		Rea	sonable	Potentia	l Analyz	er		
Facility Name					•			
NPDES Permit Number		TX00028	TX0002887			Outfa	all Number	003
Proposed Criti	cal Dilution*	9						
					permit, do not			
Test Data			Enter data ii	n yellow shade	d cells only. Fi	ifty percent shoul	d be entered	as 50, not 50%.
Test Data		VERTEBRATE				INVERTEBRATI	E.	
Date (mm/yyyy)	Lethal NOEC	Sublethal NOEC	Lethal TU	Sublethal TU	Lethal NOEC	Sublethal NOEC		Sublethal TU
all data is from	Ectilar 110EC	Sucrema TOBE	Leanur Te	Subjection 10	Ectital 110EC	Subjection 140EC	Leurar Te	Bubiethar Te
103 passing at								
11%								
	0	0	#DIV/0!	#DIV/0!	0	0	#DIV/0!	#DIV/0!
Count			0				0	0
Mean			#DIV/0!	#DIV/0!			#DIV/0!	#DIV/0!
Std. Dev.			#DIV/0!	#DIV/0!			#DIV/0!	#DIV/0!
CV			0.6	0.6			0.6	0.6
RPMF			6.2	6.2	1	ı	6.2	6.2
KI WII		11 111			l Acceptance C	riteria l	0.2	0.2
Vertebrate Le	thal	#DIV/0!	#DIV/0!	e i otenna i	ecceptance C	inciia		
, cricorate Le	uiai	πD11/U:	J "DI V/O:					
Vertebrate Su	blethal	#DIV/0!	#DIV/0!					
Invertebrate L	ethal	#DIV/0!	#DIV/0!					

#DIV/0!

#DIV/0!

Invertebrate Sublethal

Facility Name				, in the second second								
NPDES Permit Number	TX0002887				Outfall Number 003							
Proposed Critical Dilution*	9		_									
*Critical Dilution in draft permit, do not use % sign. Enter data in yellow shaded cells only. Fifty percent should be entered as 50, not 50%.												
Test Data												
	VERTEBRATE				INVERTEBRATE							
Date (mm/yyyy) Lethal NOEC	Sublethal NOEC	Lethal TU	Sublethal TU	Lethal NOEC	Sublethal NOEC Lethal TU	Sublethal TU						

Determining "Reasonable Potential" for Excursions Above Ambient Criteria Using Effluent Data Only

EPA recommends finding that a permittee has "reasonable potential" to exceed a receiving water quality standard if it cannot be demonstrated with a high confidence level that the upper bound of the lognormal distribution of effluent concentrations is below the receiving water criteria at specified low-flow conditions.

- **Step 1** Determine the number of total observations ("n") for a particular set of effluent data (concentration or toxic units [TUs]), and determine the highest value from that data set.
- Step 2 Determine the coefficient of variation for the data set. For a data set where n<10, the coefficient of variation (CV) is estimated to equal 0.6, or the CV is calculated from data obtained from a discharger. For a data set where n>0, the CV is calculate as standard deviation/mean. For less than 10 items of data, the uncertainty in the CV is too large to calculate a standard deviation or mean with sufficient confidence.
- **Step 3** Determine the appropriate ratio from the table below.
- **Step 4** Multiply the highest value from a data set by the value from the table below. Use this value with the appropriate dilution to project a maximum receiving water concentration (RWC).
- Step 5 Compare the projected maximum RWC to the applicable standard (criteria maximum concentration, criteria continuous concentration [CCC], or reference ambient concentration). EPA recommends that permitting authorities find reasonable potential when the projected RWC is greater than an ambient criterion.

Determining "Reasonable Potential" for Excursions Above Ambient Criteria Using Effluent Data Only

EPA recommends finding that a permittee has "reasonable potential" to exceed a receiving water quality standard if it cannot be demonstrated with a high confidence level that the upper bound of