Estimating the Benefits of Clean Energy Policies

Quickstart Tutorial: How To Use The Co-Benefits Risk Assessment (COBRA) Health Impacts Screening and Mapping Tool

Analytical Steps and Case Studies

SEPA Overview of Presentation

- Summarizes six key analytical steps
- Two case studies illustrate how to apply these steps in two clean energy scenarios:
 - 1. Renewable Portfolio Standard
 - 2. Wind Energy Program

How to Conduct an Analysis with COBRA

Analytical Steps and Relevant Resources

SEPA Steps in COBRA Analysis

- Select the analysis year
- Estimate where (e.g., in one or more counties or states, regionally, nationally) and what emission changes will take place
- Enter the location, types, and quantity of emission changes expected from the policy or activity in COBRA

- Select a discount rate in COBRA to 4. appropriately discount the value of future benefits
- Run the model
- Review the results 6.

This presentation will:

- Walk you through these steps, and
- Lead you to other tools and resources that can help you develop your inputs.

COBRA uses your inputs to estimate the air quality, health, and related economic impacts of the scenario

Step 1: Select analysis year

- COBRA contains detailed 2017 and 2025 baseline emissions data for each county
- The emissions inventory in COBRA includes the 14 major emissions source categories (i.e., "tiers") of criteria pollutants included in the National Emissions Inventory (NEI):*
 - Chemical and Allied Product
 Manufacturing
 - Fuel Combustion Electric Utility
 - Fuel Combustion Industry
 - Fuel Combustion Other
 - Highway Vehicles
 - Metal Processing
 - Miscellaneous
 - Natural Sources (Biogenics)

- Off-Highway
- Other Industrial Processes
- Petroleum & Related Industries
- Solvent Utilization
- Storage & Transport
- Waste Disposal & Recycling

^{*}For more information about the NEI, see: https://www.epa.gov/air-emissions-inventory-nei inventories/national-emissions-inventory-nei

- Decide on the geographic area
 where emissions are expected to change
- COBRA can assess actions that affect emissions in:
 - a single county or state,
 - groups of counties and states (contiguous or otherwise), or
 - the entire nation
- COBRA allows you to vary the types and amounts of emissions changes expected to occur in different locations

Estimating what and where electricity will be displaced and emissions reduced presents challenges due to the:

Complex way electricity is generated and transmitted across the U.S.

Uncertainty about future emissions in places with market-based environmental programs, such as cap and trade

Simplifying assumptions can be made when using COBRA but a highly sophisticated energy analysis of the impacts of a clean energy policy on a location will generate more reliable results

For more information about the complexity of the energy system, see Chapters 3 and 4 of Assessing the Multiple Benefits of Clean Energy: A Resource for States, available at

https://www.epa.gov/sites/production/files/2015 -08/documents/epa assessing benefits.pdf

- In COBRA, you can enter the emission changes as a percentage or in absolute terms
 - A percentage can be used when a policy is expected to reduce emissions or use of an energy source by a specific proportion
 - For example, if the use of renewable electricity generation increases from 0% to 20% of total generation, you could assume that the use of existing fuels for electricity generation would be reduced by 20%
 - An absolute number can be used for policies that do not lend themselves easily to percentage reductions or when you want to enter more specific emission changes
 - For example, 5,000 tons of sulfur dioxide

Resources for Calculating Emissions Changes from Electricity-related Policies

- If you do not have absolute emission reduction estimates, you can use:
 - A basic approach or tool, such as:
 - Applying an emission factor obtained from EPA's Emissions & Generation Resource Integrated Database (eGrid) https://www.epa.gov/energy/emissions-generation-resource-integrated-database-egrid, or
 - EPA's AVoided Emissions and geneRation Tool (AVERT)
 https://www.epa.gov/statelocalenergy/avoided-emissions-and-generation-tool-avert
 - More sophisticated approaches, such as those described in EPA guides:
 - Assessing the Multiple Benefits of Clean Energy: A Resource for States, Chapter 4 https://www.epa.gov/sites/production/files/2015-08/documents/epa assessing benefits.pdf
 - Roadmap for Incorporating Energy Efficiency/Renewable Energy Policies and Programs into State and Tribal Implementation Plans, Appendix I https://www.epa.gov/sites/production/files/2016-05/documents/appendixi 0.pdf

Step 3: Select and enter the types, location and quantity of emission changes expected

- You will need to know what source categories of emissions will be affected by the policy
- Often, clean energy investments, such as those that increase the use of renewable energy or energy efficiency, will affect the "fuel combustion from electric utilities" category
- Within each category, there are fuel choices, such as coal, gas, and oil
 - If you know the specific fuel will be affected, you may choose it
 - If not, you can use the broader category
- Enter the estimated emission changes by the appropriate types and locations, ensuring that you save your inputs once you are finished

Step 4: Select a discount rate

- A discount rate is used to appropriately discount the value of future benefits
- Not all benefits occur in the year of analysis, and people are generally willing to pay more for something now than for the same thing later

COBRA accounts for this time preference by discounting benefits received later

Step 4: Select a discount rate (cont'd)

- EPA's Guidelines for Economic Analysis recommend using both 3% and 7% discount rates to see how the conclusions of your analysis change. Both rates are available in COBRA
- The discount rate will affect the value of the benefits
 - A higher discount rate favors investments with immediate benefits and reduces the value of future benefits
 - A lower discount rate places a greater value on benefits which occur in the future
- You can run your scenario with both rates and then evaluate the effect of the change in discount rate on the results

Step 5: Run the model

- Once you have completed these four steps, you are ready to run the model
- The model will take at least five minutes to run and may take longer, depending on the speed of your computer

The model may appear non-responsive while it is processing

Step 6: View Results

- You can view the results for the changes in air quality, health effects, and related economic value in table and map forms
- You can export results as tables and copy/paste screenshots into reports and presentations

Key Considerations when Interpreting Results

- COBRA is intended as a screening tool
 - COBRA does not predict the future but can be used to obtain ballpark health benefits estimates and to compare or rank options

 When more detailed analyses are required, consider using more sophisticated modeling approaches

Key Considerations when Interpreting Results (cont'd)

- There is uncertainty surrounding the values of key assumptions embedded in COBRA (i.e., emissions inventory, health impact functions, and economic values)
- You should review the limitations and assumptions described in the COBRA User Manual

Key Considerations when Interpreting Results (cont'd)

- COBRA does not account for changes in emissions that can result from changes in electricity market responses to policy.
 - For example, emissions in some states and regions are "capped" by laws or regulations
 - Emission allowances can then be traded across entities within a capped region
 - In these regions, a reduction in emissions in one location may result in an increase (rebound) in emissions in another area subject to the cap
 - COBRA does not automatically capture these types of potential effects in electricity market dispatch
- Care should be exercised when interpreting COBRA results to analyze the net impacts of a change in policy

Case Study 1: Renewable Portfolio Standard

State and Local
Energy and Environment Program

This case study illustrates how to conduct an analysis of a clean energy policy with COBRA using a renewable portfolio standard as an example.

Analyzing the Health Benefits of a Renewable Portfolio Standard

 A renewable portfolio standard (RPS) requires electric utilities to switch a particular percentage of electricity generation to renewable sources

 If electricity had previously been generated with fossil fuels, the RPS will result in criteria air pollutant reductions and health benefits

Analyzing the Health Benefits of a Renewable Portfolio Standard (cont'd)

- The next slides describe how to estimate the health and related economic benefits of a state or local RPS
 - Specifically, we assume a state (Michigan) has established an RPS requirement that 10% of electricity generation must be from renewable sources by 2025
 - We also could have looked at a county with a renewable target or requirement

Step 1: Select the analysis year

₩ COBRA	X
File Help	
Introduction 1. Select Analysis Year 2. Create Emissions Scenario 3. Execute Run 4. View Health Effects and Valuation Results	
Basic Options Advanced Options	
Choose an Analysis Year:	
Select the year for which you would like to estimate health impacts of emissions changes. COBRA will automatically use the baseline emissions, population, health incidence, and health impact valuation datasets	
corresponding to that year. After clicking "apply analysis year data" you can proceed to step 2 to enter your emissions changes.	
2025 ▼ Apply Analysis Year Data	

- Select what geographic locations you expect to be affected by the emissions change
 - You can enter emissions changes at the national, regional, state or county levels
 - If you know that specific plants will be affected, you can enter emissions changes only in those counties
 - Or you could use more sophisticated energy modeling approaches or tools to identify any and all plants that may be affected by a state or local RPS and manually enter those changes for the counties with affected plants

- For the Michigan RPS, we assume that all emission changes will occur statewide
- In COBRA, we create a scenario for an individual state and select Michigan

- To determine the emissions reduced, you can:
 - Assume that a switch of 10% of electricity generation from fossil fuels to renewable sources that do not generate air pollution will reduce 10% of all pollutants, or
 - Estimate absolute emission reductions using:
 - An emission factor approach as described earlier
 - A more sophisticated modeling approach, if available

- For this example, we use emissions factors from EPA's Emissions & Generation Resource Integrated Database (eGrid)* to develop an absolute estimate
 - Using "eGRID2014 Summary Tables (PDF)," we found:
 - Net electric generation in Michigan: 107 million MWh
 - Non-baseload output emissions rates for Michigan:

SO₂: 4.1 lbs. per MWh

NO_x: **1.5 lbs. per MWh**

• Percentage of electric generation that already comes from renewable sources in Michigan: **7.0**%

* eGRID is available at https://www.epa.gov/energy/emissions-generation-resource-integrated-database-egrid

 Since 7.0% of electric generation already comes from renewable sources, we assume our scenario will reduce emissions by:

We calculate the reduction in MWh:

$$3.0\% \times 107$$
 million MWh = **3.2 million MWh**

 Assuming the renewable energy used does not emit any air pollution, we calculate the emission reductions as:

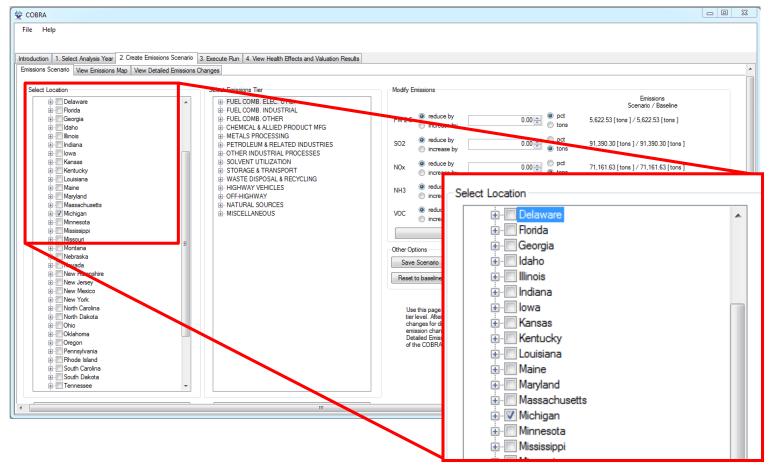
 SO_2 : 3.2 million MWh × 4.1 per MWh = 13 million lbs.

= 6,600 tons

 NO_x : 3.2 million MWh × 1.5 per MWh = 4.8 million lbs.

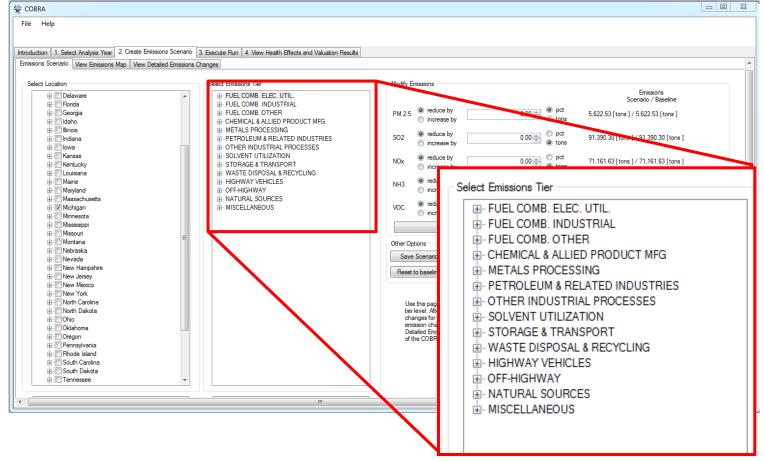
= **2,400** tons

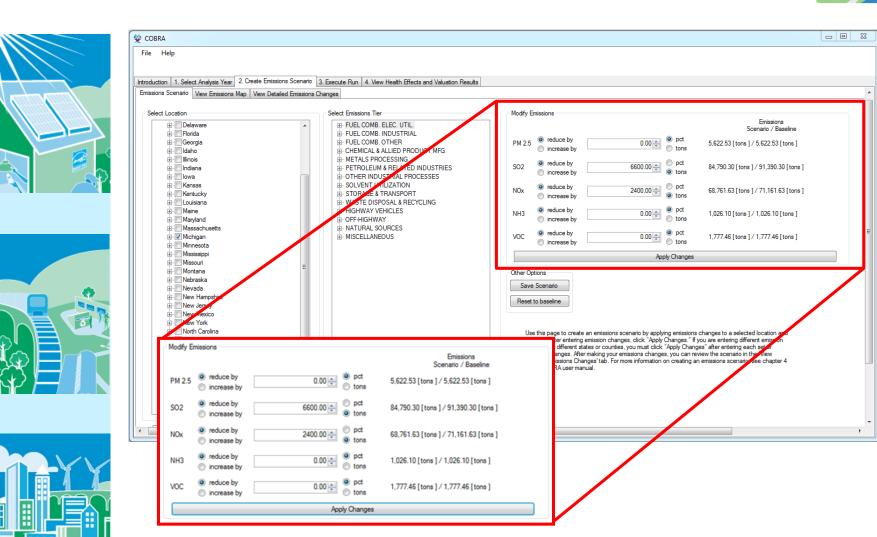
\$EPA


Step 3: Set up scenario in COBRA (a) Location of emission changes expected

Step 3: Set up scenario in COBRA (b) Types of emission changes expected

- A RPS affects the fuel combustion from electricity generation category
 - These categories include fuel choices (e.g., gas, coal)
 - You can select specific fuel choices that are expected to be affected if known or assume all fuel choices are affected
- For the Michigan RPS example, we assume that all fuel sources would be affected by the RPS (i.e., not just natural gas or just coal) and select the "fuel combustion from electricity generation" category

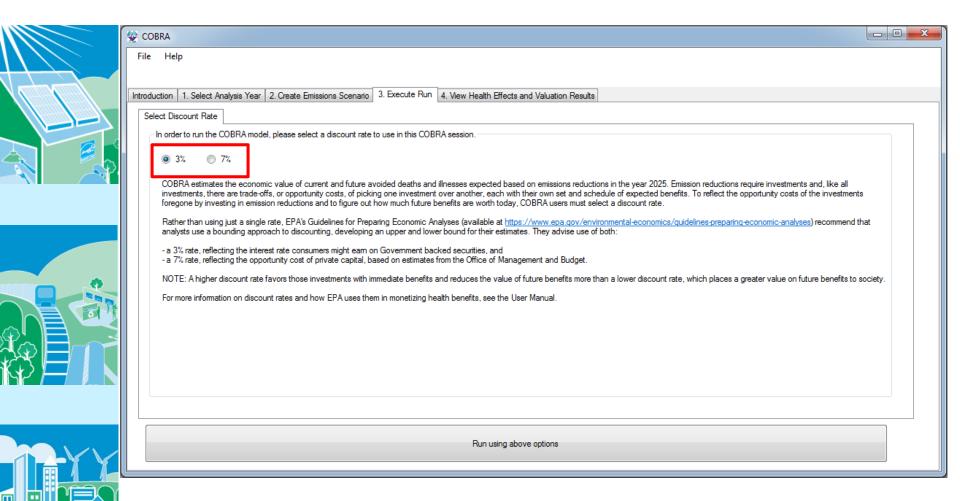

Step 3: Set up scenario in COBRA(b) Types of emission changes expected

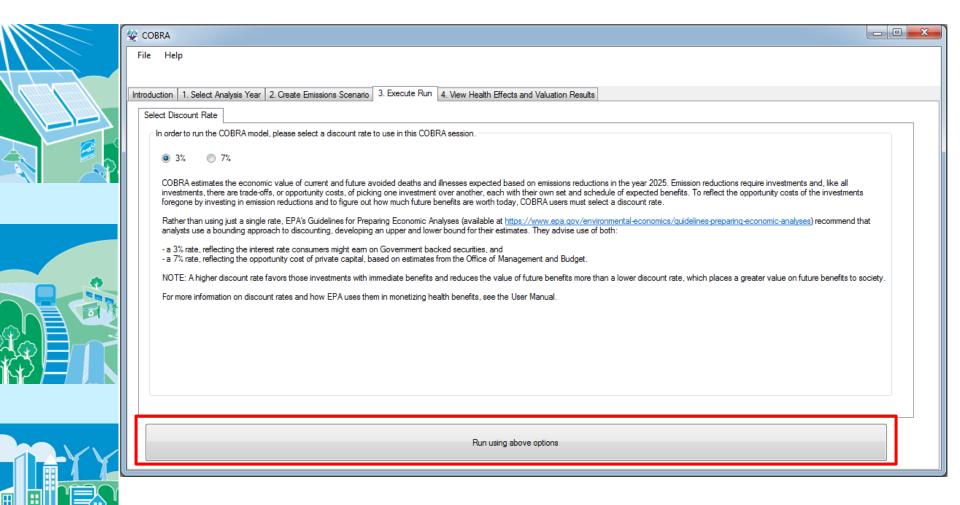


Step 3: Set up scenario in COBRA (c) Quantity of emission changes expected

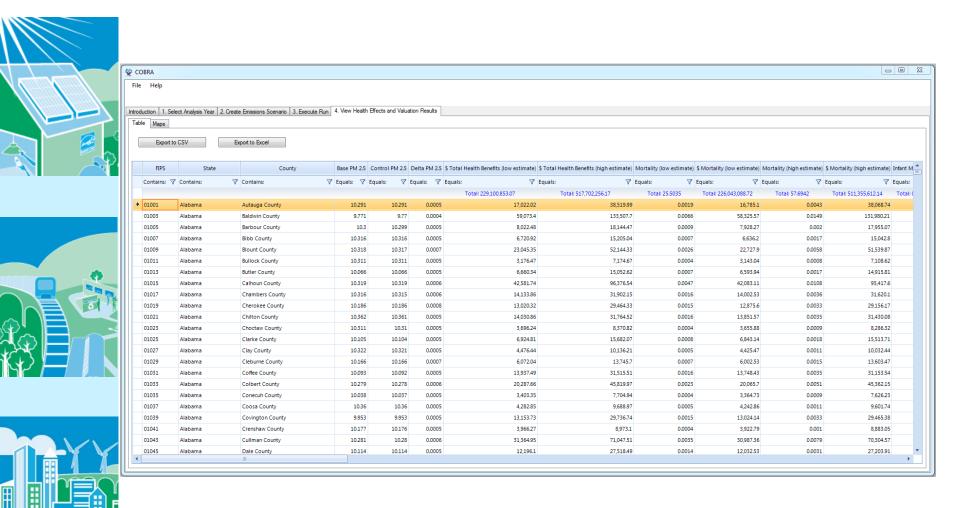
Step 4: Select a discount rate

- A discount rate is used to appropriately discount the value of future benefits
- In this case study, we use a 3% discount rate

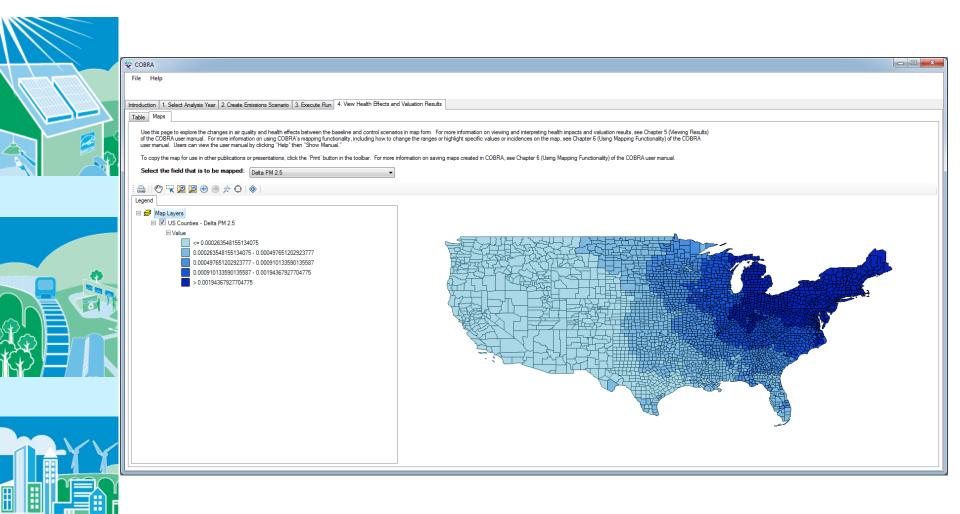

 This discount rate provides an upper bound for the estimated benefits and places a greater value on future benefits to society, compared to higher discount rates


Step 4: Select a discount rate (cont'd)

Step 5: Run the model



Step 6: Review the results (a) View in table form



Step 6: Review the results (b) View in map form

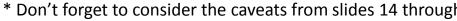
Step 6: Review the results

We calculated absolute emissions reductions of Michigan's renewable portfolio standard of 10%.

Annual Emission

COBRA (1) converted emissions reductions into air quality improvements, and (2) estimated annual adverse health impacts avoided. COBRA monetized the value or benefits of the avoided adverse health effects.

Annual Benefits (2010, \$1,000s)


Reductions (short tons) **Pollutant** Amount Sulfur Dioxide (SO₂) 6,600 Nitrogen Oxides 2,400 (NO_{v})

Annual Adverse Health Impacts Avoided

Outcome	Number	Dollar Value
Mortality	25.5 – 57.7	\$226,000 – \$511,000
Asthma Exacerbations	625	\$36.5
Heart Attacks	3.3 – 31.0	\$397-\$3,690
Hospital Admissions	17.4	\$587
Acute Bronchitis	33.1	\$16.1
Respiratory Symptoms	1,027	\$29.3
Asthma ER Visits	13.0	\$5.54
Minor Restricted Activity Days	16,600	\$1,150
Work Days Lost	2,800	\$447

total

* Don't forget to consider the caveats from slides 14 through 16

\$229,000 - \$517,000

Case Study 2: Wind Energy Program

This case study illustrates how to conduct an analysis of a clean energy program with COBRA using wind energy capacity as an example.

Using COBRA to Evaluate the Benefits of Wind Energy Production

 Wind energy is used across the country, whether it is produced in-state or purchased from other states

 If the electricity had previously been generated with fossil fuels, wind energy production can lead to criteria air pollutant reductions and health benefits

For more details, see: the American Wind Energy Association's "The Clean Air Benefits of Wind Energy" report, available at http://awea.files.cms-

plus.com/FileDownloads/pdfs/AWEA Clean Air Benefits WhitePaper%20Final.pdf.

Using COBRA to Evaluate the Benefits of Wind Energy Production (cont'd)

- The next slides describe how to estimate the health and related economic benefits of increasing a state's wind energy capacity
 - Specifically, we assume Texas has decided to explore the benefits associated with a new wind energy program

SEPA Step 1: Select the analysis year

₩ COBRA	X
File Help	
Introduction 1. Select Analysis Year 2. Create Emissions Scenario 3. Execute Run 4. View Health Effects and Valuation Results	
Basic Options Advanced Options	
Choose an Analysis Year:	
Select the year for which you would like to estimate health impacts of emissions changes. COBRA will automatically use the baseline emissions, population, health incidence, and health impact valuation datasets	
corresponding to that year. After clicking "apply analysis year data" you can proceed to step 2 to enter your emissions changes.	
2025 ▼ Apply Analysis Year Data	

Step 2: Estimate where and what emissions changes will take place

- Select what geographic locations you expect to be affected by the emissions change
 - You can enter emissions changes at the national, regional, state or county levels
 - If you know that specific plants will be affected, you can enter emissions changes only in those counties
 - Or you could use more sophisticated energy modeling approaches or tools to identify any and all plants that may be affected by a state or local wind energy program and enter those changes in manually

Step 2: Estimate where and what emission changes will take place (cont'd)

- For this example, we assume that the wind energy impacts will take place throughout Texas
- Due to the interconnectedness of the grid, these impacts will affect electricity providers and emissions beyond this state

Step 2: Estimate where and what emissions changes will take place (cont'd)

- To estimate the electricity changes expected from the program, you can either:
 - Estimate how many MW you expect to save from your program, or
 - Find a similar program to use as a proxy

- In this hypothetical example, we estimate emissions reductions due to a 7,000 MW wind energy program in Texas
 - The American Wind Energy Association (AWEA) reported installed wind power capacity by state, with a total of 12,355 MW for Texas*
 - Another 7,000 MW of wind energy projects are currently under construction in Texas*

^{*}Source: AWEA's "AWEA U.S. Wind Industry Fourth Quarter 2013 Market Report", available at http://www.awea.org/4q2013.

42

Step 2: Estimate where and what emissions changes will take place (cont'd)

- To estimate the annual emissions reduced from 7,000 MW of installed wind capacity, you can use:
 - A basic tool that estimates emissions changes from renewable energy programs
 - A more sophisticated modeling approach, if available

Step 2: Estimate where and what emissions changes will take place (cont'd)

- For this example, we use EPA's AVoided Emissions and geneRation Tool (AVERT)* to:
 - Apply a 7,000 MW increase in installed wind capacity in Texas
 - Calculate the county-level emission reductions (in lbs)
 - Sum the emission reductions to state level
 - Convert emissions reductions to tons

For more details, EPA's AVERT tool and documentation are available at https://www.epa.gov/statelocalenergy/avoided-emissions-and-generation-tool-avert.

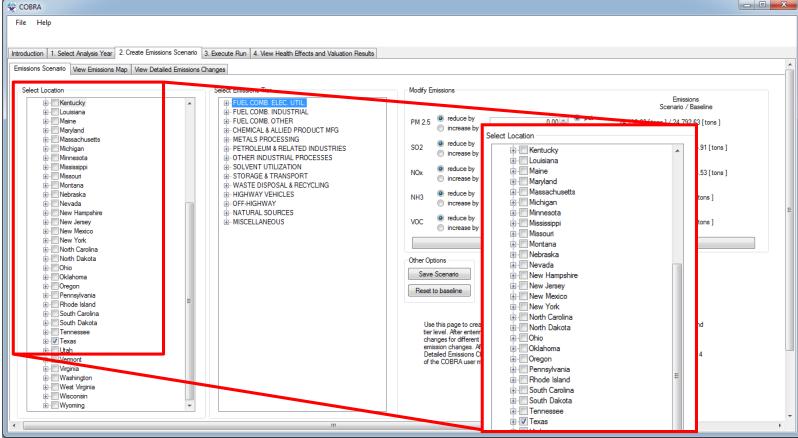
Step 2: Estimate where and what emissions changes will take place (cont'd)

 Annual emission reductions (in tons) from 7,000 MW wind energy program using AVERT:

State/County	SO ₂	NO _x
Texas	31,738.6	12,722.9
Oklahoma*	0.75	64.75

^{*}Note that Oklahoma also experiences emissions reductions from the wind program.

Step 3: Set up scenario in COBRA (a) Location of emission changes expected

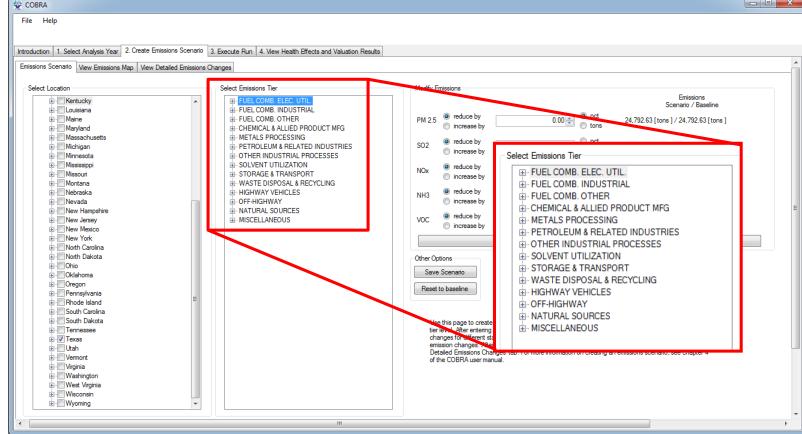


Emission reductions in all affected states are input at the state level

Step 3: Set up scenario in COBRA **EPA** (b) Types of emission changes expected (cont'd)

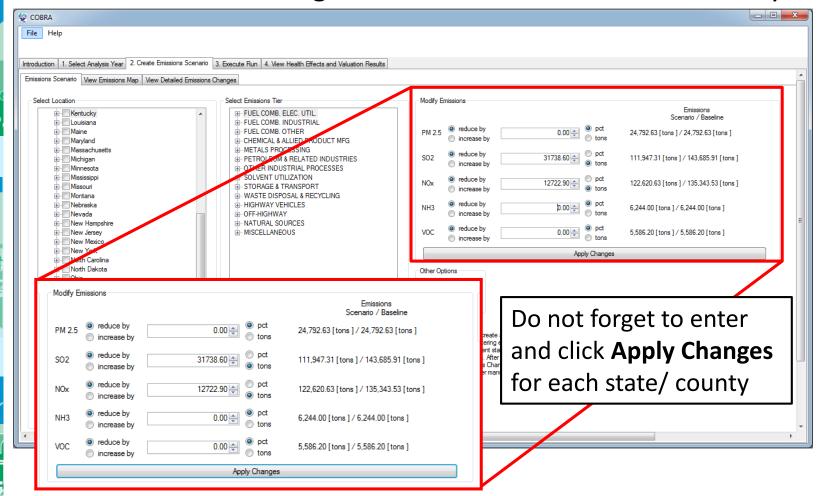
Since renewable energy programs affect electricity generation, the affected emissions category is "fuel combustion from electricity generation"

 This category includes fuel choices (e.g., gas, coal)


Since all fuel sources could be affected by the renewable energy program, select the "fuel combustion from electricity generation" category

Step 3: Set up scenario in COBRA **EPA** (b) Types of emission changes expected (cont'd)

Select emissions category for each affected state or county



Step 3: Set up Scenario in COBRA **SEPA** (c) Quantity of emission changes expected (cont'd)

Enter emission changes for each affected state or county

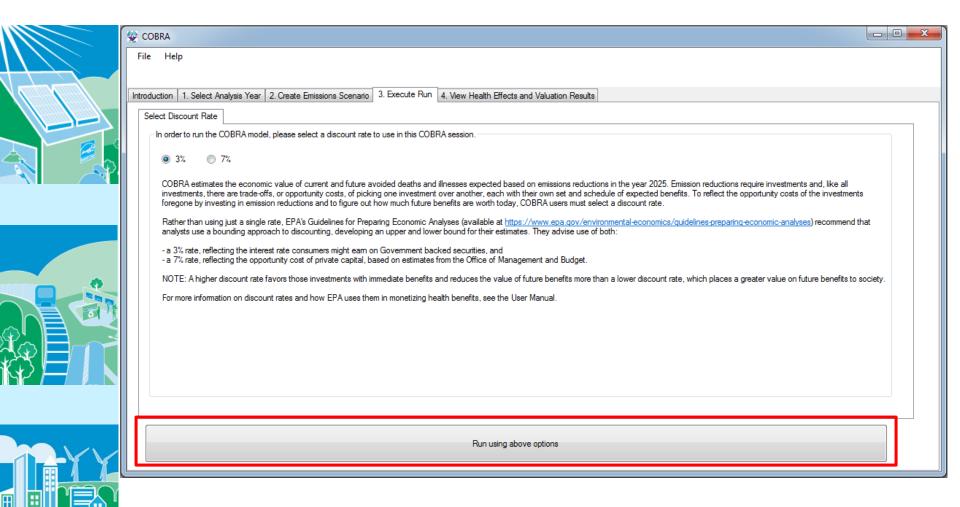
Step 3: Set up scenario in COBRA **SEPA** Repeat for all affected states/counties (cont'd)

- Enter emission changes for each affected state or county
- Do not forget to enter and click **Apply Changes** for each state/ county
- In this example, after entering changes for Texas:
 - Click Apply Changes
 - Unselect Texas
 - Select Oklahoma
 - Enter Oklahoma emissions changes in Fuel. Comb. Elec. Util. tier
 - Click Apply Changes
 - Proceed to step 4

Step 4: Select a discount rate

- A discount rate is used to appropriately discount the value of future benefits
- In this case study, we use a 3% discount rate

 This discount rate provides an upper bound for the estimated benefits and places a greater value on future benefits to society, compared to higher discount rates


Step 4: Select a discount rate (cont'd)

Step 5: Run the model

Step 6: Review the results (a) View in table form

uction 1. Sel	ect Analysis Year 2. Cre	ate Emissions Scenario 3. Execute	Run 4. View Health	Effects and Valu	ation Results							
e Maps												
Export to	CSV	Export to Excel										
FIPS	State	County	Base PM 2.5	Control PM 2.5	Delta PM 2.5	\$ Total Health Benefits (low estimate) \$ 1	otal Health Benefits (high estimate)	Mortality (low estimate)	\$ Mortality (low estimate)	Mortality (high estimate)	\$ Mortality (high estimate	e) Infan
Contains: 🔻	Contains:	Contains:	▼ Equals: ▼	Equals: 🍸	Equals: 🔻	Equals: \(\nabla\) Eq	uals:	Equals:	Equals:	Equals:	Equals:	² Equa
						Total: 488,304,330.44	Total: 1,103,747,964.61	Total: 54.2452	Total: 480,786,146.11	Total: 122.9307	Total: 1,089,559,792.66	Tot
01001	Alabama	Autauga County	10.291	10.289	0.0018	63,082.63	142,752.19	0.007	62,204.63	0.0159	141,079.89	9
01003	Alabama	Baldwin County	9.771	9.769	0.0019	254,100.15	574,271.14	0.0283	250,883.41	0.0641	567,700.81	1
01005	Alabama	Barbour County	10.3	10.298	0.0015	23,097.62	52,239.77	0.0026	22,826.38	0.0058	51,694.4	7
01007	Alabama	Bibb County	10.316	10.314	0.0021	28,707.42	64,945.7	0.0032	28,345.54	0.0072	64,252.69	9
01009	Alabama	Blount County	10.318	10.316	0.0021	75,469.1	170,761.76	0.0084	74,429.51	0.019	168,782.26	6
01011	Alabama	Bullock County	10.311	10.31	0.0015	9,451.61	21,348.21	0.0011	9,352.15	0.0024	21,151.6	8
01013	Alabama	Butler County	10.066	10.064	0.0019	24,534.41	55,448.45	0.0027	24,289.84	0.0062	54,944.4	9
01015	Alabama	Calhoun County	10.319	10.317	0.0017	117,918.89	266,888.35	0.0131	116,538.08	0.0298	264,232.82	2
01017	Alabama	Chambers County	10.316	10.314	0.0017	39,015.79	88,063.9	0.0044	38,653.26	0.0098	87,285.3	1
01019	Alabama	Cherokee County	10.186	10.184	0.002	33,873.54	76,653.75	0.0038	33,497.02	0.0086	75,852.04	4
01021	Alabama	Chilton County	10.362	10.36	0.002	53,577.05	121,292.65	0.006	52,892.44	0.0135	120,015.59	9
01023	Alabama	Choctaw County	10.311	10.308	0.0023	18,378.62	41,621.48	0.0021	18,177.92	0.0046	41,201.29	9
01025	Alabama	Clarke County	10.105	10.102	0.0023	31,767.12	71,940.04	0.0035	31,392.5	800.0	71,167.74	4
01027	Alabama	Clay County	10.322	10.32	0.0017	13,916.14	31,510.8	0.0016	13,757.68	0.0035	31,188.2	2
01029	Alabama	Cleburne County	10.166	10.164	0.0018	16,066.31	36,370.29	0.0018	15,882.4	0.0041	35,993.9	5
01031	Alabama	Coffee County	10.093	10.091		44,739.11	101,163.86	0.005	44,132.24	0.0113	100,001.96	
01033	Alabama	Colbert County	10.279	10.276		88,013.85	198,779.11	0.0098	87,050.92	0.0222	196,792.97	
01035	Alabama	Conecuh County	10.038	10.036		13,613.63	30,820.06	0.0015	13,459.11	0.0034	30,505.24	
01037	Alabama	Coosa County	10.36	10.359		13,943.92	31,544.78	0.0016	13,813.73	0.0035	31,260.7	
01039	Alabama	Covington County	9.953	9.951		45,250.2	102,297.05	0.0051	44,804.42	0.0114	101,363.53	
01041	Alabama	Crenshaw County	10.177	10.175		13,303.14	30,096.25	0.0015	13,157.3	0.0034	29,794.24	
01043	Alabama	Cullman County	10.281	10.279	0.0021	105,274.48	238,465.26	0.0117	104,007.14	0.0266	235,971.62	2
01045	Alabama	Dale County	10.114	10.113	0.0015	37,256.23	84,062.2	0.0041	36,756.56	0.0094	83,101.20	6
01047	Alabama	Dallas County	10.297	10.295	0.002	49,424.39	111.995.72	0.0055	48.897.17	0.0125	110,962.04	4

Step 6: Review the results (b) View in map form

♦ COBRA	
File Help	
Introduction 1. Select Analysis Year 2. Create Emissions Scenario 3. Execute Run 4. View Health Effect	and Valuation Results
Table Maps	
Use this page to explore the changes in air quality and health effects between the baseline and control soci of the COBRA user manual. For more information on using COBRA's mapping functionality, including how! user manual. Users can view the user manual by clicking "Help" then "Show Manual".	narios in map form. For more information on viewing and interpreting health impacts and valuation results, see Chapter 5 (Viewing Results) or change the ranges or highlight specific values or incidences on the map, see Chapter 6 (Using Mapping Functionally) of the COBRA
	re information on saving maps created in COBRA, see Chapter 6 (Using Mapping Functionality) of the COBRA user manual.
Select the field that is to be mapped: Delta PM 2.5	
Legend	
☐ 	
□ ☑ US Counties - Delta PM 2.5 ☑ Value	
	A
	The second secon

Step 6: Review the results

We used AVERT to calculate the emissions reductions due to an increased wind capacity of 1,000 MW. COBRA (1) converted emissions reductions into air quality improvements, and (2) estimated annual adverse health impacts avoided.

COBRA monetized the value or benefits of the avoided

Annual Emission Reductions (short tons) Pollutant Amount

Pollutant	Amount
Sulfur Dioxide (SO ₂)	31,739
Nitrogen Oxides (NO _x)	12,788

Note: These reductions are aggregated across all affected states.

Annual Adverse Health Impacts Avoided

Outcome	Number
Mortality	54 - 123
Asthma Exacerbations	1,701
Heart Attacks	7 - 62
Hospital Admissions	36
Acute Bronchitis	90
Respiratory Symptoms	2,799
Asthma ER Visits	28
Minor Restricted Activity Days	41,771
Work Days Lost	7,058

* Don't forget to consider the caveats from slides 14 through 16

Annual Benefits (2010, \$1,000s)

adverse health effects.

	Dollar Value
	\$480,786 - \$1,089,560
	\$99
	\$804 - \$7,474
	\$1,224
	\$44
	\$80
	\$12
	\$2,877
	\$1,127
al	\$487,054 - \$1,102,497

total

SEPA How Can I Learn More?

Visit Our Website:

https://www.epa.gov/statelocalenergy/co-benefits-risk-assessment-cobra-screening-model

Contact Us:

Denise Mulholland
EPA State and Local Energy and Environment Program
(202) 343-9274
Mulholland.Denise@epa.gov

