APPENDIX B

I. EXTRACTION OF MCPP FROM SOIL

- A. Weigh 50.0 grams of processed soil into 250 ml centrifuge bottle.
- B. Add stir bar and 200 ml of a 50/50 ethanol/deionized water solution to centrifuge bottle. Cap centrifuge bottle and stir for 1/2 hour.
- C. Centrifuge for 10 minutes at 2000 rpm.
- D. Decant supernatant into labelled 500 ml separatory funnel.
- E. Prepare 100 ml of 50/50 ethenol-deionized water solution and add approximately for ml to centrifuge bottle. Using glass stir rod, loosen soil. Add remaining portion of ethenol-deionized water solution rinsing stir rod thoroughly.
- P. Stir for approximately 30 seconds.
- G. Centrifuge for 10 minutes at 2000 rpm.
- H. Decant supernatant into separatory funnel.
- Add 1.0 ml of concentrated hydrochloric acid and 100 ml of chloroform to the separatory funnel.
- J. Swirl separatory funnel for approximately 1 minute, releasing pressure occasionally.
- K. Allow interface to form. Swirl occasionally to break large bubbles.
- L. Weigh 25 grams of anhydrous sodium sulfate and place on coarse fritted glass filter. Place filter on top of a 500 ml evaporating flask.
- M. Remove chloroform portion from separatory funnel allowing it to filter through the sodium sulfate layer and the course fritted filter.
- N. Add 50 ml chloroform to separatory funnel. Swirl for approximately 1 minute releasing pressure occasionally.
- O. Allow interface to form. Swirl occasionally to break large bubbles.
- P. Remove chloroform portion allowing it to filter through the sodium sulfate layer and the coarse fritted filter.
- Q. Using a pasteur pipet, rinse the coarse fritted filter with approximately 50 ml chloroform.
- R. Place evaporating flask on the rotovac at 40C and evaporate to dryness under vacuum.
- S. Add 5.0 ml mobile phase to evaporating flask to dissolve residue. Transfer to a 5 ml volumetric flask using a pasteur pipet. Do not bring volumetric flask to volume.

II. INSTRUMENTS AND EQUIPMENT

- A. Tracor 995 Chromatographic Pump
- B. Tracor 970A Variable Wavelength Detector
- C. Varian 9176 Recorder
- D. Z Module with C-18 cartridge, Waters #85721
- E. 100 µl injection Loop

III. REAGENTS

- A. Deionized Water
- B. Ethanol, Dehydrated, 200 Proof, U.S. Industrial Chemicals Co.
- C. Chloroform (HPLC), Mallinckrodt
- D. Hydrochloric Acid, J.T. Baker Chemical Co.
- E. Sodium Sulfate, Granular Anhydrous, Mailinckrodt
- F. Acetonitrile (HPLC), American Burdick and Jackson
- G. Glacial Acetic Acid, J.T. Baker Chemical Co.

IV. LIQUID CHROMATOGRAPHIC UNIT

A. Parameters

- 1. Flow: 2.0 ml/min
- 2. Wavelength: 280 nm
- 3. Absorbance: 0.04 to 0.005 AUFS
- 4. Injection Volume: 100 µl

B. Mobile Phase - Make Fresh Daily

- Measure 370 ml of acetonitrile in a 500 ml graduated cylinder and transfer to a 1000 ml Erlenmeyer flask.
- Add deionized water to 1000 ml.
- 3. Add 10 ml of glacial acetic acid to the above solution.
- Add stir bar and thoroughly mix.
- 5. Degas solution using a medium fritted glass filter.

Research Report, Analytical 86:11 : Project: WIL-A3001 Page 27

 With the conditions listed above, the MCPP peak was eluted at a retention time of 10 to 12 minutes.

V. PREPARATION OF STANDARDS

- A. Make a primary standard solution by weighing out approximately 12 mg MECOPROP into a 10 ml volumetric flask. Dilute to volume with mobile phase.
- B. Make a secondary standard by pipetting 1.0 ml of the primary standard solution into a 25 ml volumetric flask using the positive displacement pipet. Dilute to volume with mobile phase. Approximate Concentration: 50 µg/ml.
- C. Make working standards by diluting appropriate aliquots of the secondary standard with mobile phase. Approximate concentrations: 1, 5 and 10 µg/ml.

VI. CALCULATIONS

The concentration of MCPP was calculated for each sub-sample using the following equation:

cone in ppm = (h-unk/h-std) x (cone std in µg/mi) X D
(C) X (dry weight of soil in grams)

h-unk = peak height of unknown

h-std = average peak height of standard

D = dilution factor

C = correction factor determined by fortified control soil sample

The dry weight of soil will be calculated using a factor obtained by moisture determination.