 20.6.4.99. The designated uses include:

Warmwater aquatic life, livestock watering, wildlife habitat and primary contact. The designated uses of Rio Pueblo de Taos are coldwater aquatic life, fish culture, irrigation, wildlife habitat, livestock watering, and primary contact.

The north half of the Rio Pueblo de Taos, also known as the Rio Pueblo, is under the jurisdiction of the Pueblo of Taos. The Pueblo of Taos has WQS approved by EPA on June 19, 2006. The Pueblo of Taos WQS establishes designed uses of the Rio Pueblo, below Los Cordovas as domestic water supply (including groundwater recharge), wildlife habitat, cold water fishery, irrigation, livestock watering & wildlife water, aquatic life (acute & chronic criteria), and primary human contact/ceremonial use.

In this document, references to State/Tribal WQS and/or rules shall mean collectively either or both the Pueblo of Taos and/or the State of New Mexico. Where different standards apply for a particular pollutant, the most stringent standard will be used to develop effluent limitations in order to protect for all applicable designated uses.

4. Permit Action – Water Quality-Based Limits

Regulations promulgated at 40 CFR 122.44(d) require limits in addition to, or more stringent than ELGs (technology based). State/Tribal WQS that are more stringent than ELGs are as follows:

a. pH

The State of New Mexico WQS criteria applicable to the coldwater aquatic life designated use and Pueblo of Taos WQS criteria for the cold water fishery designated use require pH to be between 6.6 and 8.8 s.u. This is more restrictive than the mentioned technology-based limits. Limits of 6.6 to 8.8 su for pH in the previous permit, which are more stringent than the technology-based limits presented earlier, will be continued in the draft permit.

b. Bacteria

New Mexico has adopted E. coli as the State bacteria standard in lieu of FCB. The NMWQS criteria require E. coli of 126 cfu/100 mL monthly geometric mean and single sample of 410 cfu/100 ml, end-of-pipe to protect the primary contact designated use. However, NMWQS establishes segment-specific criteria for Waterbody Segment No. 20.6.4.122 of the Rio Grande Basin for monthly geometric mean for E. coli of 126 cfu/100 mL and single sample of 235 cfu/100 mL. Pueblo of Taos numeric criteria for the ceremonial use – primary human contact designated use requires a monthly geometric mean for E. coli of 126 cfu/100 mL and single sample of 235 cfu/100 mL. These criteria are more restrictive than the segment-specific criteria established for Waterbody Segment No. 20.6.4.99 (i.e., monthly geometric mean for E. coli of 206 cfu/100 mL and single sample of 940 cfu/100 mL). In addition, Pueblo of Taos numeric criteria for the ceremonial use requires a monthly geometric mean contact designated use requires a monthly segment No. 20.6.4.99 (i.e., monthly geometric mean for E. coli of 206 cfu/100 mL and single sample of 940 cfu/100 mL). In addition, Pueblo of Taos numeric criteria for the ceremonial use – primary human contact designated use requires a monthly geometric mean for E. coli of Taos numeric criteria for the ceremonial use – primary human contact designated use requires a monthly segment No. 20.6.4.99 (i.e., monthly geometric mean for E. coli of 206 cfu/100 mL and single sample of 940 cfu/100 mL). In addition, Pueblo of Taos numeric criteria for the ceremonial use – primary human contact designated use requires a monthly geometric mean for FCB of 200 cfu/100 mL and single sample of 400 cfu/100 mL.

The FCB limits of 200 cfu/100 mL (monthly geometric mean) and 400 cfu/100 mL (single maximum), and the E. coli bacteria limits of 126 cfu/100 mL (monthly geometric mean) and 235 cfu/100 mL (single maximum) in the previous permit will be continued in the draft permit.

c. Dissolved Oxygen (DO)

The State of New Mexico and Taos Pueblo WQS criterion applicable to the high quality coldwater aquatic life designated use is at least 6 mg/L for dissolved oxygen. As a part of the permitting process, EPA used a steady-state model LA-QUAL to evaluate the impact of facility effluent on the receiving water dissolved oxygen. A complete characterization of the receiving water was not available. Default values were used to estimate the various unavailable hydrodynamic and water quality parameters. Certain parameters, including 4Q3 and BOD₅ (30 mg/l for monthly average, 45 mg/l for 7-day maxima; "30/45 BOD") were available and utilized. The discharge was modeled using data obtained from the application, permits limits and defaults were used for unavailable discharge characterization data. The modeled output shows an excursion of the DO standard of 6 mg/L part of the receiving water (see graph with 30/45 BOD in Appendix 4; other detail information is available upon request). Various BOD factors were considered and simulated to achieve the DO criterion; EPA believes the optimal levels of BOD are 17/21 (see attached graph with 17/21 BOD in Appendix 5). The reported effluent BOD in form 2A are 2.9 mg/L (avg.) and 10.9 mg/L (max.); which are below the 17/21 levels. EPA establishes the water-based limits for BOD of 17 mg/L (avg.) and 21 mg/L (max.) in the draft permit; mass loadings are calculated with the same method for TSS above. Compliance schedule is not needed because the effluent has met this newly-established limits. This BOD limitation may be re-evaluated against the WQS in the next permit renewal process.

- d. Toxics
 - (i) General Comments

The CWA in Section 301 (b) requires that effluent limitations for point sources include any limitations necessary to meet water quality standards. Federal regulations found at 40 CFR §122.44 (d) state that if a discharge poses the reasonable potential to cause an in-stream excursion above water quality criteria, the permit must contain an effluent limit for that pollutant.

All applicable facilities are required to fill out appropriate sections of the Form 2A to apply for an NPDES permit or reissuance of an NPDES permit. The new form is applicable not only to POTWs, but also to facilities that are similar to POTWs, but which do not meet the regulatory definition of "publicly owned treatment works" (like private domestics, or similar facilities on Federal property). The forms were designed and promulgated to "make it easier for permit applicants to provide the necessary information with their applications and minimize the need for additional follow-up requests from permitting authorities," per the summary statement in the preamble to the Rule. These forms became effective December 1, 1999, after publication of the final rule on August 4, 1999, Volume 64, Number 149, pages 42433 through 42527 of the FRL. The facility is designated as a major and submitted to EPA NPDES Form 2A application on March 17, 2017 application. However, supplemental pollutant data was not included in Part D of Form 2A. On June 23, 2017, the facility submitted the revised Form 2A. The pollutants were either tested above MQLs or were tested at levels above EPA MQL and reported as being non detect are listed in Table 2 in Part IV of this fact sheet. Copper, Lead, Mercury, 2-Chloronaphthalene and Zinc were found above minimum MQL. Meanwhile, Beryllium, was tested at levels above EPA MQL and reported as being non detect.

In addition to all of these pollutants, the Barium, Strontium and Uranium data, which were submitted on January 5, 2018, were evaluated for reasonable potential (RP) to cause or contribute to State/Tribal WQS exceedances. If RP exists, the screen calculates the appropriate permit limit needed to be protective of such designated uses.

Critical conditions are used to establish certain permit limitations and conditions. Both the state and tribal establish a critical low flow designated as 4Q3, as the minimum average four consecutive day flow which occurs with a frequency of once in three years. The NMED provided the 4Q3 of 0 cfs and 7.39 cfs and the harmonic mean flow of 0 cfs and 9.37 cfs for the unnamed arroyo and Rio Pueblo de Taos, respectively. When the 4Q3 of receiving water is zero, the discharge must meet end-of-pipe criteria, and the CD is 100%.

The EPA conducted two separate reasonable potential analyses. One of the RP analyses, EPA used a "0" 4Q3 and > "0" harmonic mean for evaluation of the reasonable potential for discharges of pollutants from the Taos WWTP to cause or contribute to exceedances of all human health criteria and all other acute and chronic numeric criteria set forth in 20.6.4.900 NMAC for the warmwater aquatic life, livestock watering, wildlife habitat and primary contact designated uses of the 20.6.4.99 NMAC receiving stream. For the other RP analysis, EPA used a "7.39 cfs" 4Q3 and "9.37 cfs" harmonic mean to calculate a reasonable potential for the Rio Pueblo de Taos for the designated uses of domestic supply, wildlife habitat, irrigation, livestock and wildlife watering, and aquatic life (acute and chronic criteria). This calculation utilizes the numeric criteria of the Taos Pueblo WQS. Both of the RP analyses based on the NMIP as of March 15, 2012. The results of New Mexico and Pueblo of Taos RP analyses, in Appendices 1 and 2, respectively, indicate the pollutant data did not demonstrate reasonable potential to exceed State/Tribal WQS of the receiving water.

In the previous permit, EPA conducted a RP analysis for the Mercury pollutant, which was reported in excess of the EPA's MQL. The pollutant demonstrated reasonable potential to exceed the Tribal WQS. As a result, EPA included limitations for Mercury in the previous permit. As mentioned, the results of the two separate RP analyses indicate no RP exist for the pollutants including Mercury. Mercury is still found in the facility effluent, but no exceedance of the Mercury permit limits, based on DMR, occurred during the last permit cycle The draft permit is proposing to reduce the Mercury monitoring requirement to once per week. The Mercury limits of 0.027 ug/L and 0.00045 lbs/day (monthly geometric mean), and 0.041 ug/L and 0.00068 lbs/day (daily maximum) in the previous permit will be continued in the draft permit.

(ii) TRC

The facility uses UV disinfection, so chlorine is not normally added to the effluent. The TRC limit of $3 \mu g/L$ when chlorine is used in the previous permit will be continued in the draft permit.

(iii) Ammonia

Since the unnamed arroyo waterbody is impaired for Ammonia and Nutrients/Eutrophication, the Ammonia concentration limits of 3.75 mg/L (monthly geometric mean) and 5.62 mg/L (daily maximum), and the Ammonia mass limits of 63 lbs/day (monthly geometric mean) and 94 lbs/day (daily maximum) in the previous permit will be remained in the draft permit.

5. 303(d) List Impacts

Both the unnamed arroyo and Rio Pueblo de Taos (from Arroyo del Alamo to Rio Grande del Rancho) are listed on the "2014-2016 State of New Mexico Integrated Clean Water Act Section 303(d) / 305(b) Report." The unnamed arroyo waterbody is impaired for Ammonia and Nutrients/Eutrophication. Meanwhile, the Rio Pueblo de Taos is impaired for E. coli, Plant Nutrients, Eutrophication Biological Indicators, Specific Conductance, and Temperature. A TMDL for temperature and stream bottom deposits for the Upper Rio Grande Watershed, which includes the Rio Pueblo de Taos, was approved by EPA on December 17, 2004. No point source contributions were associated with this TMDL. No Ammonia and Nutrients/Eutrophication TMDL(s), to date, has been developed for the unnamed arroyo and the Rio Pueblo de Taos. Monitoring requirements for total nitrogen and total phosphorus which are in the previous permit for use in future TMDL development will be remained in the draft permit. Once the TMDL(s) is developed and approved, this permit may be reopened to establish effluent limitations for the parameter(s) to be consistent with that TMDL. Modification of the permit is subject to the provisions of 40 CFR §124.5.

The standard reopener language in the permit allows additional permit conditions if warranted by new or revised TMDLs.

D. MONITORING FREQUENCY FOR LIMITED PARAMETERS

Regulations require permits to establish monitoring requirements to yield data representative of the monitored activity 40 CFR 122.48(b) and to assure compliance with permit limitations 40 CFR 122.44(i)(1). Technology based pollutants; BOD₅ and TSS, are proposed to be monitored once per week consistent with the previous permit. Sample type for BOD₅ and TSS is 6-hour composite. Flow shall be sampled continuously (daily) by totalizing meter consistent with the previous permit. The technology based monitoring frequencies are consistent with the NMIP.

Water quality-based pollutant monitoring frequency for FCB and *E. coli* shall be sampled once a week using grab samples, which is consistent with the current permit and the NMIP. The draft permit proposes Mercury be sampled one per week using grab samples. The current permit requires TRC (when chlorine is used) and pH to be sampled daily and once per week,

respectively. The draft permit proposes that TRC (when chlorine is used) and pH both be measured daily by instantaneous grab (field measurement), which is consistent with the NMIP. Regulations at 40 CFR Part 136 define instantaneous grab as being analyzed within 15-minutes of collection.

E. WHOLE EFFLUENT TOXICITY (WET) REQUIREMENTS

Procedures for implementing WET terms and conditions in NPDES permits are contained in the NMIP. Table 11 (page 42) of the NMIP outlines the type of WET testing for different types of discharges. Analysis of the facility past WET data to determine RP was conducted and shown in the Appendix 3. The results show no reasonable potential. EPA concludes that based on the passed WET tests and the Reasonable Potential Analyzer, reasonable potential to cause toxicity does not exist. The draft permit will not propose any WET limits. However, continuation of WET monitoring is proposed in the draft permit. The WET test requirement in the previous permit will be continued in the draft permit. The permittee shall continue to conduct a 7-day chronic test using a once per quarter frequency for *Ceriodaphnia dubia* and a once per quarter frequency for the entire permit term for *Pimephales promelas*. If during the first year all four tests pass both the lethal and sub-lethal test endpoints then the permit may allow a frequency reduction of once per six-months for *Ceriodaphnia dubia* only. Any failure shall re-establish all tests for the *Ceriodaphnia dubia* test species to once per three-month for the remainder of the permit. The *Ceriodaphnia dubia* test species shall resume monitoring at a once per quarter frequency on the last day of the permit.

The critical condition is 100%. The proposed permit requires five (5) dilutions in addition to the control (0% effluent) to be used in the toxicity tests based on a 1 dilution series. These additional effluent concentrations shall be 32%, 42%, 56%, 75%, and 100%. This test would also demonstrate that the downstream Rio Pueblo de Taos is also being protected from WET.

The permittee shall conduct separate whole effluent toxicity tests in accordance with the Table 5.

WHOLE EFFLUENT TOXICITY			
(7-day Static renewal) 1/		MEASUREMENT	
	NOEC	FREQUENCY	SAMPLE TYPE
Pimephales promelas	Report	Once/Quarter	24-Hr Composite
Ceriodaphnia dubia	Report	Once/Quarter	24-Hr Composite

Table 5

FOOTNOTE:

1/ Monitoring and reporting requirements begin on the effective date of this permit. See Part II, Whole Effluent Toxicity Testing Requirements for additional WET monitoring and reporting conditions.

F. EFFLUENT TESTING FOR APPLICATION RENEWAL

In addition to the parameters identified in this fact sheet, EPA designated major POTW's are required to sample and report other parameters listed in tables of the EPA Form 2A and WET testing for its permit renewal. The minimum pollutant testing for NPDES permit renewals specified in Form 2A requires three samples for each of the parameters being tested. Current practice is to obtain the three samples over a short time frame, sometimes within two weeks during the permit renewal purposes, the draft permit shall require that the testing for Tables A.12, B.6, and Part D of EPA Form 2A, or its equivalent if modified in the future, during the second, third and fourth years after the permit effective date. This testing shall coincide with any required WET testing event for that year. The permittee shall report the results as a separate attachment in tabular form sent to the Permitting Section Chief of the Water Division within 60 days of receipt of the lab analysis and shall also be reported on the NPDES permit renewal application Form 2A or its equivalent/replacement.

VII. FACILITY OPERATIONAL PRACTICES

A. SEWAGE SLUDGE PRACTICES

The permittee shall use only those sewage sludge disposal or reuse practices that comply with the federal regulations established in 40 CFR Part 503 "Standards for the Use or Disposal of Sewage Sludge". EPA may at a later date issue a sludge-only permit. Until such future issuance of a sludge-only permit, sludge management and disposal at the facility will be subject to Part 503 sewage sludge requirements. Part 503 regulations are self-implementing, which means that facilities must comply with them whether or not a sludge-only permit has been issued. Part IV of the draft permit contains sewage sludge permit requirements.

B. WASTE WATER POLLUTION PREVENTION REQUIREMENTS

The permittee shall institute programs directed towards pollution prevention. The permittee will institute programs to improve the operating efficiency and extend the useful life of the treatment system.

C. INDUSTRIAL WASTEWATER CONTRIBUTIONS

The treatment plant has no non-categorical Significant Industrial User's (SIU) and no Categorical Industrial User's (CIU). The EPA has tentatively determined that the permittee will not be required to develop a full pretreatment program. However, general pretreatment provisions have been required. The facility is required to report to EPA, in terms of character and volume of pollutants any significant indirect dischargers into the POTW subject to pretreatment standards under Section307(b) of the CWA and 40 CFR Part 403.

D. OPERATION AND REPORTING

The applicant is required to operate the treatment facility at maximum efficiency at all times; to monitor the facility's discharge on a regular basis; and report the results <u>monthly</u>. Reporting requirements and the requirement of using EPA-approved test procedures (methods) for the analysis and quantification of pollutants or pollutant parameters are contained in 40 CFR 122.41(l) and 40 CFR 122.21 (e), respectively. As required by 40 CFR 127.16, all Discharge Monitoring Reports (DMRs) shall be electronically reported. The monitoring results will be available to the public.

VIII. ANTIDEGRADATION

The State of New Mexico (Section 20.6.4.8 of the NMAC) and the Pueblo of Taos (Section II of Pueblo of Taos WQS) both have antidegradation requirements to protect existing uses through implementation of their WQS. The limitations and monitoring requirements set forth in the proposed draft are developed from the appropriate the State of New Mexico and Pueblo of Taos WQS and are protective of those designated uses. Furthermore, the policy's set forth the intent to protect the existing quality of those waters, whose quality exceeds their designated use. The permit requirements and the limits are protective of the assimilative capacity of the receiving waters, which is protective of the designated uses of that water. This permit reissuance is for an existing discharger that is not expanding, so anti-degradation requirements do not apply

IX. ANTIBACKSLIDING

The proposed permit is consistent with the requirements to meet anti-backsliding provisions of the Clean Water Act, Section 402(o) and 40 CFR 122.44(l)(i)(A), which state in part that interim or final effluent limitations must be as stringent as those in the previous permit, unless material and substantial alterations or additions to the permitted facility occurred after permit issuance which justify the application of a less stringent effluent limitation. The proposed permit maintains the requirements of the previous permit, including all final effluent limitations.

X. ENDANGERED SPECIES CONSIDERATIONS

According to the most recent county listing available at US Fish and Wildlife Service (USFWS), Southwest Region 2 website, <u>http://www.fws.gov/southwest/es/EndangeredSpecies/lists/</u>, three species in Taos County are listed as endangered (E) or threatened (T). Three species are birds and include the Southwestern Willow Flycatcher (*Empidonax traillii extimus*) (E), the Yellowbilled Cuckoo (*Coccyzus americanus*) (T), and the Mexican spotted owl (*Strix occidentalis lucida*) (T). Three mammalian species include Canada Lynx (*Lynx Canadensis*) (T), North American wolverine (*Gulo gulo luscus*) (T), and the black-footed ferret (*Mustela nigripes*) (E).

In accordance with requirements under section 7(a)(2) of the Endangered Species Act, EPA has reviewed this permit for its effect on listed threatened and endangered species and designated critical habitat. After review, EPA has determined that the reissuance of this permit will have

"no effect" on listed threatened and endangered species nor will adversely modify designated critical habitat.

Southwestern Willow Flycatchers habitat occurs in riparian areas along streams, rivers, and other wetlands where dense willow, cottonwood, buttonbush and arrowweed are present. The primary reason for decline is the reduction, degradation and elimination of the riparian habitat. Other reasons include brood parasitism by the brown-headed cowbird and stochastic events like fire and floods that destroy fragmented populations. The permit does not authorize activities that may cause destruction of the flycatcher habitat, and issuance of the permit will have no effect on this species.

The **Yellow-billed Cuckoo** is a Neotropical migrant bird that winters in South America and breeds in North America. The yellow-billed cuckoo has been listed as endangered. The primary cause of loss and degradation of yellow-billed cuckoo is the loss and degradation of riparian breeding habitat, which is believed to have caused the declines in the distribution and abundance of the species Conversion to agriculture and other land uses, urbanization, dams and river flow management, stream channelization and bank stabilization, and livestock grazing are the causes of riparian habitat losses. The permit does not authorize activities that may cause destruction of the yellow-billed cuckoo habitat, and issuance of the permit will have no effect on this species.

Research of available material finds that the primary cause for the population decreases leading to threatened status for the **Mexican spotted owl** is destruction of habitat. No pollutants are identified which might affect species habitat or prey species and are not reviewed by the permitting process. Catastrophic fires and elimination of riparian habitat also were identified as threats to species habitat. The NPDES program regulates the discharge of pollutants and does not regulate forest management practices and agricultural practices, which contribute to catastrophic fires and elimination of riparian habitat. The issuance of this permit is found to have no impact on the habitat of this species.

The **black-footed ferret** research finds that the species has diminished due to the eradication of prairie dogs, the primary source of the ferret's habitat and food. Main causes of the decline in the ferret population included habitat conversion for farming; efforts to eliminate prairie dogs, which competed with livestock for available prairie forage; and sylvatic plague, a disease that wiped out large numbers of prairie dogs and has also killed ferrets. Reintroduced black-footed ferrets have been designated as "non-essential experimental" populations under the Endangered Species Act. This designation allows, Federal, State, and Tribal resource managers, and private citizens more flexibility in managing new populations. The "non-essential, experimental" designation does not limit land uses such as forest management, agricultural practices, sport hunting, and non-consumptive outdoors recreation. The NPDES program regulates discharge of pollutants and does not regulate forest management practices and agricultural practices. Issuance of this permit will have no effect on the Black-footed Ferret food source or habitat.

The **North American wolverine** (*Gulo gulo luscus*) is the largest terrestrial member of the family Mustelidae. It resembles a small bear with a bushy tail. It has a round, broad head; short, rounded ears; and small eyes. In North America, wolverines occur within a wide variety of

alpine, boreal, and arctic habitats, including boreal forests, tundra, and western mountains throughout Alaska and Canada. The southern portion of the species' range extends into the contiguous United States, including high-elevation alpine portions of Washington, Idaho, Montana, Wyoming, California, and Colorado. Climate changes and human disturbance in the contiguous United States has likely resulted in the loss of some wolverine habitat, although this loss has not yet been quantified. Potential sources of human disturbance to wolverines include winter and summer recreation, housing and industrial development, road corridors, and extractive industry such as logging or mining. The permit does not authorize activities that may cause destruction of the wolverine habitat, and issuance of the permit will have no effect on this species.

The **Canada Lynx** (*Lynx canadensis*) is a medium-sized cat with long legs, large, well-furred paws, long tufts on the ears, and a short, black-tipped tail. The distribution of lynx in North America is closely associated with the distribution of North American boreal forest. In Canada and Alaska, lynx inhabit the classic boreal forest ecosystem known as the taiga. The range of lynx populations extends south from the classic boreal forest zone into the subalpine forest of the western United States, and the boreal/hardwood forest ecotone in the eastern United States. Forests with boreal features extend south into the contiguous United States along the North Cascade and Rocky Mountain Ranges in the west, the western Great Lakes Region, and northern Maine. Within these general forest types, lynx is most likely to persist in areas that receive deep snow and have high-density populations of snowshoe hares, the principal prey of lynx. In all regions within the range of lynx in the contiguous U.S., timber harvest, recreation and their related activities are the predominant land use affecting lynx habitat. The permit does not authorize activities that may cause destruction of the lynx habitat, and issuance of the permit will have no effect on this species.

The proposed permit does not authorize constructions and land development, nor will cause release of toxic pesticides or spread of disease. Based on the information available to EPA, that the reissuance of this permit will have no effect on these federally listed threatened or endangered species.

XI. HISTORICAL and ARCHEOLOGICAL PRESERVATION CONSIDERATIONS

The reissuance of the permit should have no impact on historical and/or archeological sites since no construction activities are planned in the reissuance.

XII. PERMIT REOPENER

The permit may be reopened and modified during the life of the permit if relevant portions of either State or Pueblo WQS are revised or remanded. In addition, the permit may be reopened and modified during the life of the permit if relevant procedures implementing the State Water Quality Standards are either revised or promulgated. Should either the State or Pueblo of Taos adopt a new WQS, and/or develop or amend a TMDL, this permit may be reopened to establish effluent limitations for the parameter(s) to be consistent with that approved standard and/or water

quality management plan, in accordance with 40 CFR 122.44(d). Modification of the permit is subject to the provisions of 40 CFR 124.5.

XIII. VARIANCE REQUESTS

No variance requests have been received.

XIV. CERTIFICATION

The permit is in the process of certification by the State of New Mexico following regulations promulgated at 40 CFR §124.53. A draft permit and draft public notice will be sent to the District Engineer, Corps of Engineers; to the Regional Director of the U.S. Fish and Wildlife Service and to the National Marine Fisheries Service prior to the publication of that notice.

XV. FINAL DETERMINATION

The public notice describes the procedures for the formulation of final determinations.

XVI. ADMINISTRATIVE RECORD

The following information was used to develop the proposed permit:

A. APPLICATION(s)

EPA Application Form 2A received March 17, 2017.

Supplemental information provided via email on June 23, 2017 and January 5, 2018.

B. 40 CFR CITATIONS

Citations to 40 CFR as of March 25, 2011.

Sections 122, 124, 125, 133, 136

C. STATE WATER QUALITY REFERENCES

New Mexico State Standards for Interstate and Intrastate Surface Water, 20.6.4 NMAC, effective March 2, 2017.

Procedures for Implementing National Pollutant Discharge Elimination System Permits in New Mexico, March 2012.

Statewide Water Quality Management Plan, December 17, 2002.

State of New Mexico 303(d) List for Assessed Stream and River Reaches, 2014-2016.

E. PUEBLO OF TAOS REFERENCES

Pueblo of Taos Water Quality Standards, enacted August 13, 2002.

F. OTHER

Compliance Evaluation Inspection of the Town of Taos Wastewater Treatment Plant NPDES Permit Number NM0024066, June 26, 2017.

CALCULATIONS OF NEW MEXICO WATER QUALITY-BASED EFFLUENT LIMITATIONS																
NMAC 20.6.4.					(EPA approve	d site-specific	criteria for alu	minum, cadr	nium, and zinc o	on April 30, 201	2)					
Calculations Spe	ecifications:				Excel	Revised as	s of July 10	, 2012								
Prepared By:					Quang Nguye	n										
STEP 1:	REFERENCE	IMPLEMENTATIO	N PROCEDUR	RES			Append	ix 1								
	INPUT FACILI	TY AND RECEIV	ING STREAM	IDATA												
	LIST SOURCE	E OF DATA INPU	π													
IMPLEMENTATIC	ON PROCEDURE	S														
The State of Net	w Mexico Stand	dards for Interst	ate and Intras	state Surf	ace Waters ar	e implemented i	n this spread	sheet								
by using proced	dures establishe	ed in the current	"Procedures	for Imple	menting NPDES	Permits in New	/ Mexico"									
FACILTY							data input									
Permittee							Town of Tao	s								
NPDES Permit N	lo.						NM0024066									
Outfall No.(s)							1									
Plant Effluent Flo	ow (MGD)						2		For industria	l and federal fa	acility, use the I	highest monthly	average flow			
Plant Effluent Flo	ow (cfs)						3.1		for the past 2	24 months. For	POTWs, use t	he design flow				
RECEIVING STR	REAM						data input									
Receiving Strea	im Name						Unnamed Ari	royo								
Basin Name							Rio Grande E	Basin								
Waterbody Seg	ment Code No.						20.6.4.99									
Is a publicly ow I	ned lake or rese	ervoir (enter "1"	if it's a lake, '	'0" if not)			0									
Are acute aquat	tic life criteria co	onsidered (1= ye	es, 0= no)	(MUST e	nter "1" for 200	5 Standards)	1									
Are chronic aqu	uatic life criteria	considered (1=	yes, 0=no)				1									
Are domestic w	ater supply crit	eria considered	(1= yes, 0=n	0)			0									
Are irrigation wa	ater supply crite	eria considered	(1= yes, 0=no	o)			1									
Livestock water	ring and wildlife	habitat criteria a	applied to all s	streams					_							
LICCE Flow Stat	tion						1808									
	Station No.						SIR									
Receiving Strea	m TSS (mg/l)						22.8		For intermitte	nt stream ente	r effluent TSS					
Receiving Strea	um Hardness (m	n/las CaCOs)			RANGE 0 - 4	10	120.46		For intermitte	nt stream ente	r effluent Hard	ness (If no dat	a 20 mollisus	ad)		
Receiving Strea	m Critical Low	Flow (4Q3) (cfs))				0		Enter "0" for	intermittent stre	am and lake.		20 Highlio 400			
Receiving Strea	Receiving Stream Harmonic Mean Flow (cfs)						0.001		Enter harmor	ic mean or mo	dified harmonic	mean flow dat	a or 0.001 if no	data is availa	able	
Avg. Receiving Water Temperature (C)					12.01											
pH (Avg), Recei	iving Stream						8.51									
Fraction of strea	- am allow ed for	mixing (F)					1		Enter 1, if str	eam morpholog	iy data is not a	vailable or for i	ntermittent strea	ams.		
Fraction of Critic	cal Low Flow						0									

STEP 2:	INPUT AMBIE	NT AND EFFLUEN	NT DATA														
	CALCULATE	IN-STREAM WAS	STE CONCE	NTRATION	٧S												
DATA INPUT			Input polluta	ant geome	tric mean conc	entration as mic	cro-gram per	liter (ug/l or pr	ob)								
			unless othe	er unit is s	pecified for the	parameter.											
			Effluent val	ue reporte	ed as "< detecti	on level" (DL) b	out the DL is g	reater than N	IQL, input "1/2	DL" for calculat	tion.						
			Effluent val	ue reporte	ed as "< detecti	on level" (DL) a	and the DL is a	smaller than N	/QL, no data i	s inputted.							
			If a less tha	an MQL va	kue is reported	, input either th	e reported va	lue or "0" for	calculation.								
			The follow i	ng formula	ar is used to ca	culate the Instr	eam Waste C	oncentration	(Cd)								
			See the cu	rrent "Proc	cedures for Imp	lementing NPDE	ES Permits in I	New Mexico"									
			Cd = [(F*Qa	a*Ca) + (Q	e*2.13*Ce)] / (F	*Qa + Qe)											
			Where:														
			Cd = Instrea	am Waste	Concentration												
			F = Fracti	ion of stre	am allow ed for	mixing (see "P	rocedures for	Implementing	NPDES Perm	its in New Mexic	:0")						
			Ce = Repor	ted conce	ntration in efflu	ent											
			Ca = Ambie	ent stream	concentration	upstream of dis	charge										
			Qe = Plant e	effluent flo)W												
			Qa = Critica	al low flow	of stream at d	ischarge point	expressed as	s the 4Q3 or h	narmonic mea	n flow for humar	n health criteri	a					
The follow ing fo	ormular convert	metals reported i	in total form	to dissolv	ed form if crite	ria are in dissol	ved form										
See the current	"Procedures fo	r Implementing N	PDES Permit	ts in New	Mexico"												
Kp = Kpo * (TSS	S**a)				Kp = Linear pa	rtition coefficie	nt; Kpo and a	can be found	d in table belo	w							
C/Ct = 1/ (1 + Kp	o*TSS* 10^-6)			TSS = Total suspended solids concentration found in receiving stream (or in effluent for intermittent stream)													
Total Metal Crite	ria (Ct) = Cr / (C	C/Ct)			C/Ct = Fraction	n of metal disso	lved; and Cr :	= Dissolved c	riteria value								
			Stream Line	ear Partitio	n Coefficient					Lake Linear Pa	rtition Coeffic	ient					
Total Metals	Total Value		Кро	alpha (a)	Кр	C/Ct	Dissolved Va	alue in Stream	n	Кро	alpha (a)	Кр	C/Ct	Dissolved V	alue in Lake		
Arsenic			480000	-0.73	48972.10805	0.472463847	0			480000	-0.73	48972.10805	0.472463847	0			
Chromium III			3360000	-0.93	183425.5668	0.192971852	0			2170000	-0.27	932861.8338	0.04490497	0			
Copper	4.05		1040000	-0.74	102839.8779	0.298976077	1.21085311			2850000	-0.9	170884.8249	0.204241107	0.8271765			
Lead	0.75		2800000	-0.8	229514.5136	0.160438165	0.12032862			2040000	-0.53	388977.6951	0.101330557	0.0759979			
Nickel			490000	-0.57	82446.68859	0.347248206	0			2210000	-0.76	205287.1616	0.176039376	0			
Silver			2390000	-1.03	95438.80845	0.314860982	0			2390000	-1.03	95438.80845	0.314860982	0			
Zinc	60		1250000	-0.7	140073.3838	0.238454444	14.3072666			3340000	-0.68	398428.8435	0.09916525	5.949915			
The follow ing fo	ormular is used t	o calculate hardr	ness depen	dent crite	ria					Dissolved							
(Please refer to	State Water Qu	ality Standards f	or details)							WQC (ug/l)							
Aluminum (T)			Acute			e(1.3695[ln(ha	ardness)]+1.8	308)		4413.881126		If Stream pH <	6.5, enter 750	in cell 0113			
			Chronic			e(1.3695[ln(ha	ardness)]+0.9	161)		1768.363206		If Stream pH <	6.5, enter 87 ir	n cell P113			
Cadmium (D)			Acute			e(0.8968[ln(ha	ardness)]-3.5	699)*CF1		1.93680814		CF1 = 1.13667	'2 - 0.041838*lr	n(hardness)			
			Chronic			e(0.7647[ln(ha	ardness)]-4.2	180)*CF2		0.517837842		CF2 = 1.10167	'2 - 0.041838*lr	n(hardness)			

										Dissolved						
										WQC (ug/l)						
Chromium III (D)			Acute			0.316 e(0.819	[In(hardness)	+3.7256)		663.5977515						
			Chronic			0.860 e(0.819	[In(hardness)	+0.6848)		86.32043373						
Copper (D)			Acute			0.960 e(0.942	2[In(hardness)]-1.700)		16.01550935						
			Chronic			0.960 e(0.854	5[In(hardness)]-1.702)		10.49982952						
Lead (D)			Acute			e(1.273[ln(ha	dness)]-1.46)	*CF3		79.04360488		CF3 = 1.46203	3 - 0.145712*ln(hardness)		
			Chronic			e(1.273[ln(ha	dness)]-4.70	5)*CF4		3.080215804		CF4 = 1.46203	3 - 0.145712*ln(hardness)		
Manganese (D)			Acute			e(0.3331[ln(h	ardness)]+6.4	676)		3176.667409						
			Chronic			e(0.3331[ln(h	ardness)]+5.8	743)		1755.111983						
Nickel (D)			Acute			0.998 e(0.846	[In(hardness)	+2.255)		548.0972923						
			Chronic			0.997 e(0.846	[In(hardness)	+0.0584)		60.87668773						
Silver (D)			Acute			0.85 e(1.72[In	(hardness)]-6	.59)		4.430655743						
Zinc (D)			Acute			0.978 e(0.909	4[In(hardness)]+0.9095)		189.5170039						
			Chronic			0.986 e(0.909	47[In(hardnes	s)]+0.6235)		143.5898293						
						Instream	n Waste Conc	entration				Livestock&	Acute	Chronic	Human	Need
POLLUTANTS				Ambient	Effluent	Acute	Domestic	Chronic	Human	Domestic	Irrigation	Wildlife	Aquatic	Aquatic	Health	TMDL
				Conc.	Conc.	Aquatic	Supply	Aquatic	Health	Criteria	Criteria	Criteria	Criteria	Criteria	Criteria	
		CAS No.	MQL	Ca (ug/l)	Ce (ug/l)	2.13*Ce	Cd,dom (ug/l)	Cd (ug/l)	Cd,hh (ug/l)	ug/l	ug/l	ug/l	ug/l	ug/l	ug/l	
Radioactivity, N	Nutrients, and	Chlorine														
Aluminum, total		7429-90-5	2.5			0	0	0	0	1E+100	5000	1E+100	4413.881126	1768.3632	1E+100	N/A
Barium, dissolve	ed	7440-39-3	100	140	54	115.02	115.02	115.02	115.028055	2000	1E+100	1E+100	1E+100	1E+100	1E+100	N/A
Boron, dissolved	ł	7440-42-8	100			0	0	0	0	1E+100	750	5000	1E+100	1E+100	1E+100	N/A
Cobalt, dissolved	d	7440-48-4	50			0	0	0	0	1E+100	50	1000	1E+100	1E+100	1E+100	N/A
Uranium, dissolv	red	7440-61-1	0.1	3.9	2.6	5.538	5.538	5.538	5.53747178	30	1E+100	1E+100	1E+100	1E+100	1E+100	N/A
Vanadium, disso	olved	7440-62-2	50			0	0	0	0	1E+100	100	100	1E+100	1E+100	1E+100	N/A
Ra-226 and Ra-2	228 (pCi/l)					0	0	0	0	5	1E+100	30	1E+100	1E+100	1E+100	N/A
Strontium (pCi/l)				0.205	0.207	0.44091	0.44091	0.44091	0.44083392	8	1E+100	1E+100	1E+100	1E+100	1E+100	N/A
Tritium (pCi/l)						0	0	0	0	20000	1E+100	20000	1E+100	1E+100	1E+100	N/A
Gross Alpha (pC	Ci/l)					0	0	0	0	15	1E+100	15	1E+100	1E+100	1E+100	N/A
Asbestos (fibers	s/l)					0	0	0	0	7000000	1E+100	1E+100	1E+100	1E+100	1E+100	N/A
Total Residual Ch	hlorine	7782-50-5	33			0	0	0	0	1E+100	1E+100	11	19	11	1E+100	N/A
Nitrate as N (mg/	/1)					0	0	0	0	10	1E+100	1E+100	1E+100	1E+100	1E+100	N/A
Nitrite + Nitrate (r	mg/l)			2.695	15	31.95	31.95	31.95	31.9405659	1E+100	1E+100	132	1E+100	1E+100	1E+100	N/A
METALS AND C	CYANIDE															
Antimony, dissol	lved (P)	7440-36-0	60			0	0	0	0	6	1E+100	1E+100	1E+100	1E+100	640	N/A
Arsenic, dissolve	ed (P)	7440-38-2	0.5		0	0	0	0	0	10	100	200	340	150	9	N/A
Beryllium, dissolv	ved	7440-41-7	0.5	1	2	4.26	4.26	4.26	4.25894873	4	1E+100	1E+100	1E+100	1E+100	1E+100	N/A
Cadmium, dissolv	ved	7440-43-9	1			0	0	0	0	5	10	50	1.93680814	0.5178378	1E+100	N/A
Chromium (III), dis	issolved	16065-83-1	10			0	0	0	0	1E+100	1E+100	1E+100	663.5977515	86.320434	1E+100	N/A
Chromium (VI), d	dissolved	18540-29-9	10			0	0	0	0	1E+100	1E+100	1E+100	16	11	1E+100	N/A
Chromium, dissol	lved	7440-47-3				0	0	0	0	100	100	1000	1E+100	1E+100	1E+100	N/A
Copper, dissolve	ed	7440-50-8	0.5	10	1.210853112	2.57911713	2.57911713	2.57911713	2.58151019	1300	200	500	16.01550935	10.49983	1E+100	N/A
Lead, dissolved		7439-92-1	0.5	1	0.120328624	0.256299969	0.25629997	0.25629997	0.2565398	15	5000	100	79.04360488	3.0802158	1E+100	N/A
Manganese, diss	solved	7439-96-5				0	0	0	0	1E+100	1E+100	1E+100	3176.667409	1755.112	1E+100	NA

						Instroor	n Waste Conc	entration		Livestock&	Acuto	Chronic	Human	Need		
				A mbiont	Effluent	Acuto	Domostio	Chronio	Humon	Domostio	krigation	Wildlife	Aquatio	Aquatia	Hoolth	TMD
				Cono	Cono	Acute	Supply	Aquatia	Hoolth	Oritorio	Critorio	Critorio	Critorio	Critorio	Critorio	TWDL
FOLLUTANIS		CA C NI-	10	Con (um/l)	Co (vie/l)	Aqualic		Aqualic		Gilena	Gillend	Uniterna	Uniteria	Gilleria	Gillena	
Maria Parata		CAS NO.	MQL	Ca (ug/l)	Ce (ug/l)	2.13 Ce	Ca,aom (ug/i)	Ca (ug/i)	Ca,nn (ug/i)	ug/i	ug/i	ug/i	ug/i	ug/i	Ug/I	N1/A
wercury, dissolve	ea	7439-97-6	0.005		0.0004	0	0	0	0	1E+100	1E+100	1E+100	1.4	0.77	1E+100	INA
Mercury, total		7439-97-6	0.005	0.2	0.0231	0.049203	0.049203	0.049203	0.04925163	2	1E+100	0.77	1E+100	1E+100	1E+100	N/A
Molybaenum, aiss	solved	7439-98-7				0	0	0	0	1E+100	1000	1E+100	1E+100	1E+100	1E+100	N/A
Molybdenum, tota	al recoverable	7439-98-7				0	0	0	0	1E+100	1E+100	1E+100	/920	1895	1E+100	N/A
Nickel, dissolved	(P)	7440-02-0	0.5		0	0	0	0	0	700	1E+100	1E+100	548.0972923	60.876688	4600	NA
Selenium, dissolv	red (P)	7782-49-2	5			0	0	0	0	50	130	50	1E+100	1E+100	4200	NA
Selenium, dis (SC	04 >500 mg/l)		5			0	0	0	0	50	250	50	1E+100	1E+100	4200	N/A
Selenium, total re	coverable	7782-49-2	5			0	0	0	0	1E+100	1E+100	5	20	5	1E+100	N/A
Silver, dissolved		7440-22-4	0.5		0	0	0	0	0	1E+100	1E+100	1E+100	4.430655743	1E+100	1E+100	N/A
Thalllium, dissolve	ed (P)	7440-28-0	0.5			0	0	0	0	2	1E+100	1E+100	1E+100	1E+100	0.47	N/A
Zinc, dissolved		7440-66-6	20	10	14.30726665	30.47447796	30.474478	30.474478	30.4678754	10500	2000	25000	189.5170039	143.58983	26000	N/A
Cyanide, total rec	overable	57-12-5	10			0	0	0	0	200	1E+100	5.2	22	5.2	140	N/A
Dioxin		1764-01-6	0.00001			0	0	0	0	3.00E-05	1E+100	1E+100	1E+100	1E+100	5.1E-08	N/A
VOLATILE COM	POUNDS															
Acrolein		107-02-8	50			0	0	0	0	18	1E+100	1E+100	1E+100	1E+100	9	N/A
Acrylonitrile		107-13-0	20			0	0	0	0	0.65	1E+100	1E+100	1E+100	1E+100	2.5	N/A
Benzene		71-43-2	10			0	0	0	0	5	1E+100	1E+100	1E+100	1E+100	510	N/A
Bromoform		75-25-2	10			0	0	0	0	44	1E+100	1E+100	1E+100	1E+100	1400	N/A
Carbon Tetrachlo	ride	56-23-5	2			0	0	0	0	5	1E+100	1E+100	1E+100	1E+100	16	N/A
Chlorobenzene		108-90-7	10			0	0	0	0	100	1E+100	1E+100	1E+100	1E+100	1600	N/A
Clorodibromometh	hane	124-48-1	10			0	0	0	0	4.2	1E+100	1E+100	1E+100	1E+100	130	N/A
Chloroform		67-66-3	50			0	0	0	0	57	1E+100	1E+100	1E+100	1E+100	4700	N/A
Dichlorobromome	thane	75-27-4	10			0	0	0	0	5.6	1E+100	1E+100	1E+100	1E+100	170	N/A
1,2-Dichloroetha	ne	107-06-2	10			0	0	0	0	5	1E+100	1E+100	1E+100	1E+100	370	N/A
1,1-Dichloroethy	lene	75-35-4	10			0	0	0	0	7	1E+100	1E+100	1E+100	1E+100	7100	N/A
1,2-Dichloroprop	ane	78-87-5	10			0	0	0	0	5	1E+100	1E+100	1E+100	1E+100	150	N/A
1,3-Dichloroprop	ylene	542-75-6	10			0	0	0	0	3.5	1E+100	1E+100	1E+100	1E+100	210	N/A
Ethylbenzene		100-41-4	10			0	0	0	0	700	1E+100	1E+100	1E+100	1E+100	2100	N/A
Methyl Bromide		74-83-9	50			0	0	0	0	49	1E+100	1E+100	1E+100	1E+100	1500	N/A
Methylene Chloric	de	75-09-2	20			0	0	0	0	5	1E+100	1E+100	1E+100	1E+100	5900	N/A
1,1,2,2-Tetrachlo	proethane	79-34-5	10			0	0	0	0	1.8	1E+100	1E+100	1E+100	1E+100	40	N/A
Tetrachloroethyle	ene	127-18-4	10			0	0	0	0	5	1E+100	1E+100	1E+100	1E+100	33	N/A
Tolune		108-88-3	10			0	0	0	0	1000	1E+100	1E+100	1E+100	1E+100	15000	N/A
1,2-trans-Dichlor	roethylene	156-60-5	10			0	0	0	0	100	1E+100	1E+100	1E+100	1E+100	10000	N/A
1.1.1-Trichloroet	hane	71-55-6				0	0	0	0	200	1E+100	1E+100	1E+100	1E+100	1E+100	N/A
1.1.2-Trichloroet	hane	79-00-5	10			0	0	0	0	5	1E+100	1E+100	1E+100	1E+100	160	N/A
Trichloroethylene		79-01-6	10			0	0	0	0	5	1E+100	1F+100	1E+100	1F+100	300	N/A
Vinvl Chloride		75-01-4	10			0	0	0	0	2	1E+100	1E+100	1E+100	1E+100	24	N/A
	JDS		10			, v				_					_ 1	
2-Chlorophanol		05-57-9	10			0	0	٥	0	175	1E+100	1E+100	1E+100	1E±100	150	N/A
2 4-Dichloropher	nol	120-83-2	10			0 0	n	0	0	105	1E+100	1E+100	1E+100	1E+100	200	N/A
2.4-Dimethylobor	nol	105-67-0	10			0	0	0	n	700	15+100	15+100	15+100	1E+100	230	N/A
	eol	534.52.4	50			0 0	0	0	0	14	15,100	15,100	15,100	1E+100	200	N/A
	n11/I	JUT UZ				U				14		1 ILTIUU			200	IN/A

				Ambient	Effluent	Acute	Domestic	Chronic	Human	Domestic	Irrigation	Wildlife	Aquatic	Aquatic	Health	TMDL
POLLUTANTS				Conc	Conc.	Aquatic	Supply	Aquatic	Health	Criteria	Criteria	Criteria	Criteria	Criteria	Criteria	
		CAS No.	MQL	Ca (ug/l)	Ce (ug/l)	2.13*Ce	Cd,dom (ug/l)	Cd (ug/l)	Cd,hh (ug/l)	ug/l	ug/l	ug/l	ug/l	ug/l	ug/l	
2,4-Dinitrophenol		51-28-5	50			0	0	0	0	70	1E+100	1E+100	1E+100	1E+100	5300	N/A
Pentachloropheno	ol	87-86-5	50			0	0	0	0	1	1E+100	1E+100	19	15	30	N/A
Phenol		108-95-2	10			0	0	0	0	10500	1E+100	1E+100	1E+100	1E+100	860000	N/A
2,4,6-Trichloroph	ienol	88-06-2	10			0	0	0	0	32	1E+100	1E+100	1E+100	1E+100	24	N/A
BASE/NEUTRAL																
Acenaphthene		83-32-9	10			0	0	0	0	2100	1E+100	1E+100	1E+100	1E+100	990	N/A
Anthracene		120-12-7	10			0	0	0	0	10500	1E+100	1E+100	1E+100	1E+100	40000	N/A
Benzidine		92-87-5	50			0	0	0	0	0.0015	1E+100	1E+100	1E+100	1E+100	0.002	N/A
Benzo(a)anthrace	ene	56-55-3	5			0	0	0	0	0.048	1E+100	1E+100	1E+100	1E+100	0.18	N/A
Benzo(a)pyrene		50-32-8	5			0	0	0	0	0.2	1E+100	1E+100	1E+100	1E+100	0.18	N/A
3,4-Benzofluorar	nthene	205-99-2	10			0	0	0	0	0.048	1E+100	1E+100	1E+100	1E+100	0.18	N/A
Benzo(k)fluoranth	nene	207-08-9	5			0	0	0	0	0.048	1E+100	1E+100	1E+100	1E+100	0.18	NA
Bis(2-chloroethyl)	Ether	111-44-4	10			0	0	0	0	0.3	1E+100	1E+100	1E+100	1E+100	5.3	N/A
Bis(2-chloroisopr	opyl)Ether	108-60-1	10			0	0	0	0	1400	1E+100	1E+100	1E+100	1E+100	65000	N/A
Bis(2-ethylhexyl)	Phthalate	117-81-7	10			0	0	0	0	6	1E+100	1E+100	1E+100	1E+100	22	N/A
Butyl Benzyl Phth	alate	85-68-7	10			0	0	0	0	7000	1E+100	1E+100	1E+100	1E+100	1900	N/A
2-Chloronapthale	ne	91-58-7	10		0.74	1.5762	1.5762	1.5762	1.57569171	2800	1E+100	1E+100	1E+100	1E+100	1600	N/A
Chrysene		218-01-9	5			0	0	0	0	0.048	1E+100	1E+100	1E+100	1E+100	0.18	N/A
Dibenzo(a,h)anth	racene	53-70-3	5			0	0	0	0	0.048	1E+100	1E+100	1E+100	1E+100	0.18	N/A
1,2-Dichlorobenz	ene	95-50-1	10			0	0	0	0	600	1E+100	1E+100	1E+100	1E+100	1300	N/A
1,3-Dichlorobenz	ene	541-73-1	10			0	0	0	0	469	1E+100	1E+100	1E+100	1E+100	960	N/A
1,4-Dichlorobenz	ene	106-46-7	10			0	0	0	0	75	1E+100	1E+100	1E+100	1E+100	190	N/A
3,3'-Dichlorobenz	idine	91-94-1	5			0	0	0	0	0.78	1E+100	1E+100	1E+100	1E+100	0.28	N/A
Diethyl Phthalate		84-66-2	10			0	0	0	0	28000	1E+100	1E+100	1E+100	1E+100	44000	N/A
Dimethyl Phthalate	9	131-11-3	10			0	0	0	0	350000	1E+100	1E+100	1E+100	1E+100	1100000	N/A
Di-n-Butyl Phthala	ite	84-74-2	10			0	0	0	0	3500	1E+100	1E+100	1E+100	1E+100	4500	N/A
2,4-Dinitrotoluene	9	121-14-2	10			0	0	0	0	1.1	1E+100	1E+100	1E+100	1E+100	34	N/A
1,2-Diphenylhydr	azine	122-66-7	20			0	0	0	0	0.44	1E+100	1E+100	1E+100	1E+100	2	N/A
Fluoranthene		206-44-0	10			0	0	0	0	1400	1E+100	1E+100	1E+100	1E+100	140	N/A
Fluorene		86-73-7	10			0	0	0	0	1400	1E+100	1E+100	1E+100	1E+100	5300	N/A
Hexachlorobenze	ene	118-74-1	5			0	0	0	0	1	1E+100	1E+100	1E+100	1E+100	0.0029	N/A
Hexachlorobutadi	ene	87-68-3	10			0	0	0	0	4.5	1E+100	1E+100	1E+100	1E+100	180	N/A
Hexachlorocyclop	pentadiene	77-47-4	10			0	0	0	0	50	1E+100	1E+100	1E+100	1E+100	1100	N/A
Hexachloroethane	e	67-72-1	20			0	0	0	0	25	1E+100	1E+100	1E+100	1E+100	33	N/A
Indeno(1,2,3-cd)F	Pyrene	193-39-5	5			0	0	0	0	0.048	1E+100	1E+100	1E+100	1E+100	0.18	N/A
lsophorone		78-59-1	10			0	0	0	0	368	1E+100	1E+100	1E+100	1E+100	9600	N/A
Nitrobenzene		98-95-3	10			0	0	0	0	18	1E+100	1E+100	1E+100	1E+100	690	N/A
n-Nitrosodimethyl	amine	62-75-9	50			0	0	0	0	0.0069	1E+100	1E+100	1E+100	1E+100	30	N/A
n-Nitrosodi-n-Proj	pylamine	621-64-7	20			0	0	0	0	0.05	1E+100	1E+100	1E+100	1E+100	5.1	N/A
n-Nitrosodiphenyl	amine	86-30-6	20			0	0	0	0	71	1E+100	1E+100	1E+100	1E+100	60	N/A
Nonylphenol		84852-15-3				0	0	0	0	1E+100	1E+100	1E+100	28	6.6	1E+100	N/A
Pyrene		129-00-0	10			0	0	0	0	1050	1E+100	1E+100	1E+100	1E+100	4000	N/A
124-Trichlorobe	nzene	120-82-1	10			0	0	0	0	70	1E+100	1E+100	1E+100	1E+100	70	N/A

	-		-	-		1			1						1	
						Instream	m Waste Conc	entration				Livestock&	Acute	Chronic	Human	Need
				Ambient	Effluent	Acute	Domestic	Chronic	Human	Domestic	Irrigation	Wildlife	Aquatic	Aquatic	Health	TMDL
POLLUTANTS				Conc	Conc.	Aquatic	Supply	Aquatic	Health	Criteria	Criteria	Criteria	Criteria	Criteria	Criteria	
		CAS No.	MQL	Ca (ug/l)	Ce (ug/l)	2.13*Ce	Cd,dom (ug/l)	Cd (ug/l)	Cd,hh (ug/l)	ug/l	ug/l	ug/l	ug/l	ug/l	ug/l	
PESTICIDES AN	D PCBS															
Aldrin		309-00-2	0.01			0	0	0	0	0.021	1E+100	1E+100	3	1E+100	0.0005	N/A
Alpha-BHC		319-84-6	0.05			0	0	0	0	0.056	1E+100	1E+100	1E+100	1E+100	0.049	N/A
Beta-BHC		319-85-7	0.05			0	0	0	0	0.091	1E+100	1E+100	1E+100	1E+100	0.17	N/A
Gamma-BHC		58-89-9	0.05			0	0	0	0	0.2	1E+100	1E+100	0.95	1E+100	1.8	N/A
Chlordane		57-74-9	0.2			0	0	0	0	2	1E+100	1E+100	2.4	0.0043	0.0081	N/A
4,4'-DDT and de	rivatives	50-29-3	0.02			0	0	0	0	1	1E+100	0.001	1.1	0.001	0.0022	N/A
Dieldrin		60-57-1	0.02			0	0	0	0	0.022	1E+100	1E+100	0.24	0.056	0.00054	N/A
Diazinon		333-41-5				0	0	0	0	1E+100	1E+100	1E+100	0.17	0.17	1E+100	N/A
Alpha-Endosulfa	n	959-98-8	0.01			0	0	0	0	62	1E+100	1E+100	0.22	0.056	89	N/A
Beta-Endosulfan	ı 📃	33213-65-9	0.02			0	0	0	0	62	1E+100	1E+100	0.22	0.056	89	N/A
Endosulfan sulfa	ite	1031-7-8	0.1			0	0	0	0	62	1E+100	1E+100	1E+100	1E+100	89	N/A
Endrin		72-20-8	0.02			0	0	0	0	2	1E+100	1E+100	0.086	0.036	0.06	N/A
Endrin Aldehyde		7421-93-4	0.1			0	0	0	0	10.5	1E+100	1E+100	1E+100	1E+100	0.3	N/A
Heptachlor		76-44-8	0.01			0	0	0	0	0.4	1E+100	1E+100	0.52	0.0038	0.00079	N/A
Heptachlor Epoix	de	1024-57-3	0.01			0	0	0	0	0.2	1E+100	1E+100	0.52	0.0038	0.00039	N/A
PCBs		1336-36-3	0.2			0	0	0	0	0.5	1E+100	0.014	2	0.014	0.00064	N/A
Toxaphene		8001-35-2	0.3			0	0	0	0	3	1E+100	1E+100	0.73	0.0002	0.0028	N/A
STEP 3:	SCAN POTEN	ITIAL INSTREAM	I WASTE CO	NCENTRA	TIONS AGAINS	ST WATER QUA	LITY CRITERI	A								
	AND ESTABL	LISH EFFLUENT L		FOR ALL	APPLICABLE F	ARAMETERS										
No limits are esta	ablished if the r	eceiving stream	is not desig	nated for t	he particular us	Ses.										
No limits are esta	ablished if the p	ootential instream	n w aste cor	centration	s are less than	the chronic w	ater quality cri	teria.								
The most applica	able stringent c	riteria are used t	o establish	effluent lim	itations for a gi	iven parameter	•									
Water quality crit	teria apply at th	ne end-of-pipe fo	or acute aqu	iatic life cri	teria and disch	arges to public	lakes.									
lf background co	oncentration ex	ceeds the water	r quality crit	eria, w ater	quality criteria	apply. And "N	eed TMDL" sh	own to the ne	ext column of A	vg. Mass						
Monthly avg con	centration = da	ily max. / 1.5.														
APPLICABLE WA	TER QUALITY	-BASED LIMITS														
	The follow ing	g formular is use	d to calcula	te the allow	able daily max	imum effluent (cincentration		See the curr	ent "Procedure	s for Implemen	ting NPDES Perr	mits in New Me	xico"		
	Daily Max. Co	onc. = Cs + (Cs -	Ca)(F*Qa/0	Qe)		Monthly Avg.	Conc. = Daily	Max. Conc. /	1.5							
Where:	Cs = Applical	ble water quality	standard													
	Ca = Ambient	t stream concent	tration													
	F = Fraction	n of stream allow	ed for mixi	ng (1.0 is a	ssigned to don	nestic water su	upply and hum	an health use	es)							
	Qe = Plant ef	fluent flow														
	Qa = Criteria	Low flow (4Q3)	or Harmoni	c Mean flo	w for Human H	lealth Criteria										

· · · · · · · · · · · · · · · · · · ·															
						Livestock	Acute	Chronic	Human	Daily	Monthly	Daily Max	Mon. Avg	Daily	Monthly
POLLUTANTS		CAS No.	STORET	Domestic	Irrigation	or Wildlife	Aquatic	Aquatic	Health	Max Conc	Avg Conc	Total	Total	Max Load	Avg Load
				Limits	Limits	Limits	Limits	Limits	Limits	ug/l	ug/l	ug/l	ug/l	lb/day	lb/day
Radioactivity, Nutri	ients, and C	hlorine, as T	Total												
Aluminum, Total		7429-90-5	01105	N/A	N/A	N/A	N/A	N/A	N/A	N/A	N/A	N/A	N/A	N/A	NA
Barium, Total		7440-39-3	01007	N/A	N/A	N/A	N/A	N/A	N/A	N/A	N/A	N/A	N/A	N/A	N/A
Boron, Total		7440-42-8	01022	N/A	N/A	N/A	N/A	N/A	N/A	N/A	N/A	N/A	N/A	N/A	N/A
Cobalt, Total		7440-48-4	01037	N/A	N/A	N/A	N/A	N/A	N/A	N/A	N/A	N/A	N/A	N/A	N/A
Uranium, Total		7440-61-1	22706	N/A	N/A	N/A	N/A	N/A	N/A	N/A	N/A	N/A	N/A	N/A	N/A
Vanadium, Total		7440-62-2	01087	N/A	N/A	N/A	N/A	N/A	N/A	N/A	N/A	N/A	N/A	N/A	N/A
Ra-226 and Ra-228 ((pCi/l)		11503	N/A	N/A	N/A	N/A	N/A	N/A	N/A	N/A	N/A	N/A	N/A	NA
Strontium (pCi/l)			13501	N/A	N/A	N/A	N/A	N/A	N/A	N/A	N/A	N/A	N/A	N/A	NA
Tritium (pCi/l)			04124	N/A	N/A	N/A	N/A	N/A	N/A	N/A	N/A	N/A	N/A	N/A	N/A
Gross Alpha (pCi/l)			80029	N/A	N/A	N/A	N/A	N/A	N/A	N/A	N/A	N/A	N/A	N/A	N/A
Asbestos (fibers/l)			_	N/A	N/A	N/A	N/A	N/A	N/A	N/A	N/A	N/A	N/A	N/A	N/A
Total Residual Chlorir	ne	7782-50-5	50060	N/A	N/A	N/A	N/A	N/A	N/A	N/A	N/A	N/A	N/A	N/A	N/A
Nitrate as N (mg/l)			00620	N/A	N/A	N/A	N/A	N/A	N/A	N/A	N/A	N/A	N/A	N/A	N/A
Nitrite + Nitrate (mg/l)			00630	N/A	N/A	N/A	N/A	N/A	N/A	N/A	N/A	N/A	N/A	N/A	N/A
METALS AND CYAN	NIDE, as Tot	al													
Antimony, Total (P)		7440-36-0	01097	N/A	N/A	N/A	N/A	N/A	N/A	N/A	N/A	N/A	N/A	N/A	N/A
Arsenic, Total (P)		7440-38-2	1002	N/A	N/A	N/A	N/A	N/A	N/A	N/A	N/A	N/A	N/A	N/A	N/A
Beryllium, Total		7440-41-7	01012	N/A	N/A	N/A	N/A	N/A	N/A	N/A	N/A	N/A	N/A	N/A	NA
Cadmium, Total		7440-43-9	01027	N/A	N/A	N/A	N/A	N/A	N/A	N/A	N/A	N/A	N/A	N/A	NA
Chromium (III), dissolv	ved	16065-83-1	01033	N/A	N/A	N/A	N/A	N/A	N/A	N/A	N/A	N/A	N/A	N/A	N/A
Chromium (VI), disso	olved	18540-29-9	01034	N/A	N/A	N/A	N/A	N/A	N/A	N/A	N/A	N/A	N/A	N/A	N/A
Chromium, Total		7440-47-3	01034	N/A	N/A	N/A	N/A	N/A	N/A	N/A	N/A	N/A	N/A	N/A	N/A
Copper, Total		7440-50-8	01042	N/A	N/A	N/A	N/A	N/A	N/A	N/A	N/A	N/A	N/A	N/A	N/A
Lead, Total		7439-92-1	01051	N/A	N/A	N/A	N/A	N/A	N/A	N/A	N/A	N/A	N/A	N/A	N/A
Manganese, dissovle	ed	7439-96-5	01056	N/A	N/A	N/A	N/A	N/A	N/A	N/A	N/A	N/A	N/A	N/A	N/A
Mercury, Total		7439-97-6	71900	N/A	N/A	N/A	N/A	N/A	N/A	N/A	N/A	N/A	N/A	N/A	N/A
Mercury, Total		7439-97-6	71900	N/A	N/A	N/A	N/A	N/A	N/A	N/A	N/A	N/A	N/A	N/A	NA
Molybdenum, dissolv	ved	7439-98-7	1060	N/A	N/A	N/A	N/A	N/A	N/A	N/A	N/A	N/A	N/A	N/A	NA
Molybdenum, total rea	coverable	7439-98-7	01062	N/A	N/A	N/A	N/A	N/A	N/A	N/A	N/A	N/A	N/A	N/A	NA
Nickel, Total (P)		7440-02-0	01067	N/A	N/A	N/A	N/A	N/A	N/A	N/A	N/A	N/A	N/A	N/A	NA
Selenium, Total (P)		7782-49-2	01147	N/A	N/A	N/A	N/A	N/A	N/A	N/A	N/A	N/A	N/A	N/A	NA
Selenium, Total (SO4	4 >500 mg/l)		01147	N/A	N/A	N/A	N/A	N/A	N/A	N/A	N/A	N/A	N/A	N/A	N/A
Selenium, Total recov	verable	7782-49-2	01147	N/A	N/A	N/A	N/A	N/A	N/A	N/A	N/A	N/A	N/A	N/A	NA
Silver, Total		7440-22-4	01077	N/A	N/A	N/A	N/A	N/A	N/A	N/A	N/A	N/A	N/A	N/A	N/A
Thalllium, Total (P)		7440-28-0	01059	N/A	N/A	N/A	N/A	N/A	N/A	N/A	N/A	N/A	N/A	N/A	N/A
Zinc, Total		7440-66-6	1092	N/A	N/A	N/A	N/A	N/A	N/A	N/A	N/A	N/A	N/A	N/A	N/A
Cyanide, total recove	erable	57-12-5	00720	N/A	N/A	N/A	N/A	N/A	N/A	N/A	N/A	N/A	N/A	N/A	N/A
DIOXIN															0
2,3,7,8-TCDD		1764-01-6	34675	N/A	N/A	N/A	N/A	N/A	N/A	N/A	N/A	N/A	N/A	NA	NA
VOLATILE COMPO	UNDS														
Acrolein		107-02-8	34210	N/A	N/A	N/A	N/A	N/A	N/A	N/A	N/A	N/A	N/A	NA	N/A
Acrylonitrile		107-13-0	34215	N/A	N/A	N/A	N/A	N/A	N/A	N/A	N/A	N/A	N/A	NA	N/A
Benzene		71-43-2	34030	N/A	N/A	N/A	N/A	N/A	N/A	N/A	N/A	N/A	N/A	NA	NA
Bromoform		75-25-2	32104	N/A	N/A	N/A	N/A	N/A	N/A	N/A	N/A	N/A	N/A	NA	NA
Carbon Tetrachloride	•	56-23-5	32102	N/A	N/A	N/A	N/A	N∕A	N/A	N/A	N/A	N/A	N/A	N/A	N/A

						Livestock	Acute	Chronic	Human	Daily	Monthly	Daily Max	Mon. Avg	Daily	Monthly
POLLUTANTS		CAS No.	STORET	Domestic	Irrigation	or Wildlife	Aquatic	Aquatic	Health	Max Conc	Avg Conc	Total	Total	Max Load	Avg Load
				Limits	Limits	Limits	Limits	Limits	Limits	ug/l	ug/l	ug/l	ug/l	lb/day	lb/day
Chlorobenzene		108-90-7	34301	N/A	N/A	NA	NA	NA	NA	N/A	N/A	NA	N/A	N/A	N/A
Clorodibromometh	hane	124-48-1	32105	N/A	N/A	NA	NA	NA	NA	N/A	N/A	NA	N/A	N/A	N/A
Chloroform		67-66-3	32106	N/A	N/A	NA	NA	NA	N/A	N/A	N/A	N/A	N/A	N/A	N/A
Dichlorobromome	ethane	75-27-4	32101	N/A	N/A	NA	NA	NA	N/A	N/A	N/A	N/A	N⁄A	N/A	N/A
1,2-Dichloroetha	ine	107-06-2	34531	N/A	N⁄A	NA	N/A	N/A	NA	N/A	N/A	NA	N⁄A	NA	N/A
1,1-Dichloroethy	lene	75-35-4	34501	N/A	N/A	NA	NA	NA	N/A	N/A	N/A	N/A	N/A	NA	N/A
1,2-Dichloroprop	ane	78-87-5	34541	N/A	N/A	NA	NA	NA	N/A	N/A	N/A	N/A	N/A	NA	N/A
1,3-Dichloroprop	ylene	542-75-6	34561	N/A	N/A	NA	NA	NA	N/A	N/A	N/A	N/A	N/A	NA	N/A
Ethylbenzene		100-41-4	34371	N/A	N/A	NA	NA	NA	N/A	N/A	N/A	N/A	N/A	NA	N/A
Methyl Bromide		74-83-9	34413	N/A	N/A	NA	NA	NA	N/A	N/A	N/A	N/A	N/A	NA	N/A
Methylene Chlorid	de	75-09-2	34423	N/A	N/A	NA	NA	NA	N/A	N/A	N/A	N/A	N/A	N/A	N/A
1,1,2,2-Tetrachlo	proethane	79-34-5	34516	N/A	N/A	NA	NA	NA	N/A	N/A	N/A	N/A	N/A	N/A	N/A
Tetrachloroethyle	ene	127-18-4	34475	N/A	N/A	NA	NA	NA	N/A	N/A	N/A	N/A	N/A	N/A	N/A
Tolune		108-88-3	34010	N/A	N/A	NA	NA	NA	N/A	N/A	N/A	N/A	N/A	N/A	N/A
1,2-trans-Dichlor	roethylene	156-60-5	34546	N/A	N/A	NA	NA	NA	N/A	N/A	N/A	N/A	N/A	N/A	N/A
1,1,1-Trichloroet	thane	71-55-6	-	N/A	N/A	NA	NA	NA	N/A	N/A	N/A	N/A	N/A	N/A	N/A
1,1,2-Trichloroet	thane	79-00-5	34511	N/A	N/A	NA	NA	NA	N/A	N/A	N/A	N/A	N/A	N/A	N/A
Trichloroethylene	9	79-01-6	39180	N/A	N/A	NA	NA	NA	N/A	N/A	N/A	N/A	N/A	N/A	N/A
Vinyl Chloride		75-01-4	39175	N/A	N/A	NA	NA	NA	N/A	N/A	N/A	N/A	N/A	N/A	N/A
ACID COMPOUN	NDS			 											
2-Chlorophenol		95-57-8	34586	 N/A	N/A	NA	NA	NA	N/A	N/A	N/A	N/A	N/A	N/A	N/A
2,4-Dichloropher	nol	120-83-2	34601	 N/A	N/A	NA	NA	NA	N/A	N/A	N/A	N/A	N/A	N/A	N/A
2,4-Dimethylpher	nol	105-67-9	34606	 N/A	N/A	NA	NA	NA	N/A	N/A	N/A	N/A	N/A	N/A	N/A
4,6-Dinitro-o-Cre	esol	534-52-1	34657	 N/A	N/A	NA	NA	NA	N/A	N/A	N/A	N/A	N/A	N/A	N/A
2,4-Dinitropheno	I	51-28-5	34616	 N/A	N/A	NA	NA	NA	N/A	N/A	N/A	N/A	N/A	N/A	N/A
Pentachlorophen	ol	87-86-5	39032	N/A	N/A	NA	NA	NA	N/A	N/A	N/A	N/A	N/A	N/A	N/A
Phenol		108-95-2	34694	N/A	N/A	NA	NA	NA	N/A	N/A	N/A	N/A	N/A	N/A	N/A
2,4,6-Trichloroph	henol	88-06-2	34621	N/A	N/A	NA	NA	NA	N/A	N/A	N/A	N/A	N/A	N/A	N/A
BASE/NEUTRAL				 											
Acenaphthene		83-32-9	34205	 N/A	N/A	NA	NA	NA	N/A	N/A	N/A	N/A	N/A	N/A	N/A
Anthracene		120-12-7	34220	 N/A	N/A	NA	NA	NA	N/A	N/A	N/A	N/A	N/A	N/A	N/A
Benzidine		92-87-5	39120	 N/A	N/A	NA	NA	NA	N/A	N/A	N/A	N/A	N/A	N/A	N/A
Benzo(a)anthrac	ene	56-55-3	34526	 N/A	N/A	NA	NA	NA	N/A	N/A	N/A	N/A	N/A	N/A	N/A
Benzo(a)pyrene		50-32-8	34247	N/A	N/A	NA	NA	NA	N/A	N/A	N/A	N/A	N/A	N/A	N/A
3,4-Benzofluora	nthene	205-99-2	34230	N/A	N/A	NA	NA	NA	N/A	N/A	N/A	N/A	NA	N/A	N/A
Benzo(k)fluorant	hene	207-08-9	34242	N/A	N/A	NA	NA	NA	N/A	N/A	N/A	N/A	N/A	N/A	N/A
Bis(2-chloroethyl	l)Ether	111-44-4	34273	N/A	N/A	NA	NA	NA	N/A	N/A	N/A	N/A	N/A	NA	N/A
Bis(2-chloroisopr	ropyl)Ether	108-60-1	34283	 N/A	N/A	NA	NA	NA	NA	N/A	N/A	NA	N/A	N/A	N/A
Bis(2-ethylhexyl)	Phthalate	117-81-7	39100	N/A	N/A	NA	NA	NA	NA	N/A	N/A	NA	N/A	N/A	N/A
Butyl Benzyl Phth	nalate	85-68-7	34292	 N/A	N/A	N/A	N/A	NA	NA	N/A	N/A	N/A	N/A	N/A	N/A
2-Chloronapthale	ene	91-58-7	34581	N/A	N/A	NA	NA	NA	NA	N/A	N/A	NA	N/A	N/A	N/A
Chrysene		218-01-9	34320	N/A	NA	NA	NA	N/A	NA	N/A	N/A	NA	N/A	N/A	N/A
Dibenzo(a,h)anth	racene	53-70-3	34556	N/A	NA	NA	N/A	NA	NA	N/A	N/A	NA	N/A	N/A	N/A
1,2-Dichlorobenz	zene	95-50-1	34536	N/A	N/A	N/A	N/A	N/A	NA	N/A	N/A	NA	N/A	N/A	N/A

					Livestock	Acute	Chronic	Human	Daily	Monthly	Daily Max	Mon. Avg	Daily	Daily
POLLUTANTS	CAS No.	STORET	Domestic	Irrigation	or Wildlife	Aquatic	Aquatic	Health	Max Conc	Avg Conc	Total	Total	Max Load	Avg Load
			Limits	Limits	Limits	Limits	Limits	Limits	ug/l	ug/l	ug/l	ug/l	lb/day	lb/day
1,3-Dichlorobenzene	541-73-1	34566	N/A	N/A	N/A	N/A	N/A	N/A	N/A	N/A	N/A	N/A	NA	NA
1,4-Dichlorobenzene	106-46-7	34571	N/A	N/A	N/A	N/A	N/A	N/A	N/A	N/A	N/A	N/A	NA	NA
3,3'-Dichlorobenzidine	91-94-1	34631	N/A	N/A	N/A	N/A	N/A	N/A	N/A	N/A	N/A	N/A	NA	NA
Diethyl Phthalate	84-66-2	34336	N/A	N/A	N/A	N/A	N/A	N/A	N/A	N/A	N/A	N/A	NA	N/A
Dimethyl Phthalate	131-11-3	34341	N/A	N/A	N/A	N/A	N/A	NA	N/A	N/A	N⁄A	N/A	NA	N/A
Di-n-Butyl Phthalate	84-74-2	39110	N/A	N/A	N/A	N/A	N/A	N/A	N/A	N/A	N/A	N/A	NA	N/A
2,4-Dinitrotoluene	121-14-2	34611	NA	N/A	N/A	N/A	N/A	NA	N/A	N/A	N⁄A	N/A	NA	N/A
1,2-Diphenylhydrazine	122-66-7	34346	NA	N/A	N/A	N/A	N/A	N/A	N/A	N/A	N/A	N/A	NA	N/A
Fluoranthene	206-44-0	34376	NA	N/A	N/A	N/A	N/A	N/A	N/A	N/A	N/A	N/A	NA	NA
Fluorene	86-73-7	34381	NA	N/A	N/A	N/A	N/A	N/A	N/A	N/A	N/A	N/A	NA	NA
Hexachlorobenzene	118-74-1	39700	NA	N/A	N/A	N/A	N/A	N/A	N/A	N/A	N/A	N/A	NA	NA
Hexachlorobutadiene	87-68-3	34391	NA	N/A	N/A	N/A	N/A	N/A	N/A	N/A	N/A	N/A	NA	NA
Hexachlorocyclopentadiene	77-47-4	34386	NA	N/A	N/A	N/A	N/A	N/A	N/A	N/A	N/A	N/A	NA	N/A
Hexachloroethane	67-72-1	34396	NA	N/A	N/A	N/A	N/A	N/A	N/A	N/A	N/A	N/A	NA	NA
Indeno(1,2,3-cd)Pyrene	193-39-5	34403	N/A	N/A	N/A	N/A	N/A	N/A	NA	N/A	N/A	N/A	NA	NA
Isophorone	78-59-1	34408	N/A	N/A	N/A	N/A	N/A	N/A	N/A	N/A	N/A	N/A	NA	NA
Nitrobenzene	98-95-3	34447	NA	N/A	N/A	N/A	N/A	N/A	N/A	N/A	N/A	N/A	NA	NA
n-Nitrosodimethylamine	62-75-9	34438	NA	N/A	N/A	N/A	N/A	N/A	N/A	N/A	N/A	N/A	NA	NA
n-Nitrosodi-n-Propylamine	621-64-7	34428	N/A	N/A	N/A	N/A	N/A	N/A	NA	N/A	N/A	N/A	NA	N/A
n-Nitrosodiphenylamine	86-30-6	34433	NA	N/A	N/A	N/A	N/A	N/A	N/A	N/A	N/A	N/A	NA	NA
Nonylphenol	84852-15-3		N/A	N/A	N/A	N/A	N/A	N/A	NA	N/A	N/A	N/A	NA	N/A
Pyrene	129-00-0	34469	NA	N/A	N/A	N/A	N/A	N/A	N/A	N/A	N/A	N/A	NA	NA
1,2,4-Trichlorobenzene	120-82-1	34551	N/A	N/A	N/A	N/A	N/A	N/A	N/A	N/A	N/A	N/A	NA	NA
PESTICIDES AND PCBS														
Aldrin	309-00-2	39330	N/A	N/A	N/A	N/A	N/A	N/A	N/A	N/A	N/A	N/A	NA	NA
Alpha-BHC	319-84-6	39337	N/A	N/A	N/A	N/A	N/A	NA	N/A	N/A	N⁄A	N/A	N⁄A	N/A
Beta-BHC	319-85-7	39338	N/A	N/A	N/A	N/A	N/A	N/A	N/A	N/A	N/A	N/A	NA	NA
Gamma-BHC	58-89-9	39340	N/A	N/A	N/A	N/A	N/A	N/A	N/A	N/A	N/A	N/A	NA	NA
Chlordane	57-74-9	39350	N/A	N/A	N⁄A	N/A	N/A	N/A	N∕A	N/A	N/A	N/A	NA	N/A
4,4'-DDT and derivatives	50-29-3	39300	N/A	N/A	N/A	N/A	N/A	NA	N/A	N/A	N⁄A	N/A	NA	N/A
Dieldrin	60-57-1	39380	N/A	N/A	N/A	N/A	N/A	N/A	N/A	N/A	N/A	N/A	NA	NA
Diazinon	333-41-5	39570	N/A	N/A	N/A	N/A	N/A	N/A	N/A	N/A	N/A	N/A	NA	N/A
Alpha-Endosulfan	959-98-8	34361	N/A	N/A	N⁄A	N/A	N/A	N/A	N∕A	N/A	N/A	N/A	NA	N/A
Beta-Endosulfan	33213-65-9	34356	N/A	N/A	N/A	N/A	N/A	N/A	N/A	N/A	N/A	N/A	NA	N/A
Endosulfan sulfate	1031-7-8	34351	NA	N/A	N/A	N/A	N/A	NA	NA	N/A	N/A	N/A	NA	N/A
Endrin	72-20-8	39390	NA	N/A	N/A	N/A	N/A	N/A	N/A	N/A	N⁄A	N/A	NA	N/A
Endrin Aldehyde	7421-93-4	34366	N/A	N/A	N/A	N/A	N/A	NA	NA	N/A	N⁄A	N/A	NA	N/A
Heptachlor	76-44-8	39410	NA	N/A	N/A	N/A	N/A	N/A	N/A	N/A	N⁄A	N/A	NA	N/A
Heptachlor Epoixde	1024-57-3	39420	NA	N/A	N⁄A	N/A	N/A	NA	N/A	N/A	N⁄A	N/A	NA	N/A
PCBs	1336-36-3	39516	N/A	N/A	N/A	N/A	N/A	N/A	N/A	N/A	N/A	N/A	N/A	N/A

					CALCULA	TIONS OF P	UEBLO OF	TAOS W/	ATER QUAL	ITY-BASED	EFFLUENT	LIMITATION	S			
NMAC 20.6.4.					(EPA approv	ed site-specific	criteria for alu	uminum, cadr	mium, and zinc	on April 30, 20	12)					
Calculations Sp	ecifications:				Excel	Revised as	s of July 10), 2012								
· ·																
Prepared By:					Quang Nguye	en										
STEP 1:	REFERENCE	IMPLEMENTATIC	ON PROCEDL	JRES			Append	lix 2								
	INPUT FACILI	ITY AND RECEIV	ING STREAT	MDATA												
	LIST SOURC	E OF DATA INPL	Л													
IMPLEMENTATIO	ON PROCEDURE	S														
The State of Ne	w Mexico Stan	dards for Interst	ate and Intra	istate Sur	face Waters a	e implemented	in this spread	sheet								
by using proced	dures establishe	ed in the current	"Procedure	s for Imple	ementing NPDF	S Permits in Nev	v Mexico"								-	
-, <u>9</u> p																
FACILTY							DATA INPUT	r								
Permittee							Town of Tag	OS								
NPDES Permit N	lo.						NM0024066									
Outfall No.(s)							1									
Plant Effluent Fl	low (MGD)						2		For industri	al and federal f	acility, use the	hiahest monthly	average flow			
Plant Effluent Fl	low (cfs)						3.1		for the past	24 months. Fo	r POTWs, use t	he design flow				
RECEIVING STR	REAM						DATA INPUT	r								
Receiving Strea	am Name						Rio Pueblo D	e Taos								
Basin Name							Rio Grande I	Basin								
Waterbody Seg	ment Code No.						Rio Pueblo, t	below Los C	rodovas							
ls a publicly ow	ned lake or rese	ervoir (enter "1"	if it's a lake,	"0" if not)		0									
Are acute aqua	atic life criteria c	onsidered (1= y	es, 0= no)	(MUST e	enter "1" for 20	05 Standards)	1									
Are chronic aqu	uatic life criteria	considered (1=	yes, 0=no)				1									
Are domestic w	ater supply crit	eria considered	(1= yes, 0=	no)			1									
Are irrigation w	ater supply crite	eria considered	(1= yes, 0=r	10)			1									
Livestock wate	ring and wildlife	habitat criteria	applied to all	streams												
USGS Flow Sta	ation						USGS									
WQ Monitoring	Station No.						SJR									
Receiving Strea	am TSS (mg/l)						22.8		For intermitte	ent stream, ente	er effluent TSS					
Receiving Strea	am Hardness (m	g/l as CaCOs)			RANGE: 0 - 4	00	120.46		For intermitte	ent stream, ente	er effluent Hard	Iness (If no dat	a, 20 mg/l is us	ed)		
Receiving Strea	am Critical Low	Flow (4Q3) (cfs)				7.39		Enter "0" for	r intermittent str	eam and lake.					
Receiving Strea	am Harmonic Me	an Flow (cfs)					9.37		Enter harmo	nic mean or mo	dified harmonic	mean flow dat	ta or 0.001 if no	o data is avail	lable	
Avg. Receiving	Water Tempera	iture (C)					12.01									
pH(Avg), Rece	eiving Stream						8.51									
Fraction of stre	am allow ed for	mixing (F)					1		Enter 1, if st	ream morpholo	gy data is not a	vailable or for i	ntermittent stre	ams.		
Fraction of Critic	cal Low Flow						7.39									

			-													
STEP 2:	INPUT AMBIE	NT AND EFFLUE	NT DATA													
	CALCULATE	IN-STREAM WA	STE CONCE	NTRATION	٧S											
DATA INPUT			Input polluta	ant geome	tric mean conc	entration as mic	cro-gram per l	liter (ug/l or pp	ob)							
			unless othe	er unit is s	pecified for the	parameter.										
			Effluent val	lue reporte	ed as "< detecti	on level" (DL) b	out the DL is g	reater than M	QL, input "1/2	DL" for calculat	tion.					
			Effluent val	lue reporte	ed as "< detecti	on level" (DL) a	and the DL is s	smaller than N	IQL, no data i	s inputted.						
			If a less that	an MQL va	kue is reported	l, input either th	e reported va	lue or "0" for	calculation.							
			The follow i	ing formula	ar is used to ca	lculate the Instr	eam Waste C	oncentration	(Cd)							
			See the cu	rrent "Proc	cedures for Imp	lementing NPDE	ES Permits in N	New Mexico"								
			Cd = [(F*Qa	a*Ca) + (Q	e*2.13*Ce)] / (F	⁼ *Qa + Qe)										
			Where:													
			Cd = Instre	am Waste	Concentration											
			F = Fract	ion of stre	am allow ed for	mixing (see "P	rocedures for	Implementing	NPDES Perm	its in New Mexic	co")					
			Ce = Repor	rted conce	entration in efflu	ent										
			Ca = Ambie	ent stream	concentration	upstream of dis	charge									
			Qe = Plant	effluent flo	W											
			Qa = Critica	al low flow	of stream at d	lischarge point	expressed as	the 4Q3 or h	armonic mear	n flow for huma	n health criteri	a				
The follow ing fo	ormular convert	metals reported	in total form	n to dissolv	ed form if crite	ria are in dissol	ved form									
See the current	"Procedures fo	r Implementing N	IPDES Permi	its in New	Mexico"											
Kp = Kpo * (TSS	S**a)				Kp = Linear pa	artition coefficie	nt; Kpo and a	can be found	d in table belo	w						
C/Ct = 1/ (1 + Kp	p*TSS* 10^-6)				TSS = Total su	ispended solids	s concentratio	on found in rea	ceiving stream	n (or in effluent	for intermittent	stream)				
Total Metal Crite	eria (Ct) = Cr / (C	C/Ct)			C/Ct = Fraction	n of metal disso	lved; and Cr =	= Dissolved cr	iteria value							
			Stream Line	ear Partitic	n Coefficient					Lake Linear Pa	artition Coeffici	ent				
Total Metals	Total Value		Кро	alpha (a)	Кр	C/Ct	Dissolved Va	alue in Stream	1	Кро	alpha (a)	Кр	C/Ct	Dissolved V	alue in Lake	
Arsenic	0		480000	-0.73	48972.10805	0.472463847	0			480000	-0.73	48972.10805	0.472463847	0		
Chromium III	0		3360000	-0.93	183425.5668	0.192971852	0			2170000	-0.27	932861.8338	0.04490497	0		
Copper	4.05		1040000	-0.74	102839.8779	0.298976077	1.21085311			2850000	-0.9	170884.8249	0.204241107	0.8271765		
Lead	0.75		2800000	-0.8	229514.5136	0.160438165	0.12032862			2040000	-0.53	388977.6951	0.101330557	0.0759979		
Nickel	0		490000	-0.57	82446.68859	0.347248206	0			2210000	-0.76	205287.1616	0.176039376	0		
Silver	0		2390000	-1.03	95438.80845	0.314860982	0			2390000	-1.03	95438.80845	0.314860982	0		
Zinc	60		1250000	-0.7	140073.3838	0.238454444	14.3072666			3340000	-0.68	398428.8435	0.09916525	5.949915		
The follow ing fo	ormular is used t	o calculate hard	iness depen	ndent crite	ria					Dissolved						
(Please refer to	State Water Qu	ality Standards	for details)							WQC (ug/l)						
Aluminum (T)			Acute			e(1.3695[ln(ha	ardness)]+1.8	308)		4413.881126		If Stream pH <	6.5, enter 750	in cell 0113		
			Chronic			e(1.3695[ln(ha	ardness)]+0.9	161)		1768.363206		If Stream pH <	6.5, enter 87 ir	n cell P113		
Cadmium (D)			Acute			e(1.128[In(har	dness)]-3.68	67)*CF1		1.93680814		CF1 = 1.13667	'2 - 0.041838*lr	n(hardness)		
			Chronic			e(0.7852[ln(ha	ardness)]-2.7	15)*CF2		0.517837842		CF2 = 1.10167	'2 - 0.041838*lr	(hardness)		

		1						1				1	1		
									Dissolved						
									WQC (ug/l)						
Chromium III (D)		Acute			e(0.819[In(ha	rdness)]+2.57	36)		663.5977515						
		Chronic			e(0.819[ln(ha	rdness)]+0.53	4)		86.32043373						
Copper (D)		Acute			e(0.9422[ln(ha	ardness)]-1.74	408)		16.01550935						
		Chronic			e(0.8545[ln(ha	ardness)]-1.74	428)		10.49982952						
Lead (D)		Acute			e(1.273[ln(hai	rdness)]-1.46))*CF3		79.04360488		CF3 = 1.46203	3 - 0.145712*ln(hardness)		
		Chronic			e(1.273[ln(ha	rdness)]-4.70	5)*CF4		3.080215804		CF4 = 1.46203	3 - 0.145712*ln(hardness)		
Manganese (D)		Acute			e(0.3331[ln(ha	ardness)]+6.4	676)		3176.667409						
		Chronic			e(0.3331[ln(ha	ardness)]+5.8	743)		1755.111983						
Nickel (D)		Acute			e(0.846[In(hai	rdness)]+2.25	3)		548.0972923						
		Chronic			e(0.846[In(hai	rdness)]+0.05	54)		60.87668773						
Silver (D)		Acute			e(1.72[In(hard	Iness)]-6.682	5)		4.430655743						
Zinc (D)		Acute			e(0.8473[ln(ha	ardness)]+0.8	618)		189.5170039						
		Chronic			e(0.8473[ln(ha	ardness)]+0.8	699)		143.5898293						
					Instream	n Waste Conc	entration				Livestock&	Acute	Chronic	Human	Need
POLLUTANTS			Ambient	Effluent	Acute	Domestic	Chronic	Human	Domestic	Irrigation	Wildlife	Aquatic	Aquatic	Health	TMDL
			Conc.	Conc.	Aquatic	Supply	Aquatic	Health	Criteria	Criteria	Criteria	Criteria	Criteria	Criteria	
	CAS No.	MQL	Ca (ug/l)	Ce (ug/l)	2.13*Ce	Cd,dom (ug/l)	Cd (ug/l)	Cd,hh (ug/l)	ug/l	ug/l	ug/l	ug/l	ug/l	ug/l	
Radioactivity, Nutrients, a	and Chlorine														
Aluminum, total	7429-90-5	2.5			0	0	0	0	1E+100	5000	5000	4413.881126	1768.3632	1E+100	N/A
Barium, dissolved	7440-39-3	100	140	54	115.02	132.617922	132.617922	133.790056	2000	1E+100	1E+100	1E+100	1E+100	1E+100	N/A
Boron, dissolved	7440-42-8	100			0	0	0	0	1E+100	750	5000	1E+100	1E+100	1E+100	N/A
Cobalt, dissolved	7440-48-4	50			0	0	0	0	1E+100	50	1000	1E+100	1E+100	1E+100	N/A
Uranium, dissolved	7440-61-1	0.1	3.9	2.6	5.538	4.38406101	4.38406101	4.30720128	20	1E+100	1E+100	1E+100	1E+100	1E+100	N/A
Vanadium, dissolved	7440-62-2	50			0	0	0	0	1E+100	100	100	1E+100	1E+100	1E+100	NA
Ra-226 and Ra-228 (pCi/l)					0	0	0	0	5	1E+100	30	1E+100	1E+100	1E+100	NA
Strontium (pQi/l)			0.205	0.207	0.44091	0.27471602	0.27471602	0.26364643	8	1E+100	1E+100	1E+100	1E+100	1E+100	NA
Tritium (pCi/l)					0	0	0	0	20000	1E+100	20000	1E+100	1E+100	1E+100	N/A
Gross Alpha (pCi/l)					0	0	0	0	15	1E+100	15	1E+100	1E+100	1E+100	N/A
Asbestos (fibers/l)					0	0	0	0	7000000	1E+100	1E+100	1E+100	1E+100	1E+100	NA
Total Residual Chlorine	7782-50-5	33			0	0	0	0	1E+100	1E+100	11	19	11	1E+100	N/A
Nitrate as N (mg/l)					0	0	0	0	10	1E+100	1E+100	1E+100	1E+100	1E+100	NA
Nitrite + Nitrate (mg/l)			2 695	15	31.95	11 3404242	11 3404242	9 96769447	1E+100	1F+100	132	1F+100	1E+100	1E+100	N/A
METALS AND CYANIDE			2.000		01100				121100	12,100		12.100	12.100	121100	
Antimony dissolved (P)	7440-36-0	60			0	0	0	0	6	1F+100	1F+100	1F+100	1F+100	640	N/A
Arsenic, dissolved (P)	7440-38-2	0.5		0	0	#VALUE	#VALUE	#VALUE	10	100	200	340	150	9	Need TMDI
Bervllium dissolved	7440-41-7	0.5	1	2	4 26	1 96339371	1 96339371	1 81042502	4	1F+100	1F+100	130	1F+100	1F+100	N/A
Cadmium, dissolved	7440-43-9	1		-	0	#VALUE	#VALUE	#VALUE	5	10	50	1 93680814	0.5178378	1E+100	Need TMDI
Chromium (III), dissolved	16065-83-1	10		ů O	0	#VALUE	#VALUE	#VALUE	1E+100	1E+100	1E+100	663 5977515	86 320434	1E+100	Need TMDI
Chromium (VI) dissolved	18540-29-9	10		Ű	0	0	0	0	1E+100	1E+100	1E+100	16	11	1E+100	N/A
Chromium discolved	74/0-47-2	10			0	n	n	n	100	100	1000	1F+100	1E+100	1E+100	N/A
Conner dissolved	74/0.50.9	0.5	10	1 210853112	2 57011712	7 80698409	7 80698409	8 15510351	1300	200	500	16 01550035	10 400.83	1E+100	N/A
Lead dissolved	7439-92-1	0.5	1	0 120328624	0.2562999969	0 78022211	0 78022211	0.81511868	50	5000	100	79 04360488	3 0802158	1E+100	N/A
Manganese, dissolved	7439-96-5	0.0			0	0	0	0	1E+100	1E+100	1E+100	3176,667409	1755 112	1E+100	N/A
					v										

						Instream	n Waste Conc	entration		Livestock&	Acute	Chronic	Human	Need		
				Ambient	Effluent	Acute	Domestic	Chronic	Human	Domestic	Irrigation	Wildlife	Aquatic	Aquatic	Health	TMDL
POLLUTANTS				Conc	Conc.	Aquatic	Supply	Aquatic	Health	Criteria	Criteria	Criteria	Criteria	Criteria	Criteria	
		CAS No.	MQL	Ca (ug/l)	Ce (ug/l)	2.13*Ce	Cd,dom (ug/l)	Cd (ug/l)	Cd,hh (ug/l)	ug/l	ug/l	ug/l	ug/l	ug/l	ug/l	
Mercury, dissolv	ed	7439-97-6	0.005			0	0	0	0	1E+100	1E+100	1E+100	1.4	0.77	1E+100	N/A
Mercury, total		7439-97-6	0.005	0.2	0.0231	0.049203	0.15543654	0.15543654	0.16251237	2	1E+100	0.77	2.4	1E+100	1E+100	N/A
Molybdenum, dis	solved	7439-98-7				0	0	0	0	1E+100	1000	1E+100	1E+100	1E+100	1E+100	N/A
Molybdenum, tota	al recoverable	7439-98-7				0	0	0	0	1E+100	1E+100	1E+100	7920	1895	1E+100	N/A
Nickel, dissolved	(P)	7440-02-0	0.5		0	0	#VALUE!	#VALUE!	#VALUE!	100	1E+100	1E+100	548.0972923	60.876688	4600	Need TMDL
Selenium, dissolv	ved (P)	7782-49-2	5		0	0	#VALUE!	#VALUE!	#VALUE!	50	130	50	1E+100	1E+100	4200	Need TMDL
Selenium, dis (SC	04 >500 mg/l)		5			0	0	0	0	50	250	50	1E+100	1E+100	4200	NA
Selenium, total re	ecoverable	7782-49-2	5			0	0	0	0	1E+100	1E+100	2	20	5	1E+100	N/A
Silver, dissolved		7440-22-4	0.5		0	0	#VALUE!	#VALUE!	#VALUE!	1E+100	1E+100	1E+100	4.430655743	1E+100	1E+100	Need TMDL
Thalllium, dissolv	ed (P)	7440-28-0	0.5			#VALUE!	#VALUE!	#VALUE!	#VALUE!	2	1E+100	1E+100	1E+100	1E+100	0.47	NA
Zinc, dissolved		7440-66-6	20	10	14.30726665	30.47447796	16.0506084	16.0506084	15.0898863	5000	2000	25000	189.5170039	143.58983	26000	NA
Cyanide, total rec	coverable	57-12-5	10		0	0	#VALUE!	#VALUE!	#VALUE!	200	1E+100	5.2	22	5.2	140	Need TMDL
Dioxin		1764-01-6	0.00001			0	0	0	0	3.00E-05	1E+100	1E+100	1E+100	1E+100	5.1E-08	N/A
VOLATILECOM	POUNDS															
Acrolein		107-02-8	50			0	0	0	0	18	1E+100	1E+100	1E+100	1E+100	9	NA
Acrylonitrile		107-13-0	20			0	0	0	0	0.65	1E+100	1E+100	1E+100	1E+100	2.5	N/A
Benzene		71-43-2	10			0	0	0	0	5	1E+100	1E+100	1E+100	1E+100	510	N/A
Bromoform		75-25-2	10			0	0	0	0	44	1E+100	1E+100	1E+100	1E+100	1400	NA
Carbon Tetrachk	oride	56-23-5	2			0	0	0	0	5	1E+100	1E+100	1E+100	1E+100	16	N/A
Chlorobenzene		108-90-7	10			0	0	0	0	100	1E+100	1E+100	1E+100	1E+100	1600	NA
Clorodibromomet	hane	124-48-1	10			0	0	0	0	4.2	1E+100	1E+100	1E+100	1E+100	130	NA
Chloroform		67-66-3	50			#VALUE!	#VALUE!	#VALUE!	#VALUE!	57	1E+100	1E+100	1E+100	1E+100	4700	N/A
Dichlorobromome	ethane	75-27-4	10			#VALUE!	#VALUE!	#VALUE!	#VALUE!	5.6	1E+100	1E+100	1E+100	1E+100	170	N/A
1,2-Dichloroetha	ane	107-06-2	10			0	0	0	0	5	1E+100	1E+100	1E+100	1E+100	370	N/A
1,1-Dichloroethy	/lene	75-35-4	10			0	0	0	0	7	1E+100	1E+100	1E+100	1E+100	7100	N/A
1,2-Dichloroprop	pane	78-87-5	10			0	0	0	0	5	1E+100	1E+100	1E+100	1E+100	150	N/A
1,3-Dichloroprop	oylene	542-75-6	10			0	0	0	0	3.5	1E+100	1E+100	1E+100	1E+100	210	N/A
Ethylbenzene		100-41-4	10			0	0	0	0	700	1E+100	1E+100	1E+100	1E+100	2100	N/A
Methyl Bromide		74-83-9	50			0	0	0	0	49	1E+100	1E+100	1E+100	1E+100	1500	N/A
Methylene Chlori	de	75-09-2	20			0	0	0	0	5	1E+100	1E+100	1E+100	1E+100	5900	N/A
1,1,2,2-Tetrachl	oroethane	79-34-5	10			0	0	0	0	1.8	1E+100	1E+100	1E+100	1E+100	40	N/A
Tetrachloroethyle	ene	127-18-4	10			0	0	0	0	5	1E+100	1E+100	1E+100	1E+100	33	NA
Tolune		108-88-3	10			0	0	0	0	1000	1E+100	1E+100	1E+100	1E+100	15000	NA
1,2-trans-Dichlo	roethylene	156-60-5	10			0	0	0	0	100	1E+100	1E+100	1E+100	1E+100	10000	N/A
1,1,1-Trichloroet	thane	71-55-6				0	0	0	0	200	1E+100	1E+100	1E+100	1E+100	1E+100	NA
1,1,2-Trichloroet	thane	79-00-5	10			0	0	0	0	5	1E+100	1E+100	1E+100	1E+100	160	N/A
Trichloroethylene	e	79-01-6	10			0	0	0	0	5	1E+100	1E+100	1E+100	1E+100	300	N/A
Vinyl Chloride		75-01-4	10			0	0	0	0	2	1E+100	1E+100	1E+100	1E+100	24	NA
ACID COMPOUN	NDS															
2-Chlorophenol		95-57-8	10			0	0	0	0	175	1E+100	1E+100	1E+100	1E+100	150	NA
2,4-Dichloropher	nol	120-83-2	10			0	0	0	0	105	1E+100	1E+100	1E+100	1E+100	290	NA
2,4-Dimethylphe	nol	105-67-9	10			0	0	0	0	700	1E+100	1E+100	1E+100	1E+100	850	NA
4,6-Dinitro-o-Cre	esol	534-52-1	50			0	0	0	0	14	1E+100	1E+100	1E+100	1E+100	280	NA

						Instream	n Waste Conc	entration				Livestock&	Acute	Chronic	Human	Need
				Ambient	Effluent	Acute	Domestic	Chronic	Human	Domestic	Irrigation	Wildlife	Aquatic	Aquatic	Health	TMDL
POLLUTANTS				Conc	Conc.	Aquatic	Supply	Aquatic	Health	Criteria	Criteria	Criteria	Criteria	Criteria	Criteria	
		CAS No.	MQL	Ca (ug/l)	Ce (ug/l)	2.13*Ce	Cd,dom (ug/l)	Cd (ug/l)	Cd,hh (ug/l)	ug/l	ug/l	ug/l	ug/l	ug/l	ug/l	
2,4-Dinitrophenol		51-28-5	50			0	0	0	0	70	1E+100	1E+100	1E+100	1E+100	5300	N/A
Pentachloropheno	ol	87-86-5	50			0	0	0	0	1	1E+100	1E+100	19	15	30	N/A
Phenol		108-95-2	10			0	0	0	0	10500	1E+100	1E+100	1E+100	1E+100	860000	N/A
2,4,6-Trichloroph	nenol	88-06-2	10			#VALUE!	#VALUE!	#VALUE!	#VALUE!	32	1E+100	1E+100	1E+100	1E+100	24	N/A
BASE/NEUTRAL																
Acenaphthene		83-32-9	10			0	0	0	0	2100	1E+100	1E+100	1E+100	1E+100	990	NA
Anthracene		120-12-7	10			0	0	0	0	10500	1E+100	1E+100	1E+100	1E+100	40000	N/A
Benzidine		92-87-5	50			0	0	0	0	0.0015	1E+100	1E+100	1E+100	1E+100	0.002	N/A
Benzo(a)anthrace	ene	56-55-3	5			0	0	0	0	0.048	1E+100	1E+100	1E+100	1E+100	0.18	N/A
Benzo(a)pyrene		50-32-8	5			0	0	0	0	0.2	1E+100	1E+100	1E+100	1E+100	0.18	N/A
3,4-Benzofluorar	nthene	205-99-2	10			0	0	0	0	0.048	1E+100	1E+100	1E+100	1E+100	0.18	N/A
Benzo(k)fluoranth	hene	207-08-9	5			0	0	0	0	0.048	1E+100	1E+100	1E+100	1E+100	0.18	N/A
Bis(2-chloroethyl))Ether	111-44-4	10			0	0	0	0	0.3	1E+100	1E+100	1E+100	1E+100	5.3	N/A
Bis(2-chloroisopr	opyl)Ether	108-60-1	10			0	0	0	0	1400	1E+100	1E+100	1E+100	1E+100	65000	N/A
Bis(2-ethylhexyl)	Phthalate	117-81-7	10			#VALUE!	#VALUE!	#VALUE!	#VALUE!	6	1E+100	1E+100	1E+100	1E+100	22	N/A
Butyl Benzyl Phth	alate	85-68-7	10			0	0	0	0	7000	1E+100	1E+100	1E+100	1E+100	1900	N/A
2-Chloronapthale	ene	91-58-7	10		0.74	1.5762	0.4657979	0.4657979	0.39183801	2800	1E+100	1E+100	1E+100	1E+100	1600	N/A
Chrysene		218-01-9	5			0	0	0	0	0.048	1E+100	1E+100	1E+100	1E+100	0.18	N/A
Dibenzo(a,h)anth	racene	53-70-3	5			0	0	0	0	0.048	1E+100	1E+100	1E+100	1E+100	0.18	NA
1,2-Dichlorobenz	ene	95-50-1	10			0	0	0	0	600	1E+100	1E+100	1E+100	1E+100	1300	NA
1,3-Dichlorobenz	tene	541-73-1	10			0	0	0	0	469	1E+100	1E+100	1E+100	1E+100	960	N/A
1,4-Dichlorobenz	tene	106-46-7	10			0	0	0	0	/5	1E+100	1E+100	1E+100	1E+100	190	N/A
3,3-Dicniorobenz	laine	91-94-1	5			0	0	0	0	0.78	1E+100	1E+100	1E+100	1E+100	0.28	N/A
Dieunyi Philhalale		04-00-2	10			0	0	0	0	20000	100	100	100	100	44000	IVA
Dimetry Prinalate	to	04 74 0	10			0	0	0	0	350000	100	100	100	100	4500	IVA
2.4 Dinitrataluan		101 14 0	10			0	0	0	0	11	1E+100	1E+100	1E+100	1E+100	4000	N/A
1.2-Dinhenvlhvdr	razina	121-14-2	20			0	0	0	0	0.44	1E+100	1E+100	1E+100	1E+100	2	N/A
Fluoranthene		206-44-0	10			0	0	0	0	1/00	15+100	1E+100	1E+100	1E+100	1/0	N/A
Fluorene		86-73-7	10			0	0	0	0	1400	1E+100	1E+100	1E+100	1E+100	5300	N/A
Hexachlorobenze	ne	118-74-1	5			0	0	0	0	1	1E+100	1E+100	1E+100	1E+100	0.0029	N/A
Hexachlorobutadi	iene	87-68-3	10			0	0	0	0	4.5	1E+100	1E+100	1E+100	1E+100	180	NA
Hexachlorocyclor	pentadiene	77-47-4	10			0	0	0	0	50	1E+100	1E+100	1E+100	1E+100	1100	N/A
Hexachloroethan	e	67-72-1	20			0	0	0	0	25	1E+100	1E+100	1E+100	1E+100	33	NA
Indeno(1.2,3-cd)F	Pyrene	193-39-5	5			0	0	0	0	0.048	1E+100	1E+100	1E+100	1E+100	0.18	N/A
Isophorone	ĺ	78-59-1	10			0	0	0	0	368	1E+100	1E+100	1E+100	1E+100	9600	N/A
Nitrobenzene		98-95-3	10			0	0	0	0	18	1E+100	1E+100	1E+100	1E+100	690	N/A
n-Nitrosodimethyl	amine	62-75-9	50			0	0	0	0	0.0069	1E+100	1E+100	1E+100	1E+100	30	N/A
n-Nitrosodi-n-Prop	pylamine	621-64-7	20			0	0	0	0	0.05	1E+100	1E+100	1E+100	1E+100	5.1	N/A
n-Nitrosodiphenyl	lamine	86-30-6	20			0	0	0	0	71	1E+100	1E+100	1E+100	1E+100	60	N/A
Nonylphenol		84852-15-3				0	0	0	0	1E+100	1E+100	1E+100	28	6.6	1E+100	N/A
Pyrene		129-00-0	10			0	0	0	0	1050	1E+100	1E+100	1E+100	1E+100	4000	N/A
1,2,4-Trichlorobe	enzene	120-82-1	10			0	0	0	0	70	1E+100	1E+100	1E+100	1E+100	70	NA

						Instrear	m Waste Conce	entration				Livestock&	Acute	Chronic	Human	Need
				Ambient	Effluent	Acute	Domestic	Chronic	Human	Domestic	Irrigation	Wildlife	Aquatic	Aquatic	Health	TMDL
POLLUTANTS				Conc	Conc.	Aquatic	Supply	Aquatic	Health	Criteria	Criteria	Criteria	Criteria	Criteria	Criteria	
		CAS No.	MQL	Ca (ug/l)	Ce (ug/l)	2.13*Ce	Cd,dom (ug/l)	Cd (ug/l)	Cd,hh (ug/l)	ug/l	ug/l	ug/l	ug/l	ug/l	ug/l	
PESTICIDES AND	D PCBS															
Aldrin		309-00-2	0.01			0	0	0	0	0.021	1E+100	1E+100	3	1E+100	0.0005	N/A
Alpha-BHC		319-84-6	0.05			0	0	0	0	0.056	1E+100	1E+100	1E+100	1E+100	0.049	N/A
Beta-BHC		319-85-7	0.05			0	0	0	0	0.091	1E+100	1E+100	1E+100	1E+100	0.17	N/A
Gamma-BHC		58-89-9	0.05			0	0	0	0	0.2	1E+100	1E+100	0.95	1E+100	1.8	N/A
Chlordane		57-74-9	0.2			0	0	0	0	2	1E+100	1E+100	2.4	0.0043	0.0081	N/A
4,4'-DDT and der	rivatives	50-29-3	0.02			0	0	0	0	1	1E+100	0.001	1.1	0.001	0.0022	N/A
Dieldrin		60-57-1	0.02			0	0	0	0	0.022	1E+100	1E+100	0.24	0.056	0.00054	N/A
Diazinon		333-41-5				0	0	0	0	1E+100	1E+100	1E+100	0.17	0.17	1E+100	N/A
Alpha-Endosulfai	n	959-98-8	0.01			0	0	0	0	62	1E+100	1E+100	0.22	0.056	89	N/A
Beta-Endosulfan		33213-65-9	0.02			0	0	0	0	62	1E+100	1E+100	0.22	0.056	89	N/A
Endosulfan sulfa	te	1031-7-8	0.1			0	0	0	0	62	1E+100	1E+100	1E+100	1E+100	89	N/A
Endrin		72-20-8	0.02			0	0	0	0	2	1E+100	1E+100	0.086	0.036	0.06	N/A
Endrin Aldehyde		7421-93-4	0.1			0	0	0	0	10.5	1E+100	1E+100	1E+100	1E+100	0.3	N/A
Heptachlor		76-44-8	0.01			0	0	0	0	0.4	1E+100	1E+100	0.52	0.0038	0.00079	N/A
Heptachlor Epoix	de	1024-57-3	0.01			0	0	0	0	0.2	1E+100	1E+100	0.52	0.0038	0.00039	N/A
PCBs		1336-36-3	0.2			0	0	0	0	0.5	1E+100	0.014	2	0.014	0.00064	N/A
Toxaphene		8001-35-2	0.3			0	0	0	0	3	1E+100	1E+100	0.73	0.0002	0.0028	N/A
STEP 3:	SCAN POTEN	ITIAL INSTREAM	WASTE CC	NCENTRA	TIONS AGAINS	T WATER QUA	ALITY CRITERI	Ą								
	AND ESTABL	ISH EFFLUENT L	IMITATIONS	FOR ALL	APPLICABLE F	ARAMETERS										
No limits are esta	blished if the r	eceiving stream	is not desig	nated for t	he particular us	ses.										
No limits are esta	blished if the p	otential instream	n w aste con	centration	s are less than	the chronic w	ater quality cri	teria.								
The most applical	ble stringent ci	riteria are used t	o establish (effluent lim	itations for a g	ven parameter	:									
Water quality crit	eria apply at th	e end-of-pipe fo	r acute aqu	atic life cri	teria and disch	arges to public	lakes.									
If background co	ncentration ex	ceeds the water	quality crite	eria, w ater	quality criteria	apply. And "N	eed TMDL" sho	own to the ne	ext column of A	vg. Mass						
Monthly avg cond	centration = da	ily max. / 1.5.														
APPLICABLE WA	TER QUALITY	-BASED LIMITS														
	The follow ing	formular is use	d to calculat	te the allow	<i>i</i> able daily max	imum effluent	cincentration		See the curre	ent "Procedure	s for Implement	ting NPDES Perr	nits in New Me	kico"		
	Daily Max. Co	nc. = Cs + (Cs -	Ca)(F*Qa/C	Qe)		Monthly Avg.	Conc. = Daily I	Max. Conc. /	1.5							
Where:	Cs = Applicat	ble water quality	standard													
	Ca = Ambient	stream concent	ration													
	F = Fraction	n of stream allow	ed for mixir	ng (1.0 is a	issigned to don	nestic water su	upply and hum	an health use	s)							
	Qe = Plant eff	luent flow														
	Qa = Criteria	Low flow (4Q3)	or Harmoni	c Mean flo	w for Human H	ealth Criteria										

POLLUTANTS CAS No. STORET Domestic Irrigation or Wildlife Aquatic Aquatic Health Max Conc Avg Conc Total Total Max Load Av POLLUTANTS CAS No. STORET Domestic Irrigation or Wildlife Aquatic Aquatic Health Max Conc Avg Conc Total Total Max Load Av Radioactivity, Nutrients, and Chlorine, as Total Limits Limits <thlimits< <="" th=""><th>vg Load Ib/day N/A N/A N/A N/A</th></thlimits<>	vg Load Ib/day N/A N/A N/A N/A
Radioactivity, Nutrients, and Chlorine, as Total Total Total NA	N/A N/A N/A N/A
Radioactivity, Nutrients, and Chlorine, as Total NA <	N/A N/A N/A N/A
Aluminum, Total 7429-90-5 01105 NA	N/A N/A N/A
Aluminum, total 7429-90-5 01105 INA	N/A N/A
	N/A N/A
	N/A
	IN/A
	1 W/ 1
Uranium, lotai 7440-51-1 22706 NNA NNA NNA NNA NNA NNA NNA NNA NNA NN	N/A
Vanadium, lotal /440-52-2 U106/ NA	NA
Ra-226 (pOII) 11503 NA	NA
Strontium (pQil) 13501 NA	NA
Tritum (pCi/l) 04124 NA	N/A
Gross Alpha (pCi/l) 80029 N/A	N/A
Asbestos (fibers/l) NA	N/A
Total Residual Chlorine 7782-50-5 50060 NA	N/A
Ntrate as N (mg/l) 00620 NA	N/A
Nitrite + Nitrate (mg/l) 00630 NA NA </td <td>N/A</td>	N/A
METALS AND CYANIDE, as Total	
Antimony, Total (P) 7440-36-0 01097 NA	N/A
Arsenic, Total (P) 7440-38-2 1002 #VALUE #VALUE #VALUE #VALUE NA #VALUE	VALUE!
Berylium, Total 7440-41-7 01012 NA	N/A
Cadmium, Total 7440-43-9 01027 #VALUE #VALUE #VALUE NA #VALUE	VALUE!
Chromium (III), dissolved 16065-83-1 01033 #VALUE #VALUE #VALUE NA #VALUE	VALUE!
Chromium (VI), dissolved 18540-29-9 01034 NA	N/A
Chromium, Total 7440-47-3 01034 NA	N/A
Copper, Total 7440-50-8 01042 NA	N/A
Lead, Total 7439-92-1 01051 NA	N/A
Manganese, dissovled 7439-96-5 01056 NA	N/A
Mercury, Total 7439-97-6 71900 NA	N/A
Mercury, Total 7439-97-6 71900 NA	N/A
Molybdenum, dissolved 7439-98-7 1060 NA	N/A
Molybdenum, total recoverable 7439-98-7 01062 NA	N/A
Nickel, Total (P) 7440-02-0 01067 #VALUE #VALUE #VALUE NA #VALUE	VALUE!
Selenium, Total (P) 7782-49-2 01147 #VALUE #VALUE #VALUE WA #VALUE WALUE #VALUE	VALUE!
Selenium, Total (SO4 >500 mg/l) 01147 NA	N/A
Selenium, Total recoverable 7782-49-2 01147 NA	N/A
Silver, Total 7440-22-4 01077 #VALUE #VALUE #VALUE NVA #VALUE	VALUE!
Thallium, Total (P) 7440-28-0 01059 #VALUE	VALUE!
Zinc, Total 7440-66-6 1092 NA	N/A
Cyanide, total recoverable 57-12-5 00720 #VALUE #VALUE #VALUE NA #VALUE #VALUE #VALUE #VALUE #VALUE #VALUE #VALUE #VALUE	VALUE!
	0
2,3,7,8-TCDD 1764-01-6 34675 NA	N/A
VOLATILE COMPOUNDS	
Acrolein 107-02-8 34210 NA	N/A
Acrylonitrile 107-13-0 34215 NA	N/A
Benzene 71-43-2 34030 NA	N/A
Bromoform 75-25-2 32104 NA	N/A
Carbon Tetrachloride 56-23-5 32102 NA	N/A

						Livestock	Acute	Chronic	Human	Daily	Monthly	Daily Max	Mon. Avg	Daily	Monthly
POLLUTANTS		CAS No.	STORET	Domestic	Irrigation	or Wildlife	Aquatic	Aquatic	Health	Max Conc	Avg Conc	Total	Total	Max Load	Avg Load
				Limits	Limits	Limits	Limits	Limits	Limits	ug/l	ug/l	ug/l	ug/l	lb/day	lb/day
Chlorobenzene		108-90-7	34301	N/A	N/A	N/A	N⁄A	N/A	N/A	N/A	N/A	N/A	N/A	N/A	N/A
Clorodibromomet	hane	124-48-1	32105	N/A	N/A	N⁄A	N⁄A	N/A	N/A	N/A	N/A	N/A	N/A	N/A	N/A
Chloroform		67-66-3	32106	#VALUE!	#VALUE!	#VALUE!	#VALUE!	#VALUE!	#VALUE!	#VALUE!	#VALUE!	#VALUE!	#VALUE!	#VALUE!	#VALUE!
Dichlorobromome	ethane	75-27-4	32101	#VALUE!	#VALUE!	#VALUE!	#VALUE!	#VALUE!	#VALUE!	#VALUE!	#VALUE!	#VALUE!	#VALUE!	#VALUE!	#VALUE!
1,2-Dichloroetha	ine	107-06-2	34531	N/A	N/A	NA	N/A	N/A	N/A	N/A	N/A	N/A	N/A	N/A	N/A
1,1-Dichloroethy	lene	75-35-4	34501	N/A	N/A	NA	N/A	N/A	N/A	N/A	N/A	N/A	N/A	N/A	N/A
1,2-Dichloroprop	ane	78-87-5	34541	N/A	N/A	NA	N/A	N/A	N/A	N/A	N/A	N/A	N/A	N/A	N/A
1,3-Dichloroprop	ylene	542-75-6	34561	N/A	N/A	NA	N/A	N/A	N/A	N/A	N/A	N/A	N/A	N/A	N/A
Ethylbenzene		100-41-4	34371	N/A	N/A	NA	N/A	N/A	N/A	N/A	N/A	N/A	N/A	N/A	N/A
Methyl Bromide		74-83-9	34413	N/A	N/A	NA	N/A	N/A	N/A	N/A	N/A	N/A	N/A	N/A	N/A
Methylene Chloric	de	75-09-2	34423	N/A	N/A	NA	N/A	N/A	N/A	N/A	N/A	N/A	N/A	N/A	N/A
1,1,2,2-Tetrachlo	proethane	79-34-5	34516	N/A	N/A	N/A	N/A	N/A	N/A	N/A	N/A	N/A	N/A	N/A	N/A
Tetrachloroethyle	ene	127-18-4	34475	N/A	N/A	N/A	NA	N/A	N/A	N/A	N/A	N/A	N/A	N/A	N/A
Tolune		108-88-3	34010	N/A	N/A	NA	N/A	N/A	N/A	N/A	N/A	N/A	N/A	N/A	N/A
1,2-trans-Dichloi	roethylene	156-60-5	34546	N/A	N/A	N/A	N/A	N/A	N/A	N/A	N/A	N/A	N/A	N/A	N/A
1,1,1-Trichloroet	thane	71-55-6		N/A	N/A	N/A	N/A	N/A	N/A	N/A	N/A	N/A	N/A	N/A	N/A
1,1,2-Trichloroet	thane	79-00-5	34511	N/A	N/A	N/A	NA	N/A	N/A	N/A	N/A	N/A	N/A	N/A	N/A
Trichloroethylene	9	79-01-6	39180	N/A	N/A	NA	N/A	N/A	N/A	N/A	N/A	N/A	N/A	N/A	N/A
Vinyl Chloride		75-01-4	39175	N/A	N/A	N/A	NA	N/A	N/A	N/A	N/A	N/A	N/A	N/A	N/A
ACID COMPOUN	NDS														
2-Chlorophenol		95-57-8	34586	N/A	N/A	NA	N/A	N/A	N/A	N/A	N/A	N/A	N/A	N/A	N/A
2,4-Dichloropher	nol	120-83-2	34601	N/A	N/A	NA	N/A	N/A	N/A	N/A	N/A	N/A	N/A	N/A	N/A
2,4-Dimethylpher	nol	105-67-9	34606	N/A	N/A	NA	N/A	N/A	N/A	N/A	N/A	N/A	N/A	N/A	N/A
4,6-Dinitro-o-Cre	esol	534-52-1	34657	N/A	N/A	N/A	N/A	N/A	N/A	N/A	N/A	N/A	N/A	N/A	N/A
2,4-Dinitropheno	d	51-28-5	34616	N/A	N/A	N/A	N/A	N/A	N/A	N/A	N/A	N/A	N/A	N/A	N/A
Pentachlorophen	ol	87-86-5	39032	N/A	N/A	NA	N/A	N/A	N/A	N/A	N/A	N/A	N/A	N/A	N/A
Phenol		108-95-2	34694	N/A	N/A	NA	NA	NA	N/A	NA	NA	N/A	N/A	NA	N/A
2,4,6-Trichloroph	henol	88-06-2	34621	#VALUE!	#VALUE!	#VALUE!	#VALUE!	#VALUE!	#VALUE!	#VALUE!	#VALUE!	#VALUE!	#VALUE!	#VALUE!	#VALUE!
BASE/NEUTRAL			,												
Acenaphthene		83-32-9	34205	N/A	N/A	N/A	N/A	N/A	N/A	N/A	N/A	N/A	N/A	N/A	N/A
Anthracene		120-12-7	34220	N/A	N/A	NA	NA	N/A	N/A	NA	N/A	N/A	N/A	N/A	N/A
Benzidine		92-87-5	39120	N/A	N/A	N/A	NA	N/A	N/A	NA	N/A	N/A	N/A	N/A	N/A
Benzo(a)anthrac	ene	56-55-3	34526	N/A	N/A	NA	NA	N/A	N/A	N/A	N/A	N/A	N/A	N/A	N/A
Benzo(a)pyrene		50-32-8	34247	N/A	N/A	NA	NA	N/A	N/A	NA	N/A	N/A	N/A	N/A	N/A
3,4-Benzofluora	nthene	205-99-2	34230	N/A	N/A	N/A	NA	N/A	N/A	NA	N/A	N/A	N/A	N/A	N/A
Benzo(k)fluorant	hene	207-08-9	34242	N/A	N/A	NA	NA	N/A	N/A	NA	N/A	N/A	N/A	N/A	N/A
Bis(2-chloroethyl	l)Ether	111-44-4	34273	N/A	N/A	N/A	N/A	N/A	N/A	N/A	N/A	N/A	N/A	N/A	N/A
Bis(2-chloroisopr	ropyl)Ether	108-60-1	34283	N/A	NA	N/A	NA	N/A	N/A	NA	N/A	N/A	NA	N/A	N/A
Bis(2-ethylhexyl)	Phthalate	117-81-7	39100	#VALUE!	#VALUE!	#VALUE!	#VALUE!	#VALUE!	#VALUE!	#VALUE!	#VALUE!	#VALUE!	#VALUE!	#VALUE!	#VALUE!
Butyl Benzyl Phth	nalate	85-68-7	34292	N/A	NA	N/A	N/A	N/A	N/A	NA	NA	N/A	N/A	N/A	N/A
2-Chloronapthale	ene	91-58-7	34581	N/A	N/A	NA	N∕A	N/A	N/A	NA	NA	N/A	N/A	N/A	N/A
Chrysene		218-01-9	34320	N/A	NA	N/A	N/A	N/A	N/A	NA	NA	N/A	N/A	N/A	N/A
Dibenzo(a,h)anth	racene	53-70-3	34556	N/A	NA	N/A	N/A	N/A	N/A	NA	NA	N/A	N/A	N/A	N/A
1,2-Dichlorobenz	zene	95-50-1	34536	N/A	N/A	NA	N/A	N/A	N/A	N∕A	NA	N/A	N/A	N/A	N/A

						Livestock	Acute	Chronic	Human	Daily	Monthly	Daily Max	Mon. Ava	Dailv	Daily
POLLUTANTS		CAS No.	STORET	Domestic	Irrigation	or Wildlife	Aquatic	Aquatic	Health	Max Conc	Avg Conc	Total	Total	Max Load	Avg Load
				Limits	Limits	Limits	Limits	Limits	Limits	uq/l	ua/l	ua/l	uq/l	lb/day	lb/day
1,3-Dichlorobenz	zene	541-73-1	34566	NA	N/A	NA	NA	NA	N/A	NA	NA	NA	NA	NA	NA
1,4-Dichlorobenz	zene	106-46-7	34571	NA	N/A	NA	NA	N/A	N/A	NA	NA	NA	N/A	NA	NA
3,3'-Dichlorobenz	zidine	91-94-1	34631	NA	N/A	NA	NA	N/A	N/A	NA	NA	NA	NA	NA	NA
Diethyl Phthalate		84-66-2	34336	NA	NA	NA	NA	NA	N/A	NA	NA	NA	NA	NA	NA
Dimethyl Phthalat	e	131-11-3	34341	NA	N⁄A	NA	NA	NA	N/A	NA	NA	NA	N⁄A	NA	NA
Di-n-Butyl Phthala	ate	84-74-2	39110	NA	N⁄A	NA	NA	NA	N⁄A	NA	NA	NA	N⁄A	NA	NA
2,4-Dinitrotoluen	е	121-14-2	34611	NA	N⁄A	NA	NA	NA	N/A	NA	NA	NA	N⁄A	NA	NA
1,2-Diphenylhyd	razine	122-66-7	34346	NA	N⁄A	NA	NA	NA	N/A	NA	NA	NA	N⁄A	N/A	NA
Fluoranthene		206-44-0	34376	NA	N⁄A	NA	NA	NA	N/A	NA	NA	NA	N/A	N/A	NA
Fluorene		86-73-7	34381	NA	N⁄A	NA	NA	NA	N/A	NA	NA	NA	N⁄A	N/A	NA
Hexachlorobenze	ene	118-74-1	39700	N/A	N⁄A	N/A	NA	N/A	N/A	NA	NA	NA	N⁄A	N/A	NA
Hexachlorobutad	iene	87-68-3	34391	N/A	N⁄A	N/A	NA	N/A	N/A	NA	NA	NA	N⁄A	N/A	NA
Hexachlorocyclo	pentadiene	77-47-4	34386	NA	NA	NA	NA	NA	N/A	NA	NA	NA	NA	NA	NA
Hexachloroethan	e	67-72-1	34396	NA	NA	NA	NA	NA	N/A	NA	NA	NA	NA	NA	NA
Indeno(1,2,3-cd)I	Pyrene	193-39-5	34403	NA	NA	NA	NA	NA	N/A	NA	NA	NA	NA	NA	NA
lsophorone		78-59-1	34408	NA	N⁄A	NA	NA	NA	N/A	NA	NA	NA	N⁄A	NA	NA
Nitrobenzene		98-95-3	34447	NA	N⁄A	NA	NA	NA	N/A	NA	NA	NA	N/A	NA	NA
n-Nitrosodimethy	lamine	62-75-9	34438	N/A	N/A	NA	NA	NA	N/A	NA	NA	NA	N/A	N/A	NA
n-Nitrosodi-n-Pro	pylamine	621-64-7	34428	N/A	N/A	NA	NA	NA	N/A	NA	NA	NA	N/A	N/A	NA
n-Nitrosodipheny	lamine	86-30-6	34433	N/A	N/A	NA	NA	NA	N/A	NA	NA	NA	N/A	N/A	NA
Nonylphenol		84852-15-3		NA	N/A	N/A	N/A	N/A	N/A	NA	NA	NA	N/A	NA	NA
Pyrene		129-00-0	34469	NA	N/A	N/A	N/A	N/A	N/A	NA	NA	NA	N/A	N/A	NA
1,2,4-Trichlorobe	enzene	120-82-1	34551	NA	NA	NA	NA	NA	N/A	NA	NA	NA	NA	NA	NA
PESTICIDES AND	PCBS														
Aldrin		309-00-2	39330	NA	NA	NA	NA	N/A	N/A	NA	NA	NA	N/A	NA	NA
Alpha-BHC		319-84-6	39337	NA	NA	NA	NA	NA	N/A	NA	NA	NA	NA	NA	NA
Beta-BHC		319-85-7	39338	NA	NA	NA	NA	NA	N/A	NA	NA	NA	NA	NA	NA
Gamma-BHC		58-89-9	39340	NA	NA	NA	NA	NA	N/A	NA	NA	NA	NA	NA	NA
Chlordane		57-74-9	39350	NA	N/A	NA	NA	NA	N/A	NA	NA	NA	N/A	NA	N/A
4,4'-DDT and der	rivatives	50-29-3	39300	NA	N/A	NA	NA	NA	N/A	NA	NA	NA	N/A	NA	NA
Dieldrin		60-57-1	39380	NA	N/A	NA	NA	NA	N/A	NA	NA	NA	N/A	NA	N/A
Diazinon		333-41-5	39570	NA	N/A	NA	NA	NA	N/A	NA	NA	NA	N/A	NA	N/A
Alpha-Endosulfa	n	959-98-8	34361	 N/A	N/A	NA	NA	NA	N/A	NA	NA	NA	N/A	N/A	NA
Beta-Endosulfan		33213-65-9	34356	NA	N/A	NA	NA	NA	N/A	NA	NA	NA	N/A	NA	NA
Endosulfan sulfa	te	1031-7-8	34351	N/A	N⁄A	NA	NA	NA	N/A	NA	NA	N/A	N⁄A	N/A	N/A
Endrin		72-20-8	39390	NA	N/A	NA	NA	NA	N/A	NA	NA	NA	N/A	NA	N/A
Endrin Aldehyde		7421-93-4	34366	N/A	N⁄A	NA	NA	NA	N/A	NA	NA	N/A	N⁄A	N/A	N/A
Heptachlor		76-44-8	39410	NA	N/A	NA	NA	NA	N/A	NA	NA	NA	N/A	NA	N/A
Heptachlor Epoix	de	1024-57-3	39420	NA	N/A	NA	NA	NA	N/A	NA	NA	NA	N/A	NA	N/A
PCBs		1336-36-3	39516	NA	N/A	NA	NA	N/A	N/A	NA	NA	NA	N/A	NA	NA
Toxaphene		8001-35-2	39400	N/A	NA	NA	NA	NA	N/A	NA	NA	NA	NA	N/A	NA

Facility Name		Tow	n of Taos							
NPDES Permit Number		NM0024066				Ou	tfall Number			
Proposed Critical Dilution* 100										i i
1			*Critical Di	lution in draft	permit, do no	t use % sign.				
			Enter data in	n yellow shade	d cells only. I	Fifty percent shou	uld be entere	d as 50, not 50	%.	
Test Data										1
		VERTEBRATE				INVERTEBRATE	3			
Date (mm/yyyy)	Lethal NOEC	Sublethal NOEC	Lethal TU	Sublethal TU	Lethal NOEC	Sublethal NOEC	Lethal TU	Sublet hal TU		
Jun-13	100	100	1.00	1.00	100	100	1.00	1.00		1
Sep-13	100	100	1.00	1.00	100	100	1.00	1.00		
Dec-13	100	100	1.00	1.00	100	100	1.00	1.00		-
Mar-14	100	100	1.00	1.00	100	100	1.00	1.00		i
Jun-14	100	100	1.00	1.00	100	100	1.00	1.00		
Sep-14	100	100	1.00	1.00	100	100	1.00	1.00		
Dec-14	100	100	1.00	1.00	100	100	1.00	1.00		
Mar-15	100	100	1.00	1.00	100	100	1.00	1.00		
Jun-15	100	100	1.00	1.00	100	100	1.00	1.00		
Sep-15	100	100	1.00	1.00	100	100	1.00	1.00		
Dec-15	100	100	1.00	1.00	100	100	1.00	1.00		
Mar-16	100	100	1.00	1.00	100	100	1.00	1.00		
Jun-16	100	100	1.00	1.00	100	100	1.00	1.00		
Sep-16	100	100	1.00	1.00	100	100	1.00	1.00		i
Dec-16	100	100	1.00	1.00	100	100	1.00	1.00		
										_
						`				
										i
										<u> </u>
										-
										-
	100	100	1.00	1.00	100	100	1.00	1.00	<u> </u>	
Growt	100	100	1.00	1.00	100	100	1.00	1.00		-
Moon			1.000	1.000			1.000	15		
Std Dev			0.000	0.000			0.000	0.000		-
CV			0.000	0.000			0.000	0.000		-
			0.0	0			0	0		i
RPMF			#N/A	#N/A			#N/A	#N/A		<u>+</u>
		1	Reasonable	Potential A co	entance Crite	ria	111/11			-
Vartabrata Lath	a1	1 #NY/A								-
ventebrate Leth	al	#IN/A	#1N/A	N D	11 D 1	·		•. • •		
				No Reasona	Die Potential e	xists. Permit req	uires wEfr	nonitoring, bu	. no w	1 limit
Vertebrate Sub	ethal	#N/A	#N/A							-
			-	No Reasona	ble Potential e	xists. Permit req	uires WET r	nonitoring, bu	i no W	⁷ ET limit
Invertebrate Le	thal	#N/A	#N/A							
				No Reasona	ble Potential e	xists. Permit req	uires WET r	nonitoring, bu	t no W	⁷ ET limit
Invertebrate Su	blethal	#N/A	#N/A							i
				No Reasona	ble Potential e	xists. Permit req	uires WET r	nonitoring, bu	t no W	TT limit
			•				·	6, , .		
			•	•			•	·		1
										I.
										i i

