General Area	Specific Issue(s)	Proposed Action
Section 1 – Scope	Other chemistries (e.g., dansylhydrazine [DNSH]), analysis techniques (gas chromatography with flame ionization detection [GC/FID] or mass spectrometry [MS]), and sampling approaches (e.g., passive monitoring) may also be applicable for measurement of carbonyls in ambient air (Kim & Pal, 2010; Liu, Dills, Paulsen, & Kalman, 2001; Maypole, 2007; Rodier, Nondek, & Birks, 1993)	Retain method's focus on measurement of carbonyls in ambient air using dinitrophenylhydrazine (DNPH) derivatization chemistry and active sampling onto commercially available silica-gel cartridges followed by separation of the hydrazone derivatives with high- performance liquid chromatography (HPLC) with UV detection at ~360 nm.
Section 1 – Scope	Target compound for method is formaldehyde, other carbonyls are only mentioned	Clarify in Section 1 and throughout how to apply the method for measurement of other important carbonyls such as acetaldehyde
Section 1 – Scope	Method is unsuitable for the measurement of unsaturated carbonyls (e.g., acrolein, crotonaldehyde) (Ho et al., 2011); may be inadequate for other important carbonyls (e.g., acetaldehyde) (J. S. Herrington, Fan, Lioy, & Zhang, 2007; Jason S. Herrington & Hays, 2012; Karst, Binding, Cammann, & Witting, 1993; Potter & Karst, 1996; Uchiyama, Ando, & Aoyagi, 2003); suffers from interferences with co- collected moisture (e.g., (Grosjean & Grosjean, 1996) and NO ₂ (Karst, Binding, Cammann, & Witting, 1993; Potter & Karst, 1996)	Discuss and present latest knowledge of various method performance issues; clarify that method is not suitable for the measurement of acrolein and crotonaldehyde; present recommendations for measuring acetaldehyde and understanding the impacts of co-collected moisture and NO ₂
Section 2 – Applicable documents	References are out of date, including those from the peer-reviewed literature, ASTM standards/practices, PAMS TAD, etc.	Update all references to include latest publications in the scientific literature, standards, and Photochemical Assessment and Monitoring Stations (PAMS) and National Air Toxics Trends Stations (NATTS) Technical Assistance Documents (TADs)
Section 3 – Summary of Method	Many details require updating, including, for example, air sampling rate, elution volume, HPLC detector, method sensitivity, potential method performance variations by type of air sampling cartridge	Update to include best practices and guidance on air sampling rates ($< \sim 1.25$ L/min), 2 mL elution volumes as acceptable, choice of detectors (diode array detector [DAD], MS), detection limits (< 0.1 ppb is attainable for formaldehyde), and information on method performance variations with different sampling media
Section 4 – Significance	Updated details necessary, including, for example, carbonyl sources; their health hazards; significance of carbonyls such as formaldehyde to inhalation risk in ambient air; and that impingers and C18 cartridges are no longer widely used	Revise section to provide information on cancer and non-cancer risks from carbonyls such as formaldehyde and acrolein; on formaldehyde as the most important air toxic risk driver in ambient air (Strum & Scheffe, 2016); and to remove discussion of impingers and C18 cartridges

List of known needed updates to US Compendium Method TO-11A

General Area	Specific Issue(s)	Proposed Action
Section 5 –	Definitions missing and/or out of date for,	Update MDL to explicitly require
Definitions	among others, method detection limit (MDL), trip blank, field blank, collection efficiency	assessment of blank levels as described in revision 3 of the NATTS TAD (Battelle, 2016); add definitions of field and trip blanks; and define collection efficiency as the ratio of the measured concentration divided by the expected concentration
Section 6 – Extended Methodology and Common Interferences	Many details out of date. For example: the method's focus on formaldehyde; use of older column technology; need to purify DNPH reagent; use of granular potassium iodide (KI) scrubber for ozone (O ₃) removal	Update information on separation and measurement of range of carbonyls, new and ultra-high-performance LC (UHPLC) instrument column technologies; remove discussion of recrystallization of DNPH; and remove option to use granular KI O ₃ scrubbers
Section 7 – Apparatus	Information on instrumentation, cartridge media, air samplers, and ancillary equipment must be updated to reflect modern practice	Provide details on UHPLC/MS or DAD; new column technology (smaller particle sizes, shorter columns); sampling media vendors (e.g., Supelco, Waters, SKC) and cartridge expiration dates; vendors of carbonyl samplers (ATEC, Tisch); and current state of the art flow rate control and measurements and with mass flow controllers and meters
Section 8 – Reagents and Materials	Information such as need for high-purity DNPH, use of perchloric and ortho- phosphoric acids, high-purity aldehydes and ketones for preparation of derivatized standards, etc. no longer reflects current practice	Remove unnecessary details
Section 9 – Preparation of Reagents and Cartridges	Cartridges, reagents and carbonyl- hydrazone derivatives are no longer prepared in-house but instead are purchased commercially	Revise section throughout to, for example, explain how to assess acetonitrile (ACN) contamination by periodic analysis of system blanks (injection of ACN solvent only) and cartridge method blanks; remove information on recrystallization of DNPH, preparation of derivatized carbonyls, and preparation of DNPH-coated cartridges
Section 10 – Sampling Procedure	Various operational details no longer reflect current practice, including need for collection of backup cartridges; impact of humidity on collection efficiency; and use of a dry gas meter for flow rate measurements	Update section to present latest information on observed lack of compound breakthrough at typical ambient concentrations; impact of co-collected moisture on carbonyl collection efficiencies; recent work on confirming the O_3 removal capacity of the KI-coated denuders and on understanding of the impact of O_3 denuders on method performance; and to provide best practices on cartridge handling and methods to improve sampling performance such as: selection of compatible inlet and manifold materials, routine cleaning of inlets and manifolds, preference for flow rate control with mass flow controllers, flow rate measurement with volume displacement- type flow meters, and periodic

General Area	Specific Issue(s)	Proposed Action
		demonstration of acceptably low sampling
		system contamination and bias by way of
		zero air and known concentration
		challenges of carbonyls at low ppb levels
Section 11 – Sample	Many details are out of date, such as that	Update method to allow cartridge
Analysis	sample extraction is only performed with	extraction with 2 mL ACN; injection
	5 mL ACN with an injection volume of	volumes of 5 to 10 μ L that account for
	$25 \ \mu L$ onto a 25 cm column followed by	increased HPLC sensitivity; and use of:
	single wavelength detection.	latest reversed-phase column technology
		(shorter columns, smaller particle sizes),
		shorter runtimes < 1 h, modern multiple
		wavelength DAD, MS detection, and
		commercially-purchased derivatized
		carbonyl-hydrazone standards. Include
		best practices on HPLC analysis such as
		degassing of solvents, use of guard columns, and backflushing of the LC
		column. Recommend a typical calibration
		range of 0.03 to 5 μ g/mL for ambient air
		analysis and remove requirement for
		triplicate injections. Explain that
		calibration standards are typically already
		given in units of carbonyl equivalent
		concentrations thereby obviating the need
		to calculate such for calibration curves
Section 12 –	Calculations assume y-intercept = 0 for	Update to include data treatment for linear
Calculations	linear best fit calibration model (response	regression models that include non-zero y-
	factor model, area = slope *	intercepts
	concentration)	
Section 13 –	Method precision and accuracy	Review and solicit input on current method
Performance Criteria	requirements require review, as does the	capabilities and needs with respect to
and Quality Assurance	requirement for a 50% frequency for	precision and accuracy for various ambient
	collocated sampling. The MDL	air monitoring applications. Relax
	procedure must account for the impact of	collocated sampling guidance. Require
	media blank levels	MDL Method Update Rule (MUR)
		procedure, or similar, as given in NATTS
		TAD revision 3 (Battelle, 2016).
Quiting 14 Detection		
Section 14 – Detection	Monitoring is routinely performed with	Incorporate relevant details of this section,
of Other Aldehydes	this method for carbonyls in addition to	Incorporate relevant details of this section, such as gradient elution, into Sections 10
		Incorporate relevant details of this section, such as gradient elution, into Sections 10 and 11 on Sampling Procedure and Sample
of Other Aldehydes and Ketones	this method for carbonyls in addition to formaldehyde.	Incorporate relevant details of this section, such as gradient elution, into Sections 10 and 11 on Sampling Procedure and Sample Analysis
of Other Aldehydes and Ketones Section 15 – Precision	this method for carbonyls in addition to	Incorporate relevant details of this section, such as gradient elution, into Sections 10 and 11 on Sampling Procedure and Sample Analysis Update with the latest results from the
of Other Aldehydes and Ketones	this method for carbonyls in addition to formaldehyde.	Incorporate relevant details of this section, such as gradient elution, into Sections 10 and 11 on Sampling Procedure and Sample Analysis Update with the latest results from the NATTS proficiency testing (PT) program,
of Other Aldehydes and Ketones Section 15 – Precision	this method for carbonyls in addition to formaldehyde.	Incorporate relevant details of this section, such as gradient elution, into Sections 10 and 11 on Sampling Procedure and Sample Analysis Update with the latest results from the NATTS proficiency testing (PT) program, the Urban Air Toxics Monitoring Program
of Other Aldehydes and Ketones Section 15 – Precision	this method for carbonyls in addition to formaldehyde.	Incorporate relevant details of this section, such as gradient elution, into Sections 10 and 11 on Sampling Procedure and Sample Analysis Update with the latest results from the NATTS proficiency testing (PT) program, the Urban Air Toxics Monitoring Program (UATMP) program, and other round robin
of Other Aldehydes and Ketones Section 15 – Precision	this method for carbonyls in addition to formaldehyde.	Incorporate relevant details of this section, such as gradient elution, into Sections 10 and 11 on Sampling Procedure and Sample <u>Analysis</u> Update with the latest results from the NATTS proficiency testing (PT) program, the Urban Air Toxics Monitoring Program (UATMP) program, and other round robin studies and information in the literature
of Other Aldehydes and Ketones Section 15 – Precision and Bias	this method for carbonyls in addition to formaldehyde. Information is out of date.	Incorporate relevant details of this section, such as gradient elution, into Sections 10 and 11 on Sampling Procedure and Sample <u>Analysis</u> Update with the latest results from the NATTS proficiency testing (PT) program, the Urban Air Toxics Monitoring Program (UATMP) program, and other round robin studies and information in the literature sources
of Other Aldehydes and Ketones Section 15 – Precision	this method for carbonyls in addition to formaldehyde.	Incorporate relevant details of this section, such as gradient elution, into Sections 10 and 11 on Sampling Procedure and Sample <u>Analysis</u> Update with the latest results from the NATTS proficiency testing (PT) program, the Urban Air Toxics Monitoring Program (UATMP) program, and other round robin studies and information in the literature sources Update Tables 1, 2 and 4; retain Table 2;
of Other Aldehydes and Ketones Section 15 – Precision and Bias	this method for carbonyls in addition to formaldehyde. Information is out of date.	Incorporate relevant details of this section, such as gradient elution, into Sections 10 and 11 on Sampling Procedure and Sample <u>Analysis</u> Update with the latest results from the NATTS proficiency testing (PT) program, the Urban Air Toxics Monitoring Program (UATMP) program, and other round robin studies and information in the literature sources

References

- Battelle. (2016). Technical Assistance Document for the National Air Toxics Trends Stations Program, Revision 3. Columbus, OH Retrieved from <u>https://www3.epa.gov/ttnamti1/files/ambient/airtox/NATTS%20TAD%20Revision%203</u> <u>FINAL%20October%202016.pdf</u>.
- Grosjean, E., & Grosjean, D. (1996). Carbonyl Collection Efficiency of the DNPH-Coated C18 Cartridge in Dry Air and in Humid Air. *Environmental Science & Technology*, *30*(3), 859-863. doi:doi:10.1021/es950297e
- Herrington, J. S., Fan, Z. H., Lioy, P. J., & Zhang, J. (2007). Low Acetaldehyde Collection Efficiencies for 24-Hour Sampling with 2,4-Dinitrophenylhydrazine (DNPH)-Coated Solid Sorbents. *Environmental Science & Technology*, 41(2), 580-585. doi:10.1021/es061247k
- Herrington, J. S., & Hays, M. D. (2012). Concerns regarding 24-h sampling for formaldehyde, acetaldehyde, and acrolein using 2,4-dinitrophenylhydrazine (DNPH)-coated solid sorbents. *Atmospheric Environment*, *55*, 179-184. doi: 10.1016/j.atmosenv.2012.02.088
- Ho, S. S. H., Ho, K. F., Liu, W. D., Lee, S. C., Dai, W. T., Cao, J. J., & Ip, H. S. S. (2011). Unsuitability of using the DNPH-coated solid sorbent cartridge for determination of airborne unsaturated carbonyls. *Atmospheric Environment*, 45(1), 261-265.
- Karst, U., Binding, N., Cammann, K., & Witting, U. (1993). Interferences of nitrogen dioxide in the determination of aldehydes and ketones by sampling on 2,4-dinitrophenylhydrazinecoated solid sorbent. *Fresenius Journal of Analytical Chemistry*, 345, 48-52. doi:10.1007/BF00323325
- Kim, K.-H., & Pal, R. (2010). Determination of acetaldehyde in ambient air: comparison of thermal desorption-GC/FID method with the standard DNPH-HPLC method. *Environmental Monitoring and Assessment*, 161(1), 295-299. doi:10.1007/s10661-009-0746-7
- Liu, L. J. S., Dills, R. L., Paulsen, M., & Kalman, D. A. (2001). Evaluation of Media and Derivatization Chemistry for Six Aldehydes in a Passive Sampler. *Environmental Science* & *Technology*, 35(11), 2301-2308. doi:10.1021/es001795c
- Maypole, C. M. (2007). *Optimization of a DNSH passive sampling method to measure airborne carbonyls*. (1447149 M.P.H.), The University of Texas School of Public Health, Ann Arbor. Retrieved from <u>http://search.proquest.com/docview/304811197?accountid=26501</u>
- Potter, W., & Karst, U. (1996). Identification of Chemical Interferences in Aldehyde and Ketone Determination Using Dual-Wavelength Detection. *Analytical Chemistry*, 68(19), 3354-3358. doi:10.1021/ac960319v
- Rodier, D. R., Nondek, L., & Birks, J. W. (1993). Evaluation of ozone and water vapor interferences in the derivatization of atmospheric aldehydes with dansylhydrazine.
 Environmental Science & Technology, 27(13), 2814-2820. doi:10.1021/es00049a022
- Strum, M., & Scheffe, R. (2016). National review of ambient air toxics observations. Journal of the Air & Waste Management Association, 66(2), 120-133. doi:10.1080/10962247.2015.1076538
- Uchiyama, S., Ando, M., & Aoyagi, S. (2003). Isomerization of aldehyde-2,4dinitrophenylhydrazone derivatives and validation of high-performance liquid chromatographic analysis. *Journal of Chromatography A*, 996(1–2), 95-102. doi:10.1016/S0021-9673(03)00542-9