Facility Name	Targa Mont Belvi	eu		
NPDES Permit Number	TX0002887		Outfall Number	001
Proposed Critical Dilution*	8	_	_	

*Critical Dilution in draft permit, do not use % sign.

Enter data in yellow shaded cells only. Fifty percent should be entered as 50, not 50%.

Test Data				_ J CLO II SHUCE	_ componij. F	nty percent shoul		
Data (mm/sauay)	Lathal NOEC	VERTEBRATE Sublethal NOEC	Lethal TU	Sublethal TII	INVERTEBRATE Lethal NOEC Sublethal NOEC Lethal TU Sublethal T			Sublethal TU
Date (mm/yyyy) Jun-13	53	53		1.89	Letilal NOEC		2.50	
Sep-13	53	53	1.89	1.89	23	17	4.35	5.88
Dec-13	53	53	1.89	1.89	53	53	1.89	1.89
Dec-13	53	53	1.89	1.89	40	23	2.50	4.35
Mar-14	53	53	1.89	1.89	30	30	3.33	3.33
Jun-14	53	53	1.89	1.89	30	17	3.33	5.88
Jun-14	53	53	1.89	1.89	53	53	1.89	1.89
Sep-14	53	53	1.89	1.89	40	40	2.50	2.50
Sep-14	53	53	1.89	1.89	17	17	5.88	5.88
Dec-14	53	40	1.89	2.50	17	17	5.88	5.88
Dec-14	30	23	3.33	4.35	17	17	5.88	5.88
Mar-15	23	17	4.35	5.88	23	23	4.35	4.35
Jun-15	53	53	1.89	1.89	23	23	4.35	
Sep-15 Dec-15	53 53	53 53	1.89 1.89	1.89 1.89	53	40 53	2.50 1.89	2.50 1.89
Mar-16	11			9.09	11	11	9.09	9.09
Jun-16	11			9.09	11	11	9.09	
Sep-16	11	11		9.09	11	11	9.09	9.09
Dec-16	11	11		9.09	11	11	9.09	9.09
Mar-17	11			9.09	11	11	9.09	9.09
Jun-17	11	11	9.09	9.09	11	11	9.09	9.09
Sep-17	11	11	9.09	9.09	11	11	9.09	9.09
Dec-17	11	11	9.09	9.09	11	11	9.09	9.09
Mar-18	11	11	9.09	9.09	11	11	9.09	9.09
Jun-18								
								
	11	11	9.09	9.09	. 11	11	9.09	9.09
ount			24	24			24	
Iean			4.751	4.883			5.618	
td. Dev.			3.479	3.452			2.983	2.862
CV			0.7	0.7	ļ		0.5	0.5
PMF			1.4	1.4	I		1.3	1.3
.1 1411		10.5		e Potential A	ccentance C	'riteria	1.3	1.3
Zamtahmata I a	thal						WET mon	tomina hut no l
/ertebrate Le	unai	1.018	no keaso	madie Poten	uai exists. F	eriiii requires	WEI MON	toring, but no
ertebrate Su	blethal	1.018	No Reaso	onable Poten	tial exists. F	Permit requires	WET moni	toring, but no
nvertebrate L	_ethal	0.945	No Reaso	onable Poten	tial exists. F	Permit requires	WET moni	toring, but no
nvertebrate S	Sublethal	0.945454545	No Reaso	onable Poten	tial exists. F	Permit requires	WET moni	toring, but no

Facility Name NPDES Permit Number	Targa M TX00023	eu		Outfall Number	r 001	
Proposed Critical Dilution*	8		_			,
	*Critical Dilution in draft permit, do not use % sign.					
m . m .		Enter data in	n yellow shade	d cells only. Fi	fty percent should be entered	l as 50, not 50%.
Test Data						
	VERTEBRATE				INVERTEBRATE	
Date (mm/yyyy) Lethal NOEC	Sublethal NOEC	Lethal TU	Sublethal TU	Lethal NOEC	Sublethal NOEC Lethal TU	Sublethal TU

Determining "Reasonable Potential" for Excursions Above Ambient Criteria Using Effluent Data Only

EPA recommends finding that a permittee has "reasonable potential" to exceed a receiving water quality standard if it cannot be demonstrated with a high confidence level that the upper bound of the lognormal distribution of effluent concentrations is below the receiving water criteria at specified low-flow conditions.

- **Step 1** Determine the number of total observations ("n") for a particular set of effluent data (concentration or toxic units [TUs]), and determine the highest value from that data set.
- Step 2 Determine the coefficient of variation for the data set. For a data set where n<10, the coefficient of variation (CV) is estimated to equal 0.6, or the CV is calculated from data obtained from a discharger. For a data set where n>0, the CV is calculate as standard deviation/mean. For less than 10 items of data, the uncertainty in the CV is too large to calculate a standard deviation or mean with sufficient confidence.
- **Step 3** Determine the appropriate ratio from the table below.
- **Step 4** Multiply the highest value from a data set by the value from the table below. Use this value with the appropriate dilution to project a maximum receiving water concentration (RWC).
- Step 5 Compare the projected maximum RWC to the applicable standard (criteria maximum concentration, criteria continuous concentration [CCC], or reference ambient concentration). EPA recommends that permitting authorities find reasonable potential when the projected RWC is greater than an ambient criterion.

Determining "Reasonable Potential" for Excursions Above Ambient Criteria Using Effluent Data Only

EPA recommends finding that a permittee has "reasonable potential" to exceed a receiving water