

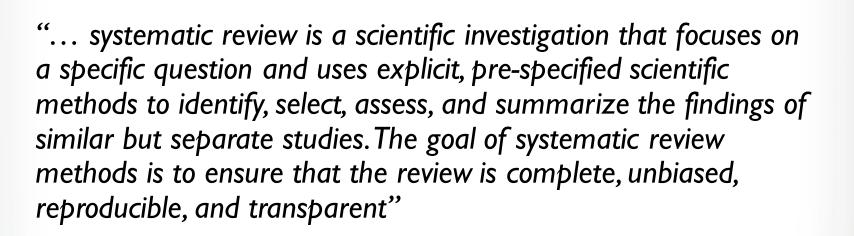
## Systematic Review for Chemical Assessments: Core Elements and Considerations for Rapid Response

Kris Thayer, National Center for Environmental Assessment (NCEA) Integrated Risk Information System (IRIS) Division Director

*EPA's Computational Toxicology Communities of Practice November 16, 2017* 

Office of Research and Development NCEA, IRIS

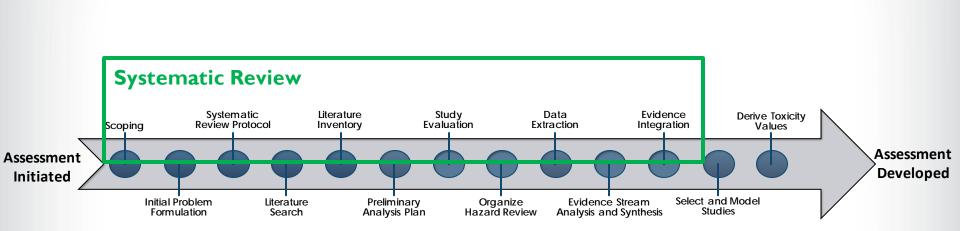



#### Outline

- What is a systematic review?
  - Core elements in context of IRIS assessments
  - Cross-walking terminology for study quality and weight of evidence assessment
- Potential areas of overlapping interest with CompTox community
  - Use of structured frameworks for expressing confidence in conclusions
  - Ensuring transparency during rapid response
  - Use of specialized SR software applications/automation for efficiency and data sharing



**Systematic Review** 


## A structured and documented process for transparent literature review<sup>1,2</sup>



<sup>1</sup> Procedures for Chemical Risk Evaluation Under the Amended Toxic Substances Control Act. EPA-HQ-OPPT-2016-0654. <u>https://www.epa.gov/sites/production/files/2017-</u> <u>06/documents/prepubcopy\_tsca\_riskeval\_final\_rule\_2017-06-22.pdf</u>

<sup>2</sup> Institute of Medicine. Finding What works in Health Care: Standards for Systematic Reviews. p.13-34. The National Academies Press. Washington, D.C. 2011

# Systematic Review Methods in IRIS Assessments



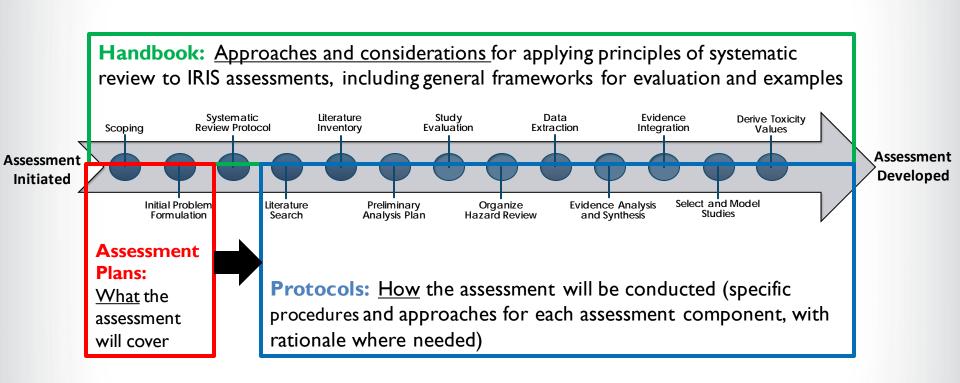
#### NAS (2017): Reflections and Lessons Learned from the Systematic Review

Application of Systematic Review Methods in an Overall Strategy for Evaluating Low-Dose Toxicity from Endocrine Active Chemicals

**EPA** 

ONSENSUS STUDY REPORT

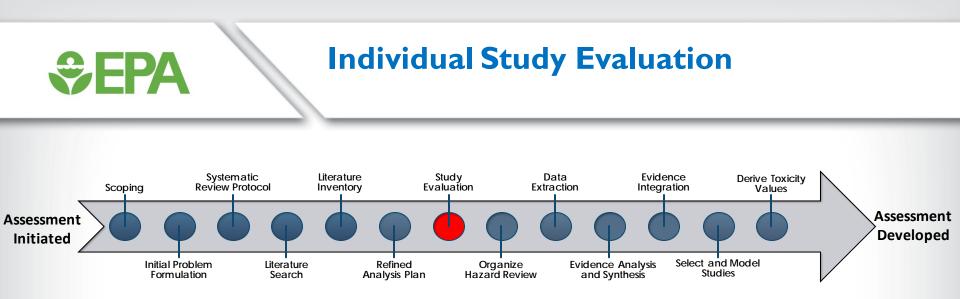
- "....one disadvantage in conducting a systematic review is that it can be time and resource intensive, particularly for individuals that have not previously conducted a systematic review." [p.157]
- "The committee discussed at length whether it could provide EPA with advice about when a systematic review should be performed but decided it could not be more specific because that decision will depend on the availability of data and resources, the anticipated actions, the time frame for decision making, and other factors." [p.157]
- "The committee also recognized that it might be advantageous for EPA to build on existing systematic reviews that are published in the peer-reviewed literature." [p.157]
- "The committee recognizes that the methods and role of systematic review and meta-analysis in toxicology are evolving rapidly and EPA will need to stay abreast of these developments, strive for transparency, and use appropriate methods to address its questions." [p. 157]


# *<b>⇔EPA*

## Making Systematic Review (SR) Pragmatic and Feasible For IRIS

- Standard operating procedures (IRIS Handbook), templates (draft assessment plans, chemical-specific protocols), and regular training
- Solicit early feedback during scoping and problem formulation via assessment plans
- Utilize iterative protocols to ensure communication on included studies and focus on best-available and most-informative evidence as the assessment progresses
- Multiple assessment products ("modularity")
- Targeted focus, especially for evidence-rich topics
  - Make better use of existing assessments as starting point
- Use of specialized SR software applications/automation for efficiency

# **SEPA**


#### **IRIS Systematic Review Documents**





## Study Quality Evaluation

Office of Research and Development NCEA, IRIS



- General approach same for human and animal studies
- Evaluation process focused on:
  - Internal validity/bias
  - Sensitivity
  - Applicability (relevance to the question)
  - Reporting quality



## **Overview of Study Evaluation in IRIS**

#### Individual study level domains

#### Domain judgements

- Good
- Adequate
- Poor
- Critically Deficient

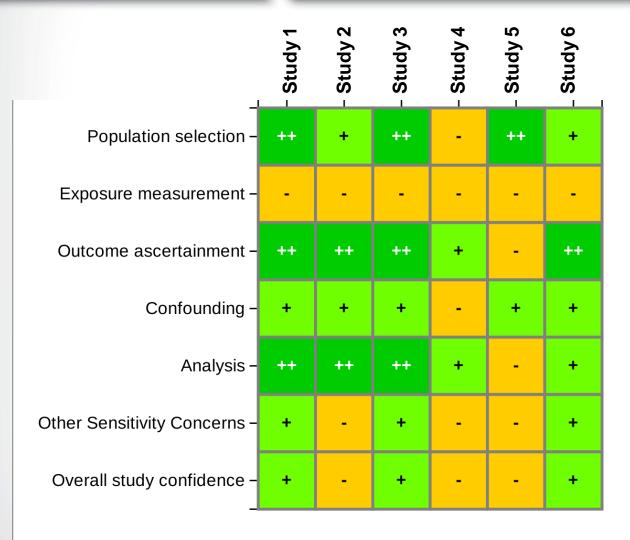
#### **Overall study rating**

- High
- Medium
- Low
- Uninformative

| Animal                               | Epidemiological       |
|--------------------------------------|-----------------------|
| Reporting Quality                    | Exposure measurement  |
| Selection or Performance Bias        | Outcome ascertainment |
| Confounding/Variable Control         | Population Selection  |
| Reporting or Attrition Bias          | Confounding           |
| Exposure Methods Sensitivity         | Analysis              |
| Outcome Measures and Results Display | Sensitivity           |
| Other                                |                       |

|   | Judgement            | Interpretation                                                                                                                                                |
|---|----------------------|---------------------------------------------------------------------------------------------------------------------------------------------------------------|
| 0 | Good                 | Appropriate study conduct relating to the domain & minor deficiencies not expected to influence results.                                                      |
| • | Adequate             | A study that may have some limitations, but not likely to be severe or to have a substantive impact on results.                                               |
|   | Poor                 | Identified biases or deficiencies interpreted as likely to have had a substantial impact on the results or prevent reliable interpretation of study findings. |
| • | Critically Deficient | A flaw that is so serious that the study could not be used.                                                                                                   |

| Rating        | Interpretation                                                                                                                                                                      |
|---------------|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| High          | No notable deficiencies or concerns identified; potential for bias unlikely or minimal and sensitive methodology.                                                                   |
| Medium        | Possible deficiencies or concerns noted, but resulting bias or lack of sensitivity would be unlikely to be of a substantive degree.                                                 |
| Low           | Deficiencies or concerns were noted, and the potential for substantive bias or inadequate sensitivity could have a significant impact on the study results or their interpretation. |
| Uninformative | Serious flaw(s) makes study results unusable for hazard identification                                                                                                              |





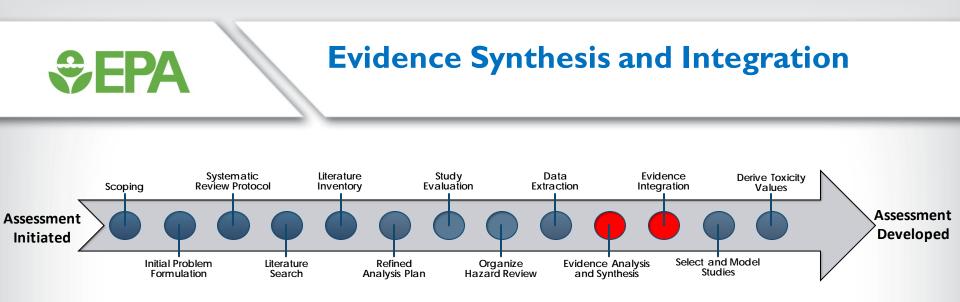
Medium confidence

Uninformative

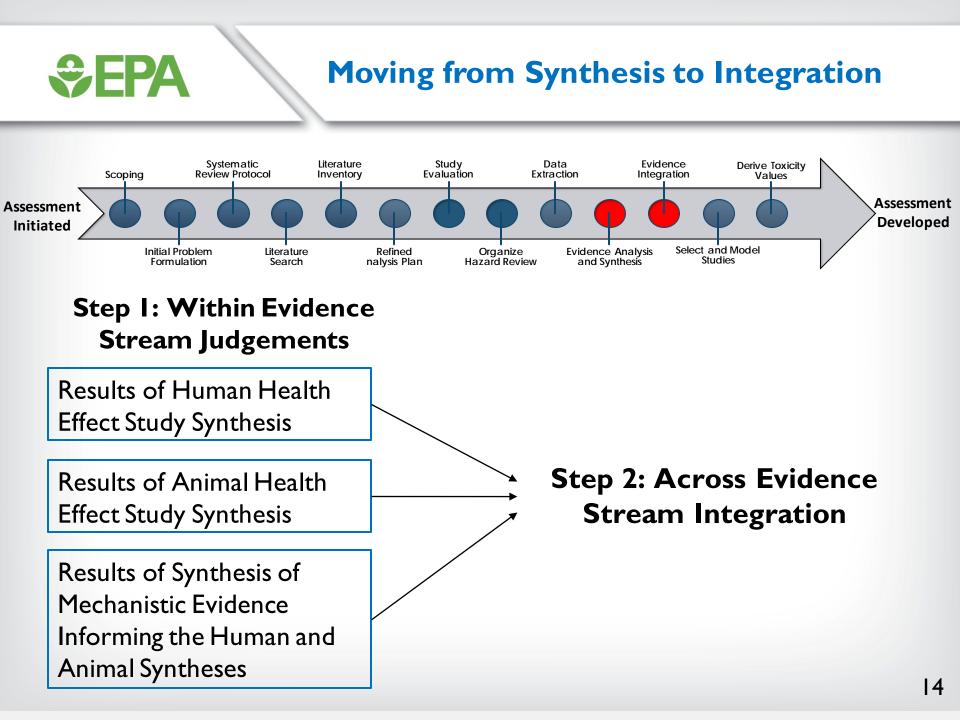
## **\$EPA**

#### **Across Study Evaluations**






11




## Weight of Evidence

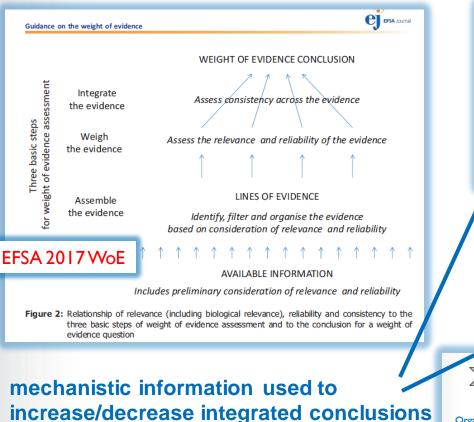
Office of Research and Development NCEA, IRIS



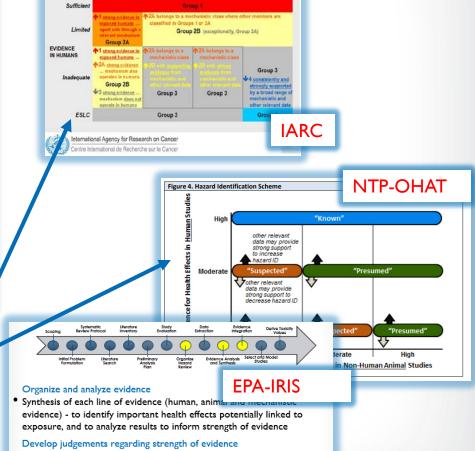
- Synthesis of evidence is more than counting the number of "positive" and "negative" studies
- Consider the influence of bias and sensitivity when describing study results and synthesizing evidence
  - Synthesis should primarily be based on studies of medium and high confidence (when available)
- Use structured framework to aid in transparency



## Within Evidence Stream Conclusions Prior to Across


Sufficient

EVIDENCE IN EXPERIMENTAL ANIMALS


Inadequate

ESLC

Limited



*S***EPA** 



- Integration within evidence streams to develop judgements about the strength of evidence for health effects in each human and animal evidence stream incorporating mechanistic information
- Integration across evidence streams to develop a conclusion about whether exposure to a substance may cause a health effect in humans

#### \*EFSA 2017 WoE Guidance https://www.efsa.europa.eu/en/efsajournal/pub/4971

from human and nonhuman animal

evidence



#### EFSA Key Considerations for Weighing Evidence\*

- **Reliability** is the extent to which the information comprising a piece or line of evidence is correct, i.e. how closely it represents the quantity, characteristic or event that it refers to. This includes both accuracy (degree of systematic error or bias) and precision (degree of random error).
- **Relevance** is the contribution a piece or line of evidence would make to answer a specified question, if the information comprising the evidence was fully reliable. In other words, how close is the quantity, characteristic or event that the evidence represents to the quantity, characteristic or event that is required in the assessment. This includes biological relevance (EFSA, 2017) as well as relevance based on other considerations, e.g. temporal, spatial, chemical, etc.
- **Consistency** is the extent to which the contributions of different pieces or lines of evidence to answering the specified question are compatible

# Examples of WoE Criteria and Guidance\*

|                              | onsistency introduced in Sec                                      |                                                         | n the published                | literature, mapped onto                                                          | the three basic concepts of                                                                                                          | f reliability, relevance and                                                                                                                                           |                                                                                                    |                                                    |
|------------------------------|-------------------------------------------------------------------|---------------------------------------------------------|--------------------------------|----------------------------------------------------------------------------------|--------------------------------------------------------------------------------------------------------------------------------------|------------------------------------------------------------------------------------------------------------------------------------------------------------------------|----------------------------------------------------------------------------------------------------|----------------------------------------------------|
| Publication                  | Reliability                                                       | Relevance                                               | Comb                           | ination of reliability and ance                                                  | Consistency                                                                                                                          | Other                                                                                                                                                                  |                                                                                                    |                                                    |
| Bradford Hill<br>(1965)      |                                                                   | Temporality<br>Experimentation<br>Specificity           |                                | th of association<br>ical gradient                                               | Consistency of association<br>Biological plausibility<br>Coherence                                                                   |                                                                                                                                                                        |                                                                                                    | <b>8-7 8</b> - 100 - 100                           |
| Collier et al.<br>(2016)     | Uncertainty and variability (treatment of)                        | Applicability and uti<br>Essentiality of key e          | Guidance on the                | weight of evidence                                                               |                                                                                                                                      |                                                                                                                                                                        |                                                                                                    | EFSA J                                             |
| (2010)                       |                                                                   | Essentiality of key t                                   | Publication                    | Reliability                                                                      | Relevance                                                                                                                            | Combination of reliability and relevance                                                                                                                               | Consistency                                                                                        | Other                                              |
| ECHA (2010)<br>US EPA (1998) | Reliability<br>Adequacy and quality of data<br>Degree and type of | Relevance<br>Relationship of the<br>to the risk assessm | Meek et al.<br>(2014)          |                                                                                  |                                                                                                                                      |                                                                                                                                                                        | Consistency<br>Biological concordance<br>Concordance of empirical<br>observations among key events |                                                    |
|                              | uncertainty associated with<br>the evidence                       | questions                                               | Morgan et al.<br>(2016) (GRADE |                                                                                  | Indirectness<br>Confounding                                                                                                          | Effect size<br>Dose response                                                                                                                                           | Analogy (to other chemicals)<br>Inconsistency                                                      |                                                    |
| EPA (2003)                   | Uncertainty and variability (treatment of)                        | Applicability and uti                                   | (2020) (0.0.02                 | Publication bias                                                                 | Study design (randomised or observational)                                                                                           |                                                                                                                                                                        |                                                                                                    |                                                    |
|                              |                                                                   |                                                         | Lorenz et al.<br>(2013)        | Study design<br>Bias/chance<br>Reliability<br>Statistical methods                | Confounders<br>Temporality<br>Relevance                                                                                              | Strengths & weaknesses<br>Dose response<br>Predictivity<br>Strength of association                                                                                     | Replicability (if observed)<br>Biological plausibility                                             | Adequacy                                           |
| Hope and<br>Clarkson (2014)  | Study quality                                                     | quality Site specificity<br>Spatial representati        |                                | Statistical methods<br>Internal consistency                                      |                                                                                                                                      |                                                                                                                                                                        |                                                                                                    |                                                    |
|                              |                                                                   | Temporal represent<br>Specificity to stress             | Rooney et al.<br>(2014) (OHAT) | Risk of bias (15 subquestion<br>Imprecision<br>Publication bias<br>Rare outcomes | s) Indirectness<br>Residual confounding                                                                                              | Effect magnitude<br>Dose response                                                                                                                                      | Consistency                                                                                        | 'Other' (unspecified)                              |
| Hull and<br>Swanson (2006)   |                                                                   | Specificity of cause                                    | SCENIHR (2012                  |                                                                                  | Relevance/potential<br>importance<br>The characterisation of the<br>stressor<br>The relevance of the set of<br>data for a particular | Utility (combining quality and<br>relevance)<br>Soundness and appropriateness of<br>the methodology used<br>The extent to which the full<br>details of methodology are | The reproducibility of findings<br>between experiments<br>Consistency                              | Validity<br>Uncertainties in the<br>judgement used |
|                              |                                                                   |                                                         |                                |                                                                                  | endpoint                                                                                                                             | provided                                                                                                                                                               |                                                                                                    |                                                    |
|                              |                                                                   |                                                         | Suter and<br>Cormier (2011)    | Performance<br>Statistical analysis<br>Potential for bias                        | Relevance<br>Inherent weights of study<br>types (e.g. randomised vs<br>observational, field vs lab)                                  | Study design<br>Reporting<br>Strength                                                                                                                                  | Number of pieces<br>Coherence<br>Diversity                                                         | Case-specific criteria                             |
|                              |                                                                   |                                                         | Vermeire et al.<br>(2013)      | Sensitivity<br>Reliability                                                       | Relevance<br>Specificity                                                                                                             | Predictivity                                                                                                                                                           |                                                                                                    | Adequacy<br>Validity                               |

\*Section 2.5, Table B.3\* EFSA 2017 WoE Guidance https://www.efsa.europa.eu/en/efsajournal/pub/4971

**\$EPA** 



#### **Observations on the WoE Examples** from Table **B.3**

- Many probably most are a list of considerations (e.g., Bradford Hill) rather than structured frameworks that provide guidance for how to apply the considerations
- Same essential content, but variation in terminology
  - e.g., relevance ≈ directness ≈ applicability
  - e.g., reliability  $\approx$  study quality  $\approx$  risk of bias
- Use of structured frameworks for WoE becoming more common in chemical assessments for evidence synthesis/integration
  - GRADE is common starting point (Morgan et al. 2016) in Table B.3
  - NTP OHAT (Rooney et al. 2014 in Table B.3), UCSF Navigation Guide, EPA IRIS are derived from GRADE
    - Ongoing collaborations with GRADE Working Group to develop GRADE guidance to avoid derivatives



## Use of Structured Frameworks to Increase Transparency of WoE Judgements

Office of Research and Development NCEA, IRIS

# *<b>⇔EPA*

### **GRADE Structured Framework**

- Widely used (100+ organizations)
- Includes consideration of WoE factors (as characterized in Table B.3)
  - Reliability (risk of bias, imprecision, publication bias)
  - Relevance (directness, confounding, study design)
  - Combination reliability/relevance (effect size, dose-response)
  - Consistency (unexplained inconsistency)
- Compared to other approaches in EFSA WoE Table B.3, GRADE conducts research and develops guidance to operationalize consideration of WoE factors
  - Publications, handbook, software application (GRADEpro/GDT), bi-annual meetings, use of case examples to address methodological challenges
  - GRADE Working Group has open and free membership www.gradeworkingroup.org
- GRADE is dedicated to method development and adaptable, e.g., has GRADE frameworks for interventions, prognostic factors, values and preferences, etc.



## **Certainty in the Evidence: How Confident in the Research**

- Are the research studies well done? Risk of bias
- Are the results consistent across studies ? Inconsistency
- How directly do the results relate to the question? Indirectness
- Is the association precise due to random error? Imprecision
- Are these all of the studies that have been conducted? Pub. Bias
- Is there anything else that makes us particularly certain? Large associations, worst case scenario predictors still allows strong conclusions, exposure-effect relation

# Interpreting the certainty in the evidence



|                     | -                                                                                                                                                                                                  |
|---------------------|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| Certainty<br>rating | Definitions                                                                                                                                                                                        |
| ⊕⊕⊕⊕<br>High        | The panel is very confident that the true association lies close to that of the estimate of the association                                                                                        |
| ⊕⊕⊕⊖<br>Moderate    | The panel is moderately confident in the association: The true association is likely to be close to the estimate of the association, but there is a possibility that it is substantially different |
| ⊕⊕⊖⊖<br>Low         | The panel's confidence in the association is limited: The true association may be substantially different from the estimate of the association                                                     |
| ⊕୦୦୦<br>Very low    | The panel has very little confidence in the association: The true association is likely to be substantially different from the estimate of association                                             |



#### NAS (2017) Low Dose Toxicity From Endocrine Active Chemicals

| TABLE 3-                                                                                                           | TABLE 3-9 Profile of the Confidence in the Body of Evidence on DEHP and AGD in Humans                                                                              |                                                   |                                                                                                       |                              |              |             |                                                           |                 |               |                         |                               |
|--------------------------------------------------------------------------------------------------------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------|---------------------------------------------------|-------------------------------------------------------------------------------------------------------|------------------------------|--------------|-------------|-----------------------------------------------------------|-----------------|---------------|-------------------------|-------------------------------|
|                                                                                                                    |                                                                                                                                                                    |                                                   | Factors Decreasing Confidence<br>"—" If No Concern; "↓" If Serious<br>Concern to Downgrade Confidence |                              |              | "_"<br>"†"  | tors Incr<br>Confider<br>If Not H<br>If Suffic<br>ade Con | nce<br>Present; |               |                         |                               |
| Phthalate                                                                                                          | Metabolite(s)                                                                                                                                                      | INITIAL<br>CONFIDENCE<br>RATING<br>(# of studies) | Risk of Bias                                                                                          | Unexplained<br>Inconsistency | Indirectness | Imprecision | Publication Bias                                          | Large Magnitude | Dose Response | Residual<br>Confounding | FINAL<br>CONFIDENCE<br>RATING |
| DEHP MeHP;<br>5-0x0-MEHP;<br>50H-MEHP;<br>sumDEHP<br>metabolites Moderate<br>(6 prospective) <sup>a</sup> Moderate |                                                                                                                                                                    |                                                   |                                                                                                       |                              |              |             |                                                           |                 |               |                         |                               |
|                                                                                                                    | <sup>a</sup> Swan et al. (2008); Bustamante-Montes et al. (2013); Bornehag et al. (2015); Swan et al. (2015); Jensen et al. (2016); Martino-Andrade et al. (2016). |                                                   |                                                                                                       |                              |              |             |                                                           |                 |               |                         |                               |

*EPA* 

| 1 | TABLE 3-3 Profile of the Confidence in the Body of Evidence on DEHP and AGD in Animals |                                                   |              |                                                                                                       |              |             |                                                                                                 |                 |               |                      |                                      |              |                               |
|---|----------------------------------------------------------------------------------------|---------------------------------------------------|--------------|-------------------------------------------------------------------------------------------------------|--------------|-------------|-------------------------------------------------------------------------------------------------|-----------------|---------------|----------------------|--------------------------------------|--------------|-------------------------------|
|   |                                                                                        |                                                   | ""           | Factors Decreasing Confidence<br>"—" If No Concern; "↓" If Serious<br>Concern to Downgrade Confidence |              |             | Factors Increasing Confidence<br>"—" If Not Present; "↑" If Sufficient to<br>Upgrade Confidence |                 |               |                      | nt to                                |              |                               |
|   | Phthalate                                                                              | INITIAL<br>CONFIDENCE<br>RATING<br>(# of studies) | Risk of Bias | Unexplained Inconsistency                                                                             | Indirectness | Imprecision | Publication Bias                                                                                | Large Magnitude | Dose Response | Residual Confounding | Consistency Across<br>Species/Models | Rare Outcome | FINAL<br>CONFIDENCE<br>RATING |
|   | DEHP                                                                                   | High (16 rat,"<br>3 mouse <sup>b</sup> )          | Ļ            | _                                                                                                     | _            | _           | _                                                                                               | t               | t             | _                    | _                                    | _            | High                          |

<sup>a</sup>Moore et al. (2001); Borch et al. (2004); Jarfelt et al. (2005); Wolfe and Layton (2005); Andrade et al. (2006); Culty et al. (2008); Lin et al. (2008, 2009); Christiansen et al. (2009, 2010); Gray et al. (2009); Martino-Andrade et al. (2009); Vo et al. (2009); Li et al. (2013); Zhang et al. (2013); Jones et al. (2015). <sup>b</sup>Liu et al. (2008); Do et al. (2012); Pocar et al. (2012). Mechanistic evidence: "The mechanistic data developed in vitro and in animal models provide evidence that the DEHP effects on AGD in humans identified by the committee's systematic review are biologically plausible....but were not sufficient to result in an upgrade in the committee's final hazard identification."

## Final Hazard Conclusion on AGD

On the basis of the committee's evidence integration of the animal and the human evidence on DEHP and effects on AGD and consideration of relevant mechanistic data, the committee concluded that DEHP is presumed to be a reproductive hazard to humans.



### Experience in Applying GRADE to Chemical Assessments

- Initial reactions range from "great, we can work with this" to "too simplistic, based on human randomized clinical trials and won't work for environmental health evidence, devalues epidemiological research, inflexible/algorithmic"
- GRADE Environmental Health Project Group established 2015 to address methodological issues (Morgan et al., Environ Int. 2016 Jul-Aug;92-93:611-6)
- Priority areas:
  - Evaluation of observational studies of environmental and occupational exposure
  - Application of GRADE to animal, mechanistic, and modelled evidence
  - How integrate across evidence streams?
  - How assess biological plausibility?
  - How assess coherence and consistency (GRADE downgrades for unexplained inconsistency, but does not "upgrade" for coherence/consistency)
  - Applying GRADE to non-systematic reviews and under rapid timeframes
     24



#### **GRADE Environmental Health Project Group Activities**

| Issue                       | Activity                                                                                                                                                                               | Impact/Status                                                                                        |
|-----------------------------|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------------------------------------------------------------------------------------------------------|
| Epidemiological<br>Evidence | ROBINS-E RoB tool (uses concept of<br>comparison to ideal target experiment)<br><b>Workshop:</b> "Developing ROBINS-I*<br>for studies of exposures (ROBINS-E).<br>January 30-31, 2017" | Remove study design from initial CiE (all studies start at high), remove double downgrading concerns |
| Animal Evidence             | Numerous groups have applied<br>GRADE to animal evidence (pre-<br>clinical and toxicological)                                                                                          | GRADE factors apply; additional examples and discussion needed to develop guidance                   |
| Mechanistic<br>Evidence     | 0,                                                                                                                                                                                     | tential interest to CompTox community                                                                |
| Modelled<br>Evidence        | <b>Workshop:</b> "GRADE for modelled<br>evidence. May 15-16, 2017. McMaster<br>University. Hamilton"                                                                                   | GRADE factors apply; additional examples and discussion needed to develop guidance                   |
| Evidence<br>Integration     | Numerous groups are using GRADE-<br>derived approaches for within<br>evidence stream input (parallel<br>consideration approach)                                                        | additional examples needed to develop guidance                                                       |
| Rapid Response              | Applying GRADE to non-systematic reviews under urgent timelines                                                                                                                        | GRADE factors apply; additional examples needed to develop guidance                                  |

\* Stern et al. ROBINS-I: a tool for assessing risk of bias in non-randomised studies of interventions. BMJ. 2016 Oct 12;355:i4919. doi: 10.1136/bmj.i4919. 25

# **\$EPA**

#### IRIS Structured Framework (Evidence Profile Table)



"No matter what method is used to integrate the different kinds of evidence available for an IRIS assessment, using a template for the evidence-integration narrative could help to make IRIS assessments more transparent." [NAS, 2014]

| Studies and<br>interpretation                                                                                                                                                        | Factors that increase confidence                                                                                                                                                                                                                                                                                                 | Factors that decrease<br>confidence               | Summary of findings                                                                                                                                                                                                                                                                                                                                                                                                                                                               | Within stream evidence<br>judgements                                                                                                                                                                        | Inference across evidence<br>streams                                                                                                                                                                                                                                                                                                                              | Overall confidence<br>conclusion                                                                                                                                                       |  |  |  |  |  |
|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|---------------------------------------------------|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--|--|--|--|--|
| [Health Effect or (                                                                                                                                                                  | Health Effect or Outcome Grouping]                                                                                                                                                                                                                                                                                               |                                                   |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |                                                                                                                                                                                                             |                                                                                                                                                                                                                                                                                                                                                                   |                                                                                                                                                                                        |  |  |  |  |  |
| <ul> <li>References</li> <li>Study confidence<br/>(based on<br/>evaluation of risk of<br/>bias and sensitivity)<br/>and explanation</li> <li>Study design<br/>description</li> </ul> | Human Studies (Rou<br>Consistency<br>Dose-response gradient<br>Coherence of observed<br>effects (apical studies)<br>Effect size (magnitude,<br>severity)<br>Biological plausibility<br>Low risk of bias/ high<br>quality<br>Insensitivity of null/<br>negative studies<br>Natural experiments<br>Temporality                     | <ul> <li>Unexplained<br/>inconsistency</li> </ul> | <ul> <li>Results information (general endpoints<br/>affected/ unaffected) across studies</li> <li>Human evidence informing biological<br/>plausibility: discuss how mechanistic data<br/>influenced the within stream judgement<br/>(e.g., evidence of precursors in exposed<br/>humans).</li> <li>Could be multiple rows (e.g., grouped by<br/>study confidence or population) if this<br/>informs results heterogeneity</li> </ul>                                              | Describe confidence in<br>evidence from human<br>studies, and primary basis:<br>+++ Strongest evidence<br>++ ○ ↑<br>+ ○○Weakest evidence<br>○○○ - Inadequate<br>○ Convincing evidence<br>of no effect       | Human relevance of findings<br>in animals<br>• Cross-stream coherence<br>(i.e. for both health effect-<br>specific and mechanistic<br>data)<br>• Other inferences:<br>• Information on<br>susceptibility<br>• MOA analysis inferences:<br>precursors, cross-species<br>inferences of<br>taxicokinetics, or<br>quantitative implications<br>• Relevant information | Describe conclusion(s) and<br>primary basis for the<br>integration of all available<br>evidence (e.g., across human,<br>animal, and mechanistic):<br>+ + + Strongest conclusion<br>+ + |  |  |  |  |  |
| Evidence for an                                                                                                                                                                      | Effect in Animals (                                                                                                                                                                                                                                                                                                              | Route)                                            |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |                                                                                                                                                                                                             | from other sources (e.g.,<br>read across; other,<br>potentially related health<br>hazards)                                                                                                                                                                                                                                                                        | Summarize the models and                                                                                                                                                               |  |  |  |  |  |
| <ul> <li>References</li> <li>Study confidence<br/>(based on<br/>evaluation of risk of<br/>bias and sensitivity)<br/>and explanation</li> <li>Study design<br/>description</li> </ul> | <ul> <li>Consistency and<br/>Replication</li> <li>Dose-response gradient</li> <li>Coherence of observed<br/>effects (apical studies)</li> <li>Effect size (magnitude,<br/>severity)</li> <li>Biological plausibility</li> <li>Law risk of bias/ high<br/>quality</li> <li>Insensitivity of null/<br/>negative studies</li> </ul> | <ul> <li>Unexplained<br/>inconsistency</li> </ul> | <ul> <li>Results information (general endpoints<br/>affected/ unaffected) across studies</li> <li>Evidence informing biological plausibility<br/>for effects in animals: discuss how<br/>mechanistic data influenced the within<br/>stream judgement (e.g., evidence of<br/>coherent molecular changes in animal<br/>studies)</li> <li>Could be multiple rows (e.g., by study<br/>confidence, species, or exposure duration) if<br/>this informs results heterogeneity</li> </ul> | Describe confidence in<br>evidence for an effect in<br>animals, and primary basis:<br>+++ Strongest evidence<br>++ O ↑<br>+ OOWeakest evidence<br>OOO - Inadequate<br>O Convincing evidence<br>of no effect |                                                                                                                                                                                                                                                                                                                                                                   | range of dose levels upon<br>which the conclusions were<br>primarily reliant                                                                                                           |  |  |  |  |  |



#### IRIS Structured Framework (Evidence Profile Table)



| Studies                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | Factors that increase<br>confidence                                                                           | Factors that decrease<br>confidence                                                                         | Summary of findings                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | Within stream<br>confidence<br>judgement | Inferences across streams                                                                                                                                 | Hazard assessment<br>conclusion |
|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|---------------------------------------------------------------------------------------------------------------|-------------------------------------------------------------------------------------------------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------------------------------------------|-----------------------------------------------------------------------------------------------------------------------------------------------------------|---------------------------------|
| Chemical X (Health Outcome Y)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |                                                                                                               |                                                                                                             |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |                                          |                                                                                                                                                           | -                               |
| Human (oral)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |                                                                                                               |                                                                                                             |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |                                          | Findings in animals                                                                                                                                       | $\Theta \Theta \bigcirc$        |
| Case Series<br>Study 1<br>Cross-sectional<br>Study 2<br>Risk of bias and sensitivity                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |                                                                                                               | Few studies<br>Low number of exposed<br>cases (insensitivity)<br>Lack of dose-response<br>High risk of bias | Studies found no significant correlations<br>with chemical X exposure and health<br>outcome y                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | 000<br>INDETERMINATE                     | presumed relevant to<br>humans (no evidence to the<br>contrary); coherent evidence<br>from mechanistic studies<br>mammalian and non-<br>mammalian models. |                                 |
| Animal (oral)<br>Short-term<br>Study 1 (rat)<br>Study 2 (rat)<br>Subchronic<br>Study 3 (rat)<br>Study 4 (mouse)<br>Developmental/Reproductive<br>Study 5 (rat)<br>Study 5 (rat)<br>Study 6 (rat)<br>Study 7 (rat)<br>Study 8 (mouse)<br>Risk of bias and sensitivity<br>Life in the sensitivity<br>Life in th | Coherence among<br>related endpoints<br>Low risk of bias<br>Dose-response gradient<br>Biological plausibility | Small sample sizes in some<br>studies<br>Some unexplained<br>inconsistency                                  | Similar pattern of changes in hormone A<br>and hormone B were observed in study 1<br>and study 2. Effects on serum hormone<br>levels are supported by histopathological<br>changes in tissue A (study 1, study 3,<br>study 4, study 5, study 6) and increased<br>tissue A weight (study 1, study, 5, study<br>6, study 8). Evidence of dose-response<br>gradient in most studies reporting<br>effects.<br>Biological plausibility of the observed<br>effects is supported by mechanistic<br>studies in mammalian and non-<br>mammalian models (see Section 1.2.1<br>Mechanistic Evidence). | ⊕⊕<br>MODERATE                           |                                                                                                                                                           |                                 |



## Systematic Review and Rapid Response

Office of Research and Development NCEA, IRIS



#### **Approaches for Rapid Response**

- Increase staff to conduct a full systematic review
  - Probably not viable for emergency or urgent response (i.e., less than a month)
  - Not viable when resources are constrained
- Methodology should still be described when a systematic review is not practical — e.g., use of expert opinion can be considered a method
- Use a structure framework to describe confidence in conclusions can be done even when analysis is NOT based on a systematic review



#### Use of Structured Frameworks for Rapid Response

| 5-52     |  |
|----------|--|
| ELSEVIER |  |

Contents lists available at ScienceDirect

#### **Environment International**

journal homepage: www.elsevier.com/locate/el

Preface

#### Using GRADE to respond to health questions with different lev

#### Kristina A. Thayer <sup>a</sup>, Holger J. Schünemann <sup>b,\*</sup>

<sup>a</sup> Division of the National Toxicology Program, National Institute of Environmental Health Sciences, National Institutes of Health, Dep Mail Drop K2-02, Research Triangle Park, NC 27709, USA

<sup>b</sup> Department of Clinical Epidemiology & Biostatistics, Department of Medicine, McMaster University, Health Sciences Centre, Room.

#### ARTICLE INFO

ABSTRACT

Article history: Received 15 March 2016 Received in revised form 21 March 2016 Accepted 21 March 2016 Available online 26 April 2016 Increasing interest exists in applying the Grading of Recommen (GRADE) approach to environmental health evidence. While atic reviews and corresponding summary tables, such as evide that "the evidence that was assessed and the methods that should be clearly described." In this article, we suggest that from narrative reviews, modelled (indirect) evidence, or evid underlying judgments about the certainty in this evidence are ed transparently. Health questions that require assessing the of thy answers may range from hours, to days or weeks, to a few without short-term time pressures. Time frames of emergent, quire relying on existing summaries or rapidly compiling the vithout available full systematic reviews, expressing the cert for users of the evidence and those who evaluate certainty in enbetween organizations tackling similar questions about the evrative or other summaries of the evidence can be presented to the vidence and those who evaluate certainty in en-

Publication bias

Could be assessed for both animal

studies and SAR. A judgment of

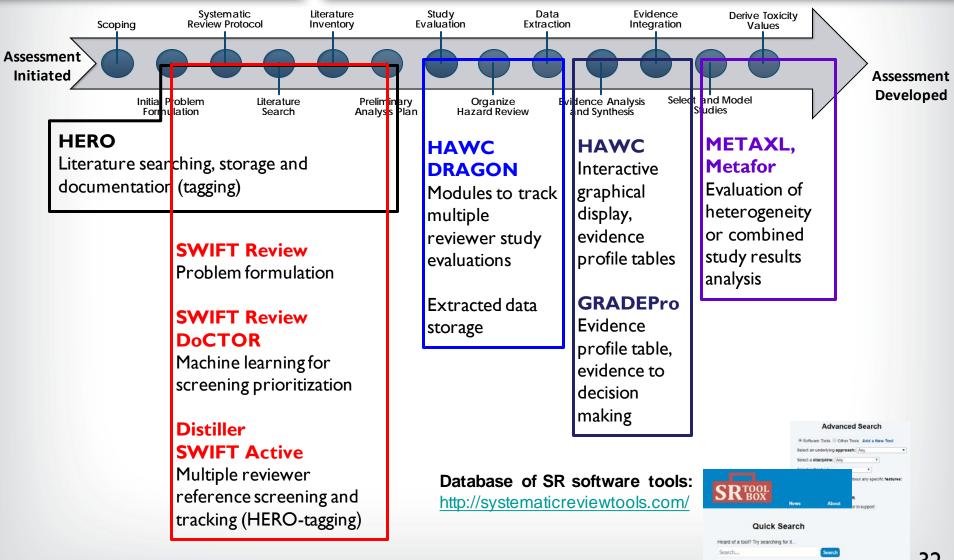
| -                                                                                                                                                              |                                      |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |                                                                                                                                                                                                                                                                                                                                                                                                                                  |                                                                                                                                                                                                                                                                                                                                         |                                                                                                                                                                                                                                                                                                                                          |
|----------------------------------------------------------------------------------------------------------------------------------------------------------------|--------------------------------------|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| - 1                                                                                                                                                            | Table 1<br>Examples of GRADE ap      | plied across different time scenarios.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | _                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                                                                                                                                                                                                                                                                                                         |                                                                                                                                                                                                                                                                                                                                          |
| al                                                                                                                                                             | Type of response                     | Ultra-short emergency response:<br>within one or more hours                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | Urgent response: one to two weeks                                                                                                                                                                                                                                                                                                                                                                                                | Rapid response: one to three months                                                                                                                                                                                                                                                                                                     | Routine response: more than 3 months                                                                                                                                                                                                                                                                                                     |
| ite/en                                                                                                                                                         | Example                              | West Virginia Elk River spill<br>Population: community exposed to<br>the chemical spill.<br>Intervention/exposure: chemicals in<br>the spill that contaminated water<br>supply.<br>Comparison: no chemicals in the spill.<br>Outcomes: genotoxicity.<br>developmental or reproductive<br>toxicity, liver toxicity and others.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | Melamine in composite food<br>products<br>Population: healthy people<br>Intervention/exposure: melamine<br>from composition food products below<br>0.5 mg/kg body weight per day.<br>Comparison: higher than 0.5 mg/kg<br>body weight per day.<br>Comparison: higher than 0.5 mg/kg<br>body weight of melamine from<br>composition food.<br>Outcomes: remal insufficiency                                                        | Avian influenza<br>Population: people with suspected<br>avian influenza infection.<br>Intervention/exposure: oseltamivir.<br>Comparison: no oseltamivir.<br>Outcomes: mortality, duration of<br>hospitalization, incidence of lower<br>respiratory tract complications<br>(used for this example of the<br>certainty assessment below), | PFOA and birth weight<br>Population: women of reproductive<br>age and fetuses (before and/or<br>during pregnancy or development).<br>Intervention/exposure:<br>perfluorooctanoic acid (PFOA; CAS#<br>335-67-1) or its salts.<br>Comparison: lower levels of PFOA.<br>Outcomes: fetal growth, birth<br>weight, other measures of fetal or |
| t leve                                                                                                                                                         | Type of evidence                     | Available evidence: animal<br>toxicology studies in rodents for two<br>chemicals in the spill (a 28-day<br>study and a teratology study) and<br>SRA analyses for other chemicals in<br>the spill with no toxicology data.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | (assessed with renal clearance),<br>univary tract caclul, univary tumors<br>(used for this example of the certainty<br>in the evidence: animal<br>toxicology studies in rat and mice<br>with exposures to various levels of<br>melamine via feeding, including a<br>control group. The utilized evidence<br>should be supported by a literature<br>search with transparent inclusion and<br>exclusion criteria and a (pararatve) | antiviral drug resistance existing<br>before treatment, and serious<br>adverse events.<br>Available evidence: five randomized<br>trials in patients with seasonal flu<br>(summarized in systematic<br>veiwes), case studies of patients<br>with avaia influenza, in vitro and<br>in vivo animal data.                                   | newborn size.<br>Available evidence: a systematic<br>review of 18 non-randomized<br>(observational) studies (10 were<br>included in a meta-analysis).                                                                                                                                                                                    |
|                                                                                                                                                                | GRADE domains to as                  | isess certainty in the evidence: suggested                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | summary of that evidence.<br>approaches to making judgments or pro                                                                                                                                                                                                                                                                                                                                                               | posed judgments (note these are not nec                                                                                                                                                                                                                                                                                                 | cessarily reflecting judgments in the                                                                                                                                                                                                                                                                                                    |
| commer<br>. While i<br>as evide<br>ds that<br>or evide<br>ence are i<br>ng the c<br>to a few<br>ergent, u<br>ling the<br>the cert<br>inty in ef<br>at the evi- | original scenarios).<br>Risk of bias | Animal studies: would be assessed by<br>risk of bias (RoB) considerations for<br>animal studies (e.g. randomization,<br>blinding at outcome assessment,<br>sufficient characterization of test<br>compound, or whether all animals<br>were accounted for). Ideally, RoB<br>assessments would be available for<br>individual studies and summarized<br>across studies. In the Elik River<br>example, the number of animal<br>studies was small and could be<br>assessed at the individual level within<br>a short-time frame. A de novo risk of<br>bias evaluation may not be feasible in<br>cases where evidence is drawn from<br>existing nurrative risk assessments<br>that summarize a large body of<br>literature. Neverthekes, ir may still be<br>possible to assess risk of bias based on<br>the uncertainties and evidence<br>limitations described in the risk<br>assessment.<br>SAR: could be assessed using OED<br>model validation of similar guidance<br>that recommends presentation of a<br>defined domain of applicability for a<br>defined endpoint supported by<br>appropriate measures of | Animal studies; would be assessed<br>by risk of bias (RoB) considerations<br>for animal studies (e.g.,<br>randomization, pathologists blinded<br>in their assessments or all animals<br>accounted for). In this case it<br>appears that the animal studies die<br>appears that the animal studies die<br>and treport that it was randomized<br>and, thus, may be at risk of bias.                                                | Not serious                                                                                                                                                                                                                                                                                                                             | Serious based on some concern of<br>risk of bias in the included studies<br>(in the original report, the authors<br>used an approach to rating certainty<br>that accounted for risk of bias by<br>lowering the certainty from high to<br>moderate).                                                                                      |
|                                                                                                                                                                | Imprecision                          | goodness-of-fit (OECD, 2007).<br>Could be assessed for both animal<br>data and SAR (e.g., considering sta-<br>tistical or numerical uncertainty in<br>model parameters).                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | While no summary estimates are<br>available, an assessment could be<br>guided by the availability of data<br>from only 100 animals in different<br>exposure groups which would result<br>in wide confidence intervals.                                                                                                                                                                                                           | Serious                                                                                                                                                                                                                                                                                                                                 | Not serious                                                                                                                                                                                                                                                                                                                              |
|                                                                                                                                                                | Inconsistency                        | Could be assessed for both animal<br>data and SAR (e.g., assessing simi-<br>larity of results based on applying<br>different models).                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | Only one study was included and<br>therefore no inconsistency is present<br>(Guyatt et al., 2011d).                                                                                                                                                                                                                                                                                                                              | Not serious                                                                                                                                                                                                                                                                                                                             | Not serious                                                                                                                                                                                                                                                                                                                              |
|                                                                                                                                                                |                                      | anner en moneraj.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |                                                                                                                                                                                                                                                                                                                                                                                                                                  |                                                                                                                                                                                                                                                                                                                                         |                                                                                                                                                                                                                                                                                                                                          |

Could be assessed using guidance for Undetected

animal studies but a judgment of

undetected might be reasonable if undetected might be reasonable if

Undetected




## **Specialized Software Applications**

Office of Research and Development NCEA, IRIS

#### Systematic Review Tools

EPA



Collaboration



#### **Opportunities for Engagement**

- Training on approaches and software tools (either web-based or hands on)
- Engagement with chemical assessment teams
- Additional discussion/case studies to illustrate tenants of transparency applied to non-SR assessments and rapid response
- Academic MOUs to help train next generation



#### **Parting Thoughts**

- Systematic review offers a structured methodology to synthesize and integrate evidence
  - Used to characterize what is known and help identify key knowledge gaps
  - Similar conceptual methodological challenges for animal bioassay and mechanistic evidence, e.g., characterizing relevance to humans, coherence/consistency in findings = MAJOR opportunity to shape how systematic review is applied beyond human evidence.
- Commitment to methodological transparency is critical to ensure credibility and acceptance of "fit for purpose" assessment approach (e.g., rapid response, alternative methods)



## **Questions/Comments?**

Office of Research and Development NCEA, IRIS