

Learning Boolean Networks from ToxCast High-Content Imaging Data

Todor Antonijevic

ORCID ID 0000-0002-0248-8412

The views expressed in this presentation are those of the author[s] and do not necessarily reflect the views or policies of the U.S. Environmental Protection Agency.

SEPA

I. Introduction

II. Methods:

- 1. Dataset
- 2. Data standardization, and Noise Threshold (z_0) .
- 3. Data Discretization.
- 4. Learning Boolean Functions and Construction of Boolean Networks (BNs).
- 5. Needleman-Wunsch (NW) optimal global alignment, and Error Estimation.
- 6. Coverage.

III. Results:

- 1. Discretized Trajectories and Total Perturbation.
- 2. Clustering of discretized trajectories, Error Estimation, and Coverage (first 10 BNs).
- 3. Learned BNs in case of Butachlor.

IV. Summary

\$EPA

I. Introduction

II. Methods:

- 1. Dataset
- 2. Data standardization, and Noise Threshold (z_0) .
- 3. Data Discretization.
- 4. Learning Boolean Functions and Construction of Boolean Networks (BNs).
- 5. Needleman-Wunsch (NW) optimal global alignment, and Error Estimation.
- 6. Coverage.

III. Results:

- 1. Discretized Trajectories and Total Perturbation.
- 2. Clustering of discretized trajectories, Error Estimation, and Coverage (first 10 BNs).
- 3. Learned BNs in case of Butachlor.

IV. Summary

Networks

SEPA Introduction

Krewski, Daniel, et al. "Toxicity testing in the 21st century: a vision and a strategy." Journal of Toxicology and Environmental Health, Part B 13.2-4 (2010): 51-138.

- "Tipping point" system threshold between adaptation and adversity.
- Boolean networks (BN) are logical models of integrated cellular response pathways
- Here we reconstruct simple BN using high-content imaging data to analyze cellular tipping points

5

\$EPA

I. Introduction

II. Methods:

- 1. Dataset
- **2.** Data standardization, and Noise Threshold (z_0) .
- 3. Data Discretization.
- 4. Learning Boolean Functions and Construction of Boolean Networks (BNs).
- 5. Needleman-Wunsch (NW) optimal global alignment, and Error Estimation.
- 6. Coverage.

III. Results:

- 1. Discretized Trajectories and Total Perturbation.
- 2. Clustering of discretized trajectories, Error Estimation, and Coverage (first 10 BNs).
- 3. Learned BNs in case of Butachlor.

IV. Summary

EPA

Dataset:

HCI data¹ were used to study the effect of 967 ToxCast chemicals on HepG2 cell states by monitoring:

- **10 endpoints** across
- multiple time points:

ToxCast I: 1, 24, and 72h, ToxCast II: 24 and 72h

10 concentrations (0.4 to 200µM).

1. Dataset - High Content Imaging (HCI)

• Image analysis and cell level features are conducted by Cyprotex Inc.

- The following cellular endpoints were quantified:
 - 1. phosphorylated p53 / p53 activation (p53),
 - 2. phosphorylated c-Jun/c-Jun activation (SK),
 - 3. phospho-Histone H2A.x (OS),
 - 4. phospho-Histone H3 / mitotic arrest (MA),
 - 5. phosphorylated α -tubulin / microtubules (**Mt**),
 - 6. mitochondrial membrane potential (MMP),
 - 7. mitochondrial mass (MM),
 - 8. cell cycle arrest (CCA),
 - 9. nuclear size (NS), and
 - 10. cell number (CN).

2. Data standardization, and Noise Threshold (z_0) .

Data standardization:

 $z = \frac{x - x^*}{\sigma_x}$

- $x \log_2$ transformed fold change
- x^* the median value
- σ_x the standard deviation

Noise Threshold z_0 :

SEPA 3. Data Discretization.

Motivation: Increase of p53 causes decrease in OS, CCA or CN

SEPA 3. Data Discretization.

Endpoint Trend Assessment: Calculate an average perturbation value

SEPA 3. Data Discretization.

Endpoint Trend Assessment: Calculate an average perturbation value

\$EPA

4. Learning Boolean Functions and Construction of Boolean Networks (BNs).

SEPA

4. Learning Boolean Functions and Construction of Boolean Networks (BNs).

\$EPA

4. Learning Boolean Functions and Construction of Boolean Networks (BNs).

SEPA

4. Learning Boolean Functions and Construction of Boolean Networks (BNs).

Discretized Trajectory of HepG2 after application of Butachlor at 200uM

Set EPA

4. Learning Boolean Functions and Construction of Boolean Networks (BNs).

Discretized Trajectory of HepG2 after application of Butachlor at 200uM

Set EPA

4. Learning Boolean Functions and Construction of Boolean Networks (BNs).

Discretized Trajectory of HepG2 after application of Butachlor at 200uM

5. Needleman–Wunsch optimal global alignment, and Error Estimation

Error in BN prediction was estimated as the sum of the Hamming distances* between observed and predicted discretized trajectories.

* The Hamming distance between two states is the number of positions at which the states are different

EPA 6. Coverage

I. Error Estimation is performed:

- 1. For each trajectory During this step we split BNs with the lowest error ("the baseline error") from BNs with higher error.
- Across all trajectories During this analysis we estimated the number of trajectories predicted by each BN with an accuracy ≤ to the baseline error ("coverage").

	trajectories						
	1	2	3	4	5	6	7
BN1	1	1	1	0	1	0	0
BN2	0	0	0	1	0	1	0
BN3	0	0	1	0	0	0	1

1 – BN covers traj.

0 – BN does not cover traj.

BN1 Coverage = 4 traj.

BN2 Coverage = 2 traj.

BN3 Coverage = 2 traj.

II. The smallest set of BNs that covers all trajectories was inferred by selecting BNs with the largest coverage.

\$EPA

I. Introduction

II. Methods:

- 1. Dataset
- 2. Data standardization, and Noise Threshold (z_0) .
- 3. Data Discretization.
- 4. Learning Boolean Functions and Construction of Boolean Networks (BNs).
- 5. Needleman-Wunsch (NW) optimal global alignment, and Error Estimation.
- 6. Coverage.

III. Results:

- **1.** Discretized Trajectories and Total Perturbation.
- 2. Clustering of discretized trajectories, Error Estimation, and Coverage (first 10 BNs).
- **3. Learned BNs in case of Butachlor.**

IV. Summary

1. Discretized Trajectories and Total Perturbation

Example: Butachlor - one of the most commonly used herbicides in agriculture.

2. Clustering of discretized trajectories, Error Estimation, and Coverage

Clustering

2. Clustering of discretized trajectories, Error Estimation, and Coverage

time [h]

2. Clustering of discretized trajectories, Error Estimation, and Coverage

3. Learned BNs in case of Butachlor

Butachlor 200µM

3. Learned BNs in case of Butachlor

SEPA

SEPA

I. Introduction

II. Methods:

- 1. Dataset
- 2. Data standardization, and Noise Threshold (z_0) .
- 3. Data Discretization.
- 4. Learning Boolean Functions and Construction of Boolean Networks (BNs).
- 5. Needleman-Wunsch (NW) optimal global alignment, and Error Estimation.
- 6. Coverage.

III. Results:

- 1. Discretized Trajectories and Total Perturbation.
- 2. Clustering of discretized trajectories, Error Estimation, and Coverage (first 10 BNs).
- 3. Learned BNs in case of Butachlor.

IV. Summary

- 1. Response of HepG2 cells to concentration dependent chemical treatment shows three temporal trends: 1) no-effect, 2) adaptation, and 3) lack of recovery.
- 2. We have found that 573 BNs are needed to cover all trajectories.
- 3. BN with the greatest coverage explained 1,489 trajectories. These trajectories were produced by low treatment concentrations and we believe they represent cellular recovery processes.
- 4. Trajectories produced by high concentration treatments, that resulted in cell death, were predicted by a different set of BNs.
- 5. Our findings illustrate the utility of BNs that differentiate cellular programs involved in adaptation versus injury.

Thank you