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Introduction

 Toxicokinetics (TK) provides a bridge between toxicity and exposure 
assessment by predicting tissue concentrations due to exposure
• However traditional TK methods are resource intensive

 Relatively high throughput TK (HTTK) methods have been used by the 
pharmaceutical industry to determine range of efficacious doses and to 
prospectively evaluate success of planned clinical trials (Jamei, et al., 2009; 
Wang, 2010)
• A key application of HTTK has been “reverse dosimetry” (also called 

Reverse TK or RTK)
• RTK can approximately convert in vitro HTS results to daily doses needed 

to produce similar levels in a human for comparison to exposure data  
(starting off with Rotroff, et al., 2010)

 A new EPA/ORD open source R package (“httk”) is freely available on CRAN 
allows RTK and other statistical analyses of 543 chemicals (more coming)
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Scale of the Problem

Endocrine Disruptor Screening Program 
(EDSP) Chemical List

Number of
Compounds

Conventional Active Ingredients 838

Antimicrobial Active Ingredients 324

Biological Pesticide Active Ingredients 287

Non Food Use Inert Ingredients 2,211

Food Use Inert Ingredients 1,536

Fragrances used as Inert Ingredients 1,529

Safe Drinking Water Act Chemicals 3,616

TOTAL 10,341

EDSP 
Chemical 
Universe
10,000

chemicals
(FIFRA & 
SDWA)

EDSP List 2 
(2013)

107
Chemicals

EDSP List 1 
(2009)

67 
Chemicals

So far 67 chemicals have completed testing and an 
additional 107 are being tested

December, 2014 Panel: “Scientific Issues Associated with Integrated 
Endocrine Bioactivity and Exposure-Based Prioritization and Screening“ 
DOCKET NUMBER: EPA–HQ–OPP–2014–0614 

• Park et al. (2012): At least 3221 chemicals in humans, many appear to be exogenous
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 Tox21:  Examining >10,000 chemicals using 
~50 assays intended to identify 
interactions with biological pathways 
(Schmidt, 2009)

 ToxCast: For a subset (>1000) of Tox21 
chemicals ran >500 additional assays 
(Judson et al., 2010)

 Most assays conducted in dose-response 
format (identify 50% activity concentration 
– AC50 – and efficacy if data described by a 
Hill function, Filer et al., 2016)

 All data is public: http://actor.epa.gov/ 
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in vitro – in vivo 
Concordance

Aylward and Hays (2011) 
Journal of Applied Toxicology 31 741-751 

estimated or measured 
average concentrations 
associated with the LOAEL 
in animal studies

Humans with chronic 
exposure reference values 
(solid circles)

NOAEL in animal studies

Biomonitored occupational 
populations

Volunteers using products 
containing the chemical

General populations

x

+
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In Vitro Bioactivity, HTTK, 
and In Vivo Toxic Doses

Comparison of HTTK predicted 
oral equivalent doses (box 
and whisker plots in 
mg/kg/day) with doses for 
no effect and low effect 
groups in animal studies

Lowest Observed Effect Level
No Observed Effect Level (NEL)
NEL/100

Estimated chronic exposure levels 
from food residues are 
indicated by vertical red 
lines. All values are in 
mg/kg/day.Judson et al. (2011)
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High Throughput Risk 
Prioritization

• High throughput risk prioritization relies on 
three components:

1. high throughput hazard characterization
2. high throughput exposure forecasts
3. high throughput toxicokinetics (i.e., 

dosimetry)
• While advances have been made in toxicity and 

exposure screening, TK methods applicable to 
100s of chemicals are needed
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need for TK data using in vitro methods

The Need for In Vitro 
Toxicokinetics
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ToxCast Phase I (Wetmore et al. 2012) ToxCast Phase II (Wetmore et al. 2015)

ToxCast Chemicals
Examined
Chemicals with
Traditional in vivo TK
Chemicals with High
Throughput TK



Office of Research and Development9 of 47

In Vitro - In Vivo 
Extrapolation (IVIVE)

Definition: 
IVIVE is the utilization of in vitro experimental data to predict phenomena in vivo 

• IVIVE-PK/TK (Pharmacokinetics/Toxicokinetics): 
• Fate of molecules/chemicals in body
• Considers absorption, distribution, metabolism, excretion (ADME)
• Uses empirical PK and physiologically-based (PBPK) modeling

• IVIVE-PD/TD (Pharmacodynamics/Toxicodynamics): 
• Effect of molecules/chemicals at biological target in vivo
• Assay design/selection important
• Perturbation as adverse/therapeutic effect, reversible/ irreversible

• Both contribute to predict in vivo effects

Slide from Barbara Wetmore
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Oral dose in
(mg/kg/day)
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High Throughput Toxicokinetics 
(HTTK)

 In vitro plasma protein 
binding and metabolic 
clearance assays allow 
approximate hepatic and 
renal clearances to be 
calculated

 At steady state this allows 
conversion from 
concentration to 
administered dose

 100% bioavailability 
assumed

Jamei et al. (2009)
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– IVIVE in a High-Throughput Environment –
Modeling In Vivo Pharmacokinetics 

Using In Vitro Assays
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Slide from Barbara Wetmore
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 Can calculate predicted steady-state concentration (Css) 
for a 1 mg/kg/day dose and multiply to get concentrations 
for other doses

Slope = Css for 1 mg/kg/day

Wetmore et al. (2012)

Steady-State is Linear with Dose
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 Can calculate predicted steady-state concentration (Css) 
for a 1 mg/kg/day dose and multiply to get concentrations 
for other doses

Slope = Css for 1 mg/kg/day

Wetmore et al. (2012)

Steady-State is Linear with Dose
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HTTK Allows Steady-State 
In Vitro-In Vivo Extrapolation (IVIVE)
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Steady-state Concentration (µM) = in vitro AC500

Prediction

 Swap the axes (this is the “reverse” part of reverse dosimetry)
 Can divide bioactive concentration by Css for for a 1 mg/kg/day dose to get oral equivalent dose

Slope = mg/kg/day per Css
1 mg/kg/day

Wetmore et al. (2012)
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Integrating Human Dosimetry and Exposure 
with ToxCast In Vitro Assays

Reverse Dosimetry

Oral 
Exposure

Plasma 
Concentration

ToxCast AC50 Value

Oral Dose Required to 
Achieve Steady State 

Plasma Concentrations 
Equivalent to In Vitro

Bioactivity

~800 In Vitro 
ToxCast Assays

Least Sensitive 
Assay

Most
Sensitive 

Assay

Human Liver 
Metabolism

Human Plasma 
Protein Binding

Population-Based  
IVIVE Model

Rotroff et al., Tox Sci., 2010
Wetmore et al., Tox Sci., 2012
Wetmore et al., Tox Sci, 2015

Upper 95th Percentile Css 
Among 10,000 Healthy 

Individuals of Both Sexes 
from 20 to 50 Yrs Old

~500 EPA ToxCast 
Chemicals

Slide from Barbara Wetmore
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 It appears harder to prioritize on bioactive in vitro 
concentration without in vivo context

ToxCast in vitro Bioactive 
Concentrations

Wetmore et al. (2012)
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 Translation from in vitro to steady-state oral equivalent doses 
allow greater discrimination between effective chemical 
potencies

HTTK Oral Equivalents

Wetmore et al. (2012)



Office of Research and Development18 of 47

Activity-Exposure Ratio
(Wetmore et al. 2012, 2014, 2015)

AER =
Oral Equiv. Dose

Estimated exposure

AER <=1 : Exposure potentially high enough to cause bioactivity

AER >> 1: Exposure less likely to be high enough to cause bioactivity

Slide from Caroline Ring
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Incorporating Dosimetry-Adjusted 
ToxCast Bioactivity Data with HT 

ExpoCast Predictions 

Wetmore et al., Tox. Sci, 2015
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Variability in this Steady-State TK Model

 In vitro clearance (µL/min/106 hepatocytes) is scaled to a whole organ clearance 
using the density of hepatocytes per gram of liver and the volume of the liver 
(which varies between individuals)

 Glomerular filtration rate (GFR) and blood flow to the liver (Ql) both vary from 
individual to individual

 Further assume that measured HTTK parameters have 30% coefficient of variation
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Jamei et al. (2009)
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Monte Carlo (MC) Approach to Variability
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Wetmore et al. (2012)
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Steady-State In Vitro-In Vivo 
Extrapolation (IVIVE)
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Steady-state Concentration (µM) = in vitro AC500

Median
Predicted Css

 The higher the predicted Css, the lower the oral equivalent dose, so the upper 95% predicted Css
from the MC has a lower oral equivalent dose

Lower 95%
Predicted Css

Upper 95%
Predicted Css
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HTTK Limitations

 Plasma binding assay (Fup)
• Assay often fails due to analytical chemistry sensitivity (Wetmore et al., 2012)
• Plasma protein concentration variability (Johnson et al. 2006, Israili et al. 2001)
• Albumin or AAG binding? (Routledge 1986)

 Hepatic Clearance (CLint)
• Ten donor pool in suspension for 2-4 h misses variability and low turnover compounds
• Isozyme abundances and activity: varies with age, ethnicity (at least) (Yasuda et al. 2008, 

Howgate et al. 2006, Johnson et al. 2006)
• Parent chemical depletion only

 Isozyme-specific data & modeling (Wetmore et al. 2014)
• Isozyme-specific metabolism assays not HT
• In silico predictions of isozyme-specific metabolism? Not easy!

– Existing data is mostly for pharmaceuticals
 Oral absorption

• 100% assumed, but may be very different
• In silico models not necessarily appropriate for environmental chemicals
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In vivo Predictive Ability and 
Domain of  Applicability

 In drug development, HTTK methods estimate therapeutic doses for 
clinical studies – predicted concentrations are typically on the order of 
values measured in clinical trials (Wang, 2010)

 For environmental compounds, there will be no clinical trials 

 Uncertainty must be well characterized ideally with rigorous statistical 
methodology
 We will use direct comparison to in vivo data in order to get an 

empirical estimate of our uncertainty
 Any approximations, omissions, or mistakes should work to increase 

the estimated uncertainty when evaluated systematically across 
chemicals
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R Package “httk”

 “httk” R Package for reverse dosimetry and PBTK
 543 chemicals to date
 100’s of additional chemicals being studied
 Pearce et al. documentation manuscript 

accepted at Journal of Statistical Software
 Vignettes (Caroline Ring) provide examples of 

how to use many functions

John Wambaugh, Robert Pearce, Caroline Ring, Jimena Davis, Nisha Sipes, R. Woodrow Setzer

https://cran.r-project.org/web/packages/httk/
Can access this from the R GUI: 
“Packages” then “Install Packages”

https://cran.r-project.org/web/packages/httk/
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Why Build Another PBTK Tool?
SimCYP ADMET Predictor 

/ GastroPlus
MEGen httk

Maker SimCYP Consortium / 
Certara

Simulations Plus UK Health and Safety 
Laboratory (Loizou)

US EPA

Availability License, but inexpensive 
for research

License, but inexpensive 
for research

Free:
http://xnet.hsl.gov.uk/mege
n

Free:
CRAN Repository

Population Variability 
Monte Carlo

Yes No No Yes

Batch Mode Yes Yes No Yes

Physiological Data Yes Yes Yes Yes

Chemical-Specific
Data Library

Clinical Drugs No No Pharma and ToxCast
Compounds: 443 PBTK, 
+100 steady-state only

Export Function No No Matlab and AcslX SBML and Jarnac

R Integration No No No Yes

Easy Reverse 
Dosimetry

Yes Yes No Yes

Future Proof XML No No Yes No

We want to do a statistical analysis (using R) for as many 
chemicals as possible
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Goals for HTTK

 In order to address greater numbers of chemicals we collect in vitro, high 
throughput toxicokinetic (HTTK) data

 The goal of HTTK is to provide a human dose context for in vitro 
concentrations from HTS

• This allows direct comparisons with exposure

 An R statistical package allows us to evaluate in vitro predictions two ways:

• We compare in vitro predictions and in vivo measurements

• We perform simulation studies to examine key assumptions
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What you can do with R 
Package “httk”

• Allows, one compartment, two-compartment, three-compartment, and PBTK 
modeling

• Allows conversion of in vitro concentration to in vivo doses
• Allows prediction of internal tissue concentrations from dose regimen (oral and 

intravenous)
• A peer-reviewed paper in the Journal of Staitstical software provides a how-to 

guide (Pearce et al., 2016)
• You can use the built in chemical library or add more chemical information 

(examples provided in JSS paper)
• You can load specific (older) versions of the package
• You can use specific demographics in the population simulator (v1.5 and later –

Ring et al.)
• Gender, age, weight, ethnicity, renal function

• You can control the built in random number generator to reproduce the same 
random sequence
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Steady State Concentration 
Examples

library(httk)

#Steady-state concentration (uM) for 1 mg/kg/day for 0.95 quantile for human for Acetochlor (published value):
calc_mc_css(chem.cas="34256-82-1",method="dr")

# Should produce error:
calc_mc_css(chem.name="34256-82-1",method="dr")

#Capitalization shouldn’t matter:
calc_mc_css(chem.name="acetochlor",method="dr")
calc_mc_css(chem.name="Acetochlor",method="dr")

# What’s going on?
help(calc_mc_css)

# What chemicals can I do?
get_cheminfo()
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Oral Equivalent Dose Examples

#State-state oral equivalent dose (mg/kg BW/day) to produce 0.1 uM serum concentration for human, 0.95 quantile, 
for Acetochlor (published value):
get_wetmore_oral_equiv(0.1,chem.cas="34256-82-1")

#State-state oral equivalent dose (mg/kg BW/day) to produce 0.1 uM serum concentration for human, 0.95 quantile, 
for Acetochlor (calculated value):
calc_mc_oral_equiv(0.1,chem.cas="34256-82-1",method="dr")

#State-state oral equivalent dose (mg/kg BW/day) to produce 0.1 uM serum concentration for human, 0.05, 0.5, and 
0.95 quantile, for Acetochlor (published values):
get_wetmore_oral_equiv(0.1,chem.cas="34256-82-1",which.quantile=c(0.05,0.5,0.95))

#State-state oral equivalent dose (mg/kg BW/day) to produce 0.1 uM serum concentration for human, 0.05, 0.5, and 
0.95 quantiles, for Acetochlor (calculated value):
calc_mc_oral_equiv(0.1,chem.cas="34256-82-1",which.quantile=c(0.05,0.5,0.95) ,method="dr")

#State-state oral equivalent dose (mg/kg BW/day) to produce 0.1 uM serum concentration for rat, 0.95 quantile, for 
Acetochlor (calculated value):
calc_mc_oral_equiv(0.1,chem.cas="34256-82-1",species="Rat",method="dr")
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Chemicals with HTTK Data

0 100 200 300 400 500 600

Existing Human data

Existing Rat data

Anticipated Human

Anticipated Rat

Chemicals with HTTK Data

Rotroff et al. 2010

Wetmore et al. 2012

Tonnelier et al. 2012

Wetmore et al. 2013

Wetmore et al. 2015

ToxCast/ExpoCast

Pharmaceutical Literature
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Interspecies Extrapolation 
Examples

#Steady-state concentration (uM) for 1 mg/kg/day for 0.95 quantile for human for Acetochlor (calculated value):
calc_mc_css(chem.cas="34256-82-1",method="dr"))

#Steady-state concentration (uM) for 1 mg/kg/day for 0.95 quantile for rat for Acetochlor (should produce errors since there is no 
published value, 0.5 quantile only):
get_wetmore_css(chem.cas="34256-82-1",species="Rat")

#Steady-state concentration (uM) for 1 mg/kg/day for 0.95 quantile for rat for Acetochlor (calculated value):
calc_mc_css(chem.cas="34256-82-1",species="Rat",method="dr"))

#Steady-state concentration (uM) for 1 mg/kg/day for 0.5 quantile for rat for Acetochlor (published value):
get_wetmore_css(chem.cas="34256-82-1",species="Rat",which.quantile=0.5)

#Steady-state concentration (uM) for 1 mg/kg/day for 0.5 quantile for rat for Acetochlor (calculated value):
calc_mc_css(chem.cas="34256-82-1",species="Rat",which.quantile=0.5,method="dr"))

#Steady-state concentration (uM) for 1 mg/kg/day for 0.95 quantile for mouse for Acetochlor (should produce error since there is no 
published value, human and rat only):
get_wetmore_css(chem.cas="34256-82-1",species="Mouse")

#Steady-state concentration (uM) for 1 mg/kg/day for 0.95 quantile for mouse for Acetochlor (calculated value):
calc_mc_css(chem.cas="34256-82-1",species ="Mouse",method="dr"))
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Help Files
help(add_chemtable)

Add a table of chemical information for use in making httk 
predictions.

Description
This function adds chemical-specific information to the table chem.physical_and_invitro.data. This 
table is queried by the model parameterization functions when attempting to parameterize a model, so 
adding sufficient data to this table allows additional chemicals to be modeled.
Usage
add_chemtable(new.table, data.list, current.table=NULL, reference=NULL,species=NULL, 
overwrite=F) 
Arguments

new.table Object of class data.frame containing one row per chemical, with each chemical minimally by described by a CAS 
number.

data.list This list identifies which properties are to be read from the table. Each item in the list should point to a column in 
the table new.table. Valid names in the list are: 'Compound', 'CAS', 'DSSTox.GSID' 'SMILES.desalt', 'Reference', 
'Species', 'MW', 'logP', 'pKa_Donor', 'pKa_Accept', 'logMA', 'Clint', 'Clint.pValue', 'Funbound.plasma', 'Fgutabs', 
'Rblood2plasma'. Note that Rblood2plasma (Ratio blood to plasma) is currently not used.

Every function has a help file
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A General Physiologically-based 
Toxicokinetic (PBTK) Model

• “httk” also includes a generic PBTK model
• Some tissues (e.g. arterial blood) are simple 

compartments, while others (e.g. kidney) are 
compound compartments consisting of separate 
blood and tissue sections with constant partitioning 
(i.e., tissue specific partition coefficients)

• Exposures are absorbed from reservoirs (gut lumen)
• Some specific tissues (lung, kidney, gut, and liver) are 

modeled explicitly, others (e.g. fat, brain, bones) are 
lumped into the “Rest of Body” compartment.

• Blood flows move the chemical throughout the body. 
The total blood flow to all tissues equals the cardiac 
output.

• The only ways chemicals “leaves” the body are 
through metabolism (change into a metabolite) in the 
liver or excretion by glomerular filtration into the 
proximal tubules of the kidney (which filter into the 
lumen of the kidney). 

Inhaled Gas

Qliver

Qgut

Qgut

Kidney Blood

Gut Blood

Gut Lumen

QGFR
Kidney Tissue

Liver Blood

Liver Tissue

Qrest

Lung Blood

Lung Tissue Qcardiac

Qmetab

Body Blood
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Qkidney

Arterial  BloodVe
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  B
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Basic PK Statistics Examples
library(httk)
#A Function to get PK summary statistics from the PBPK model:
help(calc_stats)
# 28 day human study (20 mg/kg/day) for Abamectin:
calc_stats(days=28,chem.name="bisphenol a", dose=20)

Human plasma concentrations returned in uM units.
AUC is area under plasma concentration curve in uM * days units with Rblood2plasma = 0.79 .
$AUC
[1] 44.82138
$peak
[1] 23.16455
$mean
[1] 1.600764

# Units default to µM but can use mg/L:
calc_stats(days=28,chem.name="bisphenol a", dose=20,output.units="mg/L")
# Same study in a mouse:
calc_stats(days=28,chem.name="bisphenol a", dose=20,species="mouse")
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Comparison Between httk and 
SimCYP
• In the Rotroff et al. (2010) and Wetmore 
et al. (2012,2013,2014,2015) papers 
SimCYP was used to predict distributions 
of Css from in vitro data

• We show that “httk” can reproduce 
the results from those publications 
for most chemicals using our 
implementation of Monte Carlo. 

• Any one chemical’s median and quantiles 
are connected by a dotted line.

• The RED assay for measuring protein binding fails in some cases because the amount of 
free chemical is below the limit of detection

• A default value of 0.5% free was used
• Now we use random draws from a uniform distribution from 0 to 1%. 

Wambaugh et al. (2015)
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Evaluating In Vitro PBTK 
Predictions with In Vivo Data

 PBTK predictions for the 
AUC (time integrated 
plasma concentration or 
Area Under the Curve)

 in vivo measurements 
from the literature for 
various treatments (dose 
and route) of rat. 

 Predictions are generally 
conservative – i.e., 
predicted AUC higher 
than measured

 Oral dose AUC ~6.4x 
higher than intravenous 
dose AUC

37Wambaugh et al. (2015)
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Analyzing New In Vivo Data (Rat)

 Oral and iv studies for 
26 ToxCast compounds

• Collaboration with 
NHEERL (Mike Hughes 
and Jane Ellen Simmons)

• Additional work by 
Research Triangle 
Institute (Tim Fennell)

 Can estimate
• Fraction absorbed
• Absorption Rate
• Elimination Rate
• Volume of Distribution

38
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Analyzing New In Vivo Data (Rat)

39

 Oral and iv studies for 
26 ToxCast compounds

• Collaboration with 
NHEERL (Mike Hughes 
and Jane Ellen Simmons)

• Additional work by 
Research Triangle 
Institute (Tim Fennell)

 Can estimate
• Fraction absorbed
• Absorption Rate
• Elimination Rate
• Volume of Distribution

Cyprotex is now measuring bioavailability (CACO2) for all HTTK chemicals
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Population simulator for 
HTTK

Correlated Monte 
Carlo sampling of 
physiological model 
parameters

• Body weight
• Tissue masses
• Tissue blood flows
• GFR (kidney)
• Hepatocellularity

Large, ongoing CDC survey of US 
population: demographic, body 
measures, medical exam, 
biomonitoring (health and exposure), …

Designed to be representative of US 
population according to census data

Data sets publicly available
(http://www.cdc.gov/nchs/nhanes.htm)

Source of data: 
CDC NHANES

Ring et al. (under revision)

http://www.cdc.gov/nchs/nhanes/nhanes_questionnaires.htm
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Population simulator for 
HTTK

Predict
physiological 
quantities

Tissue masses
Tissue blood flows
GFR (kidney 
function)
Hepatocellularity

Sample
NHANES 
quantities

Sex
Race/ethnicity
Age
Height
Weight
Serum creatinine

Regression equations 
from literature

(+ residual marginal 
variability) 

(Similar approach used in SimCYP [Jamei et al. 2009], GastroPlus, 
PopGen [McNally et al. 2014], P3M [Price et al. 2003], physB [Bosgra et al. 2012], etc.) Ring et al. (under revision)
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Generating demographic 
subgroups

 NHANES quantities sampled from appropriate conditional
distribution (given specifications)
• Physiological parameters predicted accordingly

User can specify…. Default if not specified
Age limits 0-79 years
Sex (# males, # females) NHANES proportions
Race/ethnicity (5 NHANES categories) NHANES proportions
BMI/weight categories NHANES proportions

Ring et al. (under revision)
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NHANES Demographic 
Examples 

library(httk)

# Oral equivalent (mg/kg/day) for in vitro activity of 1 µM for Acetochlor
calc_mc_oral_equiv(1,chem.cas="34256-82-1",method="dr")

# Oral equivalent (mg/kg/day) for NHANES “Mexican American” Population
calc_mc_oral_equiv(1,chem.cas="34256-82-1",method="dr", reths = "Mexican American")

# Oral equivalent (mg/kg/day) for NHANES “Mexican American” Population aged 18-25 years
calc_mc_oral_equiv(1,chem.cas="34256-82-1",method="dr",agelim_years=c(18,25),reths = 
"Mexican American")

# Probably too few individuals in NHANES for direct resampling (“dr”) so use virtual individuals 
(“vi”) resampling method:
calc_mc_oral_equiv(1,chem.cas="34256-82-1",method="vi",agelim_years=c(18,25),reths = 
"Mexican American")

Ring et al. (under revision)

Can also specify gender, weight categories, and kidney function
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Life-stage and Demographic 
Specific Predictions

• Wambaugh et al. (2014) predictions 
of exposure rate (mg/kg/day) for 
various demographic groups

• Can use HTTK to calculate margin 
between bioactivity and exposure for 
specific populations

Change in Risk

Change in Activity:Exposure Ratio

Ring et al. (under revision)
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Version history for “httk”

The publicly available R package contains code and data that has been part of peer-
reviewed publications (Old versions are archived)

• Version 1.1 accompanied “Toxicokinetic Triage for Environmental Chemicals” 
Wambaugh et al. (2015) Tox. Sci.

• Version 1.2 accompanied “httk: R Package for High-Throughput Toxicokinetics” 
Pearce et al., Journal of Statistical Software (in press)

• Version 1.3 accompanied “Incorporating High-Throughput Exposure Predictions 
with Dosimetry-Adjusted In Vitro Bioactivity to Inform Chemical Toxicity Testing” 
Wetmore et al., (2015) Tox. Sci. 

• Version 1.4 addressed comments for acceptance of Pearce et al. (in press)
• Version 1.5 accompanied “Identifying populations sensitive to environmental 

chemicals by simulating toxicokinetic variability,” Ring et al. (under review)
• Subsequent version numbers will be assigned as papers are accepted on:

• Revising PBPK tissue partitioning predictions (Pearce)
• Gestational model (Kapraun)
• Inhalation exposure (Evans and Pearce)
• New human and rat data from Cyprotex (Wambaugh and Wetmore)
• More flexible PBPK model (Pearce)

Lead programmer Robert Pearce
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Summary

 Toxicokinetics (TK) provides a bridge between HTS and HTE by 
predicting tissue concentrations due to exposure 

 HTTK methods developed for pharmaceuticals have been 
adapted to environmental testing

 A primary application of HTTK is “Reverse Dosimetry” or RTK
• Can infer daily doses that produce plasma concentrations 

equivalent to the bioactive concentrations, but:
 We must consider domain of applicability
 New R package “httk” freely available on CRAN allows 

statistical analyses
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