
# **Transportation Data Science at NREL**

Adam Duran, Kenneth Kelly, Caleb Phillips

5/22/2018

NREL is a national laboratory of the U.S. Department of Energy, Office of Energy Efficiency and Renewable Energy, operated by the Alliance for Sustainable Energy, LLC.

# Why do you need a Big Data factory?

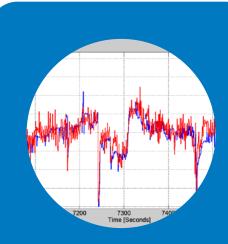






Do you have big data?

Volume – how big?
Variety – what type and nature?
Velocity – how fast does it arrive?
Variability – are their inconsistencies?
Veracity – challenging assure quality?


Big data and machine learning challenges exist **across all industries** 



Do you need a truck?



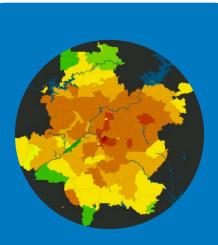
## Managing Big Data – Transportation Data Sources, Types, and Volumes



## Timeseries

- 1 Hz CAN/OBD and Instrument Data
- Fuel Rates
- Vehicle Speed
- Engine and Emissions Parameters




## Geospatial

- 1Hz GPS Data
- Latitude
- Longitude
- Elevation
- Heading



## Categorical

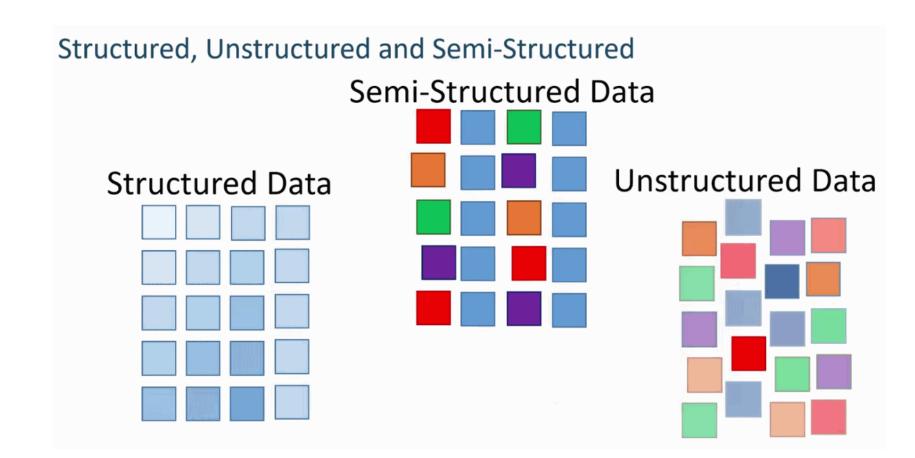
- Vehicle Classifiers for Sorting Results
- Weight Class
- Transmission
- Fuel
- Body



## Supplemental

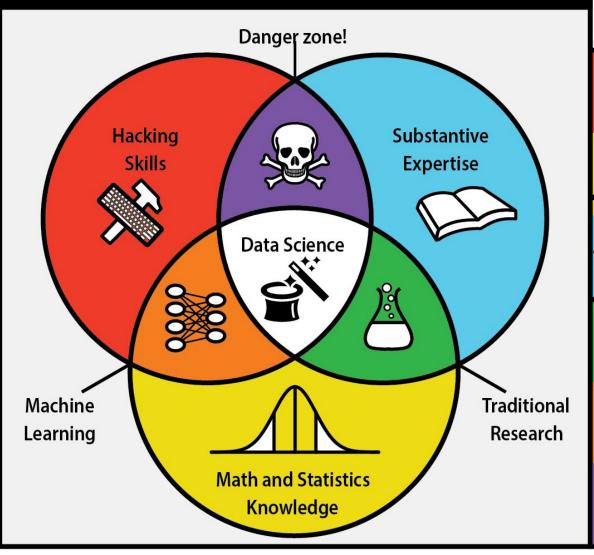
- Road Networks
- Infrastructure
- Solar Exposure
- Climate and Temperature

## Structured:


 Traditional Databases (SQL)

## **Semi-Structured:**

- XML
- JSON


## **Unstructured:**

- Text
- Images
- Audio

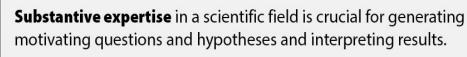


## What do we do with all of this data? Enter the Data Scientist!

## DATA SCIENCE SKILLSET






Data science, due to its interdisciplinary nature, requires an intersection of abilities: **hacking skills**, **math and statistics knowledge**, and **substantive expertise** in a field of science.



**Hacking skills** are necessary for working with massive amounts of electronic data that must be acquired, cleaned, and manipulated.



**Math and statistics knowledge** allows a data scientist to choose appropriate methods and tools in order to extract insight from data.





**Traditional research** lies at the intersection of knowledge of math and statistics with substantive expertise in a scientific field.



**Machine learning** stems from combining hacking skills with math and statistics knowledge, but does not require scientific motivation.



**Danger zone!** Hacking skills combined with substantive scientific expertise without rigorous methods can beget incorrect analyses.

Image - http://berkeleysciencereview.com/how-to-become-a-data-scientist-before-you-graduate/

# NREL Computational Sciences / ESIF

111

#### Computational Sciences Center

- HPC Systems and Operations
- Data Analysis and Visualization
- Simulation and Optimization
- Algorithms and Fluid
   Dynamics

# ESIF High Performance Computing (HPC) Center



## NREL Data Resource Landscape

ØMQ

#### Established

- Peregrine
  - Parallel File system
  - Mass Storage
  - Visualization



·ŀu·s·t·r·e·

File System



- Relational Database Servers
- Timeseries Cluster
- ESIF Data Repository
- Data Relays



express node®

- APIs & Web services
- Invites external collaborators



NATIONAL RENEWABLE ENERGY LABORATORY

## **NREL Data Resource Landscape**

#### **Established**

- Peregrine
  - Parallel File system
  - Mass Storage
  - Visualization



·l·u·s·t·r·e· File System

- Hitachi Storage
- **Relational Database Servers**
- **Timeseries Cluster**
- ESIF Data Repository
- Data Relays



ØMQ

PostgreSQL

express

nodes



- Invites external collaborators

#### Emerging

Sparkplug 

- **Openstack**
- Spark
- Hadoop
- Kafka
- **Scalable Attached** (Object) Storage
- Peregrine 2 (August!) ceph
  - HPC -> Big Data
- Scalable Relational Databases





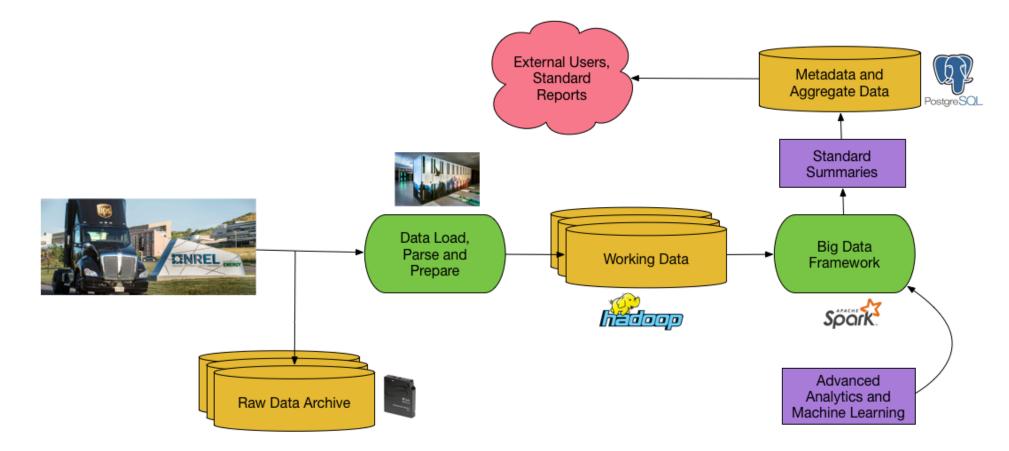




# **Cloud Compatibility Allows Arbitrary Scalability**

- Amazon and Competitors offer Hundreds of Services
- Increasing adoption by large companies
- NREL approach: cloud-replicable infrastructure
- Key services:
  - S3 Scalable Object-based Storage
  - EC2 Scalable Compute
  - Lambda Pay per 'function' execution
  - Marketplace Gateway -- Monetize data access

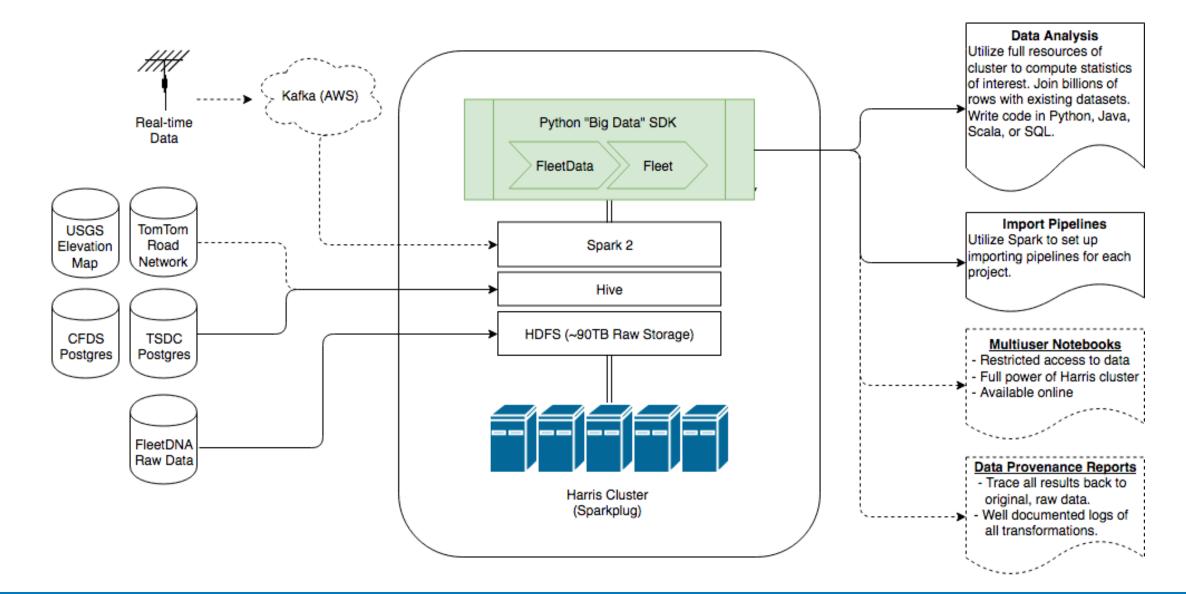












## **Big IIOT Data – For transportation systems**



- Fully compatible with cloud services industry standard technology
- Can process streaming (high velocity) or offline (high volume) data
- Designed for petabyte-scale (or bigger) datasets]
- Can support traditional HPC or Big-Data use cases
- Promotes collaboration with external users



## Current Status: 'Big Data SDK' for Transportation Data

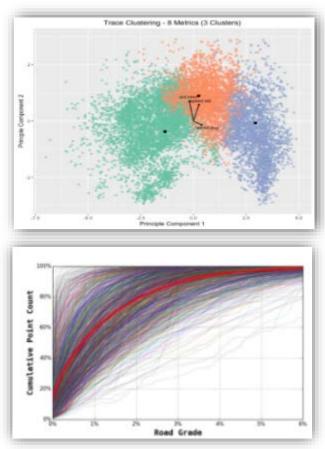




# 'Big Data SDK' for Transportation Data

| Query - master on jperrsau@localhost:5432 *     File Edit Query Favourites Macros View Help     Image: Solution Graphical Query Builder     Previous queries     V        Select count (gpsspeed), avg (gpsspeed) from combined_gps_points.combined_gps_points; |                                                           |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |                                                                                                                            |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |                                                                            | <pre>hive&gt; select count(gpsspeed), avg(gpsspeed) from tsdc_combined_gps_points_v5;<br/>Query ID = jperrsau_20180202101248_34ce3754-cc4c-4297-84d6-99f276fbc5f5<br/>Total jobs = 1<br/>Launching Job 1 out of 1<br/>Status: Running (Executing on YARN cluster with App id application_1516207399240_0128)<br/></pre> |                           |                                  |                                              |                    |           |        |        |  |  |
|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----------------------------------------------------------|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|----------------------------------------------------------------------------------------------------------------------------|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|----------------------------------------------------------------------------|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|---------------------------|----------------------------------|----------------------------------------------|--------------------|-----------|--------|--------|--|--|
| Output pane X                                                                                                                                                                                                                                                   |                                                           |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |                                                                                                                            |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |                                                                            | 2                                                                                                                                                                                                                                                                                                                       |                           | 40<br>1                          | 40<br>1                                      | 0<br>0             | 0<br>0    | 0<br>0 | 0<br>0 |  |  |
| Data Output         Explain         Messages         History           count         avg         double precision         1           1         304052425         47.4307721246939         0K.           OK.         Unix         Ln 1, Col 84, Ch 84           | df<br>fro<br>ro<br>CP<br>Wa                               | om lib.projects.pac<br>= Paccar().datafra<br>.printSchema()                                                                                                                                                                                                                                                                                                                                                                                                                                       | <pre>me.cache lable = 1 lable = 1 ullable = 1 ullable = lable = tru (nullabl (nullabl llable = lable = tru s, sys: 1</pre> | ()<br>true)<br>true)<br>= true)<br>= true)<br>true)<br>ble = true)<br>true)<br>true)<br>= true)<br>true)<br>= true)<br>true)<br>= true)<br>true)<br>= true)<br>true)<br>= true)<br>= true + true)<br>= true + | 172 ma                                                                     |                                                                                                                                                                                                                                                                                                                         |                           |                                  | ⇒>)<br>s)                                    |                    | APSED TIM |        |        |  |  |
| Primary Interface:                                                                                                                                                                                                                                              | ro<br>ve<br>pr<br>Th<br>CP<br>Wa<br>S<br>In [4]: fr<br>pa | <pre>#ttime from pyspark.sql.functions import lit, sum rows = df.count() vehicles = df.groupsy("vdir").agg(sum(lit(1))).count() print "There are (0) rows and (1) vehicles.".format(rows, vehicles) There are 5221641 rows and 12 vehicles. CPU times: user 2.13 ms, sys: 4.8 ms, total: 6.94 ms Wall time: 17.5 s Speed Calcs using Fleet class from lib.fleet import Fleet paccar_fleet = Fleet(sqlContext, df=df, metadata=False) display( paccar_fleet.trip_speed_calcs().toPandas() ) </pre> |                                                                                                                            |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |                                                                            |                                                                                                                                                                                                                                                                                                                         |                           |                                  |                                              | Or, if you prefer: |           |        |        |  |  |
| e python                                                                                                                                                                                                                                                        | 1                                                         | vdir         avg_driving_speed           51         87.152345           54         75.654231           34         5.799703           35         94.944577                                                                                                                                                                                                                                                                                                                                         | max_speed<br>99.992<br>99.964<br>8.0938<br>99.992                                                                          | percent_zero         driving_sp           50.466242         28.405015           97.990223         18.083997                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | peed_standard_deviation<br>27.987210<br>28.694433<br>2.281908<br>24.153895 | 0.223395 141.<br>0.226294 126                                                                                                                                                                                                                                                                                           | 475453 14.<br>129555 100. | 369828 0<br>093510 0<br>000000 5 | 0.070547<br>0.083974<br>1.726789<br>0.056571 |                    |           | R      |        |  |  |

NATIONAL RENEWABLE ENERGY LABORATORY


## Big Data Applications – Smart Classification – GHG Phase 2

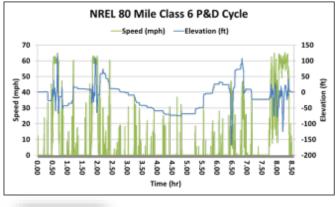
#### Scientific Approach & Accomplishment

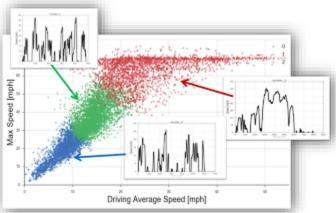
- NREL Fleet DNA data and analytic expertise provided information crucial to EPA's development of Phase II GHG and fuel efficiency standards for medium- and heavy-duty vehicles.
- NREL segmented vocational vehicle drive-cycle characteristics into multi-dimensional operating groups—including urban, mixed urban, and highway driving conditions—to develop a series of transient drive cycles with weighting factors representative of the acceleration rates, speed distributions, and idle times seen in real-world commercial vehicle driving.
- NREL applied map-matching techniques with USGS elevation data and then weighted the profiles using freight activity data.
- Statistically representative highway segments were identified for on-road testing, and road grade profiles were incorporated into EPA certification cycles.

#### Significance & Impact

• Analysis of Fleet DNA vocational vehicle data helped EPA ensure Phase II GHG regulations are more representative of real-world driving conditions.




This work tapped into Fleet DNA data, fused with national road network and freight activity data using NREL's Peregrine high-performance computing system.


#### Scientific Approach & Accomplishment

- Leveraging Fleet DNA data to characterize real-world duty cycles from urban delivery vehicles, NREL applied the kmedioid clustering algorithm to segment in-use driving profiles into operational modes and developed representative drive cycles for various modes using the DRIVE tool.
- NREL developed analytical methods to incorporate other parameters, such as road grade, idle time, and key status into the drive cycles.
- NREL's drive cycles are being used to size drivetrain components and optimize energy storage control strategies to meet performance requirements and validate performance relative to program objectives.

#### Significance & Impact

• This work was conducted as part of two industry partnerships under DOE FOAs led by *Cummins and Robert Bosch* to develop commercially viable, range-extended EVs for urban delivery applications targeting a 50% efficiency improvement.

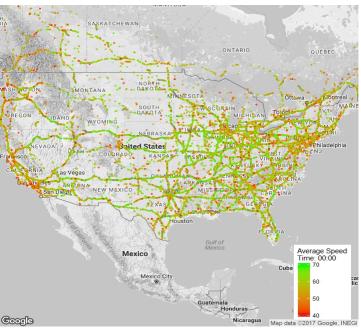




NREL-developed representative drive cycles are used by **Cummins and Bosch** in powertrain optimization and performance evaluations.

# Big Data Applications – Forecasting – National Scale Platooning Potential

### Scientific Approach & Accomplishment


- NREL analyzed fuel-savings data from six independent platooning studies conducted between 2013 and 2016 with Class 8 tractor trailers, including four independent track test studies, wind tunnel results from LLNL, and CFD simulations from Denso.
- NREL followed up track testing efforts with large scale (50k+ vehicles) evaluating real world potential for platooning on US roadways.

### Significance & Impact

- NREL evaluation and analysis have characterized platooning performance under a range of speeds, loads, and following distances, including reduced benefits at very close following distances.
- NREL platooning data and analysis are being used in an ARPAe NEXTCAR project with Purdue, Cummins, and Peloton to develop next-generation adaptive platooning technologies and in other research efforts at LLNL, LBNL, and FHWA.



*Platooning reduces aerodynamic drag by decreasing the driving distance between vehicles.* 

