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1.0 Overview 
The U.S. Environmental Protection Agency (EPA) Benchmark Dose Software (BMDS) 
was developed as a tool to facilitate the application of benchmark dose (BMD) methods 
to EPA hazardous pollutant risk assessments. This user guide provides instruction on 
how to use the BMDS but is not intended to address or replace EPA BMD guidance. 
However, every attempt has been made to make this software consistent with EPA 
guidance, including the Risk Assessment Forum (RAF) Benchmark Dose Technical 
Guidance Document. (U.S. EPA, 2012). 

1.1 What is BMDS 
BMDS is an application that facilitates dose-response modeling. BMDS models are 
currently accessible via an Excel-based user interface. 

1.1.1 Dose-Response Modeling 
Dose-response modeling is a technique, often used in toxicology and risk assessment, 
for quantitatively relating exposure (the dose) to a biological outcome (the response). It 
may be thought of as an elaborate form of regression, which is the statistical technique 
used to explore or represent the relationship(s) between two (or more) variables. In the 
dose-response context, the dose term (e.g., mg of chemical per kg body weight per day) 
is most often viewed as the “cause” of the response (e.g., presence of a tumor or other 
manifestation of disease or a measure of the weight of some organ that might be 
susceptible to the toxic effects of the exposure). 

BMDS collects together, and provides easy access to, numerous dose-response models 
that the user may select from and/or compare, to make predictions about the quantitative 
relationship between dose and response. One specific focus of this software is the 
estimation of a benchmark dose (BMD), including bounds (e.g., 95% confidence 
intervals) on such estimates. 

The BMD is a dose estimated to produce a response level of a defined (benchmark) 
magnitude. The online BMDS Glossary defines BMD as follows: 

An exposure due to a dose of a substance associated with a specified low incidence 
of risk, generally in the range of 1% to 10%, of a health effect; or the dose associated 
with a specified measure or change of a biological effect. 

1.1.2 Types of Responses Modeled 
One other key aspect of dose-response modeling is that the models, statistical 
assumptions, and techniques that it uses depend on the type of response under 
consideration. 

For BMDS, as reflected many times over in this user guide, the distinctions that are 
made, i.e., for which separate and distinct modeling approaches are applied, can be 
categorized with respect to the following three types of response: continuous endpoints, 
dichotomous endpoints, and nested dichotomous endpoints. 

https://www.epa.gov/risk/benchmark-dose-technical-guidance
https://www.epa.gov/risk/benchmark-dose-technical-guidance
https://hero.epa.gov/hero/index.cfm?action=search.view&reference_id=1239433
https://ofmpub.epa.gov/sor_internet/registry/termreg/searchandretrieve/glossariesandkeywordlists/search.do?details=&vocabName=BMDS%20Glossary&uid=1821254&taxonomyName=BMDS%20Glossaryhttp://ofmpub.epa.gov/sor_internet/registry/termreg/searchandretrieve/glossariesandkeywordlists/search.do?details=&vocabName=BMDS%20Glossary&uid=1821254&taxonomyName=BMDS%20Glossary
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The key features of those response (endpoint) types are as follows: 
• Continuous Endpoint: the response is measured on a continuous scale, so its 

valid values are real numbers (often restricted to positive values, but not always). 
Organ weight, body weight, concentration levels of biological markers — these 
are all examples of continuous endpoints whose values might be affected by 
exposure to the compound under consideration. 

• Dichotomous Endpoint: the response here is the presence or absence of a 
disease state or other “counter” of system malfunction. In this case, each 
experimental unit will either have the response or not. Dichotomous dose-
response models predict the proportion of such units that have the response. 
Tumor responses are a subcategory of dichotomous endpoints with cancer-
specific model selection considerations that are automated in the BMDS Multi-
tumor model; for more information, see Section 10.0, “Multiple Tumor Analysis,” 
on page 105. 

• Nested Dichotomous Endpoint: as for Dichotomous endpoints, the presence or 
absence of a disease state or counter is the response. However, in this case 
each experimental unit may have more than one such count; i.e., the counts are 
nested within an experimental unit. The most common example of such an 
endpoint is with developmental toxicity experiments in which the experimental 
unit is the pregnant dam and the fetuses or offspring from each dam’s litter are 
examined for the presence or absence of an effect (e.g., malformation). 

Collectively, the application of the methods for fitting mathematical models to data is 
referred to as BMD modeling or the BMD approach. BMDS facilitates these operations by 
providing simple data-management tools and an easy-to-use interface to run multiple 
models on one or more dose-response datasets. 

1.1.3 Presentation of Model Results 
Model results are presented as textual and graphical outputs that can be printed or saved 
and incorporated into other documents. Results from all models include: 

• Model-run options chosen by the user 
• Goodness-of-fit information 
• BMD 
• Estimates of the bounds (e.g., confidence limits) on the BMD (notated BMDL and 

BMDU for the lower bound and upper bound, respectively). 

1.2 How EPA Uses BMD Methods 
EPA uses BMD methods to derive risk estimates such as reference doses (RfDs), 
reference concentrations (RfCs), and slope factors, which are used along with other 
scientific information to set standards for human health effects. 

Prior to the availability of tools such as BMDS, noncancer risk assessment benchmarks 
such as RfDs and RfCs were determined from no-observed-adverse-effect levels 
(NOAELs), which represent the highest experimental dose for which no adverse health 
effects have been documented. 

However, using the NOAEL in determining RfDs and RfCs has long been recognized as 
having limitations: 

• It is limited to one of the doses in the study and is dependent on study design 
• It does not account for variability in the estimate of the dose-response 
• It does not account for the slope of the dose-response curve 
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• It cannot be applied when there is no NOAEL, except through the application of 
an uncertainty factor (Kimmel and Gaylor, 1988; Crump, 1984) . 

A goal of the BMD approach is to define a starting point of departure (POD) for the 
computation of a reference value (RfD or RfC) or slope factor that is more independent of 
study design. The EPA Risk Assessment Forum has published technical guidance for the 
application of the BMD approach in cancer and non-cancer dose-response assessments 
(U.S. EPA, 2012). 

1.3 History of BMDS Development 
Research into model development for BMDS started in 1995 and the first BMDS 
prototype was internally reviewed by EPA in 1997. After external and public reviews in 
1998-1999, and extensive Quality Assurance testing in 1999-2000, the first public version 
of BMDS, version 1.2, was released in April 2000. 

The BMDS release history is documented in two places on the BMDS website: 
• All releases from 1995-2017, up through BMDS 2.7 
• All BMDS 3.x releases 

1.4 What’s New in BMDS 3.2 
As of version 3.2, Bayesian models have been added for continuous response endpoints. 
Please note, however, that BMDS 3.2 represents a preview-version of Bayesian 
continuous endpoint modeling. 
The preview Bayesian continuous models have not been formally reviewed and approved 
by the EPA for risk assessment purposes. Such models are not recommended for use in 
EPA risk assessments at this time. EPA welcomes feedback on these preview models. 

Users can run individual continuous Bayesian model runs as Normal, Lognormal, or 
combined Normal and Lognormal.  

Peer review of the Bayesian continuous models is planned for later in 2020. 

Note At this time, EPA does not offer technical guidance on Bayesian modeling. 
 
Check the BMDS website and join the BMDS mailing list to receive updates on 
the availability of new guidance and finalized models. 

Note These preview models are new. Users acknowledge they have not been 
extensively tested, and formally reviewed and approved by the EPA for risk 
assessment purposes. 

BMDS 3.2 also includes the following enhancements and fixes: 
• BMDS graphs now extend the plots to zero dose for all models. All plots will 

begin at dose=0, even if the data has a lowest dose greater than 0. 
• Corrected the equation used to plot the Dichotomous Hill dose-response curve. 
• Upon request through BMDS’s e-Ticket support site, users can obtain a digitally 

signed version of BMDS 3.2 to show that BMDS Excel Macros are from a trusted 
developer. This should meet most organizations’ security requirements for VBA-
based applications. Note that this signed version of BMDS is not being 
distributed broadly because EPA cannot guarantee that it will work on all Excel 
platforms. Users can sign the unsigned BMDS Excel macros themselves by 
following Microsoft’s instructions for digitally self-signing the macros. 

https://hero.epa.gov/hero/index.cfm?action=search.view&reference_id=4250
https://hero.epa.gov/hero/index.cfm?action=search.view&reference_id=66651
https://hero.epa.gov/hero/index.cfm?action=search.view&reference_id=1239433
https://www.epa.gov/bmds/benchmark-dose-software-bmds-release-history-1995-2017
https://www.epa.gov/bmds/benchmark-dose-software-bmds-version-3-release-history
https://www.epa.gov/bmds/
https://www.epa.gov/bmds/forms/get-latest-benchmark-dose-tools-news
https://bmds.epa.gov/eticket/
https://support.microsoft.com/en-us/office/digitally-sign-your-macro-project-956e9cc8-bbf6-4365-8bfa-98505ecd1c01
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The BMDS Release History page lists all features, enhancements, fixes, and changes for 
each BMDS 3 release. 

1.5 Future of BMDS 
EPA plans to continually improve and expand the BMDS system. Current plans include: 

• Developing an online version of BMDS that will be integrated with the EPA 
Health & Environmental Research Online (HERO) database and Health 
Assessment Workspace Collaborative (HAWC) website, 

• Adding a nested model for continuous responses, 
• Adding covariate analysis tools, 
• Adding trend tests, and 
• Improving the Word report feature. 

We welcome and encourage your comments on the BMDS software. Please provide 
comments, recommendations, suggested revisions, or corrections through our eTicket 
support site. 

1.6 BMDS Online Resources 

1.6.1 BMDS Website 
The BMDS website contains the most up-to-date source of information and of updates 
pertaining to BMDS. 

In addition to the latest downloadable version of BMDS. the site includes links to 
troubleshooting and usage tips, the BMDS 3 Release History, links to technical guidance, 
external and peer-review information on models used in BMDS, and opportunities to 
participate in the development of the next generation of BMDS models. 

1.6.2 BMDS Mailing List 
The BMDS mailing list is the best way to stay current with software development, training 
opportunities, and other information relevant to your work with BMDS. 

The BMDS mailing list is low-traffic; members receive about 3-5 announcement per year. 

To join the mailing list, please sign up on the BMDS website. 

The website includes an archive of previous BMDS announcements. 

1.6.3 BMDS Glossary 
For definitions of terms used in this guide, please refer to the online BMDS Glossary. The 
glossary items can be exported to other formats, such as PDF or Excel. 

Another good source of dose-response terminology is the Integrated Risk Information 
System (IRIS) Glossary. 

1.6.4 BMDS Model Source Code 
If you are a developer, you can download the BMDS model source code, which enables 
you to build the model DLLs used by BMDS to calculate dose-response results. 

https://www.epa.gov/node/215213
https://hero.epa.gov/hero/
https://hawcproject.org/
https://hawcproject.org/
https://bmds.epa.gov/eticket/
https://bmds.epa.gov/eticket/
https://www.epa.gov/bmds/
https://www.epa.gov/bmds/benchmark-dose-software-bmds-version-3-support-articles
https://www.epa.gov/bmds/benchmark-dose-software-bmds-version-3-release-history
https://www.epa.gov/bmds/external-and-peer-reviews-benchmark-dose-software-bmds-models
https://www.epa.gov/bmds/forms/get-latest-benchmark-dose-tools-news
https://www.epa.gov/bmds/benchmark-dose-tools-mailing-list-announcements
https://ofmpub.epa.gov/sor_internet/registry/termreg/searchandretrieve/glossariesandkeywordlists/search.do?details=&vocabName=BMDS%20Glossary&uid=1821254&taxonomyName=BMDS%20Glossaryhttp://ofmpub.epa.gov/sor_internet/registry/termreg/searchandretrieve/glossariesandkeywordlists/search.do?details=&vocabName=BMDS%20Glossary&uid=1821254&taxonomyName=BMDS%20Glossary
https://ofmpub.epa.gov/sor_internet/registry/termreg/searchandretrieve/glossariesandkeywordlists/search.do?details=&vocabName=IRIS%20Glossary
https://ofmpub.epa.gov/sor_internet/registry/termreg/searchandretrieve/glossariesandkeywordlists/search.do?details=&vocabName=IRIS%20Glossary
https://www.epa.gov/bmds/benchmark-dose-software-bmds-version-31-model-source-code-download


 Benchmark Dose Software (BMDS) Version 3.2 
User Guide 

Page 13 of 118 

Note, however, that the model source code does not include the user interface source 
code (written in Excel’s VBA language; the USER INTERFACE source code controls the 
appearance and functionality of the Analysis Workbook). 

The model source code download page includes more information on constraints and 
third-party libraries needed to build the software. 

1.6.5 BMDS eTicket Support 
The BMDS eTicket site serves as our online Help Desk. Submit questions, concerns, 
comments, or suggestions on any aspect of the software or its usage, and someone from 
the BMDS Development Team will reply. 

https://bmds.epa.gov/eticket/
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2.0 Setting Up BMDS 

2.1 System Requirements 
BMDS requires the desktop version of Microsoft Excel 2010, 2013, or 2016 (32- or 64-bit) 
for Windows or later with macros enabled (see Section 2.4 on page 15 for details). 

Recommended: use the Office 365 or standalone Microsoft Office installation methods 
rather than installing via the Microsoft Store. 

BMDS is compatible with 64-bit versions of Microsoft Windows. 

Note BMDS does not run on macOS systems; instead, we recommend installing a 
Windows virtual machine and running BMDS from there. 

2.2 Step 1: Download BMDS 3 
The latest version of BMDS is always available from the BMDS Download page. Follow 
the instructions on that page to download the .zip file containing BMDS. 

See the next section for instructions on installation. 

2.3 Step 2: Unzip BMDS 3 to a Folder 
IMPORTANT! 

BMDS MUST BE UNZIPPED TO ITS OWN FOLDER OR IT WILL NOT WORK! 

Attempting to run BMDS from within its zip file will cause the application to fail. 

BMDS can be unzipped to any folder where the user has read/write privileges. 
Administrator privileges are not required. 

The following instructions are written specifically for Windows 10, which is the EPA 
standard desktop. 

1. Locate the zipped file downloaded in Step 1. 
2. Right-click the zipped file and, from the context menu, select Extract All. The 

“Extract Compressed (Zipped) Folders” dialog box displays. 
Figure 1. Select “Extract All…” from the context menu. 

 

https://www.epa.gov/node/211053
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3. In the “Extract Compressed (Zipped) Folders” dialog box, shown in Figure 2 
below, enter or browse to the folder where the BMDS folder should be extracted. 
(Each version of BMDS should live in its own folder.) Check the “Show extracted 
files when complete” checkbox to open the BMDS folder after the zip extraction 
completes. 
Keep the file path short: For best results, place the extracted folder (and its 
subfolders) in the simplest, shortest directory, without special characters or 
spaces, and for which you have administrative rights (for most users, this will be 
C:\Users\[user’s LAN ID], but sometimes includes C:\). 

Figure 2. Extract Compressed (Zipped) Folders dialog box. 

 

4. Select the Extract button to start the extraction. 
5. To launch BMDS, select “bmds3.xslm” (or “bmds3” if your Windows operating 

system does not show file extensions). 

2.4 Step 3: Accept EULA on Startup; Enable & Digitally Sign 
Excel Macros 
On first startup, BMDS displays the End-User License Agreement (EULA) panel. Review 
the text and select either Accept or Decline. A small “Options saved” dialog appears; 
select OK. 

2.4.1 REQUIRED: Enable Macros on First Startup 
You will need to enable Excel macros on first startup for BMDS to work. 

Follow the instructions for enabling Excel macros from the Microsoft Office web site. 

2.4.2 Optional: Digitally Sign Macros 
In the version of BMDS that is distributed via the BMDS website, the BMDS Excel Macros 
are not digitally signed. 

https://support.office.com/en-us/article/enable-or-disable-macros-in-office-files-12b036fd-d140-4e74-b45e-16fed1a7e5c6
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If a signed version is required, follow Microsoft’s instructions for digitally self-signing the 
macros in your copy of BMDS. 

Users whose organizations require a digitally signed version of BMDS (to show that 
BMDS Excel Macros are from a trusted developer) can request one through the BMDS e-
Ticket system. This should meet most organizations’ security requirements for VBA-
based applications. 

Warning The digitally signed version of BMDS 3.2 may not work consistently across 
different versions of Excel, including 32- and 64-bit versions. 

2.5 Step 4: Create a BMDS Desktop Icon (Optional) 
Some users may find it more convenient to run BMDS from a desktop shortcut icon. To 
do so: 

1. Delete any older BMDS shortcut icons on the desktop. 
2. In Windows Explorer, navigate to the newly installed BMDS application folder. 
3. Right-click the BMDS3.xlsm file (or “BMDS3” if the system does not display file 

extensions). A context menu appears. 
4. Click Send To. A submenu appears. 
5. Click “Desktop (Create Shortcut).” Windows creates a shortcut to the file on the 

desktop. 

2.6 Previous BMDS Installations 
It is not necessary to uninstall previous 2.x or 3.x versions of BMDS.  

However, ensure each BMDS installation is run from its own directory. Installed in this 
way, there should be no problems. 

• For more information on backwards-compatibility with previous BMDS versions, 
see Section 3.6, “Backwards-Compatibility,” on page 25. 

• For more information on models not included in BMDS 3 from previous BMDS 
versions, see Section 3.7, “Models Not Included in BMDS 3,” on page 26. 

2.7 Troubleshooting 

2.7.1 Extract BMDS from its Zip File Before Running 
One of the most common BMDS support issues arises when attempting to run BMDS 3 
from within its zip file. 

When run from within the zip file, BMDS cannot exchange data and results between the 
application and its supporting dynamic link libraries (DLLs). This leads to interrupted file 
operations and frequent error messages. 

To operate properly, BMDS 3 must be extracted from the downloaded zip file into its own 
directory, as explained in Section 2.3, “Step 2: Unzip BMDS 3 to a Folder,” on page 14. 

https://support.microsoft.com/en-us/office/digitally-sign-your-macro-project-956e9cc8-bbf6-4365-8bfa-98505ecd1c01
https://support.microsoft.com/en-us/office/digitally-sign-your-macro-project-956e9cc8-bbf6-4365-8bfa-98505ecd1c01
https://bmds.epa.gov/eticket
https://bmds.epa.gov/eticket
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2.7.2 Resolving Some User Interface Display Issues 
There may be situations where Excel improperly displays some onscreen controls, such 
as buttons or check boxes (for example, button text is hidden or truncated, or check 
boxes are misaligned). 

Figure 3. Excel controls, such as check boxes or buttons, may sometimes appear misaligned. 

 

To resolve, select the “Display Settings” button in the status bar at the bottom of the 
Excel window and then select “Optimize for Compatibility.” The workbook may need to be 
closed and re-opened for this change to take effect. 

Figure 4. The Display Settings button. 

 

2.7.3 Avoid Using Windows Reserved Characters in File and Path Names 
and Datasets 

BMDS allows any character, except for Windows reserved characters, to be used when 
naming files, directories, or datasets that BMDS will access. 

The following Windows reserved characters are disallowed and cannot be used for 
naming files or datasets: 

< (less than) 
> (greater than) 
: (colon) 
“ (double quote) 
/ (forward slash) 
\ (backslash) (use this character for specifying network drive paths) 



 Benchmark Dose Software (BMDS) Version 3.2 
User Guide 

Page 18 of 118 

| (vertical bar or pipe) 
? (question mark) 
* (asterisk) 

Note BMDS 3 should automatically replace characters in BMDS 2.7 datasets and 
column headers that are not allowed in XML tags (such as spaces, ampersands, 
etc). 

2.7.4 Slow Performance 
Some activities, such as generating the Results workbook, may slow BMDS performance 
or the performance of other applications. 

Using the 64-bit version of Excel may aid performance in some cases, as Excel memory 
management can be a contributing factor. 

Limiting the number of batch processes may help; try limiting the number of combinations 
of Option Sets, models, and datasets that BMDS is analyzing. 

An all-purpose fix is to reboot the computer to clear the RAM and to run as few 
applications as possible while BMDS is processing. 

2.7.5 Request Support with eTicket 
For any technical problem related to running BMDS, please submit a problem report at 
the BMDS eTicket site. With eTicket, users can request help, ask a question, or check on 
the status of an existing issue. 

https://bmds.epa.gov/eticket/
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3.0 BMDS 3 Basics 

3.1 Excel-based User Interface 
BMDS 2.7 and its predecessors were primarily standalone Windows applications. All 
aspects of the program were contained within the BMDS 2.x user interface window. 

1. Users specified their datasets and analysis options in the Windows user 
interface. 

2. The user interface sent the data to individual model executables for analysis. 
3. The model executables returned the results to the user interface. 

BMDS 3 works quite differently. BMDS 3 uses highly customized Microsoft Excel 
workbooks for analysis and results display. 

1. A read-only Analysis workbook holds the datasets and analysis options. 
2. The Analysis workbook sends the data to custom programs called dynamic link 

libraries (DLLs) for model analysis. 
3. The DLLs’ results are displayed in a separate Results workbook. 
4. Each Results workbook holds the results for an analysis; a single analysis can be 

made up of multiple datasets. 
5. From the Analysis workbook, a user can select a specific Results workbook to 

completely re-load the datasets and model options for re-running or for further 
configuration. 

3.2 Analysis Workbook (bmds3.xlsm) 
To start BMDS 3, double-click the bmds3.xlsm file in the BMDS program folder. The 
bmds3.xlsm file is the BMDS Analysis Workbook. 

Figure 5. BMDS3 folder contents, with bmds3.xlsm workbook file. 

 

Basic information about the bmds3.xlsm/Analysis Workbook file: 
• It contains the macros, user forms, and other data needed to render analyses, 

create the Results Workbooks, and so on. 
• The file is write-protected. No user can save any changes they make to this file. 
• The BMDS macros are also protected and cannot be viewed or edited. 

Users enter datasets, modeling, and reporting options for an analysis in the BMDS 3 
Analysis Workbook. Users can specify modeling options from intuitive forms and picklists. 
All calculations are performed within the Analysis Workbook. 
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Figure 6. The Analysis Workbook on first opening, with the Main tab displayed. 

 

The Analysis Workbook is designed to facilitate performing and tracking dose-response 
analyses of multiple datasets having continuous, dichotomous, or nested dichotomous 
responses. There is an additional capability to model multiple cancer (dichotomous) 
endpoints and derive BMDs related to their combination. 

Depending on the needs of the risk assessment, users can focus a BMDS 3 analysis on 
datasets associated by: 

• study (e.g., for chemicals with a large database of studies) 
• chemical (e.g., for chemicals that are not well-studied) 
• health outcome (e.g., for chemicals with health outcomes that have been 

assessed in multiple studies and/or by multiple response measures) 
For more details, refer to Section 4.0, “Defining and Running an Analysis,” on page 27. 

3.2.1 Help Tab 
The Help tab contains links to BMDS’s online support tools, documentation download, 
glossary, and technical guidance. Many of these links are described in more detail in 
Section 1.6, “BMDS Online Resources,” on page 12. 

3.2.2 Main Tab 
The primary workspace of BMDS, where models, datasets, and option sets are queued 
for analysis. Full instructions on how to use the controls on this tab are described in 
Section 4.0, “Defining and Running an Analysis,” on page 27 
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3.2.3 Data Tab 
Figure 7. Data tab, on first opening. 

 

Users can specify one or more datasets from the Data tab. All datasets specified here will 
be listed on the Main tab, where specific options can be set for each dataset.  

Datasets can be imported from earlier BMDS versions or can be manually entered.  

Note the help text describing the utility of the gray- and blue-colored cells. 

For more information on the Data tab, refer to Section 4.2, “Step 2: Add Datasets,” on 
page 29. 

3.2.4 Report Options Tab 
Figure 8. Report Options tab, on first opening. 

 

From the Report Options tab, the user can specify the data values to be included in the 
BMDS analysis results. The user can also specify elements to include in a Word-based 
report. 
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For more details, refer to Section 4.7, “Step 5: Prepare Summary Word Report(s),” on 
page 40. 

3.2.5 Logic Tab 
Figure 9. Logic tab, with EPA default recommendation decision logic. 

 

BMDS 3’s results include automatic recommendations regarding model selection that are 
consistent with the 2012 EPA Benchmark Dose Technical Guidance (U.S. EPA, 2012). 

These criteria can be altered in the Logic tab of the BMDS 3 Analysis Workbook. 
Decision logic can be turned on or off, and specific criteria can be enabled or disabled for 
different dataset types. Notice that the logic depends on what type of data is being 
analyzed (continuous, dichotomous, nested). 

For more details, refer to Section 12.0, “BMDS Recommendations and Decision Logic,” 
on page 114. 

https://www.epa.gov/risk/benchmark-dose-technical-guidance
https://hero.epa.gov/hero/index.cfm?action=search.view&reference_id=1239433
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3.2.6 ModelParms Tab (Model Parameters) 
Figure 10. Model Parameters tab. 

 

The ModelParms tab displays all of the models that BMDS runs, along with each model’s 
parameters and their “specifications.” 

The values listed on the ModelParms tab are actual inputs to the program; they are read 
and are used by the model executables. The values are password-protected and cannot 
be changed/edited by the user. 

For more details, refer to Section 5.2, “Model Parameters,” on page 43. 

3.3 Settings Workbook (.xlsx) 
A Settings Workbook is created when the “Save Analysis” feature of BMDS is used (see 
Section 4.3). 

The Settings Workbook contains all of the modeling options (Main tab), dataset 
information (Data tab), reporting options (Report tab), and model selection logic options 
(Logic tab) entered/selected/accepted by the user. 

The Settings Workbook contains only settings for an analysis but not the results; this is 
because the analysis options were saved before an analysis was run. 

The naming convention for the Settings Workbook is 

[AnalysisName].xlsx 

where AnalysisName is the content of the “Analysis Name” field from the Main tab. 

The Settings Workbook file is stored in the directory location identified by the user in the 
“Select Output Directory” field of the Main tab. It can be loaded into BMDS later via the 
“Load Analysis” feature (see Section 4.4). 
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3.4 Results Workbook (.xlsx) 
A Result Workbook is created when the Run Analysis button is selected on the Analysis 
Workbook’s Main tab. 

A bar showing the modeling status appears; as Excel compiles the Results Workbook, 
the display will not be updated. 

For individual dataset analyses, BMDS records all model results in a separate Results 
Workbook for each dataset analyzed. For example, if a user analyzes five datasets, 
BMDS will create five separate Results Workbook files. 

The Results Workbook filename for a given dataset is constructed as follows: 

[DatasetName]_analysis.xlsx 

• DatasetName = the user-specified name of the dataset from the Data tab 
• _analysis = appended by BMDS to the end of the filename 

The above naming convention is used for continuous, dichotomous, and nested modeling 
results Workbooks. 

The naming convention is slightly different for multi-tumor analyses, which generally 
involve multiple datasets. For multi-tumor analyses, the Results Workbook naming 
convention is:  

[AnalysisName]-multitumor.xlsx 

• AnalysisName = the Analysis Name field contents from the Main tab 
• -multitumor = appended by BMDS to the end of the filename 

Figure 11. Results Workbook files (.xlsx). 

 

Note A best practice with BMDS is to save BMDS Settings and Results Workbooks to 
their own folder outside the BMDS 3 program folder. 

All the options used in the analysis are saved in the Results Workbook so they can be re-
run the analysis later (see Section 4.4). 

The Results Workbook contains a copy of the dataset, the dataset description entered by 
the user in the Analysis Workbook, and individual results tabs for each set of options 
specified. 
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Figure 12. A Results Workbook’s Summary tab. 

 

On the Summary tab, scroll to the right to view the summary results graph (see Figure 
13). All of Excel’s tools can be used for editing images and graphs. 

Figure 13. Summary model results graph, on the Summary tab. 

 

For more details on BMDS results, refer to Section 4.5, “Step 4: Run Analysis,” on page 
36. 

3.5 Upgrades to Pre-BMDS 3 Models 
BMDS continuous models have been upgraded to include a “Hybrid” modeling capability 
and Lognormal response options. For more details, see Table 5 on page 54. 

Also, all pre-existing models have been re-coded to facilitate their maintenance and 
improve their performance in terms of stability, accuracy, reliability, and speed. 

Note BMDS 3 handles Akaike Information Criterion (AIC) calculations somewhat 
differently from BMDS 2.x to facilitate comparing models with different likelihoods 
(i.e., Normal vs. Lognormal). For more details, refer to Section 11.1, “AIC for 
Continuous Models,” on page 112. 

3.6 Backwards-Compatibility 
BMDS 3.2 retains backwards compatibility with BMDS 2.7 and BMDS Wizard 1.11. 

The intent of all upgrades to BMDS is to improve optimization and estimation of 
parameters, including benchmark doses (BMDs). 



 Benchmark Dose Software (BMDS) Version 3.2 
User Guide 

Page 26 of 118 

Note BMDS 3.x and 2.x will return different values for the log-likelihood and AIC when 
run on the same data. For more details, refer to Section 7.4.4, “AIC and Model 
Comparisons,” on page 60. 

For experienced users, BMDS 3 resembles the pre-existing BMDS Wizard in these ways: 
• Excel-based 
• Enables users to see and specify modeling options in a single tab 
• Includes auto-selection features for identifying the “best” results in accordance 

with EPA recommendations or user-defined logic 
• Documents all inputs and outputs in a single results workbook 
• Provides flexible print options for displaying results in Microsoft Word tables 

formatted in a manner suitable for presentation in a risk assessment 
Please file a ticket on the BMDS eTicket site for any questions or concerns regarding 
BMDS results. 

3.7 Models Not Included in BMDS 3 
BMDS 3 contains all the models and features that were available in BMDS 2.7 and 
BMDS Wizard 1.11 except for: 

• Dichotomous background-dose models 
• Rai and Van Ryzin nested dichotomous model 
• ToxicoDiffusion model 
• ten Berge model, which has been superseded by EPA’s categorical regression 

software CatReg, which has the same functionality but with added features and 
options 

• NCTR (National Center for Toxicological Research) nested dichotomous model 
(slated for inclusion in a future BMDS release) 

These models can be accessed in BMDS 2.7, which is available from the BMDS website 
as an archive version of BMDS. 

 

https://bmds.epa.gov/eticket/
https://www.epa.gov/bmds/toxicodiffusion-model-documentation
https://www.epa.gov/bmds/ten-berge-concentration-time-cxt-model-documentation
https://www.epa.gov/bmds/catreg
https://www.epa.gov/bmds/catreg
https://www.epa.gov/node/83971
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4.0 Defining and Running an Analysis 
To initiate a new analysis (a “session” of dose-response model runs), open the file 
bmds3.xlsm from the BMDS3 program folder. Open the file from the directory in which it 
is saved or select it on the appropriate shortcut icon. 

The user needs to enable Excel macros on first startup for BMDS to work. 

Note: Throughout this User Guide, the bmds3.xlsm file will be referred to as the 
Analysis Workbook. 

Figure 14. BMDS3 folder contents, with bmds3.xlsm file highlighted. 

 

When bmds3.xslm opens, the Analysis Workbook’s Main tab is displayed. 
Figure 15. The Analysis Workbook on first opening. 

 

The Analysis Workbook contains five tabs: 
• Help—contains links to the BMDS web site support materials, including this user 

guide, readme, release notes, Benchmark Dose Technical Guidance, and 
eTicket for user-support questions. 

• Main—define an analysis to be run, save analysis configuration, load saved 
analysis configurations, and run an analysis. For more details on these functions, 
refer to Section 4.1, “Step 1: Analysis Documentation,” on page 28.and Section 
4.3, “Step 3a: Select and Save Modeling Options,” on page 34. 
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• Data—define the dataset to be analyzed, either by entering the data manually or 
loading a BMDS .dax dataset file (compatible with BMDS 2.7 .dax files). For 
more details, refer to Section 4.2, “Step 2: Add Datasets,” on page 29. 

• Report Options—define the types of input and analysis results to be included in 
the results files, and also define what should be included in the Microsoft Word-
based report file. For more details, refer to Section 4.7, “Step 5: Prepare 
Summary Word Report(s),” on page 40. 

• Logic—the BMDS Model Recommendation Decision Logic rules can be reviewed 
and, if necessary, tweaked by the user. For more details, refer to Section 12.0, 
“BMDS Recommendations and Decision Logic” on page 114. 

4.1 Step 1: Analysis Documentation 

4.1.1 Enter an Analysis Name and Description 
Figure 16. Fields for Analysis metadata. 

 

Provide a name for the analysis. BMDS will use this to create the Results Workbook 
filename. 

While not a required step, providing a fuller, free-text Analysis Description is useful for 
analyses to be saved for future use or consideration. These can include more detailed 
notes to describe the dataset; these notes will be displayed in the Settings Workbook, 
Results Workbook, and Word Report file. 

4.1.2 User Settings and the Output Directory 
Default settings are automatically loaded when BMDS first opens. For the most part, the 
initial Main, Data, Report Options, and Logic tab settings will always be the same. The 
only exception is the “Selected Output Directory” field, which is initially set to its value 
when BMDS was last closed. 

By default, BMDS saves results to its install directory. The Select Output Directory 
button (as shown in Figure 16) displays a File Manager dialog for selecting a different 
directory. The output directory specified by the user is displayed in the “Select Output 
Directory” field 

Note Hover the mouse cursor over the field to display the complete output directory 
path; this is helpful in cases when the address is too long for the box. 

The Output Directory will store a Settings Workbook (per analysis, using Analysis Name), 
Results Workbooks (one per dataset, using Dataset Name), and Word Report files (one 
per dataset, using Dataset Name). 

The output directory specified on the Main tab is shown at the top of the Report Options 
tab also, as shown in Figure 17. 
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Figure 17. Report Options tab, with the same Output Directory as specified on the Main tab. 

 

If the output directory is changed using the Select Output Directory button on the Main 
tab, BMDS will display the “Save New Settings?” dialog box. Select Yes to set the new 
directory as the default. 

Figure 18. Save New Settings dialog box. 

 

BMDS then displays the following confirmation. Select OK to continue. 
Figure 19. Confirmation dialog box for changing default output options. 

 

4.2 Step 2: Add Datasets 
After entering the analysis documentation information in the Main tab, the dose‐response 
data should be entered in the Data tab. 

The user can add multiple datasets associated with four response types: 
• Summarized continuous (e.g., mean and SD) 
• Individual continuous (e.g., dose and response for each test subject) 
• Dichotomous (e.g., lesion incidence) 
• Nested dichotomous (e.g., developmental study) responses. 

Note The user can enter multiple datasets of different model types — continuous, 
dichotomous, and/or nested — on the Data tab. However, in the Main tab, 
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datasets that cannot be modeled with the selected model type will be greyed out 
and un-selectable (see Section 4.3 below). For example, continuous and 
dichotomous datasets must be analyzed in separate analysis runs. 

4.2.1 Importing .dax Datasets 
Previous versions of BMDS saved datasets in .dax format; BMDS 3 also saves datasets 
to the .dax format. 

To import existing .dax datasets 
1. On the Data tab, select the Import Dataset button. 

Figure 20. Data tab buttons for specifying datasets. 

 

2. The Import Dax File dialog box displays. 
Figure 21. Import Dataset dialog. 

 

3. Select the dataset type, then select the Select Dax File button. The Select a Dax File 
dialog box displays. 

4. Navigate to the dataset’s location, select the .dax file, and press Open. 
5. The Map Data Columns dialog box will be displayed; from the picklists, select the 

appropriate dataset header that corresponds to the variable type that BMDS is 
expecting. 
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Figure 22. Continuous-summarized dataset 
import dialog. 

Figure 23. Continuous-individual dataset 
import dialog. 

Figure 24. Dichotomous dataset import dialog. Figure 25. Nested dataset import dialog. 

6. Select the Import Data button. BMDS imports the dataset into the Data tab, as 
shown in Figure 26. 

Figure 26. A .dax dataset imported into BMDS 3. 

Note Follow the guidelines for entering a unique dataset name. Also, refer to Section 
4.2.7, “The Difference between the Gray and Blue Cells,” on page 34. 

4.2.2 Inserting a New Dataset 
1. On the Data tab, select Insert New Dataset. The Add Dataset dialog box 

displays. Specify the Dataset Type and the number of rows. 
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Figure 27. Add Dataset dialog. 

 

2. Select Create Dataset. BMDS inserts a table with the specified number of empty 
rows. 

Figure 28. Example of empty dataset table created for dichotomous data. 

 

3. Double-click in the blue cell and change “DataSet Name1” to a more meaningful 
description. 

4. Edit the “[Add user notes here]” cell or leave blank. 
5. The grayed cells cannot be edited. They indicate acceptable data types in the 

sequence that BMDS requires for a proper model analysis. The blue cells 
marked “[Custom]” can be edited by the user if the dataset employs different 
variable names for these data types. For more details, refer to Section 4.2.7, 
“The Difference between the Gray and Blue Cells,” on page 34. 

6. Enter the data into the remaining cells. Or, copy and paste data that comes from 
another table, spreadsheet, or program (such as a prior BMDS version). 

7. Click on the Main tab to display it. The Datasets table displays the dataset name 
that was entered. The checked Enable column tells BMDS to run an analysis on 
the selected dataset. 

Figure 29. The Main tab after a dataset has been specified. 
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4.2.3 Inserting Multiple Datasets 
To add more datasets to the Data tab, select either the Import or Insert Dataset buttons 
and specify the dataset as described above. BMDS automatically adds the dataset to the 
end of the list. 

When entering a lot of datasets, note that by default BMDS “freezes” the top portion of 
the tab so that the Import and Insert Dataset buttons are always visible. 

4.2.4 Editing Datasets 
After a dataset has been entered, a small Edit button appears beside the dataset. 

Figure 30. Example dataset with Edit button. 

 

Click the Edit button to display a palette of Edit Dataset commands. These commands 
work only on the selected dataset. 

Figure 31. Edit Dataset commands 

 

• Add Row—Inserts a duplicate of the last row at the end of the table. 
• Delete Last Row—Deletes the last row in the table. 
• Delete Empty Rows—Deletes all empty rows. (Note that BMDS will skip rows if 

the dose value is missing.) 
• Delete Dataset—Deletes the entire dataset. 
• Save Dataset—Saves the dataset in .dax format. Click the button, navigate to 

where the dataset should be saved, and click Save. 
• Cancel—Closes the palette window. 
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4.2.5 Enter Unique Names for Each Dataset 
Enter a unique name for each dataset. 

BMDS uses this name to reference the dataset on the Main tab (where users can select 
datasets to include in a modeling analysis) and to name all Result Workbook and Word 
Report files generated from modeling the dataset. 

Note Avoid naming datasets using Windows reserved characters, such as the less 
than sign (<), vertical pipe (|), and so on. For a list of reserved characters to 
avoid, refer to Section 2.7.3, “Avoid Using Windows Reserved Characters in File 
and Path Names and Datasets” on page 17. 

4.2.6 Datasets Can Have Empty Rows 
The dataset can have empty rows. A BMDS analysis run will skip any rows for which the 
dose value is missing. 

4.2.7 The Difference between the Gray and Blue Cells 
Figure 32. Explanatory text on the Data tab for the gray and blue cells. 

 

Grayed cells for datasets cannot be edited. They indicate acceptable data types in the 
sequence that BMDS requires for a proper model analysis. 

The blue cells underneath can be edited if the dataset employs different variable names 
for these data types. 

4.3 Step 3a: Select and Save Modeling Options 
All models and modeling options available for use in an analysis can be selected on the 
Main tab. 

Options can be saved and reloaded at any time before or after running an analysis. 

An analysis can involve the use of any one of four Model Types: 
• Continuous 
• Dichotomous 
• Dichotomous – Multi-tumor 
• Dichotomous – Nested 

As noted previously, an Analysis Workbook can include a mix of any of the data types on 
the Data tab. However, only one type of data can be run in a single analysis. So, for 
example, an Analysis Workbook can include Continuous, Dichotomous, and Nested 
datasets defined on the Data tab, but when it comes time to run an analysis, the user will 
need to run separate analyses for each data type. 

Of course, the user is free to run two (or more) analyses from a single Analysis 
Workbook, each potentially implementing an analysis of a different data type. 
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Users can run the selected models against multiple, user-defined modeling “Option Sets” 
and multiple datasets. 

The BMDS Main tab lists the datasets entered in the Data tab, enabling the user to 
choose datasets of the appropriate Model Type to analyze using the selected Models and 
Option Sets. 

Each model type offers a different set of models and/or modeling options: 
• For details on continuous endpoint model options, refer to Section 7.3, “Options,” 

on page 52 
• For details on dichotomous endpoint model options, refer to Section 8.2, 

“Options,” on page 74. 
• For details on nested dichotomous endpoint model options, refer to Section 9.3, 

“Options,” on page 93. 

4.4 Step 3b: Load, Save, or Run an Analysis 
REMEMBER: No Data are Stored in the Analysis Workbook 
A side-effect of the write-protection on bmds3.xslm is that the user cannot save data in 
the workbook itself. However, all datasets, modeling, reporting options, logic settings, etc. 
can be saved and reloaded for later use. 

Figure 33. Analysis function buttons. 

 

Save Analysis (without running). Select this button to save a workbook with no results 
created. 

To save analysis options without running an analysis 
1. Specify the options, datasets, etc. for the analysis. The Analysis Name field 

will serve as the filename. 
2. Select the Save Analysis button. BMDS creates a Settings Workbook file in 

the Output Directory, opens the file, and displays the following message on 
the Settings Workbook file’s Summary tab. 

Figure 34. BMDS displays the following message on the Settings Workbook’s Summary tab. 

 

Run Analysis. Select this button after specifying an analysis. BMDS will automatically 
create a Results Workbook and (if selected) Word Report files in the user-specified 
Output Directory. 

All Analysis Workbook specifications are saved in a Settings Workbook or Results 
Workbook file so the corresponding Analysis Workbook can be re-generated. When the 
Load Analysis button is selected, BMDS will re-generate the Analysis Workbook. All 
datasets, as well as modeling, model selection logic and reporting options from the 
original Analysis Workbook are reloaded into the Analysis Workbook. The user can then 
re-run the analysis using different options. 
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To load and re-run an analysis 
To re-run an analysis later, or run it with different parameters or additional data: 
1. Open the bmds3.xslm file. 
2. Select Load Analysis from the Main tab. 
3. An Open file manager dialog displays. Navigate to a saved BMDS Results 

Workbook file or previously saved analysis file, select it, and select Open. 
4. BMDS loads the selected workbook’s saved dataset and parameters into 

bmds3.xlsm. From there, specify new parameters, add additional data or 
datasets, create additional Model-Option Sets, etc. 

Note When an Analysis Workbook is re-generated, all options and datasets in the 
open Analysis Workbook will be overwritten. BMDS will display a warning so the 
user can save the open Analysis Workbook file or overwrite it. 

4.5 Step 4: Run Analysis 
On the Main tab, in the Datasets table, select one or many datasets to run in the analysis. 

Click the Enable checkbox in the header to toggle selection/deselection of all loaded 
datasets. Only datasets that correspond to the selected model type will be selectable. 

Figure 35. With Continuous as the selected Model Type, selecting the Enable checkbox selects the continuous 
dataset(s) that can be run in the current analysis. 

 

Select the Run Analysis button on the Analysis Workbook’s Main tab to begin the 
modeling run. A bar showing the modeling status appears; display updating is suspended 
as Excel compiles the Results Workbook. 

The user can rename the files as desired. The BMDS Results Workbook file naming 
conventions are described in Section 3.3, “Settings Workbook ,” on page 23. 

Each dataset will be saved to its own Results Workbook. All model options specified as 
part of the analysis are also saved to the new Results Workbook. 

4.6 Step 5: Review Results 
After the user selects the Run Analysis button, BMDS creates and opens a Results 
Workbook for the specified analysis. 
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At the bottom of the Results Workbook window are the tabs that contain the Summary 
and model/option-specific results for the completed analysis. Right-click on Excel’s tab-
selection triangle to view a list of all the tabs in the file. 

Figure 36. Viewing the list of Results Workbook tabs in Excel by right-clicking the tab-selection triangle. 

 

Each model’s results tab contains its own BMD graph along with more detailed reports 
related to the Benchmark Dose, model parameters, goodness of fit, and analysis of 
deviance, among other results. 

4.6.1 Model Abbreviations Tables 
Each tab in the Results Workbook follows a naming convention to uniquely identify each 
result. 

The Abbreviations tab summarizes all of the three-letter abbreviations for the model type 
used in the analysis. For example, the Abbreviations tab for an analysis with 
Dichotomous models will contain only abbreviations for dichotomous models. 

The following tables list all the models available in BMDS 3, their abbreviations (used in 
results tab name and for other labeling purposes within the program), and their version 
numbers. 

Model version numbers were re-set from the version numbers used for BMDS 2.7. Prior 
to BMDS 3, models were coded as separate executable files with their own version 
numbering. 

For BMDS 3, models are now coded into a single DLL and so now carry (unless 
otherwise noted) the same version number. 

Some users may wish to cite the version numbers in publications to establish the source 
of their results. 
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Table 1. Frequentist Continuous Models: Abbreviations & Versions. 

Name Abbreviation Version (Date) 
Exponential exp 1.1 (07/19/2019) 

Hill hil 1.1 (07/19/2019) 

Linear lin 1.1 (07/19/2019) 

Polynomial ply 1.1 (07/19/2019) 

Power pow 1.1 (07/19/2019) 

Table 2. Frequentist Dichotomous Models: Abbreviations & Versions. 

Name Abbreviation Version (Date) 
Gamma gam 1.1 (07/19/2019) 

Logistic log 1.1 (07/19/2019) 

Log-Logistic lnl 1.1 (07/19/2019) 

Log-Probit lnp 1.1 (07/19/2019) 

Multistage mst 1.1 (07/19/2019) 

Probit pro 1.1 (07/19/2019) 

Weibull wei 1.1 (07/19/2019) 

Quantal Linear qln 1.1 (07/19/2019) 

Dichotomous Hill dhl 1.1 (07/19/2019) 

Table 3. Frequentist Nested Dichotomous Models: Abbreviations & Versions. 

Name Abbreviation Version (Date) 
Nested Logistic nln 2.20 (04/27/2015) 

Table 4. Other Models: Abbreviations & Versions. 

Name Abbreviation Version (Date) 
Bayesian model averaging (dichotomous) bma 1.1 (07/19/2019) 

Multi-tumor (MS_Combo) msc 1.8 (04/27/2015) 

4.6.2 Other Common Abbreviations on Tabs 
The other common abbreviations used in the Results Workbook tab names are: 

• Frequentist (“freq”) or Bayesian (“bayes”). 
• Dichotomous Model Averaging (“DichoMA”), if Model Averaging was selected. 
• Restricted (“rest”), Unrestricted (“unrest”). The user can choose to run both 

restricted and unrestricted from the Analysis Workbook’s Main tab. 
• “dsetn” = dataset1, dataset2, and so on. 
• “optn” = identifying the Option Set on the Analysis Workbook’s Main tab that was 

used to generate the results, in case multiple Option Sets were specified. If only 
one Option Set was identified, then this will always be “opt1.” 
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Example A results tab named “freq-gam-rest-opt1” contains results for the frequentist 
gamma model, running restricted, and using the first Option Set defined in the 
Analysis Workbook. 

4.6.2.1 Dichotomous - Multi-tumor (MS_Combo) Abbreviations 
Figure 37. Multi-tumor Results Workbook tabs. 

 

The following abbreviations are unique to the Multi-tumor results: 
• “msc” = MS_Combo. 
• “mstn” = Each individual multistage (“mst”) results tab considered as part of the 

MS_Combo result. 

4.6.2.2 Dichotomous – Nested Abbreviations 
Figure 38. Nested Results Workbook tabs. 

 

The following abbreviations are unique to the Nested results: 
• “nln” = Nested Logistic model. At this time, there is only a single nested model. 
• “lsc” = Litter Specific Covariate. The “+” indicates the LSC was included; the “-“ 

indicates LSC was not included. 
• “ilc” = Intralitter Correlation. The “+” indicates that ILC estimates were included; 

the “-“ assumes ILC is zero. 
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4.7 Step 5: Prepare Summary Word Report(s) 
On the BMDS 3 Analysis Workbook’s Report Options tab, users can select modeling 
inputs and results to report for each model type, “Export Options,” and “Word Report 
Options.” 

Figure 39. Analysis Workbook’s Report Options tab. 

 

• The selected Export Options affect both the Result Workbook and Word Report 
files that are generated from an analysis. 

• Export Options (“User Input” and “Analysis Results”) are set separately for each 
of the different model/analysis types. So “Continuous” will have its own set of 
enabled export options, Dichotomous-Nested its own set, and so on. Select the 
model type from the Choose Model/Analysis Type dropdown menu. 

• Word Report Options are applied for creating tabular documentation of modeling 
results in Microsoft Word. 
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Note Because the Word report may take a few minutes to compile, we recommend 
running the Word Report Options after the analysis results have been verified. If 
the analysis results are satisfactory, then re-run with the “Create Word Report” 
option checked. 

Note When using the Word Report option, it is recommended that the user specify on 
the Main tab only a single Model-Option Set combination. The more datasets and 
options specified, the longer BMDS takes to generate the report. Word Report 
generation improvements will be addressed in a future BMDS version. 
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5.0 Modeling in BMDS 
Recall that the three endpoint types that BMDS can model are continuous, dichotomous, 
and nested dichotomous. Chapters 6, 7 and 8 discuss the particulars for each type of 
endpoint/modeling. There is one additional situation considered separately, i.e., the 
“MS_Combo” option. Note however that it is merely a special case of dichotomous 
modeling of multiple endpoints. Details for the MS_Combo modeling options are 
discussed in Section 10.1, “Dichotomous—Multi-tumor Models and Options,” on page 
105. 

Presented here, however, are general modeling considerations common to all model 
types. 

5.1 Frequentist and Bayesian 
BMDS now allows the user to perform either (or both) Bayesian or non-Bayesian 
analyses. 

BMDS refers to the non-Bayesian approach as “frequentist” or “maximum-likelihood 
estimation (MLE).” That approach is based on likelihood calculations. Models fit by these 
methods report maximum likelihood estimates and associated bounds determined by 
profile likelihood approaches. Presentation of p-values and the like (e.g., goodness-of-fit 
evaluations) are consistent with the frequentist tradition. 

Bayesian analyses, in contrast, update parameter estimates. Distributions describing the 
a priori uncertainty in the parameter values (the so-called prior distributions) are updated 
using the data under consideration to yield a posteriori distributions. From those, the 
BMD estimate maximizing the a posteriori likelihood — the so-called maximum a 
posteriori probability (MAP) estimate — is reported, as are credible intervals for the BMD. 

Note At this time, EPA does not offer technical guidance on Bayesian modeling or 
Bayesian model averaging. 
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5.2 Model Parameters 
Figure 40. Model Parameters tab. 

 

The ModelParms tab displays all of the models that BMDS runs, along with each model’s 
parameters and their “specifications.” 

The values listed on the ModelParms tab are actual inputs to the program; they are read 
and are used by the model executables. The values are password-protected and cannot 
be changed/edited by the user. 

Specifications are separated by modeling approach: frequentist or Bayesian (see the 
previous section, 5.1, for a brief description of these approaches). 

For the frequentist approach, the specifications consist of initial values (the values used 
to initiate the optimization of the likelihood) and the constraints on the values of the 
parameters (a minimum and a maximum). When there is a restricted and an unrestricted 
form of a model, there are separate frequentist specifications for those two forms, which 
differ with respect to a bound (“Min” or “Max”). 

For the Bayesian approach, the specifications define the prior distribution for each 
parameter. A distribution type (e.g., “Normal”) is given, and the parameters that define 
that prior (e.g., “Mean” and “StdDev”). The priors are also bounded (for numerical stability 
purposes); the bounds are listed under the columns “Min” and “Max.” 

For additional information, in relation to the formal mathematical/statistical details, the 
frequentist and Bayesian model equations are presented in the following sections: 

• Section 7.4, “Mathematical Details for Models for Continuous Endpoints in 
Simple Designs,” on page 57 

• Section 8.3, “Mathematical Details for Models for Dichotomous Endpoints in 
Simple Designs,” on page 76 

• Section 9.4, “Mathematical Details for Models for Nested Dichotomous 
Endpoints,” on page 97 
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Also see, in particular, the following tables where the priors and model constraints are 
presented: 

• Table 7: The individual Bayesian continuous models (in preview) and their 
parameter priors, on page 64 

• Table 12: Bayesian dichotomous models and their respective parameter priors 
on page 84 

To see how model parameter estimates are reported in the BMDS results, refer to 
Section 6.3, “Model Parameters ,” on page 49. 

5.3 Optimization Algorithms Used in BMDS 
For frequentist analyses and some Bayesian computations, the NLopt optimization library 
is used for BMDS 3.0. 

Several optimization algorithms available in the library are used to ensure reliability of the 
estimation: 

• For global optimization involving the maximum likelihood or maximum a posteriori 
estimation, the L-BFGS1 method is attempted first. If it fails to converge, gradient 
free algorithms “subplex” and “BOBYQA”2 algorithms are then attempted. 

• For profiling, when only non-linear inequality constraints are needed, the 
COBYLA3 and MMA4 approaches are used and compared. In the case the 
methods return different optimum, the values producing the larger of the two is 
used. 

• For equality-constrained optimization, the augmented Lagrangian algorithm is 
used and either the L-BFGS, BOBYQA, or the “subplex” algorithm is used in the 
local optimization step. When two approaches produce different results, the 
values producing the larger optimum are used. 

NLopt 2.4.1 was used when developing the BMDS 3 code. This version is available for 
download from the NLopt GitHub site. 

For more information regarding the algorithms, refer to the NLopt documentation site. 

5.4 Bayesian Analyses, including Model Averaging 
BMDS model averaging proceeds from the basis of Bayesian analyses, for which the 
parameters of the models under consideration are updated using the dataset of interest. 

Priors for the parameters are defined in sections 7.4.6 and 8.3.6 for continuous (in 
preview) and dichotomous dose-response models, respectively. Only dichotomous model 
averaging is available in BMDS 3.2. 

For each model, 𝑀𝑀, there is a likelihood for the data, ℓ(𝐷𝐷|𝑀𝑀), based on the data 
generating mechanism (binomial sampling in the case of the dichotomous endpoints; 
Normal or Lognormal distributions for continuous data). 

                                                      
 
1 Limited-memory BFGS (L-BFGS or LM-BFGS) is an optimization algorithm in the family of quasi-Newton 
methods that approximates the Broyden–Fletcher–Goldfarb–Shanno algorithm (BFGS). 
2 Bound Optimization by Quadratic Approximation (BOBYQA) is a numerical optimization algorithm. 
3 Constrained optimization by linear approximation (COBYLA) is a numerical optimization method. 
4 Method of Moving Asymptotes (MMA) is a method for structural optimization. 

https://github.com/stevengj/nlopt/releases
https://nlopt.readthedocs.io/en/latest/
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When one is interested in more than one model, model averaging is an approach that 
should be seriously considered in lieu of model selection (e.g., basing inferences on one 
model deemed to be the “best”). 

Suppose for this development that we are considering K models (𝑀𝑀𝑘𝑘, 𝑘𝑘 =  1, … ,𝐾𝐾). 

For each model, BMDS approximates the posterior density for the BMD using a 
Laplacian approximation; call that density 𝑔𝑔𝑘𝑘(𝐵𝐵𝑀𝑀𝐷𝐷|𝑀𝑀𝑘𝑘,𝐷𝐷) for model k. If the parameter 
vector for model k is denoted θk, let 𝜃𝜃�𝑘𝑘 designate the value of that vector that maximizes 
the posterior likelihood (the maximum a posteriori, or MAP, estimate). 

The posterior density of the model averaged BMD is 

𝑔𝑔𝑚𝑚𝑚𝑚(𝐵𝐵𝑀𝑀𝐷𝐷|𝐷𝐷) =  �𝜋𝜋𝑘𝑘(𝑀𝑀𝑘𝑘|𝐷𝐷)𝑔𝑔𝑘𝑘(𝐵𝐵𝑀𝑀𝐷𝐷|𝑀𝑀𝑘𝑘,𝐷𝐷),
K

𝑘𝑘=1

 

where 𝜋𝜋𝑘𝑘 is the posterior probability of model 𝑀𝑀𝑘𝑘 given the data. 

Clearly, this approach requires estimation of the posterior probabilities for each model 
considered. These are the weights for the averaging process. Unlike approaches that 
have been used elsewhere, we eschew the use of information-criteria-based weights 
(e.g., those based on Bayesian information criteria or Akaike Information criteria). Rather, 
BMDS generates weights using the Laplace approximation to the marginal density of the 
data. That is, for model Mk, 1 ≤ k ≤ K, with parameter vector 𝜃𝜃𝑘𝑘 of length s, one 
approximates the marginal density as 

𝐼𝐼𝑘𝑘 = (2𝜋𝜋)𝑠𝑠 2� �Σ�𝑘𝑘�
1
2� ℓ�𝐷𝐷�𝑀𝑀𝑘𝑘,𝜃𝜃�𝑘𝑘�𝑔𝑔�𝜃𝜃�𝑘𝑘|𝑀𝑀𝑘𝑘� 

where 

𝜃𝜃�𝑘𝑘 is the MAP estimate, 
Σ�𝑘𝑘 is the negative inverse Hessian matrix evaluated at 𝜃𝜃�𝑘𝑘, 
ℓ�𝐷𝐷�𝑀𝑀𝑘𝑘,𝜃𝜃�𝑘𝑘� is the likelihood of the data, for model k evaluated at the MAP, and 
𝑔𝑔�𝜃𝜃�𝑘𝑘�𝑀𝑀𝑘𝑘� is the value of the prior density for 𝑀𝑀𝑘𝑘 evaluated at the MAP parameter 
estimates. 

To compute the posterior model probabilities for the𝑀𝑀𝑘𝑘, one calculates the MAP and then 
calculates Ik using the preceding equation. The posterior probability of the model is 

𝜋𝜋𝑘𝑘(𝑀𝑀𝑘𝑘|𝐷𝐷) =  
𝑤𝑤𝑘𝑘𝐼𝐼𝑘𝑘

∑ 𝑤𝑤𝑘𝑘𝐼𝐼𝑘𝑘𝐾𝐾
𝑖𝑖=1

, 

where 𝑤𝑤𝑘𝑘  is the prior probability of model 𝑀𝑀𝑘𝑘. In BMDS, the user can specify those 
weights; the default is equal weight for each model (all models being considered are 
equally probable a priori). 

This approximation is similar to the Model Averaged Profile Likelihood (MAPL) approach 
of Fletcher and Turek (2012). However, while MAPL relies only on the likelihood, our 
approach incorporates prior information in calculating the marginal profile density of the 
BMD. In other words, both the likelihood and prior are used. The model-specific density is 
defined by treating profile density bounds as quantiles of a marginal posterior density for 
the parameter of interest, and the relation to the present approach and the MAPL 
approach is justified asymptotically. 

This approach can be related to the MAPL framework by substituting the posterior 
density for the likelihood in each of the steps. This method approximates the marginal 
likelihood using the posterior MAP estimate and Hessian of the log-posterior. 

https://hero.epa.gov/hero/index.cfm?action=search.view&reference_id=4286986
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Note For the model average approach, the dichotomous Bayesian models (described 
in Section 8.1) are available in the model average. For dichotomous model 
averaging, the Multistage model is capped to a maximum degree of 2. The 
reasoning for this follows upon the work of Nitcheva, et al. who show that higher-
order polynomials are not necessary given the fact that other models of the 
model averaging suite (e.g., dichotomous Hill) can provide increased curvature. 

The BMDS model-averaged BMD point estimate is the weighted average of BMD MAP 
estimates from individual models, weighted by posterior weights 𝜋𝜋𝑘𝑘(𝑀𝑀𝑘𝑘|𝐷𝐷). This is 
equivalent to the median of the approximate posterior density of θ. For the BMDL or 
BMDU estimates, the equation defining 𝑔𝑔𝑚𝑚𝑚𝑚 is integrated. A 100(α)% BMDU estimate or 
100(1 - α)% BMDL estimate is the value BMDα such that: 

𝛼𝛼 =  � 𝑔𝑔𝑚𝑚𝑚𝑚(BMD|𝐷𝐷) 𝑑𝑑BMD,
𝐵𝐵𝐵𝐵𝐷𝐷𝛼𝛼

−∞
 

= �𝜋𝜋𝑘𝑘(𝑀𝑀𝑘𝑘|𝐷𝐷)� 𝑔𝑔𝑘𝑘(BMD|𝑀𝑀𝑘𝑘,𝐷𝐷) 𝑑𝑑BMD
𝐵𝐵𝐵𝐵𝐷𝐷𝛼𝛼

−∞
.

𝐾𝐾

𝑘𝑘=1

 

 

The quantity ∫ 𝑔𝑔𝑘𝑘(BMD|𝑀𝑀𝑘𝑘,𝐷𝐷) 𝑑𝑑BMD𝐵𝐵𝐵𝐵𝐷𝐷𝛼𝛼
−∞  is approximated by, 

� 𝑔𝑔𝑘𝑘(BMD|𝑀𝑀𝑘𝑘,𝐷𝐷) 𝑑𝑑BMD
𝐵𝐵𝐵𝐵𝐷𝐷𝛼𝛼

−∞
 

≈
1
2

Pr� −2 log [𝑔𝑔�𝑘𝑘�BMD��𝑀𝑀𝑘𝑘,𝐷𝐷�� − 2 log [𝑔𝑔�𝑘𝑘(BMD𝛼𝛼|𝑀𝑀𝑘𝑘,𝐷𝐷)] <  𝜒𝜒1,𝛼𝛼 
2 ), 

where 𝑔𝑔�𝑘𝑘(𝑥𝑥|𝑀𝑀𝑘𝑘,𝐷𝐷) is the maximum value of the posterior evaluated at x, BMD�  is the MAP 
estimate of the BMD, and 𝜒𝜒1,𝛼𝛼 

2  is the 𝛼𝛼 quantile of a chi-squared random variable with one 
degree of freedom. The above approximation assumes 𝐵𝐵𝑀𝑀𝐷𝐷𝛼𝛼 < 𝐵𝐵𝑀𝑀𝐷𝐷� . When 𝐵𝐵𝑀𝑀𝐷𝐷� <
𝐵𝐵𝑀𝑀𝐷𝐷𝛼𝛼 the right-hand side of this equation is replaced by 

≈ 1 −
1
2

Pr� −2 𝑙𝑙𝑙𝑙𝑔𝑔 [𝑔𝑔�𝑘𝑘�BMD��𝑀𝑀𝑘𝑘,𝐷𝐷�� − 2 log [𝑔𝑔�𝑘𝑘�BMD𝛾𝛾�𝑀𝑀𝑘𝑘,𝐷𝐷�] <  𝜒𝜒1,𝛾𝛾 
2 ). 

This approximation is like the profile-likelihood used when estimating the BMDL and 
BMDU using the method of maximum likelihood, but in this case  𝑔𝑔�𝑘𝑘(𝑥𝑥|𝑀𝑀𝑘𝑘,𝐷𝐷) is the 
posterior density, which incorporates both the likelihood and the prior. 
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6.0 Output Common to All Model Types 
Dataset-specific Results Workbooks generated by the BMDS 3 Analysis Workbook 
contain results Model-Option Set combination in separate tabs. Each tab consists of 
tabular and graphical summaries of the modeling inputs and results. 

The purpose of these results is to provide the user with goodness-of-fit criteria and model 
results to aid in determining the appropriateness of the Model and Option Set to the 
benchmark dose derivation. 

This section describes BMDS model outputs that are common to all model types. For 
details on outputs specific to each model type, refer to: 

• Section 7.5, “Outputs Specific to Frequentist Continuous Models,” on page 65. 
• Section 7.6, “Outputs Specific to Bayesian Continuous Models,” on page 71. 
• Section 8.4, “Outputs Specific to Frequentist Dichotomous Models,” on page 86. 
• Section 8.5, “Outputs Specific to Bayesian Dichotomous Models,” on page 89. 
• Section 9.5, “Outputs Specific to Frequentist Nested Dichotomous Models,” on 

page 103. 

6.1 Model Run Documentation (User Input Table) 

 

The Results Workbook tabs that are generated for each Model-Options Set contain a 
User Input table; the User Input table lists the options selected for that Model-Options 
Set. 

For instance, when two users may be comparing results and they obtained different 
answers, they can consult their respective User Input tables to make sure the settings 
were the same or if they had used the same (or most current) version of the models. 

The User Input tables within the Results Workbook tabs for each Model-Options Set 
contain the model name and version number, the dataset name, dataset user notes, and 
modeling options entered and specified by the user on the Analysis Workbook’s Main and 
Data tabs. 
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6.2 Benchmark Dose Estimates and Key Fit Statistics 
(Benchmark Dose Table) 

 

A results tab’s Benchmark Dose table contains the BMD, BMDL, and BMDU estimates, 
AIC, and the overall goodness-of-fit test p-value, degrees of freedom (D.O.F), and chi-
square for the Model-Option set. 

6.2.1 AIC 
The Akaike Information Criterion (AIC) (Akaike, 1973) value given on the BMDS Results 
Workbook tabs is calculated as follows: 

 AIC = -2*LL + 2p 

where LL is the log-likelihood at the maximum likelihood estimates for the parameters, 
and p is the number of model parameters estimated (and not on a restriction boundary).5 

The AIC can be used to compare different models fit (using the same fitting method, e.g., 
least squares or maximum likelihood) to the same data set. Smaller values of the AIC 
indicate better fit. Although AIC comparisons are not exact (they rely on rules of thumb 
for interpreting AIC differences), they can provide useful guidance in model selection. 

Model-type specific details on the AIC are discussed in the following sections: 

• For continuous endpoints, refer to Section 7.4.4 on page 60 and to Section 11.1, 
“AIC for Continuous Models,” on page 112. 

• For dichotomous endpoints, refer to Section 8.3.2 on page 78. 

6.2.2 P-value 
The p-value is computed based on the D.O.F and the Chi2 value (Chi2 is assumed to be 
distributed as a chi-squared distribution having degrees of freedom equal to D.O.F). The 
p-value measures the “closeness” of the model predictions to the observed data. If the 
overall p-value is larger than some predetermined critical p-value, then the user might 
infer that the model appropriately describes the observed dose-response pattern. The 
critical p-value used by EPA is generally 0.1 but is sometimes relaxed to 0.05 for 
Multistage model when it is applied to cancer data (U.S. EPA, 2012). 

                                                      
 
5 For the dichotomous and nested dichotomous models, an additivity constant is not included in the LL 
calculations. 

https://hero.epa.gov/hero/index.cfm?action=search.view&reference_id=591
https://hero.epa.gov/hero/index.cfm?action=search.view&reference_id=1239433
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6.3 Model Parameters Table 
Figure 41. Model Parameters Table, with hover tip explaining the Bounded estimate. 

 

The Model Parameters table includes the estimates for the parameter values that 
“optimize” the model fit. 

Parameter estimates are checked to see if they fall within a given tolerance (1.0e-6) of 
parameter boundaries. If so, they are marked as “Bounded.” This value applies to all 
parameters. 

6.4 Cumulative Distributive Function (CDF) Table 
This block is new to BMDS 3.x. CDF stands for “cumulative distribution function,” in this 
case for the BMD estimate. It lists the percentiles associated with the CDF for the BMD 
being estimated. 

Note that the BMD value associated with the CDF value of 0.5 is the MLE of the BMD 
(and matches the value reported for the BMD in the Benchmark Dose table discussed 
above). 

The CDF block may also correspond to the Benchmark Dose table in terms of the BMDL 
and BMDU values reported in the latter. Recall that the confidence level specified by the 
user in the options is a one-sided confidence level. So, if that confidence level is related 
to one of the cumulative percentiles in the CDF block, the BMD values will match. As an 
example, if the confidence level specified by the user is 0.95 (95% one-sided confidence 
limits requested), then the BMDU from the Benchmark Dose table will match the BMD 
value listed for 0.95 in the CDF block. And, the BMDL will match the BMD value listed for 
0.05 in the CDF block. 

6.5 Graphical Output 
Graphical outputs (plots) are displayed on the Summary tab and on the specific Model-
Option tabs of the Results Workbook. The Summary tab shows the plots for all Model-
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Options Sets run for a given analysis. Individual model results are shown on the tabs 
corresponding to that Model-Option Set. 

Figure 42. Results plot for an individual model. 

 

• The BMD and BMDL are indicated by the green and yellow vertical lines, 
respectively, and are associated with the user-selected benchmark response 
(BMR), the horizontal grey line. 

• The dose-response curve estimated by the model is represented by a blue line. 
• The graphical display features can be modified using Excel edit features. 
• Data points are shown as orange circles with their individual group confidence 

intervals. 
• Error bar calculations differ slightly based on the endpoint: 

• For continuous endpoints, refer to Section 7.5.4, “Plot and Error Bar 
Calculation,” on page 70. 

• For dichotomous endpoints, refer to Section 8.3.3, “Plot and Error Bar 
Calculation,” on page 79. 

• For nested endpoints, refer to Section 9.4.3, “Plot and Error Bar Calculation,” 
on page 102. 
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7.0 Continuous Endpoints 
Continuous endpoints take on values that are real numbers (as opposed to integers, for 
example), measuring things that can vary continuously (weights, concentrations, etc.). 

The three key features of such measures that need to be specified to estimate a BMD 
are: 

1. What direction of change indicates a toxic response (adverse direction), 
2. How should the BMD be defined relative to the change in the response, and 
3. How the responses are distributed. 

With respect to the distribution, one needs to consider the type of distribution and 
the nature of the variability around the center of the distribution. The options 
available to the user, discussed in Section 7.3, relate to all of those choices. 

This section provides details on the following topics: 
• Implementation of continuous models in BMDS 3 
• Entering continuous model data 
• Continuous model options 
• Continuous model-specific outputs 
• Options for restricting values of certain model parameters 
• The Bayesian approach to continuous response modeling, specifying how the 

priors are defined 

7.1 Continuous Response Models 
All the traditional frequentist models and options that were available for analyzing 
continuous response data in previous versions of BMDS are available in BMDS 3. 

Figure 43. Default selection of BMDS 3 continuous models, as they appear in the Analysis Workbook.  
Note that model averaging is disabled for continuous models in BMDS 3.2. 

 

Also, users are now able to use the Hybrid continuous modeling method and the 
lognormal response distribution assumption (previously only available for Exponential 
models) for all continuous models. 

As in previous versions of BMDS, the user can choose to run the Hill, Polynomial, and 
Power models either restricted or unrestricted; the Linear model is not restricted and the 
Exponential models can only be run restricted. 
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New in BMDS 3.2 are preview versions of the Bayesian implementation of continuous 
endpoint modeling. Peer review of the Bayesian continuous models is planned for later in 
2020. 

Note At this time, EPA does not offer technical guidance on Bayesian modeling. 

Note The preview models are new. Users acknowledge they have not been 
extensively tested, and formally reviewed and approved by the EPA for risk 
assessment purposes. 

7.2 Entering Continuous Response Data 
For details on inserting or importing datasets, see Section 4.2, “Step 2: Add Datasets,” on 
page 29. 

For summarized continuous response data, the default column headers are “Dose,” “N,” 
“Mean” and “Std. Dev.” 

For individual continuous response data, the default column headers are “Dose” and 
“Response.” 

7.2.1 Adverse Direction 
Figure 44. Adverse Direction picklist for the selected dataset. 

 

Choices for the Adverse Direction option are “automatic” (default), “up,” or “down.” 

This option refers to whether adversity increases as the dose-response curve rises “up” 
or falls “down.” Manually choose the adverse direction if the direction of adversity is 
known for the endpoint being studied. 

If “automatic” is chosen, BMDS chooses the adverse direction based on the shape of the 
observed dose-response relationship. 

This selection only impacts how the user-designated benchmark response (BMR) is used 
in conjunction with model results to obtain the BMD. 

7.3 Options 
On the BMDS 3 Analysis Workbook’s Main tab, the user can define multiple Option Sets 
to apply to multiple user-selected models and multiple user-selected datasets in a single 
“batch” process. Select the Add Option Set button to define a new Option Set 
configuration. 



 Benchmark Dose Software (BMDS) Version 3.2 
User Guide 

Page 53 of 118 

Figure 45. Continuous Model options. 

 

7.3.1 Defining the BMD 

 

The following options are related to the definition of the BMD and its bounds: 
• Benchmark Response (BMR) Type, which defines the method of choice for 

determining the response level used to derive the BMD. For details on these 
methods, refer to Table 5 on page 54. 

• The BMRF (Benchmark Response factor) is specific to the BMR Type. Table 5 
summarizes the options related to BMR Type and BMRF. 

• Tail Probability marks the cut-off for defining adversity and applies only to 
“Hybrid extra risk” BMR Type. If the default setting of 0.01, for example, is used, 
this indicates that the user has specified that, in the absence of exposure, the 
probability of a response that is considered adverse is 0.01. This is a “tail 
probability” in the sense that it specifies how much of the tail of the distribution of 
responses (upper or lower) is in the adverse range. It implicitly defines the cut-off 
between normal and adverse responses. 

• Confidence Level is set to 0.95 by default. This confidence level corresponds to 
a one-sided confidence bound, in either direction. In other words, if the 
confidence level is set to 0.95, the BMDL is the one-sided 95% lower bound on 
the BMD; the BMDU is the one-sided 95% upper bound on the BMD. The interval 
from the BMDL to the BMDU would, in that case, be a 90% confidence interval. 
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Table 5. Options related to Continuous BMR Type and BMRF. 

Analysis File, Main 
Tab Option Name 

Verbal Definition: The BMD is 
the dose yielding … 

Mathematical Definition BMRF Notes 

Rel. Dev. Relative Deviation: 
… the specified change in median 
response relative to the background 
median 

|𝑚𝑚(𝐵𝐵𝑀𝑀𝐷𝐷) –  𝑚𝑚(0)|
𝑚𝑚(0)  =  𝐵𝐵𝑀𝑀𝐵𝐵𝐵𝐵 

BMRF is the “specified change” 
Default value = 0.1 [10% change in 
median] 

Abs. Dev. Absolute Deviation: 
… the specified change in median 
response  

|𝑚𝑚(𝐵𝐵𝑀𝑀𝐷𝐷) –  𝑚𝑚(0)|  =  𝐵𝐵𝑀𝑀𝐵𝐵𝐵𝐵 BMRF is the “specified change” 
There is no default because it is very 
endpoint specific 

Point Fixed Value: 
… a median equal to the specified 
point value 

𝑚𝑚(𝐵𝐵𝑀𝑀𝐷𝐷)  =  𝐵𝐵𝑀𝑀𝐵𝐵𝐵𝐵 BMRF is the “specified point value” 
There is no default because it is very 
endpoint specific 

Std. Dev. Standard Deviation: 
… the specified change in median 
relative to the control standard 
deviation 

Normal Responses: 
|𝑚𝑚(𝐵𝐵𝑀𝑀𝐷𝐷) –  𝑚𝑚(0)|

𝜎𝜎(0)
 =  𝐵𝐵𝑀𝑀𝐵𝐵𝐵𝐵 

Lognormal Responses: 
|ln (𝑚𝑚(𝐵𝐵𝑀𝑀𝐷𝐷)) –  ln (𝑚𝑚(0))|

𝜎𝜎𝐿𝐿(0)
 

=  𝐵𝐵𝑀𝑀𝐵𝐵𝐵𝐵 

BMRF is the multiple of the standard 
deviation 
Default value = 1 [change in median (or 
log-median) equal to 1 standard 
deviation (or log-scale standard 
deviation)] 

Hybrid Increased Extra Risk: 
… the specified extra risk, defined 
by the estimated distribution and 
background rate  

If high responses are adverse: 
𝐵𝐵𝑀𝑀𝐵𝐵𝐵𝐵

=  
Pr(𝑋𝑋 > 𝑋𝑋0|𝐵𝐵𝑀𝑀𝐷𝐷) − Pr(𝑋𝑋 > 𝑋𝑋0|0)

1 −  Pr(𝑋𝑋 > 𝑋𝑋0|0)  

If low responses are adverse: 
𝐵𝐵𝑀𝑀𝐵𝐵𝐵𝐵 

=
Pr(𝑋𝑋 < 𝑋𝑋0|𝐵𝐵𝑀𝑀𝐷𝐷) − Pr(𝑋𝑋 < 𝑋𝑋0|0)

1 −  Pr(𝑋𝑋 < 𝑋𝑋0|0)  

where 𝑋𝑋0 is a response value and 
Pr(𝑋𝑋 < 𝑋𝑋0|𝑑𝑑) is the probability that 
the response, 𝑋𝑋, is less than 𝑋𝑋0 at 
dose 𝑑𝑑. For d=0, the latter equals 
the user-specified “tail probability” 
and 𝑋𝑋0 is then a function of that tail 
probability and the estimated 
control-group response-
distribution.  

BMRF is the extra risk. (Default 0.5) 
This option also requires specifying a 
“tail probability” which is the probability 
of extreme (“adverse”) response at 
dose=0. 
 

Notes: m(x) is the median at dose x. Specifically, m(BMD) is the median at dose=BMD, so BMD is the solution 
to the equations shown. 𝜎𝜎(0) is the standard deviation for the control group (d=0) and 𝜎𝜎𝐿𝐿(0) is the log-scale 
standard deviation for the control group, used when the responses are assumed to be Lognormally distributed. 
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7.3.2 Polynomial Restriction 

 

Restrictions on coefficients of the dose terms can be “Use dataset adverse direction” 
(default; depends on detected or specified adverse direction), “Non-negative” (>0), or 
“Non-positive” (<0). 

7.3.3 Distribution and Variance 

  

The underlying data distribution and the variability around the “center” of that distribution 
are linked options. 

In total, three combinations are allowed: 
1. Normal distribution, constant variance (default): each dose group has the same 

variance, which is estimated by BMDS along with the dose-response model 
parameters 

2. Normal distribution, non-constant (modeled) variance: each dose group may 
have a different variance, described by a variance model (see Section 7.5.2) with 
two parameters (α and ρ) relating the dose group’s estimated mean value (see 
below) to the variance. Those two parameters are estimated simultaneously with 
the parameters of the dose-response model.6 

3. Lognormal distribution, constant coefficient of variation (CV): for lognormally 
distributed responses, each dose group has the same CV, which entails that the 
log-scale variance is constant over dose groups (though the natural-scale 
variance will differ from group to group7). 

With respect to the response distribution (Normal or Lognormal), please note the 
following: 

• The lognormal distribution can only be assumed when the responses are strictly 
positive. The lognormal distribution is only applicable to positive real values. 

• Regardless of the distribution assumed, the dose-response model under 
consideration is the representation of the change in the median of the distribution 
of responses as a function of dose. If we denote the median at dose d by m(d), 
then it is always true for BMDS that m(d) = f(d), where f(d) is the dose-response 

                                                      
 
6 The 𝛼𝛼 parameter is returned for all models except for the exponential models, which return 𝑙𝑙𝑙𝑙(𝛼𝛼). 
7 CV = standard deviation divided by mean. Log-scale refers to the values of the logarithms of the 
responses. Natural-scale refers to the values of the responses, untransformed. 
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function under consideration (see list of possible functions in Table 6 on page 
58). 

• If the assumed data distribution is Normal, then it is also true that the mean at 
dose d, μ(d), is equal to the median. Thus, it is common under the Normal 
assumption to describe the dose-response function as a model of the mean 
response, and to write μ(d) = f(d), where f(d) is again one of the dose-response 
functions described in Table 6 on page 58. 

When modeling continuous response data, the standard assumption for the BMDS 
continuous models is that the underlying distributions (one for each dose group) are 
Normal, with a mean given by the dose-response model and a variance as specified by 
the user (constant or a function of the mean response). An alternative assumption is that 
the responses are lognormally distributed. 

In BMDS 3 all continuous models allow the user to choose between Normal and 
Lognormal response distribution assumptions; prior versions of BMDS only allowed this 
choice for Exponential models. 

If the user has access to the individual response data, those data can be log-transformed 
prior to analysis but, as discussed below, this is not a recommended approach. If the 
user suspects that the responses are lognormally distributed, the recommended 
approach is to model the untransformed data assuming the underlying distribution is 
Lognormal with median values defined by the dose-response function and a constant log-
scale variance, corresponding to an assumption of a constant CV. 

7.3.3.1 Exact and Approximate MLE Solutions 
The exact MLE solution cannot be obtained when the data are assumed to be 
Lognormally distributed and the data are presented in terms of group-specific means and 
standard deviations. In that case, the results are “Approximate” MLE solutions. The 
means (mL) and standard deviations (sL) of the log-transformed data are estimated as 
follows: 

estimated log-scale sample mean (mL):   𝑚𝑚𝐿𝐿 = 𝑙𝑙𝑙𝑙(𝑚𝑚) − 𝑠𝑠𝐿𝐿
2

2
 

 

estimated log-scale sample standard deviation (sL):  𝑠𝑠𝐿𝐿 = �(𝑙𝑙𝑙𝑙 �1 + 𝑠𝑠2

𝑚𝑚2�) 

 
where m and s are the sample mean and sample standard deviation, respectively. 

When data are assumed to be lognormally distributed and individual response data are 
available, BMDS 3 provides an exact maximum-likelihood estimation (MLE) solution. As 
of BMDS 3.0, the exact solution is the only solution option implemented when individual 
observations are input, and the lognormal assumption is chosen. BMDS 3 does not 
provide an option for computing the approximate solution. 

If the user wants to compute an approximate solution from individual observations (e.g., 
for research purposes), then they should use the following procedure: 

1. Compute the group-specific sample means and sample standard deviations. 
2. Input those values as would be done for an analysis based on those summary 

statistics (but still selecting lognormal as the distribution type). 
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7.3.3.2 Log-transformed Responses are NOT Recommended 
Using log-transformed responses in the analysis is not recommended, for the 
following reasons: 

• If the user chooses to log-transform the data prior to analysis, then the 
interpretation of the BMD and BMDL estimates would have to be considered 
carefully (and perhaps in consultation with a statistician). Data interpretation 
when using log-transformed responses will not be the same as when using the 
natural-scale response values. Indeed, the models—when “transformed back” to 
the natural scale—will not correspond to any of the standard BMDS models. 

For example, if using the power model on log-transformed responses, the user is 
actually implicitly modeling the medians (on the natural-scale) with the function 
𝑒𝑒(𝑏𝑏𝑚𝑚𝑏𝑏𝑘𝑘𝑏𝑏𝑏𝑏𝑏𝑏𝑏𝑏𝑏𝑏𝑏𝑏+𝑠𝑠𝑠𝑠𝑏𝑏𝑠𝑠𝑠𝑠×𝑏𝑏𝑏𝑏𝑠𝑠𝑠𝑠)𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝 which is not a standard BMDS model and whose 
characteristics (e.g., exponential increases in response) may not be those desired by 
the user. 
• Similarly, the interpretation of the BMD will not correspond to simple expressions 

(e.g., if the BMR is set equal to a relative deviation of 10%, that relative deviation 
will be assessed on the log-scale and so will not yield BMD or BMDL estimates 
that correspond to a 10% change in the original mean responses). 

For these reasons, log-transforming the response values is not considered a “best 
practice” and, as stated, should only be applied and interpreted with supporting statistical 
expertise. 

Therefore, in most cases, the user should use non-transformed values and select the 
lognormal distribution if the data are assumed to be lognormally distributed. 

7.4 Mathematical Details for Models for Continuous Endpoints 
in Simple Designs 
Models in this section are for continuous endpoints, such as weight or enzyme activity 
measures, in simple experimental designs that do not involve nesting or other 
complications. The models predict the median value of the response, m(dose), expected 
for a given dose and the variation around that median. 

As evidenced by the previous discussion of the options available for continuous models, 
modeling of continuous endpoints require consideration of more details than do those for 
dichotomous endpoints in similar designs. This section presents the mathematical and 
statistical details that determine how estimation is accomplished in BMDS. 

7.4.1 Continuous Dose-Response Model Functions 
The definitions of the continuous models are fully specified in the following table. Note 
that 𝑚𝑚(dose) is the median response for the dose level specified.
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Table 6. The individual continuous models and their respective parameters. 

Model Parameters Notes 

Linear and Polynomial models 
𝑚𝑚(dose) = 𝑔𝑔 +  𝛽𝛽1 × dose + 𝛽𝛽2 × dose2 + ⋯

+ 𝛽𝛽𝑏𝑏 × dose𝑏𝑏 
𝑙𝑙 is the degree of the polynomial, specified by 
user and must be a positive integer 
(maximum value = 21) 
 

𝑔𝑔 = control response (intercept) 
𝛽𝛽0 …𝛽𝛽𝑏𝑏: polynomial coefficients 
 

Parameter Constraints: none 

User parameter restriction options: can restrict the value of the polynomial 
coefficients. Restricting them to be either “non-positive” or “non-negative” 
guarantees that the resulting function will be strictly decreasing, strictly increasing, 
or perfectly flat (when all the coefficients are zero). If the coefficients are 
unrestricted (i.e., an unrestricted form of the model is run), more complicated 
shapes are possible, and, particularly as the degree of the polynomial approaches 
the number of dose groups minus one, the polynomial will often be quite ‘‘wavy’.’ 

Linear 
𝑚𝑚(dose) = 𝑔𝑔 +  𝛽𝛽 × dose 
 

𝑔𝑔 = control (intercept) 
𝛽𝛽 = slope 
 

Parameter Constraints: none 

User parameter restriction options: none 

Power 
𝑚𝑚(dose) = 𝑔𝑔 + 𝛽𝛽 × (dose)𝛿𝛿  

𝑔𝑔 = control response (intercept) 
𝛽𝛽 = slope 
𝛿𝛿= power 

Parameter Constraints: 0 < 𝛿𝛿 < 18. 

User parameter restriction options: 𝛿𝛿 may be further restricted to values > 1. Note: If 
𝛿𝛿 < 1, then the slope of the dose-response curve becomes infinite at the control 
dose. This is biologically unrealistic and can lead to numerical problems when 
computing confidence limits, so several authors have recommended restricting 𝛿𝛿 ≥ 
1. 

Hill1 

𝑚𝑚(dose) = 𝑔𝑔 + 𝑣𝑣×𝑏𝑏𝑏𝑏𝑠𝑠𝑠𝑠𝑛𝑛

𝑘𝑘𝑛𝑛+𝑏𝑏𝑏𝑏𝑠𝑠𝑠𝑠𝑛𝑛
  

𝑔𝑔 = control response (intercept) 
𝑘𝑘 = dose with half-maximal 
change 
𝑙𝑙= power 
𝑣𝑣= maximum change 

Parameter Constraints: 𝑘𝑘 > 0. 
0 < 𝑙𝑙 < 18. 

 
User parameter restriction options: 𝑙𝑙 may be further restricted to values > 1. 

Exponential1,2 

𝐸𝐸𝑥𝑥𝐸𝐸2: 𝑚𝑚(dose) = 𝑎𝑎 × 𝑒𝑒±𝑏𝑏×dose 

𝐸𝐸𝑥𝑥𝐸𝐸3: 𝑚𝑚(dose) = 𝑎𝑎 × 𝑒𝑒±(𝑏𝑏×dose)𝑑𝑑 
𝐸𝐸𝑥𝑥𝐸𝐸4: 𝑚𝑚(dose) = 𝑎𝑎 × (𝑐𝑐 − (𝑐𝑐 − 1) × 𝑒𝑒−𝑏𝑏×dose) 
𝐸𝐸𝑥𝑥𝐸𝐸5: 𝑚𝑚(dose) = 𝑎𝑎 × (𝑐𝑐 − (𝑐𝑐 − 1) × 𝑒𝑒−(𝑏𝑏×dose)𝑑𝑑) 

𝑎𝑎 = control response (intercept) 
𝑏𝑏 = slope 
𝑐𝑐= asymptote term 
𝑑𝑑= power 

Parameter Constraints: 𝑎𝑎 > 0 
𝑏𝑏 > 0 
𝑐𝑐 > 1 for responses increasing with dose 
0 < 𝑐𝑐 < 1 for responses decreasing with dose 
1 < 𝑙𝑙 < 18. 
 
Note: The sign in ““ ± 𝑏𝑏” (Exp2 and Exp3 models) will change depending on the 
user-designated or auto-detected direction of change: + for responses increasing 
with dose, - for responses decreasing with dose.  
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1 BMDL estimates from models that have an asymptote parameter (including the Hill 
model) can be unstable when a wide range of parameter values can give nearly identical 
likelihoods. One indicator of that problem is that the estimated asymptotic response is far 
outside the range of the observed responses. The user should consult a statistician if this 
behavior is seen or suspected. 
2 RIVM (National Institute for Public Health and the Environment (Netherlands)). (RIVM, 
2018). PROAST. 

 

Note that the upper bounds for the power parameters in the Power, Hill and Exponential 
models have been set to 18. That value was selected because it represents a very high 
degree of curvature that should accommodate almost every dataset, even ones with very 
(or absolutely) flat dose-response at low doses followed by a very steep dose-response 
at higher doses. 

7.4.2 Variance Model 
In addition to the model for the median response as a function of dose, the model for the 
variance also needs to be defined. 

For responses assumed to vary Normally around the median, the variance model is: 

𝜎𝜎𝑖𝑖2 =  𝑒𝑒𝑥𝑥𝐸𝐸{𝑙𝑙𝑙𝑙(𝛼𝛼)  + 𝜌𝜌 ∗ 𝑙𝑙𝑙𝑙[𝑚𝑚(dose𝑖𝑖)]}, 

where 𝛼𝛼 (> 0) and 𝜌𝜌 are parameters estimated simultaneously with the parameters of the 
dose-response function (see Table 6 above). As in that table, 𝑚𝑚(dose𝑖𝑖) is the predicted 
median (from the dose-response model under consideration) for the ith dose group. 

Note that when a constant variance model is specified by the user, the parameter 𝜌𝜌 is set 
to 0 and only 𝛼𝛼 will be estimated. In that case, 𝜎𝜎𝑖𝑖2 =  𝛼𝛼 

When the responses are assumed to be Lognormally distributed, then the variance 
modeled is the log-scale variance: 

𝜎𝜎𝐿𝐿𝑖𝑖2 = 𝛼𝛼. 

Because, for Lognormal data, BMDS is restricted to a constant log-scale variance model 
(equivalent to a constant coefficient of variation), 𝜌𝜌 does not appear in that equation (in 
essence, it is once again set to 0 under the assumption of Lognormally distributed 
responses). 

The formulation of the variance model shown above allows for several commonly 
encountered situations. If 𝜌𝜌 =  1, then the variance is proportional to the median. If 𝜌𝜌 =
 2, then the coefficient of variation is constant, a common assumption especially for 
biochemical measures and one which mimics the constant coefficient of variation 
assumption of the Lognormally distributed responses (but without having to assume that 
the response are in fact Lognormally distributed). 

7.4.3 Likelihood Function 
For the “frequentist” modeling option, parameter estimates are derived by the method of 
maximizing the likelihood (i.e., they are maximum likelihood estimates, MLEs). The 
likelihood functions for the continuous responses are defined here. 

Suppose there are G dose groups, having doses 

dose1, … , dose𝐺𝐺 

https://hero.epa.gov/hero/index.cfm?action=search.view&reference_id=4850042
https://hero.epa.gov/hero/index.cfm?action=search.view&reference_id=4850042
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with 𝑁𝑁𝑖𝑖 subjects per dose group. Suppose also that 𝑦𝑦𝑖𝑖𝑖𝑖 is the measurement for the jth subject 
in the ith dose group. The form of the log-likelihood function depends upon whether the 
responses are assumed to be Normally or Lognormally distributed. 

7.4.3.1 Assuming Normally Distributed Responses 
For the assumption of Normally distributed responses, the log-likelihood function is: 

𝐿𝐿𝐿𝐿 = −
𝑁𝑁
2

ln(2𝜋𝜋) −��
𝑁𝑁𝑖𝑖
2
𝑙𝑙𝑙𝑙( 𝜎𝜎𝑖𝑖

2) +
(𝑁𝑁𝑖𝑖 − 1)𝑠𝑠𝑖𝑖2

2𝜎𝜎𝑖𝑖2
+
𝑁𝑁𝑖𝑖�𝑦𝑦�𝑖𝑖 − 𝑚𝑚(dose𝑖𝑖)�

2

2𝜎𝜎𝑖𝑖2
�

𝐺𝐺

𝑖𝑖=1

 

 
where 

𝑦𝑦�𝑖𝑖 =
∑ 𝑦𝑦𝑖𝑖𝑖𝑖
𝑁𝑁𝑖𝑖
𝑖𝑖=1

𝑁𝑁𝑖𝑖
 (the sample mean for the ith dose group), 

𝑠𝑠𝑖𝑖2 =
∑ (𝑦𝑦𝑖𝑖𝑖𝑖−𝑦𝑦�𝑖𝑖)2
𝑁𝑁𝑖𝑖
𝑖𝑖=1  

𝑁𝑁𝑖𝑖−1
 (the sample variance for the ith dose group), 

𝑁𝑁 =  ∑ 𝑁𝑁𝑖𝑖𝐺𝐺
𝑖𝑖=1 . 

The parameters defining 𝑚𝑚(dose𝑖𝑖) and 𝜎𝜎𝑖𝑖2 (see previous two subsections) are optimized 
to maximize the LL equation value. 

7.4.3.2 Assuming Lognormally Distributed Responses 
For the assumption of Lognormally distributed responses, the log-likelihood function is: 

𝐿𝐿𝐿𝐿 = −
𝑁𝑁
2

ln(2𝜋𝜋) −��𝑁𝑁𝑖𝑖𝑧𝑧𝐿𝐿𝑖𝑖  +  
𝑁𝑁𝑖𝑖
2
𝑙𝑙𝑙𝑙( 𝜎𝜎𝐿𝐿𝑖𝑖

2) +
(𝑁𝑁𝑖𝑖 − 1)𝑠𝑠𝐿𝐿𝑖𝑖2

2𝜎𝜎𝐿𝐿𝑖𝑖2
+
𝑁𝑁𝑖𝑖(𝑧𝑧𝐿𝐿𝑖𝑖 − 𝑙𝑙𝑙𝑙(𝑚𝑚(dose𝑖𝑖)))2

2𝜎𝜎𝐿𝐿𝑖𝑖2
�

𝐺𝐺

𝑖𝑖=1

 ̅
̅

where 

𝑧𝑧�̅�𝐿𝑖𝑖  = log-scale sample mean for ith dose group, and 
 𝑠𝑠𝐿𝐿𝑖𝑖2  = log-scale sample variance for ith dose group. 

As in the case of Normally distributed responses, the parameters defining 𝑚𝑚(dose𝑖𝑖) and 
𝜎𝜎𝐿𝐿𝑖𝑖2 (see previous two subsections) are optimized to maximize the LL equation value. 

7.4.4 AIC and Model Comparisons 
The Akaike Information Criterion (AIC) (Akaike, 1973) can be used to compare different 
models fit (by the same fitting method, e.g., by maximizing the likelihood) to the same 
data set. The AIC is a statistic that depends on the value of LL (see previous section) and 
the number of estimated parameters, p: 

𝐴𝐴𝐼𝐼𝐴𝐴 =  −2 × 𝐿𝐿𝐿𝐿 +  2 × 𝐸𝐸 

Note that the AIC balances the goals of getting the highest LL value possible while being 
parsimonious with respect to the number of parameters needed to achieve a high LL 
value. Since the equation for AIC has a negative multiplier for LL (which one wants to be 
greater) and positive multiplier for p (which one wants to be as small as possible and still 
get “good fit”), a model with a smaller value of AIC than other models is presumed to be 
the better model on the basis of AIC. Although such methods are not exact, they can 
provide useful guidance in model selection. 

In the current version of BMDS, the number of “estimated parameters” includes only 
those that have not been estimated to equal a bounding value (either from the model-
imposed constraints or user-imposed restrictions (see Table 6). 

https://hero.epa.gov/hero/index.cfm?action=search.view&reference_id=591
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Note  This counting process may or may not be reasonable, depending on the 
boundary value that a parameter in question hits. 

 For example, if the power parameter in a model hits (i.e., is estimated to be equal 
to) the upper bound of 18, it would usually be the case that one would want to 
count that parameter as one that is estimated, but BMDS does not do that. 

 For this reason, the user is apprised to consider carefully the cases where 
parameter bounds have been hit and to consider the implications for issues such 
as model comparison and model selection. 

Note that if a parameter hits a bound for any model, the parameter estimates are 
maximum likelihood estimates only in the restricted sense that the bounded parameter 
has been assigned a value and the other parameters are MLEs conditional on that 
assigned value. Such model results are not strictly comparable with others in terms of 
AIC. In such a case, the BMD and BMDL could depend on the choice of power 
parameter; thus, sensitivity analysis is indicated if one intends to rely on the reported 
BMD or BMDL. This is especially important when considering power parameters that 
have hit the upper bound of 18. 

Note To facilitate comparing models with different likelihoods (i.e., Normal vs. 
Lognormal), the log-likelihood is calculated using all of the terms shown in the LL 
equations. BMDS 2.x did not include the parameter-independent terms in its 
reported LL values nor for calculating the AIC. As a consequence, BMDS 3.x and 
2.x will return different values for the LL and AIC when run on the same data. 

Even though the BMDS 3 AIC values for continuous models differ from those in BMDS 
2.x versions, if the models have the same underlying distribution, then the difference of 
the AICs will be the same as in previous versions of BMDS. This assumes that the BMDS 
3 and BMDS 2.x model fits are the same for the two models being compared. The AIC 
difference may not be the same if one or more of the model fits differ between the two 
versions (e.g., if one or more of the BMDS 3 models provide an improved fit to the data 
over the corresponding BMDS 2.x model). 

However, when comparing models having different parametric distributions, the AIC 
differences will not be the same as previous BMDS versions. For these comparisons, the 
AIC calculated using the BMDS 3 software is correct and will result in the proper 
comparison between any two models regardless of underlying distribution. 

Caution 
A note of caution is required for situations where only the sample mean and sample 
standard deviation are available (summarized data) and for which the log-scale 
sample mean and sample standard deviation are only approximated when assuming 
lognormally distributed responses. 
In such cases, the same approximations are made across all the dose-response 
models. It is therefore strictly valid to compare AIC results across any runs that 
assumed that the responses were Lognormally distributed. 
However, comparisons of results where one set of results was obtained 
assuming Normality and one set was obtained assuming Lognormality should 
be made with caution. 
In the latter case, if the AICs are “similar” (using that term loosely, because no 
specific guidance can be offered here), then the user ought not to base model 
selection on AIC differences. Selection when the AIC differences are “larger” may not 
be problematic, since the approximation used should not be too bad. 
A conservative position would be that comparisons of model runs assuming Normally 
distributed responses to those assuming Lognormal responses should not be made 
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using the AIC, if the underlying data are presented in summarized form (i.e., only 
sample means and sample standard deviations are available). 

7.4.5 BMDL and BMDU Computation 
The estimation of the BMDs, depending on the definition of the BMR type, is specified in 
Table 5. The derivation of the confidence bounds for the BMD, i.e., the BMDL and 
BMDU, is defined here. 

The general approach to computing the confidence limits for the BMD is the same for all 
the models in BMDS, and is based on the asymptotic distribution of the likelihood ratio 
(Crump and Howe, 1985). 

Two different specific approaches are followed for the continuous models. 

For the Power Model 
For the power model, the equations that define the benchmark response in terms of the 
benchmark dose and the dose-response model are solved for one of the model 
parameters. The resulting expression is substituted back into the model equations, with 
the effect of re-parameterizing the model so that BMD appears explicitly as a parameter. 
A value for BMD is then found such that, when the remaining parameters are varied to 
maximize the likelihood conditional on that BMD value, the resulting log-likelihood is less 
than that at the maximum likelihood estimates by exactly 

𝜒𝜒1,1−2𝛼𝛼
2

2
 

For the Polynomial, Hill, and Exponential Models 
For the polynomial, Hill, and exponential models, it is impractical or impossible to 
explicitly reparameterize the dose-response model function to allow BMD to appear as an 
explicit parameter. For these models, the BMR equation is used as a non-linear 
constraint, and the minimum value of BMD is determined such that the log-likelihood is 
equal to the log-likelihood at the maximum likelihood estimates less 

𝜒𝜒1,1−2𝛼𝛼
2

2
 

Occasionally, the following error message may appear for a model: “BMDL computation 
is at best imprecise for these data.” This is a flag that convergence for the BMDL was not 
“successful” in the sense that the required level of convergence (< 1e-3 relative change 
in the target function by the time the optimizer terminates) has not been achieved. 

7.4.6 Bayesian Continuous Model (Preview) Descriptions 
Note At this time, EPA does not offer technical guidance on Bayesian modeling. 

Note The preview models are new. Users acknowledge they have not been 
extensively tested, and formally reviewed and approved by the EPA for risk 
assessment purposes. 

From a Bayesian perspective, inference proceeds by defining a data generating 
mechanism, given a model, 𝑀𝑀, and its parameters. For our purposes, 𝑀𝑀 would be one of 
the models listed in Table 6 which determines the probability of response. The data 
generating mechanism would be the assumption that the observations were obtained 
from a Normal or Lognormal distribution having the dose-dependent median response 
defined by one of those models and the variance term defined as described above 
(according to the user’s choice of options). 

https://hero.epa.gov/hero/index.cfm?action=search.view&reference_id=3198
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We can then relate that to the likelihood, here denoted ℓ(𝐷𝐷|𝑀𝑀), which shows explicitly 
that it is the likelihood of the data, 𝐷𝐷, conditional on the model. The functional form of the 
log of the likelihood is presented in Section 7.4.3, “Likelihood Function,” on page 59. 

The set of preview Bayesian continuous models used in BMDS 3 is identical to the set of 
models used for frequentist (MLE) approaches (Table 6). In the following, let θ be the 
vector of parameters that are required to define the any one of those models. So, for 
example, for the Power model θ = (g, β, δ). The additional consideration incorporated into 
the Bayesian approach is the specification of a prior distribution for θ. The Bayesian 
approach takes the specified prior and updates it using the data under consideration to 
obtain a “posterior” distribution for θ. 

BMDS summarizes the posterior for the BMD as follows. The BMD (one might call it a 
“central estimate” perhaps) is equated to the value obtained by using the maximum a 
posteriori (MAP) θ estimate. The MAP is the value of θ that maximizes the posterior log-
likelihood. The posterior density is itself approximated using a Laplacian approximation. 
This approximation is also used to estimate BMDL and BMDU values, which are the 
percentiles from that density that correspond to the confidence level selected by the user. 

The priors for the BMDS dichotomous models are defined in Table 7. 

Important Note 

 The priors for the parameters are based on scaled doses and scaled responses; 
BMDS performs this scaling automatically.  

 BMDS automatically scales the doses by dividing by the maximum dose in the 
dataset under consideration, i.e., that the doses under consideration range from 
0 to 1 (inclusive). BMDS automatically scales the responses by dividing by the 
mean response in the control (or lowest dose) group. 

 The user does not need to scale anything beforehand. That means that the 
parameter estimates and BMD values returned by the program have been 
adjusted back to the original scale of the doses and the original scale of the 
responses specified in the input data file. 
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Table 7. The individual Bayesian continuous models (preview) and their parameter priors.  

Model Constraints Priors 

Polynomial 
 

𝐸𝐸(dose) = 𝑔𝑔 +  𝛽𝛽1dose + 𝛽𝛽2dose2 + ⋯
+ 𝛽𝛽𝑏𝑏dose𝑏𝑏 

 
 

0 <  𝑔𝑔 < 1𝑒𝑒6 
−1𝑒𝑒 − 4 < 𝛽𝛽𝑖𝑖  < 1𝑒𝑒4 

 

𝑔𝑔 ~ 𝐿𝐿𝑙𝑙𝑔𝑔𝑙𝑙𝑙𝑙𝐿𝐿𝑚𝑚𝑎𝑎𝑙𝑙(0,1) 
𝛽𝛽𝑖𝑖  ~ 𝑁𝑁𝑙𝑙𝐿𝐿𝑚𝑚𝑎𝑎𝑙𝑙(0,2) 

 

Linear 
𝐸𝐸(dose) = 𝑔𝑔 +  𝛽𝛽1dose 

 
 

0 <  𝑔𝑔 < 1𝑒𝑒6 
−1𝑒𝑒 − 4 < 𝛽𝛽1  < 1𝑒𝑒4 

 

𝑔𝑔 ~ 𝐿𝐿𝑙𝑙𝑔𝑔𝑙𝑙𝑙𝑙𝐿𝐿𝑚𝑚𝑎𝑎𝑙𝑙(0,1) 
𝛽𝛽1 ~ 𝑁𝑁𝑙𝑙𝐿𝐿𝑚𝑚𝑎𝑎𝑙𝑙(0,2) 

 

Power 
𝐸𝐸(dose) = 𝑔𝑔 + 𝛽𝛽 × (dose)𝛿𝛿  

0 <  𝑔𝑔 < 1𝑒𝑒6 
−1𝑒𝑒 − 4 < 𝛽𝛽 < 1𝑒𝑒4 

0 <  𝛿𝛿 < 40 
 

𝑔𝑔 ~ 𝐿𝐿𝑙𝑙𝑔𝑔𝑙𝑙𝑙𝑙𝐿𝐿𝑚𝑚𝑎𝑎𝑙𝑙(0,1) 
𝛽𝛽 ~ 𝑁𝑁𝑙𝑙𝐿𝐿𝑚𝑚𝑎𝑎𝑙𝑙(0,1) 

𝛿𝛿 ~ 𝐿𝐿𝑙𝑙𝑔𝑔𝑙𝑙𝑙𝑙𝐿𝐿𝑚𝑚𝑎𝑎𝑙𝑙(0.405465, 0.5) 
 

Hill 

𝐸𝐸(dose) = 𝑔𝑔 + 𝑣𝑣×𝑏𝑏𝑏𝑏𝑠𝑠𝑠𝑠𝑛𝑛

𝑘𝑘𝑛𝑛+𝑏𝑏𝑏𝑏𝑠𝑠𝑠𝑠𝑛𝑛
  

0 <  𝑔𝑔 < 18 
−18 < 𝑣𝑣 < 18 

0 <  𝑘𝑘 < 18 
0 < 𝑙𝑙 < 18 

 

𝑔𝑔 ~ 𝐿𝐿𝑙𝑙𝑔𝑔𝑙𝑙𝑙𝑙𝐿𝐿𝑚𝑚𝑎𝑎𝑙𝑙(0,1) 
𝑣𝑣 ~ 𝑁𝑁𝑙𝑙𝐿𝐿𝑚𝑚𝑎𝑎𝑙𝑙(1,2) 

𝑘𝑘 ~ 𝐿𝐿𝑙𝑙𝑔𝑔𝑙𝑙𝑙𝑙𝐿𝐿𝑚𝑚𝑎𝑎𝑙𝑙(−0.69315, 1) 
𝑙𝑙 ~ 𝐿𝐿𝑙𝑙𝑔𝑔𝑙𝑙𝑙𝑙𝐿𝐿𝑚𝑚𝑎𝑎𝑙𝑙(0.405465, 0.2501) 

 

Exponential 

𝐸𝐸(dose) = 𝑎𝑎 × 𝑒𝑒±𝑏𝑏×dose 

𝐸𝐸(dose) = 𝑎𝑎 × 𝑒𝑒±(𝑏𝑏×dose)𝑑𝑑 
𝐸𝐸(dose) = 𝑎𝑎 × (𝑐𝑐 − (𝑐𝑐 − 1) × 𝑒𝑒−𝑏𝑏×dose) 

𝐸𝐸(dose) = 𝑎𝑎 × (𝑐𝑐 − (𝑐𝑐 − 1) × 𝑒𝑒−(𝑏𝑏×dose)𝑑𝑑) 

0 <  𝑎𝑎 < 1𝑒𝑒6 
0 < 𝑏𝑏 < 18 

−20 < 𝑙𝑙𝑙𝑙 (𝑐𝑐)  < 20 
0 < 𝑑𝑑 < 18 

 

𝑎𝑎 ~ 𝐿𝐿𝑙𝑙𝑔𝑔𝑙𝑙𝑙𝑙𝐿𝐿𝑚𝑚𝑎𝑎𝑙𝑙(0,1) 
𝑏𝑏 ~ 𝐿𝐿𝑙𝑙𝑔𝑔𝑙𝑙𝑙𝑙𝐿𝐿𝑚𝑚𝑎𝑎𝑙𝑙(0,1) 
𝑙𝑙𝑙𝑙 (𝑐𝑐) ~ 𝑁𝑁𝑙𝑙𝐿𝐿𝑚𝑚𝑎𝑎𝑙𝑙(0,1) 

𝑑𝑑 ~ 𝐿𝐿𝑙𝑙𝑔𝑔𝑙𝑙𝑙𝑙𝐿𝐿𝑚𝑚𝑎𝑎𝑙𝑙(0, 0.2501) 
 

For all models, 𝜌𝜌 and 𝛼𝛼 are the parameters of the Variance model: 𝜎𝜎𝑖𝑖2 =  𝑒𝑒𝑥𝑥𝐸𝐸{𝑙𝑙𝑙𝑙(𝛼𝛼)  + 𝜌𝜌 ∗ 𝑙𝑙𝑙𝑙[𝑚𝑚(dose𝑖𝑖)]}. The prior for 𝑙𝑙𝑙𝑙(𝛼𝛼) in all 
models is 𝑁𝑁𝑙𝑙𝐿𝐿𝑚𝑚𝑎𝑎𝑙𝑙(0,1), constrained to fall between -18 and 18. The parameter 𝜌𝜌 is only assigned a prior as specified above when 
the variance is defined to be non-constant; in that case the prior for 𝑙𝑙𝑙𝑙(𝜌𝜌) is 𝑁𝑁𝑙𝑙𝐿𝐿𝑚𝑚𝑎𝑎𝑙𝑙(0, 0.2501), constrained so that 𝜌𝜌 is between 0 
and 18. Normal(x, y) denotes a Normal distribution with mean x and standard deviation y. Lognormal(w, z) denotes a lognormal 
distribution with log-scale mean w and log-scale standard deviation z. 

 

Note The preview Bayesian continuous models are new. Users acknowledge they 
have not been extensively tested, and formally reviewed and approved by the 
EPA for risk assessment purposes. 
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7.5 Outputs Specific to Frequentist Continuous Models 
Figure 46. Sample Results Workbook tab for a frequentist continuous model run. 

 

7.5.1 Goodness of Fit Table 
Figure 47. Sample Goodness of Fit table, with Normal assumption. 
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Figure 48. Sample Goodness of Fit table, with Lognormal assumption. 

 

The Goodness of Fit table displays the model predictions relative to the observed (or 
“calculated”) data that were used as input, one row for each dose group. Generally, one 
desires to have the model predictions match the input data as well as possible. Note that 
in this table 

• Estimated Median = model predicted median (which equals the mean in the case 
of Normally distributed data) 

• Calc’d Median = the median computed from the observed data. In the case of 
Normally distributed data, this equals the sample mean. In the case of 
Lognormally distributed responses, the median is calculated as 𝑒𝑒𝑥𝑥𝐸𝐸(𝑧𝑧𝐿𝐿), where 𝑧𝑧𝐿𝐿 
is the log-scale mean, estimated if need be for summarized response data as 
shown in Section 7.3.3, “Distribution and Variance,” on page 55. 

• Observed mean = the sample mean. 
• Estimated [G]SD = the standard deviation (or geometric standard deviation, in 

the case of Lognormally distributed data) estimated by the model. 
• Calc’d [G]SD = the standard deviation (or geometric standard deviation, in the 

case of Lognormally distributed data) computed from the observed data. In the 
case of Normally distributed data, this equals the sample standard deviation of 
the responses. In the case of Lognormally distributed data, this equals 𝑒𝑒𝑥𝑥𝐸𝐸(𝑠𝑠𝐿𝐿), 
where 𝑠𝑠𝐿𝐿 is the log-scale standard deviation, estimated if need be for 
summarized response data as shown in Section 7.3.3, “Distribution and 
Variance,” on page 55. 

• Observed SD = sample standard deviation. 
• Scaled Residual = For Normal responses, this equals  

(𝐴𝐴𝑎𝑎𝑙𝑙𝑐𝑐′𝑑𝑑 𝑀𝑀𝑒𝑒𝑑𝑑𝑀𝑀𝑎𝑎𝑙𝑙 −  𝐸𝐸𝑠𝑠𝐸𝐸𝑀𝑀𝑚𝑚𝑎𝑎𝐸𝐸𝑒𝑒𝑑𝑑 𝑀𝑀𝑒𝑒𝑑𝑑𝑀𝑀𝑎𝑎𝑙𝑙)/(𝐸𝐸𝑠𝑠𝐸𝐸𝑀𝑀𝑚𝑚𝑎𝑎𝐸𝐸𝑒𝑒𝑑𝑑 𝑆𝑆𝐷𝐷/�𝑁𝑁𝑖𝑖) 
whereas for Lognormal responses, the scaled residual equals 

(𝑙𝑙𝑙𝑙(𝐴𝐴𝑎𝑎𝑙𝑙𝑐𝑐′𝑑𝑑 𝑀𝑀𝑒𝑒𝑑𝑑𝑀𝑀𝑎𝑎𝑙𝑙)  −  𝑙𝑙𝑙𝑙(𝐸𝐸𝑠𝑠𝐸𝐸𝑀𝑀𝑚𝑚𝑎𝑎𝐸𝐸𝑒𝑒𝑑𝑑 𝑀𝑀𝑒𝑒𝑑𝑑𝑀𝑀𝑎𝑎𝑙𝑙))/(𝑙𝑙𝑙𝑙(𝐸𝐸𝑠𝑠𝐸𝐸𝑀𝑀𝑚𝑚𝑎𝑎𝐸𝐸𝑒𝑒𝑑𝑑 𝐺𝐺𝑆𝑆𝐷𝐷)/�𝑁𝑁𝑖𝑖) 
The scaled residual value is a “calibrated” difference between the observations and the 
model predictions. Regardless of the assumption about the distribution of the responses, 
it is computed on the scale corresponding to the Normal distribution. Moreover, the 
denominator for its calculation estimates the degree of uncertainty (standard error of the 
mean) for the model prediction. Therefore, scaled residual values greater than about 2 in 
absolute value are indicative of mismatches between predicted and observed values that 
may indicate poorer fit, at least locally. 
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7.5.2 Likelihoods of Interest Table 

 

The Likelihoods of Interest table displays the log-likelihoods, number of parameters, 
and AIC for five models, including the dose-response model under consideration (“fitted”). 
Recall that BMDS uses likelihood theory to estimate model parameters and ultimately to 
make inferences based on risk assessment data. Maximum likelihood is the process of 
estimating the model parameters; the likelihood function is as large as possible 
(maximized) given the form of the model under consideration and the data. In other 
words, parameter values are “chosen” such that the subject model (e.g., polynomial or 
power) obtains the best possible fit to the data, given the constraints of the model’s 
parameter structure. 

As noted previously, the number of parameters for each model excludes parameters that 
have values on one of the bounds set for their estimation (either bounds specified by the 
user or those inherent constraints associated with the model; see Table 6 on page 58). 

The five log-likelihood models can be used for tests of hypotheses, including tests of fit, 
that are asymptotically chi-squared. that may be of interest to the user. Each of these log-
likelihood values corresponds to a model the user may consider in the analysis of the 
data. The five models are summarized in the following table. 

Table 8. Likelihood values and models for continuous endpoints. 

Model Description 
A1: “Full” Constant Variance Model  𝑌𝑌𝑖𝑖𝑖𝑖 = 𝜇𝜇𝑖𝑖 + 𝑒𝑒𝑖𝑖𝑖𝑖, 

𝑉𝑉𝑎𝑎𝐿𝐿{𝑒𝑒𝑖𝑖𝑖𝑖} = 𝜎𝜎2 

A2: “Fullest” Model  𝑌𝑌𝑖𝑖𝑖𝑖 = 𝜇𝜇𝑖𝑖 + 𝑒𝑒𝑖𝑖𝑖𝑖, 
𝑉𝑉𝑎𝑎𝐿𝐿{𝑒𝑒𝑖𝑖𝑖𝑖} = 𝜎𝜎𝑖𝑖2 

A3: “Full” Model with variance structure 
specified by the user 

 𝑌𝑌𝑖𝑖𝑖𝑖 = 𝜇𝜇𝑖𝑖 + 𝑒𝑒𝑖𝑖𝑖𝑖, 
𝑉𝑉𝑎𝑎𝐿𝐿{𝑒𝑒𝑖𝑖𝑖𝑖} = 𝛼𝛼 × 𝜇𝜇𝑖𝑖𝜌𝜌 

R: “Reduced” Model  𝑌𝑌𝑖𝑖 = 𝜇𝜇 + 𝑒𝑒𝑖𝑖, 
𝑉𝑉𝑎𝑎𝐿𝐿{𝑒𝑒𝑖𝑖} = 𝜎𝜎2 

Fitted Model The user-specified model 

Model A1 estimates separate and independent means for the observed dose groups (it is 
“full” or “saturated” in that respect) but posits a constant variance over those groups. 

Model A2 is the “fullest” model in that it estimates separate and independent means for 
the observed dose groups (as in Model A1) and it also estimates separate and 
independent variances for those groups. There is no assumed functional relationship 
among the means or among the variances across dose groups. This model is often 
referred to as the “saturated” model (it has as many mean and variance parameters as 
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there are dose groups). The log-likelihood obtained for this model is the maximum 
attainable, for the data under consideration. 

Model A3 is similar to model A2 and may only differ with respect to its variance 
parameters. Model A2 estimates separate and independent means for the observed dose 
groups (like A1). If the user specifies a constant variance for the fitted model, then model 
A3 will also assume that and it becomes identical to Model A1. If the user assumes a 
non-constant variance for the fitted model, then Model A3 will also assume the same 
functional form for the variance. 

The reduced model (R) is the model that implies no difference in mean or variance over 
the dose levels. In other words, it posits a constant mean response level with the same 
variance around that mean at every dose level. 

The last model, the fitted model, is the user-specified model (e.g., power or polynomial, 
among others). A user may have reason to believe that a certain model may describe the 
data well, and thus uses it to calculate the BMD and BMDL. 

7.5.3 Tests of Interest Table (Tests of Fit) 

 

The Tests of Interest table shows the results of four tests based on the log-likelihoods 
from the Likelihoods of Interest table. The p-values associated with the tests are based 
on asymptotic properties of the likelihood ratio. 

Without getting too technical, the likelihood ratio is just the ratio of two likelihood values, 
many of which are given in the BMDS output. Statistical theory proves that −2 ∗
ln(likelihood ratio) converges to a Chi-Square random variable as the sample size gets 
large and the number of dose levels gets large. These values can in turn be used to 
obtain approximate probabilities to make inferences about model fit. Chi-Square tables 
can be found in almost any statistical reference book. 

Suppose the user wishes to test two models, A and B, for fit. One assumption that is 
made for these tests is that model A is “nested within” Model B, i.e., that Model B can be 
simplified (via restriction of some parameters in Model B) in such a way that the simplified 
model is Model A. This implies that Model A has fewer varying parameters. As an 
example, consider that the linear model is a “simpler” or “nested” model relative to the 
power model because the linear model has the power parameter restricted to be equal to 
1. 

Note  The model with a higher number of parameters is always in the denominator of 
this ratio. 

Suppose that 𝐿𝐿(𝑋𝑋) represents the likelihood of model X. Now, using the theory, −2 ×
ln {𝐿𝐿(𝐴𝐴)

𝐿𝐿(𝐵𝐵)
} approaches a Chi-Square random variable. This can be simplified by using the 

fact that the log of a ratio is equal to the difference of the logs, or put, 

−2 × ln �
𝐿𝐿(𝐴𝐴)
𝐿𝐿(𝐵𝐵)� = −2 × (ln{𝐿𝐿(𝐴𝐴)} − ln{𝐿𝐿(𝐵𝐵)}) = 2 × ln{𝐿𝐿(𝐵𝐵)} − 2 × ln {𝐿𝐿(𝐴𝐴)} 
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The values in the Likelihoods of Interest table are in fact the log-likelihoods, as discussed 
above, ln{𝐿𝐿(𝐵𝐵)} and ln{𝐿𝐿(𝐴𝐴)}, so this likelihood ratio calculation becomes just a 
subtraction problem. This value can then in turn be compared to a Chi-Square random 
variable with a specified number of degrees of freedom. 

As mentioned in conjunction with the Likelihoods of Interest table, each log-likelihood 
value has an associated number of parameters. The number of degrees of freedom for 
the Chi-Square test statistic is merely the difference between the two model parameter 
counts. In the mini-example above, suppose Model A has 5 fitted parameters, and that 
Model B has 8. In this case, the Chi-Square value to be compared to would be a Chi-
Square with 8 - 5 = 3 degrees of freedom. 

In the A vs B example, what is exactly being tested? In terms of hypotheses, it would be: 
 

H0: A models the data as well as B 
H1: B models the data better than A 

Keeping these tests in mind, suppose 2 × log{𝐿𝐿(𝐵𝐵)}  −  2 × log{𝐿𝐿(𝐴𝐴)}  =  4.89 based on 3 
degrees of freedom. Also, suppose the rejection criteria is a Chi-Square probability of 
less than .05. Looking on a Chi-Square table, 4.89 has a p-value somewhere between 
.10 and .25. In this case, H0 would not be rejected, and it would seem to be appropriate to 
model the data using Model A. BMDS automatically does the “table look-up” for the user, 
and provides the p-value associated with the calculated log-likelihood ratio having 
degrees of freedom as described above. 

The Tests of Interest table provides four default tests. Associated with each of those tests 
is a “hover box” that can be accessed to show a summarized interpretation of the test 
results, which includes EPA’s interpretation of the test results (i.e., in relation to p-values 
that have been selected by EPA). However, the computed p-values are presented so that 
the users are free to use any rejection criteria they want. Each of the four default tests 
provided for any of the continuous models is discussed in some detail below. 

Test 1 (A2 vs R): Tests the null hypothesis that responses and variances don’t 
differ among dose levels. If this test fails to reject the null hypothesis, there may 
not be a dose-response. 
This test compares Model R (the simpler model) to Model A2. Model R is a simpler A2 (or 
nested within A2) since R can be obtained from A2 by restricting all the mean parameters 
to be equal to one another and restricting all the variance parameters to be equal to one 
another. If this test fails to reject the null hypothesis, then there may not be a dose-
response, as the inference would be that the simpler model (R) is not much worse than 
the saturated model. The default p-value for the test (as reported in the Tests of Interest 
section of the output) is 0.05. A p-value less than 0.05 is an indication that there is a 
difference between response and/or variances among the dose levels and supports a 
conclusion to model the data. A p-value greater than 0.05 is an indication that the data 
may not be suitable for dose-response modeling. 

Test 2 (A1 vs A2): Tests the null hypothesis that variances are homogeneous. If 
this test fails to reject the null hypothesis, the simpler constant variance model 
may be appropriate. 
This test compares A1 (the simpler model) to Model A2. Model A1 is a simpler A2 (or 
nested within A2) since A1 can be obtained from A2 by restricting all the variance 
parameters to be equal to one another. If this test rejects the null hypothesis, the 
inference is that the constant variance assumption is incorrect and a modeled variance is 
necessary to adequately represent the data. The default p-value for the test (as reported 
in the Tests of Interest section of the output) is 0.05. A p-value less than 0.05 is an 
indication that the user should consider running a non-homogeneous variance model. A 
p-value greater than 0.05 is an indication that a constant variance assumption may be 
suitable for the dose-response modeling. 
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Test 3 (A3 vs A2): Tests the null hypothesis that the variances are adequately 
modeled. If this test fails to reject the null hypothesis, it may be inferred that the 
variances have been modeled appropriately. 
Here, the test is one to see if the user-specified variance model, is appropriate. If the 
user-specified variance model is “constant variance,” then Models A1 and A3 are 
identical; this test is the same as Test 2, with the same interpretation. If the user-specified 
variance model is nonconstant (𝜎𝜎𝑖𝑖2 = 𝛼𝛼 × 𝜇𝜇𝑖𝑖𝜌𝜌), this test determines if that equation 
appears adequate to describe the variance across dose groups. Model A3 is the simpler 
version of Model A2 obtained by constraining the variances to fit the nonconstant 
variance equation. The default p-value for the test (as reported in the Tests of Interest 
section of the output) is 0.05. A p-value less than 0.05 is an indication that the user may 
want to consider a different variance model. A p-value greater than 0.05 supports the use 
of modeled variance for the dose-response modeling. 

Test 4 (Fitted vs A3): Tests the null hypothesis that the model for the mean fits the 
data. If this test fails to reject the null hypothesis, the user has support for the 
selected model. 
This test compares the Fitted Model to Model A3. The Fitted Model is as simpler Model 
A3 (or nested within Model A3) because it can be obtained by restricting the means 
(unrestricted in A3) to be described by the dose-response function under consideration. If 
this test fails to reject the null hypothesis, the inference is that the fitted model is 
adequate to describe the dose-related changes in the means (conditional on the form of 
the variance model; the form of the variance model is the same for the Fitted Model and 
Model A3). Failure to reject the null hypothesis is associated with the inference that the 
restriction of the means to the shape of the dose-response function under consideration 
is adequate. The default p-value for the test (as reported in the Tests of Interest section 
of the output) is 0.1. A p-value less than 0.1 is an indication that the user may want to try 
a different model (i.e., the fit of the Fitted Model is not good enough). A p-value greater 
than 0.1 is an indication that the Fitted Model appears to be suitable for dose-response 
modeling. 

7.5.4 Plot and Error Bar Calculation 
Figure 49. Frequentist results plot for continuous data. 
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The graphical output, i.e., plot, is a visual depiction of the results of the modeling. 
Because plots common to all models were discussed in Section 6.5, “Graphical Output,” 
on page 49, here we describe the one additional detail specific to the continuous models, 
i.e., computation of the error bars: 

• The plotting routine calculates the standard error of the mean (SEM) for each 
group. The routine divides the group-specific observed variance (obs standard 
deviation squared) by the group-specific sample size. 

• The routine then multiplies the SEM by the Student-T percentiles (2.5th 
percentile or 97.5th percentile for the lower and upper bound, respectively) 
appropriate for the group-specific sample size (i.e., having degrees of freedom 
one less than that sample size). The routine adds the products to the observed 
means to define the lower and upper ends of the error bar. 

7.6 Outputs Specific to Bayesian Continuous Models (Preview) 
Figure 50. Bayesian results plot for continuous data. 

 

To compare the difference between any two Bayesian models, the unnormalized Log 
Posterior Probability (LPP) is given, which allows the computation of a Bayes factor (BF) 
to compare any two models. BF equals the exponentiated difference between the two 
LPP. For example, if one wishes to compare the Log-Logistic model (Model A) (yielding 
LPPA) to the Multistage 2nd degree model (Model B, with LPPB) one estimates the BF as 

𝐵𝐵𝐵𝐵 = exp(𝐿𝐿𝐿𝐿𝐿𝐿𝐴𝐴 − 𝐿𝐿𝐿𝐿𝐿𝐿𝐵𝐵), 

This computation assumes that both models have equal probability a priori. This value is 
then interpreted as the posterior odds one model is more correct than the other model 
and is used in Bayesian hypothesis testing. In the example above, if the Bayes Factor 
was 2.5, the interpretation would be that the Log-logistic model is a posteriori 2.5 times 
more likely than the multistage model. When these values are normalized into proper 
probabilities, they are equivalent to the posterior model probabilities given in model 
averaging (again, assuming equal model probability a priori). The table below, adapted 
from Jeffreys (1998) is a common interpretation of Bayes Factors. 

https://hero.epa.gov/hero/index.cfm?action=search.view&reference_id=4850043
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Table 9. Bayes factors for continuous models. 

Bayes Factor Strength of Evidence for HA 
< 1 negative (supports HB) 

1 to 3.2 not worth mentioning 

3.2 to 10 substantial 

10 to 31.6 strong 

31.6 to 100 very strong 

100 decisive 

For BMDS 3.0, all LPP and corresponding posterior model probabilities are computed 
using the Laplace approximation. This value is different from the commonly used 
Bayesian Information Criterion (BIC), and the two should not be confused based upon 
other model averaging approaches, which use the BIC exclusively. Errors in the posterior 
probabilities estimated from the BIC are 𝑂𝑂(1) estimators. Errors in the posterior 
probabilities estimated using the Laplace approximation are 𝑂𝑂(𝑙𝑙−1). This means the latter 
approximation goes to the true posterior model probability with increasing data and the 
former, using the BIC, may not go to the true value. 



 Benchmark Dose Software (BMDS) Version 3.2 
User Guide 

Page 73 of 118 

8.0 Dichotomous Endpoints 
BMDS includes models for dichotomous endpoints in which the observations are 
independent of each other. In these models, the dose-response model defines the 
probability that an experimental unit (e.g., a rat or a mouse in a test of toxicity) will have 
an adverse response at a given dose. The actual number of animals that have an 
adverse response is assumed to be binomially distributed. 

A specific example of such a dataset is a study in which adult animals are exposed to 
different concentrations of a toxicant and then evaluated for the presence of liver toxicity. 

For models for dichotomous endpoints in which the responses are nested (for example, 
pups within litters, and litters nested within doses), see Section 9.0, “Nested Dichotomous 
Endpoints,” on page 91. 

For dichotomous cancer models, and the combination of model predictions for multiple 
tumor endpoints, see Section 10.0, “Multiple Tumor Analysis,” on page 105. 

This section provides details on the following topics: 
• Implementation of dichotomous models in BMDS 3 
• Entering dichotomous model data 
• Dichotomous model options 
• Dichotomous model outputs 
• Options for restricting values of certain model parameters 
• The Bayesian approach to dichotomous response modeling, specifying how the 

priors are defined and the methods for model averaging 

8.1 Dichotomous Response Models 
BMDS 3 offers the traditional frequentist dichotomous response models available in 
previous versions of BMDS plus Bayesian versions of each model, and a Bayesian model 
averaging feature. 

Figure 51. BMDS 3 dichotomous models, as they appear in the Analysis Workbook. 

 

Most frequentist models can be run restricted or unrestricted. The EPA default 
recommendation for initial runs is to restrict the Dichotomous Hill, Gamma, Log-Logistic, 
Multistage, and Weibull models and un-restrict the Log-Probit model; the Logistic, Probit, 
and Quantal Linear models have no restricted option (U.S. EPA, 2012). 

https://hero.epa.gov/hero/index.cfm?action=search.view&reference_id=1239433
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See Table 10 on page 76 below for the effect of the user selecting the restricted version 
of the models (“User parameter restriction options”). In general, the restrictions prevent 
the slope of the dose-response curve from becoming infinite at 0 dose. This is often 
considered to be biologically unrealistic and can lead to numerical problems when 
computing confidence limits, so several authors have recommended restricting the 
appropriate parameter. 

8.2 Options 
On the BMDS 3 Analysis Workbook’s Main tab, the user can define multiple Option Sets 
to apply to multiple user-selected models and multiple user-selected datasets in a single 
“batch” process. Select the Add Option Set button to define a new Option Set 
configuration. 

Figure 52. Dichotomous Model options. 

 

8.2.1 Risk Type 

 

Choices for the risk type are “Extra” (Default) or “Added.” 

Added risk is the additional proportion of the total experimental units that respond in the 
presence of the dose, or the predicted probability of response at dose 𝑑𝑑, 𝐿𝐿(𝑑𝑑), minus the 
predicted probability of response in the absence of exposure, 𝐿𝐿(0): 

𝐴𝐴𝑑𝑑𝑑𝑑𝑒𝑒𝑑𝑑 𝐿𝐿𝑀𝑀𝑠𝑠𝑘𝑘 𝑎𝑎𝐸𝐸 𝑑𝑑𝑙𝑙𝑠𝑠𝑒𝑒 𝑑𝑑 = 𝐿𝐿(𝑑𝑑) –  𝐿𝐿(0). 

Extra risk is the additional risk divided by the predicted proportion of animals that will not 
respond in the absence of exposure (1 −  𝐿𝐿(0)): 

𝐸𝐸𝑥𝑥𝐸𝐸𝐿𝐿𝑎𝑎 𝐿𝐿𝑀𝑀𝑠𝑠𝑘𝑘 𝑎𝑎𝐸𝐸 𝑑𝑑𝑙𝑙𝑠𝑠𝑒𝑒 𝑑𝑑 =  
𝐿𝐿(𝑑𝑑) –  𝐿𝐿(0)

1 − 𝐿𝐿(0)
. 

8.2.2 BMR 

 

The BMR is the value of risk (extra or added, as specified by the user) for which a BMD is 
estimated. BMR must be between 0 and 1 (not inclusive). If 𝐿𝐿(0)  >  0, then values for 
BMR greater than 1 −  𝐿𝐿(0) will result in an error when the risk type is added risk. That is 
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because the maximum added risk that can ever be achieved is 1 −  𝐿𝐿(0). In practice, this 
should not typically be an issue because one usually is interested in BMR values in the 
range of 0.01 to around 0.10. 

BMR and Graphs 
The response associated with the BMR that is displayed in the graphical model output 
will only be the same as the BMR when 𝐿𝐿(0)  =  0. 

This is because to obtain the actual response value one must solve for 𝐿𝐿(𝑑𝑑) in the 
equation for added or extra risk discussed above. 

The horizontal bar depicting the response level used to derive the BMD that is displayed 
in the graphical model output will only be the same as the user-defined BMR (e.g., 10% 
Extra Risk) when the response at background, P(0), equals zero. 

When P(0) does not equal zero, the true response level can be calculated using the Extra 
Risk equation described above. 

8.2.3 Confidence Level 

 

The Confidence Level is a fraction between 0 and 1; 0.95 is recommended by EPA (U.S. 
EPA, 2012). 

The value for confidence level must be between 0 and 1 (not inclusive). For a confidence 
level of x, BMDS will output BMDL and BMDU estimates, each of which is a one-sided 
confidence bound at level x. For example, if the user sets the confidence level to 0.95 
(the default), then the BMDL is a 95% one-sided lower confidence bound for the BMD 
estimate; the BMDU is a 95% one-sided lower confidence bound for the BMD estimate. 
In that example, the range from BMDL to BMDU would constitute a 90% confidence 
interval (5% in each tail outside that interval). 

8.2.4 Background 

 

The user may specify if the background parameter is to be estimated (the default) or is 
set to zero before fitting and estimation of the other parameters. 

Note It is very important that the user NOT set the background to zero if there are 
more than zero responses in a dose group that has a dose value of zero. This 
would represent a logically impossible situation, i.e., where the probability of 
response in that dose group would be zero and yet there were indeed some 
responses. 

https://hero.epa.gov/hero/index.cfm?action=search.view&reference_id=1239433
https://hero.epa.gov/hero/index.cfm?action=search.view&reference_id=1239433
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8.3 Mathematical Details for Models for Dichotomous Endpoints in Simple Designs 
BMDS contains nine models for dichotomous endpoints as defined in the following table. 

Table 10. The individual dichotomous models and their respective parameters. 

Model Parameters Notes 
Multistage 
𝐸𝐸(dose) = 𝑔𝑔 + (1 − 𝑔𝑔)�1 − exp�−∑ 𝛽𝛽𝑖𝑖dose𝑖𝑖𝑏𝑏

𝑖𝑖=1 ��  
𝑔𝑔 = background 
𝛽𝛽𝑖𝑖 = dose coefficients  

Parameter Constraints: 0 ≤ 𝑔𝑔 < 1 

𝑙𝑙 ≤  23 

User parameter restriction options: can restrict all β coefficients to > 0. Doing so 
will guarantee that the multistage model will be either perfectly flat or always 
increasing. 

Per EPA Guidance, when the Multistage model is used for cancer analyses (e.g., 
in Multi-tumor analyses) all β coefficients are restricted to be non-negative. 

 

Weibull (and Quantal Linear) 
𝐸𝐸(dose) = 𝑔𝑔 + (1 − 𝑔𝑔)(1 − exp[−𝛽𝛽dose𝛼𝛼])  

𝑔𝑔 = background 
𝛼𝛼 = power 
𝛽𝛽 = slope 

Parameter Constraints: 0 ≤  𝑔𝑔 <  1 
0 <  𝛼𝛼 ≤  18 

0 <  𝛽𝛽 
 
User parameter restriction options: 1 ≤  𝛼𝛼 
The Quantal Linear model results from setting 𝛼𝛼 = 1. 

Gamma 

𝐸𝐸(dose) = 𝑔𝑔 + 1−𝑏𝑏
Γ(𝛼𝛼)∫ 𝐸𝐸𝛼𝛼−1 exp(−𝐸𝐸) d𝐸𝐸 𝛽𝛽𝑏𝑏

0   

𝑔𝑔 = background 
𝛼𝛼 = power 
𝛽𝛽 = slope 

Parameter Constraints: 0 ≤  𝑔𝑔 <  1 
0.2 <  𝛼𝛼 ≤  18 

0 <  𝛽𝛽 
 
User parameter restriction options: 1 ≤  𝛼𝛼 
Note that for the unrestricted Gamma model, α > 0.2 for numerical reasons.  

Logistic 

𝐸𝐸(dose) = 1
1+exp [−𝛼𝛼−𝛽𝛽(dose)]

  

𝛼𝛼 = intercept 
𝛽𝛽 = slope 

Parameter Constraints: 0 <  𝛽𝛽 
 
User parameter restriction options: none. 
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Model Parameters Notes 
Log-Logistic 

𝐸𝐸(dose) = 𝑔𝑔 + 1−𝑏𝑏
1+exp [−𝛼𝛼−𝛽𝛽log(dose)]

  

𝑔𝑔 = background 
𝛼𝛼 = power 
𝛽𝛽 = slope 

Parameter Constraints: 0 ≤  𝑔𝑔 <  1 
0 <  𝛼𝛼 ≤  18 

0 <  𝛽𝛽 
 
User parameter restriction options: 1 ≤  𝛼𝛼 
 

Probit 
𝐸𝐸(dose) =  Φ(𝛼𝛼 +  𝛽𝛽dose), where 

Φ(𝑥𝑥) = ∫ 𝜙𝜙(𝐸𝐸)d𝐸𝐸𝑥𝑥
−∞  and 𝜙𝜙(𝐸𝐸) =  1

√2𝜋𝜋
𝑒𝑒
−𝑡𝑡2

2  

𝛼𝛼 = intercept 
𝛽𝛽 = slope 

Parameter Constraints: 0 <  𝛽𝛽 
User parameter restriction options: none. 
Φ is the standard normal cumulative distribution function, 𝜙𝜙 is the standard normal 
density function 

Log-Probit 
𝐸𝐸(dose) = 𝑔𝑔 + (1 − 𝑔𝑔)Φ[𝛼𝛼 + 𝛽𝛽 log(dose)] 

 

Φ(𝑥𝑥) = ∫ 𝜙𝜙(𝐸𝐸)d𝐸𝐸𝑥𝑥
−∞  and 𝜙𝜙(𝐸𝐸) =  1

√2𝜋𝜋
𝑒𝑒
−𝑡𝑡2

2  

𝑔𝑔 = background 
𝛼𝛼 = intercept 
𝛽𝛽 = slope 

Parameter Constraints: 0 ≤  𝑔𝑔 <  1 
0 <  𝛽𝛽 ≤ 18 

 
User parameter restriction options: 1 ≤  𝛽𝛽 
For the log-probit model, the slope of the model will always approach zero as dose 
approaches zero regardless of the restriction on β. However, depending on the 
data and parameter estimates, the slope for the log-probit model, for some 
relatively low doses, perhaps less than those corresponding to the BMR, the slope 
can be quite steep, which may be manifested in terms of a relatively low value for 
the BMDL (or perhaps an “NA” result for the BMDL if this causes convergence 
problems because the steepness entails BMDL estimates that get very small). 

Dichotomous Hill 

𝐸𝐸(dose) = 𝑔𝑔 +
(𝑣𝑣 − 𝑣𝑣𝑔𝑔)

1 + exp (−𝛼𝛼 − 𝛽𝛽log(dose)) 

𝑔𝑔 = background 
𝑣𝑣 = maximum extra risk 
𝛼𝛼 = intercept 
𝛽𝛽 = slope 

Parameter Constraints: 0 ≤  𝑔𝑔 <  1 

0 <  𝑣𝑣 ≤ 1 
0 <  𝛽𝛽 ≤ 18 

 
User parameter restriction options: 1 ≤  𝛽𝛽 
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8.3.1 Likelihood Function 
For the frequentist modeling approach, the dichotomous models are fit using maximum 
likelihood methods. This section describes the likelihood function used to fit the 
dichotomous models. 

Suppose the dataset has G dose groups with doses: 

dose1, dose2, … , dose𝐺𝐺. 
The total numbers of observations and numbers of responders in each dose group are 

𝑁𝑁1,𝑁𝑁2, … ,𝑁𝑁𝐺𝐺 
and, respectively, 

𝑙𝑙1,𝑙𝑙2, … ,𝑙𝑙𝐺𝐺. 
 

The distribution of 𝑙𝑙𝑖𝑖 is assumed to be binomial with probability 

𝐸𝐸𝑖𝑖 = 𝐸𝐸(dose𝑖𝑖;  𝜃𝜃), 𝑀𝑀 = 1,2, …𝐺𝐺 
 

where 𝜃𝜃 is a vector of dose-response model parameters (see previous table for lists of 
parameters for each model). Then the log-likelihood function 𝐿𝐿𝐿𝐿 can be written as 

𝐿𝐿𝐿𝐿 =  �𝐿𝐿𝐿𝐿𝑖𝑖(𝑁𝑁𝑖𝑖 ,𝑙𝑙𝑖𝑖 , dose𝑖𝑖;  𝜃𝜃)
𝐺𝐺

𝑖𝑖=1

 

 
where 

𝐿𝐿𝐿𝐿𝑖𝑖(𝑁𝑁𝑖𝑖 ,𝑙𝑙𝑖𝑖 , dose𝑖𝑖;  𝜃𝜃) = 𝑙𝑙𝑖𝑖 ln(𝐸𝐸𝑖𝑖) + (𝑁𝑁𝑖𝑖 − 𝑙𝑙𝑖𝑖) ln(1 − 𝐸𝐸𝑖𝑖) , 𝑀𝑀 = 1,2, … ,𝐺𝐺. 
This expression ignores a constant term that is independent of the parameter vector 
values and so does not affect estimation of those parameters. 

Note from the table above that the upper bound for the power parameter in some of the 
models, and the slope parameter for some of the other models, has been set to 18. That 
value was selected because it represents a very high degree of curvature that should 
accommodate almost every dataset, even ones with very (or absolutely) flat dose-
response at low doses followed by a very steep dose-response at higher doses. 

If such parameter values are reported to be equal to 18 and/or the estimate in question is 
reported as “Bounded” (see the description of the output from dichotomous model runs in 
Section 8.4.2, “Analysis of Deviance Table,” on page 87), the parameter estimates are 
maximum likelihood estimates only in the restricted sense that the parameter in question 
has been assigned a value and the other parameters are MLEs conditional on that 
assigned value. Such model results are not strictly comparable with others in terms of 
AIC. In such a case, the BMD and BMDL could depend on the choice of power 
parameter; thus, sensitivity analysis is indicated if one intends to rely on the reported 
BMD or BMDL. 

8.3.2 AIC and Model Comparisons 
The Akaike Information Criterion (AIC) (Akaike, 1973) can be used to compare different 
models fit (by the same fitting method, e.g., by maximizing the likelihood) to the same 
data set. The AIC is a statistic that depends on the value of LL (see previous section) and 
the number of estimated parameters, p: 

𝐴𝐴𝐼𝐼𝐴𝐴 =  −2 × 𝐿𝐿𝐿𝐿 +  2 × 𝐸𝐸 

https://hero.epa.gov/hero/index.cfm?action=search.view&reference_id=591
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Note that the AICs for the dichotomous endpoints ignore the parameter-independent 
term, because LL as defined in the previous section ignores that term. This differs from 
the case of the continuous endpoints, where the parameter-independent term was not 
ignored, because its value depended on the assumed underlying data distribution 
(Normal or Lognormal). For dichotomous endpoints, there is only one assumed 
distribution for the counts of responders (the Binomial distribution), so the parameter-
independent term has no effect and therefore can be ignored. 

The AIC balances the goals of getting the highest LL value possible while being 
parsimonious with respect to the number of parameters needed to achieve a high LL 
value. Since the equation for AIC has a negative multiplier for LL (which one wants to be 
greater) and positive multiplier for p (which one wants to be as small as possible and still 
get “good fit”), a model with a smaller value of AIC than other models is presumed to be 
the better model on the basis of AIC. Although such methods are not exact, they can 
provide useful guidance in model selection. 

In the current version of BMDS, the number of “estimated parameters” includes only 
those that have not been estimated to equal a bounding value, either from the model-
imposed constraints or user-imposed restrictions. For more details, see Table 10 on 76. 

Important Note 
 This counting process may or may not be reasonable, depending on the 

boundary value that a parameter in question hits. 

 For example, if the power parameter in a model hits (i.e., is estimated to be equal 
to) the upper bound of 18, it would usually be the case that one would want to 
count that parameter as one that is estimated, but BMDS does not do that. 

 For this reason, the user is apprised to consider carefully the cases where 
parameter bounds have been hit and to consider the implications for issues such 
as model comparison and model selection. 

8.3.3 Plot and Error Bar Calculation 
Figure 53. Dichotomous endpoint plot. 

 

The graphical output, i.e., plot, is a visual depiction of the results of the modeling. 
Because plots, in general, were discussed in Section 6.5, “Graphical Output,” on page 
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49, here we describe the one additional detail specific to the continuous models, i.e., 
computation of the error bars: 

The error bars shown on the plots of dichotomous data are derived using a modification 
of the Wilson interval (based on the score statistic) but with a continuity correction 
method (Fleiss et al., 2003). The calculation finds the proportion, pi, such that 

|𝐸𝐸 − 𝐸𝐸𝑖𝑖| −
1

2𝑙𝑙

�𝐸𝐸𝑖𝑖 × (1 − 𝐸𝐸𝑖𝑖)
𝑙𝑙

= 𝑧𝑧 

where 
• 𝐸𝐸 is the observed proportion 
• 𝑙𝑙 is the total number in the group in question 
• 𝑧𝑧 = 𝑍𝑍1−𝛼𝛼2

 is the inverse standard normal cumulative distribution function evaluated 

at 1 − 𝛼𝛼
2
 

This leads to equations for the lower and upper bounds of: 

• 𝐿𝐿𝐵𝐵 =
�2𝑏𝑏𝑠𝑠+𝑧𝑧2−1�−𝑧𝑧�𝑧𝑧2−(2+ 1𝑛𝑛) + 4𝑠𝑠(𝑏𝑏𝑛𝑛+1)

2(𝑏𝑏+𝑧𝑧2)
 

𝑈𝑈𝐵𝐵 =
�2𝑏𝑏𝑠𝑠+𝑧𝑧2+1�+𝑧𝑧�𝑧𝑧2+(2− 1𝑛𝑛) + 4𝑠𝑠(𝑏𝑏𝑛𝑛−1)

2(𝑏𝑏+𝑧𝑧2)
 • 

where 𝑞𝑞 =  1 − 𝐸𝐸. 

The error bars shown in BMDS plots use alpha = 0.05 and so represent the 95% 
confidence intervals on the observed proportions (independent of model). 

8.3.4 BMD Computation 
The BMD is computed as a function of the parameters of the model under consideration 
(Table 10). The following table specifies the solutions for the BMD for all of the 
dichotomous models. 

Table 11. Calculation of the BMD for the individual dichotomous models8. 

Model BMD Calculation 
Multistage 
 

There is no general analytic form for the BMD in terms of the BMR and the estimated 
model parameters for the multistage model. Instead, the BMD is the root of the equation 
𝛽𝛽1BMD + ⋯+ 𝛽𝛽𝑏𝑏BMD𝑏𝑏 + ln(1 − 𝐴𝐴) = 0, where 

𝐴𝐴 = �

BMR 

BMR
1 − 𝑔𝑔  

extra risk

added risk
 

Weibull 
 

BMD =

⎩
⎪⎪
⎨

⎪⎪
⎧ �

−ln (1 − BMR)
𝛽𝛽

�
1
𝛼𝛼

 

�
−ln (1 − BMR

1 − 𝑔𝑔)

𝛽𝛽 �

1
𝛼𝛼

 

extra risk

added risk 

  

                                                      
 
8 All models represented in Table 11 use the same model forms as presented in Table 10. BMR is the 
value specified by the user to correspond to the risk level of interest (see 8.3.2). 

https://hero.epa.gov/hero/index.cfm?action=search.view&reference_id=4829616


 Benchmark Dose Software (BMDS) Version 3.2 
User Guide 

Page 81 of 118 

Model BMD Calculation 
Gamma 
 

Let 𝐺𝐺(𝑥𝑥;𝛼𝛼) = 1
𝛤𝛤(𝛼𝛼)∫ 𝐸𝐸𝛼𝛼−1𝑒𝑒−𝑡𝑡d𝐸𝐸𝑥𝑥

0  be the incomplete Gamma function and 𝐺𝐺−1(∙;  𝛼𝛼) be its 
inverse function. Then 

BMD =

⎩
⎪
⎨

⎪
⎧  

𝐺𝐺−1(BMR;𝛼𝛼)
𝛽𝛽

𝐺𝐺−1 �BMR
1 − 𝑔𝑔 ;𝛼𝛼�

𝛽𝛽

 extra risk

 added risk

 

Logistic 
 BMD =

ln ( 1−𝑍𝑍
1+𝑍𝑍×𝑝𝑝−𝛼𝛼)

𝛽𝛽
 where 𝑍𝑍 = �

BMR × 1+𝑠𝑠−𝛼𝛼

𝑠𝑠−𝛼𝛼

BMR extra risk

 added risk
 

Log-Logistic 
 

ln(BMD) =

⎩
⎪⎪
⎨

⎪⎪
⎧ ln � BMR

1 − BMR� − 𝛼𝛼
𝛽𝛽

ln � BMR
1 − 𝑔𝑔 − BMR� − 𝛼𝛼

𝛽𝛽

 extra risk

 added risk

 

Probit 
  BMD =

⎩
⎪
⎨

⎪
⎧Φ

−1�BMR[1−Φ(α)]+Φ(α)�−α
𝛽𝛽

Φ−1�BMR+Φ(α)�−α
𝛽𝛽

 extra risk

 added risk

 

Log-Probit 
 

ln (BMD) =

⎩
⎪
⎨

⎪
⎧Φ

−1(BMR) − α
𝛽𝛽  extra risk

Φ−1 BMR
1 − 𝑔𝑔 − 𝛼𝛼

𝛽𝛽  added risk

 

Dichotomous Hill Added risk: 

BMD = 𝑒𝑒
−𝛼𝛼 − log �−BMR − 𝑣𝑣 + 𝑔𝑔𝑣𝑣

BM �
𝛽𝛽  

BMD = 𝑒𝑒
−𝛼𝛼 − log �−BMR − 𝑣𝑣 + 𝑔𝑔𝑣𝑣 − BMR𝑔𝑔𝑣𝑣

BMR(−1 + 𝑔𝑔𝑣𝑣) �

𝛽𝛽  

Extra risk: 

 

8.3.5 BMDL and BMDU Computation 
BMDS currently calculates one-sided confidence intervals, in accordance with current 
BMD practice. The general approach to computing the confidence limits for the BMD 
(called the BMDL and BMDU here) is the same for all the models in BMDS, and is based 
on the asymptotic distribution of the likelihood ratio (Crump and Howe, 1985). Two 
different specific approaches are followed in these models. 

For the Multistage model, it is impractical to explicitly reparameterize the dose-response 
model function to allow BMD to appear as an explicit parameter. For these models, the 
BMR equation is used as a non-linear constraint, and the minimum value of BMD is 
determined such that the log-likelihood is equal to the log-likelihood at the maximum 
likelihood estimates less 

https://hero.epa.gov/hero/index.cfm?action=search.view&reference_id=3198
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𝜒𝜒1,1−2𝛼𝛼
2

2
 

For the remaining models, the equations that define the benchmark response in terms of 
the benchmark dose and the dose-response model (Table 9) are solved for one of the 
model parameters. The resulting expression is substituted back into the model equations, 
with the effect of reparameterizing the model so that BMD appears explicitly as a 
parameter. A value for BMD is then found such that, when the remaining parameters are 
varied to maximize the likelihood, the resulting log-likelihood is less than that at the 
maximum likelihood estimates by exactly 

𝜒𝜒1,1−2𝛼𝛼
2

2
 

In all cases, the additional constraints specify that the BMDL be less than the BMD and 
the BMDU be greater than the BMD. 

8.3.6 Bayesian Dichotomous Model Descriptions 
Note At this time, EPA does not offer technical guidance on Bayesian modeling or 

Bayesian model averaging. 

From a Bayesian perspective, inference proceeds by defining a data generating 
mechanism, given a model, 𝑀𝑀, and its parameters. For our purposes, 𝑀𝑀 would be one of 
the models listed in Table 10 that determines the probability of response. The data 
generating mechanism would be the assumption that the observations were obtained 
from binomial sampling, having the dose-dependent probability of response defined by 
one of those models (with specific values of the parameters in that model). 

We can then relate that to the likelihood, here denoted ℓ(𝐷𝐷|𝑀𝑀), which shows explicitly 
that it is the likelihood of the data, 𝐷𝐷, conditional on the model. The functional form of the 
log of the likelihood is presented in Section 8.3.1, “Likelihood Function,” on page 78.. 

The set of Bayesian dichotomous models used in BMDS 3 is identical to the set of 
models used for frequentist (MLE) approaches (Table 10). In the following, let θ be the 
vector of parameters that are required to define the any one of those models. So, for 
example, for the Weibull model θ = (g, α, β). The additional consideration incorporated 
into the Bayesian approach is the specification of a prior distribution for θ. The Bayesian 
approach takes the specified prior and updates it using the data under consideration to 
obtain a “posterior” distribution for θ. 

From a Bayesian perspective, functions of θ also have posterior densities. So, using the 
equations summarized in Table 11, one can derive a posterior distribution for the BMD. 

BMDS summarizes the posterior for the BMD as follows. The BMD (one might call it a 
“central estimate” perhaps) is equated to the value obtained (as in Table 11) by using the 
maximum a posteriori (MAP) θ estimate. The MAP is the value of θ that maximizes the 
posterior log-likelihood. The posterior density is itself approximated using a Laplacian 
approximation. This approximation is also used to estimate BMDL and BMDU values, 
which are the percentiles from that density that correspond to the confidence level 
selected by the user. 

The priors for the BMDS dichotomous models are defined in the following table. 
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Important Note 

 The priors for the parameters are based on scaled doses and scaled responses; 
BMDS performs this scaling automatically.  

 BMDS automatically scales the doses by dividing by the maximum dose in the 
dataset under consideration, i.e., that the doses under consideration range from 
0 to 1 (inclusive). BMDS automatically scales the responses by dividing by the 
mean response in the control (or lowest dose) group. 

 The user does not need to scale anything beforehand. That means that the 
parameter estimates and BMD values returned by the program have been 
adjusted back to the original scale of the doses and the original scale of the 
responses specified in the input data file. 
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Table 12. Bayesian dichotomous models and their respective parameter priors. 

Model Constraints Priors Notes 
Multistage 
𝐸𝐸(dose) = 𝑔𝑔 + (1 − 𝑔𝑔)�1 − exp�−∑ 𝛽𝛽𝑖𝑖𝑑𝑑𝑙𝑙𝑠𝑠𝑒𝑒𝑖𝑖𝑁𝑁

𝑖𝑖=1 ��  
0 ≤ 𝑔𝑔 < 1 
𝛽𝛽𝑖𝑖 > 0 
𝑁𝑁 ≥ 2 
 

 

logit(𝑔𝑔)~ Normal(0,2) 
𝛽𝛽1~ Lognormal(0, 0.25) 
𝛽𝛽𝑖𝑖~ Lognormal(0,1), 𝑀𝑀 ≥ 2) 

The prior over the β1 parameter reflects the belief that the 
linear term should be strictly positive if the quadratic term 
is positive in the two-hit model of carcinogenesis. 
The difference in priors between Multistage and Quantal 
Linear models is by design. The objective is to emphasize 
the higher-order terms in each model. 
For model averaging purposes, N= 2. 

Weibull 
𝐸𝐸(dose) = 𝑔𝑔 + (1 − 𝑔𝑔)(1 − exp[−𝛽𝛽dose𝛼𝛼])  

0 ≤ 𝑔𝑔 < 1 
𝛼𝛼 > 0 
𝛽𝛽 > 0 

 

logit(𝑔𝑔)~ Normal(0,2) 
𝛼𝛼~ Lognormal(𝑙𝑙𝑙𝑙(2) ,√0.18) 
𝛽𝛽~ Lognormal(0,1) 

 

The prior for α entails that there is only a 0.05 prior 
probability the power parameter will be less than 1. This 
allows for models that are supra-linear; however, it 
requires a large amount of data for the α parameter to go 
much below 1.  

Quantal linear 
𝐸𝐸(dose) = 𝑔𝑔 + (1 − 𝑔𝑔)(1 − exp[−𝛽𝛽dose])  

0 ≤ 𝑔𝑔 < 1 
𝛽𝛽 > 0 

 

logit(𝑔𝑔)~ Normal(0,2) 
𝛽𝛽~ Lognormal(0,1) 

 

The difference in priors between Quantal Linear and the 
following Multistage model is by design. The objective is 
to emphasize the higher-order terms in each model. 
Quantal Linear is not the same as Multistage-1. This is 
important for model averaging purposes. 

Gamma 

𝐸𝐸(dose) = 𝑔𝑔 + 1−𝑏𝑏
Γ(𝛼𝛼)∫ 𝐸𝐸𝛼𝛼−1 exp(−𝐸𝐸) d𝐸𝐸 𝛽𝛽𝑏𝑏𝑏𝑏𝑠𝑠𝑠𝑠

0   
0 ≤ 𝑔𝑔 < 1 
𝛼𝛼 > 0.2 
𝛽𝛽 > 0 

 

logit(𝑔𝑔)~ Normal(0,2) 
𝛼𝛼~ Lognormal(𝑙𝑙𝑙𝑙(2) ,√0.18) 
𝛽𝛽~ Lognormal(0,1) 
 

The prior for α entails that there is only a 0.05 prior 
probability the power parameter will be less than 1. This 
allows for models that are supra linear; however, it 
requires a large amount of data for the α parameter to go 
much below 1. 
The α parameter is also constrained to be greater than 
0.2, for numerical reasons.  

Logistic 

𝐸𝐸(dose) = 1
1+exp [−𝛼𝛼 −𝛽𝛽dose]

  
−20 < 𝛼𝛼 < 20 
𝛽𝛽 > 0 

𝛼𝛼 ~ Normal(0,2) 
𝛽𝛽~ Lognormal(0.1,1) 

 

Log-Logistic 

𝐸𝐸(𝑑𝑑dose) = 𝑔𝑔 + 1−𝑏𝑏
1+exp [−𝛼𝛼 −𝛽𝛽ln(dose)]

  
0 ≤ 𝑔𝑔 < 1 
−40 < 𝛼𝛼 < 40 
𝛽𝛽 > 0 

logit(𝑔𝑔)~ Normal(0,2) 
𝛼𝛼 ~ Normal(0,1) 
𝛽𝛽~ Lognormal(l𝑙𝑙(2) , 0.5) 

 

Probit 
𝐸𝐸(dose) =  Φ(𝛼𝛼 +  𝛽𝛽dose)  

−8 < 𝛼𝛼 < 8 
𝛽𝛽 > 0 

𝛼𝛼 ~ Normal(0,2) 
𝛽𝛽~ Lognormal(0.1,1) 

Φ(∙) is the standard normal cumulative density function  
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Model Constraints Priors Notes 
Log-Probit 
𝐸𝐸(dose) = 𝑔𝑔 + (1 − 𝑔𝑔)Φ[𝛼𝛼 + 𝛽𝛽 ln(dose)]  

0 ≤ 𝑔𝑔 < 1 
−8 < 𝛼𝛼 < 8 
𝛽𝛽 > 0 

logit(𝑔𝑔)~ Normal(0,2) 
𝛼𝛼 ~ Normal(0,1) 
𝛽𝛽~ Lognormal(𝑙𝑙𝑙𝑙(2) , 0.5) 

 

Φ(∙) is the standard normal cumulative density function 

Dichotomous Hill 

𝐸𝐸(dose) = 𝑔𝑔 +  𝜈𝜈(1−𝑏𝑏)
1+exp [−𝑚𝑚−𝑏𝑏 ln(dose)]

  
0 ≤ 𝑔𝑔 < 1 
−40 < 𝑎𝑎 < 40 
𝑏𝑏 > 0 
0 < 𝑣𝑣 ≤ 1 

 

logit(𝑔𝑔)~ Normal(−1,2) 
𝑎𝑎 ~ Normal(−3, 3.3) 
𝑏𝑏 ~ Lognormal(𝑙𝑙𝑙𝑙(2) , 0.5) 
logit(𝑣𝑣)~ Normal(0,3) 

 

 

Notes: logit(𝑔𝑔) = ln � 𝑏𝑏
1−𝑏𝑏

�. Normal(x, y) denotes a Normal distribution with mean x and standard deviation y. Lognormal(w, z) denotes a lognormal distribution with log-scale mean w 
and log-scale standard deviation z. 

As the number of observations in a dataset increases, there should be less quantitative difference between the parameters and 
BMDs obtained from the Bayesian approach and from the frequentist approach. 

When there are fewer data points, the priors will affect the Bayesian estimation. The impact may be most noticeable when the 
data suggest a “hockey-stick” dose-response relationship, or when those data suggest strong supralinear behavior. In these 
cases, the priors specified above for the Bayesian approach will tend to “shrink back” parameter estimates to obtain smoother 
dose-response relationships where changes in the slope are more gradual.
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8.4 Outputs Specific to Frequentist Dichotomous Models 
Figure 54. Sample Results Workbook tab for a dichotomous model run. 

 

8.4.1 Goodness of Fit Table 

 

This table in the individual model results shows a listing of the data (“Observed” and 
“Size”) as well as the model-estimated probability of response and corresponding 
expected number of responders. This is a good place for the user to look to judge the 
appropriateness of the model, in addition to the overall goodness-of-fit statistics reported 
in the Benchmark Dose Table (see Section 6.2) and the Analysis of Deviance table 
(Section 8.4.2). If a model fits well, the observed and expected number of responders 
should be relatively close. 
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The scaled residual values printed at the end of the table are defined as follows: 
(Obs − Expected)

𝑆𝑆𝑆𝑆
 , 

where “Expected” is the predicted number of responders from the model and SE equals 
the estimated standard error of that predicted number. For these models, the estimated 
standard error is equal to �[𝑙𝑙 × 𝐸𝐸 × (1 − 𝐸𝐸)], where 

n is the sample size (“Size” in this table), and 
p is the model-predicted probability of response (“Estimated Probability” in this table). 

The model’s adherence to the data may be called into question if the scaled residual 
value for any dose group, particularly the control group or the group with dose closest to 
the BMD, is greater than 2 or less than -2. 

8.4.2 Analysis of Deviance Table 

 

The analysis of deviance table lists three log-likelihood values. 
• The first is for the “full model.” The full model posits a separate and independent 

probability of response for each dose group. There is no dose-response function 
constraining those probabilities. The log-likelihood displayed is the maximum that 
could ever be achieved for the given dataset. The number of parameters for the 
full model is equal to the number of dose groups (each has its own, independent 
probability parameter). 

• The second log-likelihood is for the “fitted model.” It is the maximum log-
likelihood value obtainable for the model under consideration. It corresponds to 
the model with the parameters set equal to the values shown in the Parameter 
Estimates table. The number of parameters equals the number of parameters in 
that table that are not reported as “Bounded.” 

• The last log-likelihood value is for the “reduced model.” It is the maximum log-
likelihood obtainable if one assumed that the same probability of response 
applied to all the dose groups. There is only 1 parameter for the reduced model, 
i.e., the assumed constant probability of response. 

Associated with each of these three models are three values: Deviance, degrees of 
freedom (Test d.f.), and P-value. The Deviance is twice the difference between the fitted 
or reduced model and the full model log-likelihood values. This Deviance is another 
goodness-of-fit metric: if the Deviance is small, then the “smaller” model (i.e., the fitted or 
reduced model) describes the data nearly as well as the full model does. Deviance is 
approximately a chi-squared random variable with degrees of freedom specified by “Test 
d.f.” which is itself the difference in the number of parameters for the two models being 
compared. The “P-Value” reflects the use of this chi-square approximation to assess 
significance of the difference in fits. Larger deviances correspond to smaller p-values, so 
a small p-value indicates that the smaller model does not fit as well as the full model. The 
user may choose a rejection level (0.05 is common) to test if the model fit is appropriate. 

For the fitted model, this is another measure of the fit of the model to the data. For the 
reduced model, failure to reject that model (p-values greater than the rejection level 
chosen by the user) might lead the user to infer that there is no dose-related effect on 
response probabilities. 
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8.4.3 Additions for the Restricted Multistage Model Only 
Figure 55. Slope Factor (last row in table) appears only on  

Restricted Multistage Model results. 

 

Some additional assessment tools are presented when the model under consideration is 
the Multistage model, and it has been run “restricted.” This is the EPA standard set-up for 
modeling cancer data, but these additional results will be shown for any dichotomous 
endpoint when the Multistage model is run this way. 

The Benchmark Dose table for the restricted Multistage model includes an estimate of 
the slope factor, defined by EPA as the linear slope between the extra risk (0.1) at the 
BMDL(10) and the extra risk (0) at background (generally 0 dose). 

The restricted Multistage model plot also includes a dashed line representing this linear 
slope. 
Figure 56. The dashed line for the Multistage model plot representing linear slope. 

 

If dose units are in mg/kg-day, this equals the oral slope factor (OSF) as defined by IRIS. 
If the dose units are µg/m3, this equals the inhalation unit risk (IUR) as defined by IRIS. 
For more information, see the “IRIS Toxicity Values” section of the Basic Information 
about the Integrated Risk Information System (IRIS) web page.” 

https://www.epa.gov/iris/basic-information-about-integrated-risk-information-system
https://www.epa.gov/iris/basic-information-about-integrated-risk-information-system
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8.5 Outputs Specific to Bayesian Dichotomous Models 
Figure 57. Sample Bayesian dichotomous results plot. 

 

To compare the difference between any two Bayesian models, the unnormalized Log 
Posterior Probability (LPP) is given, which allows the computation of a Bayes factor (BF) 
to compare any two models. BF equals the exponentiated difference between the two 
LPP. For example, if one wishes to compare the Log-Logistic model (Model A) (yielding 
LPPA) to the Multistage 2nd degree model (Model B, with LPPB) one estimates the BF as 

𝐵𝐵𝐵𝐵 = exp(𝐿𝐿𝐿𝐿𝐿𝐿𝐴𝐴 − 𝐿𝐿𝐿𝐿𝐿𝐿𝐵𝐵), 

This computation assumes that both models have equal probability a priori. This value is 
then interpreted as the posterior odds one model is more correct than the other model 
and is used in Bayesian hypothesis testing. In the example above, if the Bayes Factor 
was 2.5, the interpretation would be that the Log-logistic model is a posteriori 2.5 times 
more likely than the multistage model. When these values are normalized into proper 
probabilities, they are equivalent the posterior model probabilities given in model 
averaging (again, assuming equal model probability a priori). The table below, adapted 
from Jeffreys (1998) is a common interpretation of Bayes Factors. 

Table 13. Bayes factors for dichotomous models. 

Bayes Factor Strength of Evidence for HA 
< 1 negative (supports HB) 

1 to 3.2 not worth mentioning 

3.2 to 10 substantial 

10 to 31.6 strong 

31.6 to 100 very strong 

100 decisive 

For BMDS 3.0, all LPP and corresponding posterior model probabilities are computed 
using the Laplace approximation. This value is different from the commonly used 
Bayesian Information Criterion (BIC), and the two should not be confused based upon 
other model averaging approaches, which use the BIC exclusively. Errors in the posterior 

https://hero.epa.gov/hero/index.cfm?action=search.view&reference_id=4850043
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probabilities estimated from the BIC are 𝑂𝑂(1) estimators. Errors in the posterior 
probabilities estimated using the Laplace approximation are 𝑂𝑂(𝑙𝑙−1). This means the latter 
approximation goes to the true posterior model probability with increasing data and the 
former, using the BIC, may not go to the true value. 
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9.0 Nested Dichotomous Endpoints 
In a nested study, for each dose tested, there is a group of experimental units receiving 
that particular dose of the chemical of interest. For each of those experimental units, a 
number of dichotomous observations are obtained, i.e., those dichotomous observations 
are “nested” within the experimental units. 

Moreover, because of the nesting, one may suspect that the observations within each 
experimental unit are more similar to one another than they are to observations from 
other experimental units. For example, consider a developmental toxicity experiment, in 
which rodent females (“dams”) are exposed to the chemical of interest prior to or during 
pregnancy. The offspring (“pups”) from each litter are examined after birth for the 
presence or absence of malformations. Because each rodent dam may produce 15-20 
pups, the results consist of a set of dichotomous (malformation present or absent) counts 
for each dam. 

Nested dichotomous models are defined so as account for, model, the data structure 
associated with such experimental designs. 

The most common application of the nested models will be to developmental toxicology 
studies of organisms that have multiple offspring per litter, as do rodents. In these study 
designs, pregnant dams are given one or several doses of a toxicant, and the fetuses, 
embryos, or term offspring are examined for signs of abnormal development. In such 
studies, it is usual for the responses of pups in the same litter to be more similar to each 
other than to the responses of pups in different litters (“intra-litter correlation,” or “litter-
effect”). Another way to describe the same phenomenon is that the variance among the 
proportion of pups affected in litters is greater than would be expected if the pups were 
responding completely independently of each other. 

Observations from such studies might include skeletal structure change, delayed 
ossification in the bone, or organ structural change to malformation, among many others. 
Since all those observations are made in pups—but not in the mothers—these data are 
nested data. 

Nested models that BMDS has included make available two approaches to this feature of 
developmental toxicology studies: they use a probability model that provides for extra 
inter-litter variance of the proportion of pups affected (the beta-binomial probability model: 
see the “Likelihood Function” section below); and they incorporate a litter-specific 
covariate that is expected to account for at least some of the extra inter-litter variance. 
This latter approach was introduced by Rai and Van Ryzin (1985), who reasoned that a 
covariate that took into account the condition of the dam before dosing might explain 
much of the observed litter effect. Those authors suggested that litter size would be an 
appropriate covariate. For the reasoning to apply strictly, the measure of litter size should 
not be affected by treatment; thus, in a study in which dosing begins after implantation, 
the number of implantation sites would seem to be an appropriate measure. On the other 
hand, the number of live fetuses in the litter at term would not be an appropriate measure 
if there is any dose-induced prenatal death or resorption. 

The following screenshot shows how a nested dataset should be formatted for use in 
BMDS. 

https://hero.epa.gov/hero/index.cfm?action=search.view&reference_id=3227
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Figure 58. Nested dataset formatted correctly for BMDS analysis. 

 

As the above figure shows, each litter is on a separate row, showing the dose it received, 
its sample size (“Litter size”), the number of responders (“Incidence”), and the value of a 
covariate that will be discussed below (“Litter Specific Covariate”). 

This section provides details on the following topics: 
• Implementation of nested models in BMDS 3 
• Entering nested data 
• Nested model options 
• Nested model outputs 
• Options for restricting values of certain model parameters 
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9.1 Nested Response Model 
Figure 59. BMDS 3 nested model on the Analysis Workbook. 

 

BMDS 2.7 contained three nested dichotomous models: 
• Nested Logistic 
• National Center for Toxicological Research (NCTR) 
• Rai and van Ryzin 

At this time, the only nested dichotomous model available in BMDS 3 is Nested Logistic. 
The Nested Logistic Model is the log-logistic model, modified to include a litter-specific 
covariate. 

The NCTR (National Center for Toxicological Research) nested dichotomous model will 
be included in a future BMDS release. 

The NCTR and Rai and Van Ryzin models can be accessed in BMDS 2.7, which is 
available from the BMDS website as an archive version of BMDS. 

9.2 Entering Nested Dichotomous Data 
For information on inserting or importing data, see Section 4.2, “Step 2: Add Datasets,” 
on page 29. 

The default column headers are “Dose,” “Litter Size,” “Incidence” and “Litter Specific 
Covariate” (LSC). 

Note There must be data in the LSC row even if the modeling options do not call for 
the use of LSC. 

9.3 Options 
On the BMDS 3 Analysis Workbook’s Main tab, the user can define multiple Option Sets 
to apply to multiple user-selected models and multiple user-selected datasets in a single 
“batch” process. Select the Add Option Set button to define a new Option Set 
configuration. 

Figure 60. Nested Model options. 

 

Unlike previous versions of BMDS, BMDS 3 does not require the user to specify the 
model form, but rather automatically runs all forms of the available nested models. So, in 
effect, BMDS 3 runs all four combinations displayed in this table: 

https://www.epa.gov/node/83971
https://www.epa.gov/node/83971
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Table 14. All forms of nested models run by BMDS. 

Litter Specific  
Covariate 

Intralitter Correlation- 
Estimated 

Intralitter Correlation- 
Set to Zero 

Included in Model lsc+ilc+ lsc+ilc- 

Not included in Model lsc-ilc+ lsc-ilc- 

The table entries display the abbreviation used by BMDS (e.g., “lsc+ilc+”) to name the 
tabs on the Results Workbook. 

The specific definitions of Litter Specific Covariate and Intralitter Correlations are 
discussed below. Briefly, the covariate is another variable that the model can (optionally) 
include, one that may help to explain the variation in the response from one experimental 
unit to another. As noted above, the experimental unit is very often a litter of 
observations, hence the designation “Litter Specific.” The intralitter correlation (again 
referencing the litter as a common experimental unit), estimates the degree to which 
observations within the same litter are correlated. If set to zero (one of the options), there 
is no correlation and the assumption then is that every observation is independent of 
every other observation (conditional on the model predicted probabilities of response). 

9.3.1 Risk Type 

 

Choices are “Extra Risk” (default) or “Added Risk.” 

Additional risk is the additional proportion of total animals that respond in the presence of 
the dose, or the probability of response at dose 𝑑𝑑, 𝐿𝐿(𝑑𝑑), minus the probability of 
response in the absence of exposure, 𝐿𝐿(0);  𝑀𝑀. 𝑒𝑒., 𝑎𝑎𝑑𝑑𝑑𝑑𝑀𝑀𝐸𝐸𝑀𝑀𝑙𝑙𝑙𝑙𝑎𝑎𝑙𝑙 𝐿𝐿𝑀𝑀𝑠𝑠𝑘𝑘 =  𝐿𝐿(𝑑𝑑) –  𝐿𝐿(0). 

Extra risk is the additional risk divided by the proportion of animals that will not respond in 
the absence of exposure, 1 −  𝐿𝐿(0);  𝑀𝑀. 𝑒𝑒. , 𝑒𝑒𝑥𝑥𝐸𝐸𝐿𝐿𝑎𝑎 𝐿𝐿𝑀𝑀𝑠𝑠𝑘𝑘 =  𝑃𝑃(𝑏𝑏) – 𝑃𝑃(0)

1−𝑃𝑃(0)
. Thus, extra and 

additional risk are equal when background rate is zero. 

9.3.2 BMR 

 

The BMR is the value of risk (extra or added, as specified by the user) for which a BMD is 
estimated. BMR must be between 0 and 1 (not inclusive). If 𝐿𝐿(0)  >  0, then values for 
BMR greater than 1 −  𝐿𝐿(0) will result in an error when the risk type is added risk. That is 
because the maximum added risk that can ever be achieved is 1 −  𝐿𝐿(0). In practice, this 
should not typically be an issue because one usually is interested in BMR values in the 
range of 0.01 to around 0.10. 



 Benchmark Dose Software (BMDS) Version 3.2 
User Guide 

Page 95 of 118 

BMR and Graphs 
The response associated with the BMR that is displayed in the graphical model output 
will only be the same as the BMR when 𝐿𝐿(0)  =  0. 

This is because to obtain the actual response value one must solve for 𝐿𝐿(𝑑𝑑) in the 
equation for added or extra risk discussed in Section 9.3.1. 

The horizontal bar depicting the response level used to derive the BMD that is displayed 
in the graphical model output will only be the same as the user-defined BMR (e.g., 10% 
Extra Risk) when the response at background, P(0), equals zero. 

When P(0) does not equal zero, the true response level can be calculated using the Extra 
Risk equation described in Section 9.3.1. 

9.3.3 Confidence Level 

 

The Confidence Level is a fraction between 0 and 1; 0.95 is recommended by EPA (U.S. 
EPA, 2012). 

The value for confidence level must be between 0 and 1 (not inclusive). For a confidence 
level of x, BMDS will output BMDL and BMDU estimates, each of which is a one-sided 
confidence bound at level x. For example, if the user sets the confidence level to 0.95 
(the default), then the BMDL is a 95% one-sided lower confidence bound for the BMD 
estimate; the BMDU is a 95% one-sided lower confidence bound for the BMD estimate. 
In that example, the range from BMDL to BMDU would constitute a 90% confidence 
interval (5% in each tail outside that interval). 

9.3.4 Litter Specific Covariate 

 

Enables the user to account for inter-litter variability by using a litter specific covariate 
(LSC). 

Best practice would dictate that one not use a variable for the LSC if that variable is 
affected by dose (the other explanatory variable). During the course of the analysis, it is 
recommended that the models with and without the LSC be compared to determine 
whether or not the LSC contributes to a better explanation of the observations (e.g., by 
comparing AIC values). 

For those runs where the LSC is included in the model, the BMD will depend on the LSC. 
This Option allows the user to determine if the BMD (and the corresponding plots) will be 
computed using the “Control Group Mean” value of the LSC or the “Overall Mean” value 
of the LSC (i.e., averaged across all dose groups; this is the default). See Section 9.4.4, 

https://hero.epa.gov/hero/index.cfm?action=search.view&reference_id=1239433
https://hero.epa.gov/hero/index.cfm?action=search.view&reference_id=1239433
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“BMD Computation,” on page 102 for an explanation as to why this option is necessary, 
and which choice would be preferred for the given dataset. 

Basically, the Overall Mean should be used under most circumstances. If the Litter 
Specific Covariate differs from dose to dose (without any apparent consistent trend with 
respect to dose), consider using the Control Group Mean. 

Note Carr and Portier (Carr and Porter, 1991), in a simulation study, warn that in 
situations in which there is no effect of litter size, statistical models that 
incorporate a litter size parameter, as do the models in BMDS, will often 
erroneously indicate that there is a litter size effect. Thus, the user should use 
litter size parameters with caution. Unfortunately, there are currently no good 
diagnostics for determining whether a litter size effect exists. 

9.3.5 Background 

 

Choices are Estimated (default) or Zero. The user is advised to select Estimated unless, 
and this will probably be a rare condition, there is very strong evidence (from other 
studies or ancillary information) that there is absolutely zero probability or response in the 
absence of exposure. 

Note Do not set Background to Zero when there are responses in a group with dose=0 
in the experiment being modeled. 

9.3.6 Bootstrapping 

 

Bootstrap Iterations: Specify the number of bootstrap iterations (default is 1000) to run 
to estimate goodness of fit. It is recommended to keep the value at a minimum of 1000. 

Bootstrap Seed: Select this feature to specify a bootstrap seed for the random number 
generator. Default is that BMDS auto-generates a seed for the random number generator 
based on the system clock. 

For more details, refer to Section 9.5, “Outputs Specific to Frequentist Nested 
Dichotomous Models,” on page 103. 

https://hero.epa.gov/hero/index.cfm?action=search.view&reference_id=4829617
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9.4 Mathematical Details for Models for Nested Dichotomous 
Endpoints 
The model that BMDS makes available for nested data is the Logistic Nested Model 
(Table 15). In the future, the NCTR model will be made available (also presented in Table 
15). The user who is interested in the NCTR model (and also the Rai and van Ryzin 
model) is advised to download BMDS 2.7, which has both of those models for nested 
data.
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Table 15. Individual nested dichotomous models and their respective parameters . 

Model Parameters Notes 
Logistic Nested model 

𝐸𝐸(𝑑𝑑) = 𝛼𝛼 +
𝜃𝜃1𝐿𝐿𝑖𝑖𝑖𝑖 + (1 − 𝛼𝛼 − 𝜃𝜃1𝐿𝐿𝑖𝑖𝑖𝑖)

(1 + 𝑒𝑒�−𝛽𝛽−𝜃𝜃2𝑏𝑏𝑖𝑖𝑖𝑖−𝜌𝜌×ln(dose)�)
 

if dose > 0, and 𝛼𝛼 + 𝜃𝜃1𝐿𝐿𝑖𝑖𝑖𝑖 if dose = 0 
 

𝛼𝛼 = Intercept (≥0) 
𝜌𝜌 = power (≥0, can restrict 
≥1) 
𝛽𝛽 = slope (≥0) 
𝜃𝜃1 = first coefficient for the 
litter specific covariate 
𝜃𝜃2 = second coefficient for 
the litter specific covariate 
𝜙𝜙1, … ,𝜙𝜙𝑏𝑏 = intra-litter 
correlation coefficients 

In the model equation, 𝐿𝐿𝑖𝑖𝑖𝑖 is the litter-specific covariate for the jth litter in the ith dose 
group. In addition, there are g intra-litter correlation coefficients; g is the number of 
dose groups. 0 ≤ 𝜙𝜙𝑖𝑖 ≤ 1 (𝑀𝑀 = 1, … ,𝑔𝑔). 

1 > 𝛼𝛼 + 𝜌𝜌 ≥ 𝜃𝜃1𝐿𝐿𝑖𝑖𝑖𝑖 ≥ 0 for every 𝐿𝐿𝑖𝑖𝑖𝑖. 

If 𝐿𝐿𝑚𝑚 represents either the control mean value for the litter-specific covariate or its 
overall mean, then the BMD is computed as: 

BMD = 𝑒𝑒
�
�ln� 𝐴𝐴

(1−𝐴𝐴)�−𝛽𝛽−𝜃𝜃2𝑏𝑏𝑚𝑚�
𝜌𝜌 �

 
where 

𝐴𝐴 = � BMRF
(1 − 𝑎𝑎 − 𝜃𝜃1𝐿𝐿𝑚𝑚)

 BMRF extra risk

 added risk
 

 
For the BMDL, the parameter 𝛽𝛽 is replaced with an expression derived from the 
BMD definition and the BMDL is derived as described in Section 9.4.2. 
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Model Parameters Notes 
National Center for Toxicological Research 
(NCTR) model9 

𝐸𝐸(𝑑𝑑) = 1 − 𝑒𝑒�−(𝛼𝛼+𝜃𝜃1�𝑏𝑏𝑖𝑖𝑖𝑖−𝑏𝑏𝑚𝑚�)−(𝛽𝛽+𝜃𝜃2�𝑏𝑏𝑖𝑖𝑖𝑖−𝑏𝑏𝑚𝑚�)×dose𝜌𝜌�  

𝛼𝛼 = Intercept (≥0) 
𝜌𝜌 = power (≥0, can restrict 
≥1) 
𝛽𝛽 = slope (≥0) 
𝜃𝜃1 = first coefficient for the 
litter specific covariate 
𝜃𝜃2 = second coefficient for 
the litter specific covariate 
𝜙𝜙1, … ,𝜙𝜙𝑏𝑏 = intra-litter 
correlation coefficients 

In the model equation, 𝐿𝐿𝑖𝑖𝑖𝑖 is the litter-specific covariate for the jth litter in the ith dose 
group, 𝐿𝐿𝑚𝑚 is the overall mean for the litter-specific covariate 
𝜃𝜃1(𝐿𝐿𝑖𝑖𝑖𝑖 − 𝐿𝐿𝑚𝑚) ≥ 0 and 𝜃𝜃2(𝐿𝐿𝑖𝑖𝑖𝑖 − 𝐿𝐿𝑚𝑚) ≥ 0 
In addition, there are g intra-litter correlation coefficients; g is the number of dose 
groups. 0 ≤ 𝜙𝜙𝑖𝑖 ≤ 1 (𝑀𝑀 = 1, … ,𝑔𝑔);  1 > 𝛼𝛼 + 𝜌𝜌 ≥ 𝜃𝜃1𝐿𝐿𝑖𝑖𝑖𝑖 ≥ 0 for every 𝐿𝐿𝑖𝑖𝑖𝑖. 

BMD = �
−(ln(1 − 𝐴𝐴))

(𝛽𝛽 + 𝜃𝜃2𝛿𝛿𝑏𝑏) � × �
1
𝜌𝜌� 

where 

𝐴𝐴 = � BMRF
(1 − 𝑎𝑎 − 𝜃𝜃1𝛿𝛿𝑏𝑏)

BMRF extra risk

 added risk
 

 
For the BMDL, the parameter 𝛽𝛽 is replaced with an expression derived from the 
BMD definition and the BMDL is derived as described in Section 9.4.2. 

                                                      
 
9 The NCTR model will be added to a future version of BMDS. 
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9.4.1 Likelihood Function 
Let g represent the number of dose groups. For the ith group, there are ni pregnant 
females administered dose dosei. In the jth litter of the ith dose group there are sij 
fetuses, xij affected fetuses, and, potentially, a litter-specific covariate rij which will often 
be a measure of potential litter size, such as number of implantation sites, though this is 
not a requirement of the models. In what follows, the dose-response model, which gives 
the probability that a fetus in the jth litter of the ith dose group will be affected is 
represented by 

𝐸𝐸(dose𝑖𝑖 , 𝐿𝐿𝑖𝑖𝑖𝑖) 

The beta-binomial distribution can be thought of as resulting from sampling in two stages. 
First, each litter is assigned a probability, Pij from a beta distribution (beta distributions 
represent a two-parameter family of probability distributions defined on the interval (0,1)). 
The parameters of the beta distribution are determined by the administered dose, the 
litter specific covariate rij and the degree of intra-litter correlation, vi . Note that the intra-
litter correlation parameter varies among doses. It has been shown (Williams et al., 1988) 
that when the true intra-litter correlation differs among doses, unbiased estimates of the 
other parameters in a dose-response model can only be obtained if dose-specific intra-
litter correlation parameters are estimated. As a special case, if vi =0, then this part of the 
process is completely deterministic, and 

𝐿𝐿𝑖𝑖𝑖𝑖 = 𝐸𝐸(dose𝑖𝑖 , 𝐿𝐿𝑖𝑖𝑖𝑖) 

This allows for the possibility of no litter effect at all. 

In the second stage of sampling, sij fetuses are assigned to the litter, and the number of 
affected fetuses, xij is sampled from a binomial distribution with parameters Pij and sij . 

The log-likelihood function that results from this process is (Kupper et al., 1986): 

 

 

𝐿𝐿𝐿𝐿 = ����� ln (𝐸𝐸�dose𝑖𝑖 , 𝐿𝐿𝑖𝑖𝑖𝑖� + (𝑘𝑘 − 1)𝛹𝛹𝑖𝑖)

𝑥𝑥𝑖𝑖𝑖𝑖

𝑘𝑘=1

𝑏𝑏𝑖𝑖

𝑖𝑖=1

𝑏𝑏

𝑖𝑖=1

+ � ln�1 − 𝐸𝐸�dose𝑖𝑖 , 𝐿𝐿𝑖𝑖𝑖𝑖� + (𝑘𝑘 − 1)𝛹𝛹𝑖𝑖� −� ln (1 + (𝑘𝑘 − 1)𝛹𝛹𝑖𝑖)

𝑠𝑠𝑖𝑖𝑖𝑖

𝑘𝑘=1

𝑠𝑠𝑖𝑖𝑖𝑖−𝑥𝑥𝑖𝑖𝑖𝑖

𝑘𝑘=1

�� 

 
where 

𝛹𝛹𝑖𝑖 =
𝜙𝜙𝑖𝑖

1 − 𝜙𝜙𝑖𝑖
 

and 

�(∙) = 0
𝑏𝑏

𝑚𝑚

 𝑀𝑀𝑖𝑖 𝑎𝑎 > 𝑏𝑏 (𝑏𝑏𝑦𝑦 𝑐𝑐𝑙𝑙𝑙𝑙𝑣𝑣𝑒𝑒𝑙𝑙𝐸𝐸𝑀𝑀𝑙𝑙𝑙𝑙). 

 
This log-likelihood ignores a term that is independent of the values of the parameters.. 

https://hero.epa.gov/hero/index.cfm?action=search.view&reference_id=3252
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9.4.2 Goodness of Fit Information—Litter Data 
The “Litter Data” table provides a listing of the data, expected and observed responses 
and scaled residuals, for each litter. 

The scaled residual values printed at the end of the table are defined as follows: 
(Obs − Expected)

SE
 , 

where “Expected” is the predicted number of responders from the model and SE equals 
the estimated standard error of that predicted number. For these models, the estimated 
standard error is equal to �[𝑙𝑙 × 𝐸𝐸 × (1 − 𝐸𝐸) × (𝜃𝜃 × (𝑙𝑙 − 1) + 1)], 

• 𝑙𝑙 is the sample (litter) size, 
• 𝐸𝐸 is the model-predicted probability of response, and 
• θ is the model-predicted intra-litter correlation coefficient. 

The overall model should be called into question if the scaled residual values for several 
individual dose and litter-specific covariate combinations, particularly for the control group 
or a dose group near the BMD and for litter-specific covariate values close to the overall 
mean, are greater than 2 or less than -2. 

The goodness-of-fit p-values are calculated using a bootstrap approach. 
1. The MLE parameter values are used to generate B pseudo-datasets having the 

same design features (number of doses and number of litters per dose), litter-
sizes, and, if necessary, litter-specific covariate values, as the original dataset. 
What varies from pseudo-dataset to pseudo-dataset are the number of 
responding “units” within litters, and those are generated, at random, as dictated 
by the values of the ML estimates. 

2. Once the B bootstrap iterations are generated, a statistic referred to as chi-
square is calculated for each. The chi-square statistic is the sum of the squares 
of the scaled residuals for each litter, as described above. Higher values of that 
statistic are indicative of poorer match between the model predictions and the 
data. 

Note In traditional testing situations, the chi-square statistic would be 
approximated by a chi-squared random variable having a certain degree of 
freedom, and its “significance” (p-value) would be determined from the 
appropriate chi-squared distribution function. 

3. The chi-square statistic from the original data is computed and compared to the 
values from the B bootstrap iterations. The p-value is the proportion of chi-square 
values from the iterations that are greater than the original chi-square value.  
 
High p-values are indicative of adequate fit (i.e., there was a high proportion of 
chi-square values associated with pseudo-datasets obtained from data known to 
be consistent with the model and the ML estimates of the model parameters). 
That calculation is repeated three times, and various percentiles of the generated 
chi-square statistic are presented. This allows the user to determine if enough 
bootstrap iterations (B) have been specified. The default iterations for B is 1000 
and should probably not be reduced. The user may wish to increase the default if 
the percentiles for chi-square differ markedly across the three runs (specifically 
the median and lower percentiles), or if the p-values calculated from the three 
runs differ markedly. This may only be an issue when the p-value is close to the 
value (e.g., 0.05 or 0.10) used as a critical value for deciding if the fit of the 
model to the data is adequate. If there is some variability in the p-values, but they 
are all greater than 0.20, for example, then one probably need not worry about 
increasing the value for B. 
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9.4.3 Plot and Error Bar Calculation 
The error bars shown for the plots of nested data are calculated in the same way as 
those for dichotomous data (and described in Section 8.3.3, “Plot and Error Bar 
Calculation,” on page 79). 

However, a Rao-Scott transformation is applied prior to the calculations to express the 
observations in terms of an “effective” number of affected divided by the total number in 
each group (the format required for the confidence intervals of simple dichotomous 
responses). 

9.4.4 BMD Computation 
BMD computation is like that for dichotomous models with the added wrinkle that a value 
for a litter-specific covariate (LSC) may be used, in addition to dose, to describe changes 
in the endpoint. It therefore affects the BMD calculation. If an LSC is included in the 
model, the user can choose to plot results and compute BMDs for one of two specific 
values of the LSC, either the overall mean (across all dose groups) or the control group 
mean. Typically, the overall mean is the preferred choice, but the control group mean 
might be appropriate in certain situations. 

For example, suppose the LSC value varies enough from group to group to be 
“interesting,” but it goes up for some dose groups and down for others in a manner that 
contra-indicates a dose effect. In this case, the user might decide to use the control group 
mean LSC when the BMD is close to the background dose (i.e., basically deciding that 
the LSC of interest in that region is more likely to be the average observed for the control 
group as opposed to the average across all the groups). If a covariate is found to be 
affected by dose, i.e., if its value appears to have a consistent trend with respect to dose, 
its use is discouraged. 

Details of the BMD calculation are shown in Table 15 above. 

9.4.5 BMDL Computation 
BMDS currently only calculates one-sided confidence intervals, in accordance with 
current BMD practice. The general approach to computing the confidence limit for the 
BMD (called the BMDL here) is the same for all the models in BMDS, and is based on the 
asymptotic distribution of the likelihood ratio (Crump and Howe, 1985) . 

The approach used for all the nested dichotomous models is the same. The equations 
that define the benchmark response in terms of the benchmark dose and the dose-
response model are solved for one of the model parameters, using either the control 
group mean or the overall mean of the litter-specific covariate. The resulting expression is 
substituted back into the model equations, with the effect of re-parameterizing the model 
so that BMD appears explicitly as a parameter. A value for BMD is then found such that, 
when the remaining parameters are varied to maximize the likelihood, the resulting log-
likelihood is less than that at the maximum likelihood estimates by exactly 

𝜒𝜒1,1−2𝛼𝛼
2

2

https://hero.epa.gov/hero/index.cfm?action=search.view&reference_id=3198
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9.5 Outputs Specific to Frequentist Nested Dichotomous 
Models 
The nested models use a “bootstrap” approach for evaluating the fit of the model to the 
data under consideration. That approach takes the model with its MLE parameter values 
and simulates data sets matching the design (doses, sample sizes, etc.) being modeled. 
For each simulated data set, the scaled residuals are computed and summed to yield a 
Chi-square test statistic. The distribution of that test statistic over the iterations is 
compared to the Chi-square test statistic from the observed data. if the model fits the 
data well, the observed Chi-square should not be in the upper tail of the Chi-square 
statistic values from the simulations. 

Figure 61. Summary of Bootstrap Fit diagnostics. 

 

The Bootstrap Results table summarizes the result of that test for goodness of fit. It 
reiterates the user-input number of iterations and displays the seed number used to 
generate the simulations (which may have been chosen randomly by BMDS). The log-
likelihood and the Observed Chi-square test statistic pertain to the observed data. The 
Combined P-value can be used to infer whether the fit is adequate. Small p-values (e.g., 
less than 0.05 or 0.10) would indicate poor fit. 

Figure 62. Bootstrap Run Details 

 

The Bootstrap Runs table gives further details about the bootstrap test of fit. Since it is a 
random procedure (relying on random generation of datasets with the fitted model as the 
data-generating process) there is the possibility of noise entering into the computations. 
Thus, BMDS runs the procedure three times and gets a p-value for each. These can be 
compared to determine if stability has been achieved. If not, the user may wish to 
increase the number of iterations. Further details include middle and high-end percentiles 
for the Chi-square test statistic, that can be further compared to the observed value. 
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Figure 63. Summarized Scaled Residuals. 

 

Figure 64. Partial capture of the Litter Data table from Results Workbook. 

 

In simple dichotomous modeling, there is a single scaled residual for each dose group. 
For nested designs, the probabilities of response and therefore the scaled residuals will 
vary across experimental units (“litters”). That variation is shown in the Litter Data table 
and summarized in the Scaled Residuals table. The summary is an attempt to capture a 
general impression of the closeness of the observed response rates to those predicted by 
the model. As is typical, values greater than 2 in absolute value may affect the user’s 
assessment of fit. The Litter Data table shows the model-predicted probability of 
response and expected number of responders (= Est. Prob * Litter Size). 
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10.0 Multiple Tumor Analysis 
Figure 65. Multi-tumor (MS_Combo) analysis. 

 

10.1 Dichotomous—Multi-tumor Models and Options 
The modeling option ‘Dichotomous –Multi-tumor (MS_Combo)’ is a special application of 
dichotomous modeling, not previously discussed. It is offered as a convenience to the 
user who may be interested in evaluating the combined effect of two or more 
independent, dichotomous responses. It is specialized in the additional sense that it only 
runs multistage models to fit the dose-response relationship. It returns BMD estimates 
(and related bounds) for the risk of responding with one or more of the endpoints in 
question. It is most often limited to analyses of cancer data where the component data 
sets are for tumors occurring at various sites, hence its name. 

As in previous versions of BMDS, BMDS 3 allows users to run the EPA’s Multi-tumor 
(MS_Combo) model to determine the BMD, BMDL and BMDU that is associated with a 
specified added or extra risk of experiencing at least one of the multiple tumor types. 
However, unlike previous versions of BMDS, BMDS 3 provides users with the option to 
manually select, or allow BMDS to “Auto-select,” the degree of Multistage model to apply 
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to each dataset. The auto-selection process follows the most recent EPA technical 
guidance for selecting the Multistage model degree for the analysis of cancer datasets, 
which differs from the model selection process described by EPA (2012) for other 
modeling scenarios. 

10.2 Assumptions 
The analyses of multiple tumors have the following assumptions and results: 
1. The tumors are statistically independent of one another. 

Note:  Unless there is substantial biological evidence to indicate that the tumor 
types are not independent—conditional on model parameter values—the 
approach based on independence is considered appropriate. 

2. A multistage model is an appropriate model for each of the tumors separately. The 
individual multistage models fit to the individual tumors need not have the same 
polynomial degree, however. 

3. The user is interested in estimating the risk of getting one or more of the tumors 
being analyzed; the results indicate the BMD and BMDL associated with the user-
defined benchmark response (BMR) level, where the BMD and BMDL are the 
maximum likelihood and lower bound estimates of the dose that is estimated to give 
an extra risk equal to the BMR for the “combination” (getting one or more of the 
tumors). 

In accordance with EPA cancer guidelines (U.S. EPA, 2005), a Multiple Tumor Analysis 
will always run the restricted form of the Multistage model. 

BMDS 3 allows users to have BMDS “Auto-Select” the appropriate polynomial degree of 
the Multistage model for each tumor dataset. When the “Auto-Select” feature is used, 
BMDS runs all relevant forms of the Multistage model and selects the polynomial degree 
to use based on the current EPA Multistage model selection criteria for tumor analyses. 
This is the default option in BMDS 3.0, but the user can also choose to manually set the 
polynomial degree for each dataset. In any case, it is ultimately the user’s responsibility 
to ensure that the degree of the polynomial and other selections for modeling parameters 
are as desired and appropriate for the dataset(s) being analyzed. 

10.3 Multi-tumor (MS_Combo) Model Description 
Note Before using MS_Combo, it is strongly recommended that users refer to the 

Technical Guidance on choosing the appropriate stage of a multistage model for 
cancer modeling. The Technical Guidance includes background information on 
the assumptions and application of the BMDS MS_Combo program. 

The purpose of the MS_Combo program in BMDS is to allow the user to calculate BMDs 
and BMDLs for a combination of tumors (corresponding to a defined risk of getting one or 
more of those tumors) when the individual tumor dose-responses have been modeled 
using a Multistage-Cancer model. 

The output of an MS_Combo run will present the results of fitting each individual tumor 
(including the BMD and BMDL for that tumor) plus the combined log-likelihood, BMD and 
BMDL for the combination of specified tumor responses. 

In practice, the user should investigate each tumor individually and determine which 
degree of the Multistage-Cancer model is most appropriate for each individual tumor. 
That determination will involve all the usual considerations of fit, AIC, etc. 

https://cfpub.epa.gov/ncea/bmds/recordisplay.cfm?deid=308382
https://cfpub.epa.gov/ncea/bmds/recordisplay.cfm?deid=308382
https://hero.epa.gov/hero/index.cfm?action=search.view&reference_id=1239433
https://hero.epa.gov/hero/index.cfm?action=search.view&reference_id=6324329
https://cfpub.epa.gov/ncea/bmds/recordisplay.cfm?deid=308382
https://cfpub.epa.gov/ncea/bmds/recordisplay.cfm?deid=308382
https://cfpub.epa.gov/ncea/bmds/recordisplay.cfm?deid=308382
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Once a specific form of the Multistage-Cancer model is chosen for each of the tumors of 
interest (they need not have the same degree across all the tumors in question), the user 
should specify those choices in the MS_Combo run. 

Note The following descriptions are valid only when the tumors are assumed to be 
independent of one another (conditional on dose level). 

Because of the form of the multistage model, the MLE estimates for the combined risk 
are a function of the parameter values obtained for the individual tumor multistage model 
fits. In fact, the combined probability function has a multistage model form: 

𝐿𝐿(𝑑𝑑) = 1 − 𝑒𝑒{−�𝛽𝛽0+𝛽𝛽1𝑏𝑏+𝛽𝛽2𝑏𝑏2+⋯�} 

and the terms of the combined probability function (𝛽𝛽0,𝛽𝛽1, … ) are specified as follows: 

𝛽𝛽0 = �𝛽𝛽0𝑖𝑖 

 

𝛽𝛽1 = �𝛽𝛽1𝑖𝑖 

 

𝛽𝛽2 = �𝛽𝛽2𝑖𝑖 

etc. 

where the sums are over i = 1, …, t, with 

t being the number of tumors under consideration, and 
βxj being the xth parameter (0, 1, …) for tumor j. 

The βxj values are available directly from the Multistage-Cancer runs performed on the 
individual tumors, but MS_Combo performs the calculations for the user, completing the 
summations of the individual terms and computing the BMD based on the combined 
parameter values and the user-specified BMR. 

A profile-likelihood approach is used to derive the BMDL. 

1. Given the BMD and the log-likelihood associated with the MLE solution, a target 
likelihood is defined based on the user-specified confidence level (e.g., 95%). 

2. That target likelihood is derived by computing the percentile of a chi-square (1 
degree of freedom) corresponding to the confidence level specified by the user 
(actually, the alpha associated with the confidence level, times 2). 

3. That percentile is divided by 2 and subtracted from the maximum log-likelihood. 
4. That derivation is based on a likelihood ratio test with one degree of freedom; it 

can be shown that estimating the BMDL corresponds to losing one degree of 
freedom, regardless of the number of tumors being combined. 

5. The BMDL for the combined response (one or more of the tumors of interest) is 
defined as the smallest dose, D, for which the following two conditions are 
satisfied: 
i. There is a set of parameters such that the combined log-likelihood using D 

and those parameters is greater than or equal to the target likelihood), and 
ii. For that set of parameters, the risk at D is equal to the user-specified BMR. 

Note that the combined log-likelihood is a function of the fits of the individual tumors (the 
sum of the individual log-likelihoods), obtained using their tumor-specific β values. Thus, 
the search for the parameters of the combined Multistage-Cancer model varies the 
individual-tumor β values in such a way that the individual log-likelihoods add up to a 
combined likelihood within the range desired (greater than or equal to the target). 
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However, to satisfy the second constraint, the sums of the individual-tumor parameters 
(shown above to be the parameters of the combined probability function) are used to 
evaluate the risk for any proposed BMDL, D. 

Note that the individual tumors need not be modeled with the same degree of the 
Multistage-Cancer model. Any terms not included for an individual tumor are assumed to 
be zero (and will remain at zero during BMDL optimization) in the summations shown 
above. 

10.4 Entering Multi-tumor Data 
Figure 66. Dataset options for multi-tumor data. 

 

The user can set two options per dataset: (Polynomial) Degree and Background. 

10.4.1 Setting Polynomial Degree 

 

Select whether BMDS auto-selects the appropriate polynomial degree or whether it 
should be user-specified. 

BMDS will recommend a model degree based on the decision logic and settings found on 
the Logic tab. For more details, refer to Section 12.0, “BMDS Recommendations and 
Decision Logic,” on page 114. 

• If a user opts for BMDS’ auto-select functionality, the best fitting model is chosen 
according to the Technical Guidance on choosing the appropriate stage of a 
multistage model for cancer modeling. If no model can be chosen based on that 
criteria, then the model is removed from the MS_Combo results. 

• The MS_Combo Decision logic uses the user-defined test thresholds from the 
Logic tab for the following criteria: 
• Goodness of fit p-test (cancer) 
• Ratio of BMD/BMDL (caution) 
• Abs(Residual of interest) too large 
• Abs(Residual at control) too large 

• If the results do not meet the “Test Threshold” value set in the “Ratio of 
BMD/BMDL (Caution)” on the Logic tab, BMDS displays a pop-up message to 

https://cfpub.epa.gov/ncea/bmds/recordisplay.cfm?deid=308382
https://cfpub.epa.gov/ncea/bmds/recordisplay.cfm?deid=308382
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the user that “BMD/BMDL ratio > [value]; consider consulting a statistician.” 
However, the model is not removed from the MS_Combo results. 

• If a user specifies a degree for a given model, that degree will be used 
regardless of model fit. 

10.4.2 Background 

 

Choices are Estimated (default) or Zero; this should usually be Estimated unless there 
exists (from other evidence) strong evidence for absolutely zero probability of response in 
the absence of exposure to the chemical under consideration. 

Note Do not set Background to Zero when there are responses in the control group. 

10.5 Options 

 

The Multi-tumor options are the same as for the Dichotomous options. 

10.5.1 Risk Type 

 

Choices are “Extra Risk” (Default) or “Added Risk.” 

Added risk is the additional proportion of total animals that respond in the presence of the 
dose, or the predicted probability of response at dose 𝑑𝑑, 𝐿𝐿(𝑑𝑑), minus the predicted 
probability of response in the absence of exposure, 𝐿𝐿(0). 𝐼𝐼. 𝑒𝑒.𝑎𝑎𝑑𝑑𝑑𝑑𝑒𝑒𝑑𝑑 𝐿𝐿𝑀𝑀𝑠𝑠𝑘𝑘 =  𝐿𝐿(𝑑𝑑) –  𝐿𝐿(0) 

Extra risk is the additional risk divided by the predicted proportion of animals that will not 
respond in the absence of exposure, 1 −  𝐿𝐿(0). 𝐼𝐼. 𝑒𝑒. , 𝑒𝑒𝑥𝑥𝐸𝐸𝐿𝐿𝑎𝑎 𝐿𝐿𝑀𝑀𝑠𝑠𝑘𝑘 −  𝑃𝑃(𝑏𝑏) – 𝑃𝑃(0)

1−𝑃𝑃(0)
 . 
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10.5.2 BMR 

 

The BMR is the value of risk (extra or added, as specified by the user) for which a BMD is 
estimated. BMR must be between 0 and 1 (not inclusive). If 𝐿𝐿(0)  >  0, then values for 
BMR greater than 1 −  𝐿𝐿(0) will result in an error when the risk type is added risk. That is 
because the maximum added risk that can ever be achieved is 1 −  𝐿𝐿(0). In practice, this 
should not typically be an issue because one usually is interested in BMR values in the 
range of 0.01 to around 0.10. 

10.5.3 Confidence Level 

 

The Confidence Level is real number between 0 and 1; 0.95 is recommended by EPA 
(U.S. EPA, 2012). 

10.6 Running an Analysis and Viewing Results 
When “Run Analysis” is selected a separate Results Workbook of multi-tumor results is 
created. The workbook will include results for each individual tumor considered 
separately (using the chosen dataset-specific options), and the corresponding estimate of 
the BMD and BMDL for the combined tumor probability for the risk type, BMR and 
confidence levels specified by the user. 

Plots for individual multistage model runs will be shown on the individual model results 
tabs. If the “Auto-Select” feature was used to select the Multistage polynomial degree, the 
user should verify that the resultant model fits are adequate in the desired dose-response 
region. If the user wants to try a different Multistage polynomial degree they can re-run 
the analysis using a specified degree instead of “Auto-Select.” 

For more information on the Results Workbook tables, refer to Section 8.4, “Outputs 
Specific to Frequentist Dichotomous Models,” on page 86. 

10.7 Troubleshooting a Tumor Analysis 
If one or more of the tumors is estimated to have a BMD greater than three times the 
highest dose tested (for that tumor), then the multiple tumor analysis will stop at an 
intermediate point, i.e., after the fitting has been done for the tumor in question and the 
magnitude of that BMD has been determined. No tumors listed below that tumor will be 
analyzed, and no combination will be completed. 

It is probably the case that the tumor in question will not add substantially to the 
estimation of a BMD for the combinations of tumors, assuming other tumors have BMDs 
less than three times the highest dose; that is because the magnitude of response for the 
tumor in question has not even reached the benchmark response level for such a high 

https://hero.epa.gov/hero/index.cfm?action=search.view&reference_id=1239433
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exposure and so its individual contribution to the risk of getting one or more of the tumors 
being analyzed will be small in comparison to that for the other tumors. The user might 
attempt a combination that does not include the tumor in question. 
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11.0 Special Considerations 

11.1 AIC for Continuous Models 
To facilitate comparing models with different likelihoods (i.e., Normal vs. Lognormal), the 
log-likelihood for the Normal and Lognormal distributions are calculated using all 
normalizing constants. This results in different numerical AIC values than those given in 
earlier BMDS versions. 

Even though the BMDS 3 AIC values for continuous models differ from those in BMDS 
2.x versions, if the models have the same underlying distribution, then the difference of 
the AICs will be the same as previous versions of BMDS. This assumes that the BMDS 3 
and BMDS 2.x model fits are the same for the two models being compared. The AIC 
difference may not be the same if one or more of the model fits differ between the two 
versions (e.g., if one or more of the BMDS 3 models provide an improved fit to the data 
over the corresponding BMDS 2.x model). 

However, when comparing models having different parametric distributions, the AIC 
differences will not be the same as previous BMDS versions. For these comparisons, the 
AIC calculated using the BMDS 3 software is correct and will result in the proper 
comparison between any two models regardless of underlying distribution. 

Caution 
A note of caution is required for situations where only the sample mean and sample 
standard deviation are available (summarized data) for which the log-scale parameters 
are only approximated when assuming lognormally distributed responses. 

In such cases, the normalizing constant for the lognormal log-likelihood is only 
approximated. It is the same normalizing constant for any model fit under a lognormal 
distribution assumption, so comparisons among models using that assumption are valid. 

However, comparisons of results where one set of results was obtained assuming 
normality and one set was obtained assuming lognormality should be made with 
caution. 
If the AICs are “similar” (using that term loosely, because no specific guidance can be 
offered here), then one ought not to base model selection on AIC differences. Selection 
when the AIC differences are “larger” may not be problematic, since the approximation 
used should not be too bad. 

A conservative position would be that comparisons of models assuming the Normal 
distribution to those assuming the Lognormal distribution should not be made using the 
AIC, if the underlying data are presented in summarized form (i.e., only sample means 
and sample standard deviations are available). 

Note AIC values for dichotomous models should be the same from BMDS 2.x to 
BMDS 3.x. 

11.2 Continuous Response Data with Negative Means 
Data with negative means should only be modeled with a constant variance model. 

It may occasionally be the case that, when modeling transformed data, the user will need 
to model negative data. In this case, the transformation used should be a variance-
stabilizing transformation so that a constant-variance model would be appropriate. 
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If a standard deviation-based BMR is used to define the BMD calculations, then a 
constant can be added to all the observations (or means) to make the values (means) 
positive. That will not change the standard deviations of the observations and would allow 
the user to model the variance. 

11.3 Test for Combining Two Datasets for the Same Endpoint 
BMDS does not include a formal test for similarity of dose response across covariate 
values (e.g., across class variables like species or sex). EPA’s categorical regression 
software, CatReg, has that capability. 

However, the following procedure can be used in BMDS if there are dose-response data 
for two experiments that the user is considering combining (e.g., for the two sexes within 
a species, or two species, etc.). 

1. Choose a single model to consider for both datasets. 
2. Model the two datasets separately. For each run, record the following: 

• Maximum log-likelihood for each dataset. Add the two log-likelihoods (one 
from each dataset) to get the summed log-likelihood. 

• The number of unconstrained parameters for each dataset. Add those 
numbers from each run to get the summed unconstrained parameters. 

3. Combine the data from the two experiments and model them together. Record 
the following: 
• The maximum log-likelihood for the combined dataset. This will be the 

combined log-likelihood. The fitted model log-likelihoods are reported in the 
Analysis of Deviance (dichotomous endpoints) or Likelihoods of Interest 
(continuous endpoints) tables. 

• The number of unconstrained parameters for the combined dataset. This will 
be the combined unconstrained parameters. 

4. Subtract the combined log-likelihood from the summed log-likelihood. Then, 
multiply the difference by 2. 

5. Compare the value from Step 4 to a chi-squared distribution. The degrees of 
freedom for that chi-squared distribution will be the difference between the 
summed unconstrained parameters (Step 2) and the combined unconstrained 
parameters (Step 3). 
 
If the value from Step 4 is in the tail (say, greater than the 95th percentile) of the 
chi-squared distribution in question, then reject the null hypothesis that the two 
sets have the same dose-response relationship. If rejection occurs, then infer 
that it is not proper to combine the two datasets. 

https://www.epa.gov/bmds/catreg
https://www.epa.gov/bmds/catreg
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12.0 BMDS Recommendations and Decision Logic 
Users familiar with the BMDS Wizard application will note that BMDS 3 uses a similar 
approach to analyzing modeling results and making automatic recommendations 
regarding model selection that are consistent with the 2012 EPA Benchmark Dose 
Technical Guidance (U.S. EPA, 2012). 

These criteria can be altered in the Logic tab of the BMDS 3 Analysis Workbook, as 
shown in Figure 67. Decision logic can be turned on or off, and specific criteria can be 
enabled or disabled for different dataset types. Notice that the logic depends on what 
type of data is being analyzed (continuous, dichotomous, nested). 
Figure 67. BMDS 3 Logic tab with EPA default recommendation decision logic. 

 

Based on the decision logic entered by the user as described above, BMDS will attempt 
to select a “recommended” model. A user must ultimately select a model and may 
choose to disagree with the BMDS auto-determination. 

BMDS 3 automatically generates suggested text for the “BMDS Recommendation” and 
“BMDS Recommendation Notes” columns of the Results Workbook summary tables and 
the Word Report File tables. 

While some reformatting is allowed in the Results Workbook (e.g., row heights, column 
widths, and the size, design, and position of plots), the text and numeric results cannot be 
modified. However, the Word Report files can be modified extensively, and the user is 
encouraged to take advantage of this flexibility to change and/or expand on the table 
headers and the justification provided for why a model was selected. 

https://www.epa.gov/risk/benchmark-dose-technical-guidance
https://www.epa.gov/risk/benchmark-dose-technical-guidance
https://hero.epa.gov/hero/index.cfm?action=search.view&reference_id=1239433


 Benchmark Dose Software (BMDS) Version 3.2 
User Guide 

Page 115 of 118 

 

BMDS 3 places each model into one of three different bins: 
• Viable—highest quality model, no serious deficiencies found based on user‐

defined logic but may contain warnings 
• Questionable—some serious deficiencies with model based on user-defined 

decision logic 
• Unusable—required outputs such as BMD or BMDL are not estimated 

The default settings for factors (tests) that determine bin placement are consistent with 
EPA Benchmark Dose Technical Guidance (U.S. EPA, 2012) and can be reset by 
selecting “Reset to Default Logic.” 

The following default settings that can cause test failure, and thereby affect bin 
placement, are not explicitly given in the EPA BMD guidance. They have been assigned 
based on general EPA practice and are, therefore, more open to user discretion. 

• BMDL range default fail: > 3-fold 
• Constant and non-constant variance p-value10 default fail: < 0.05 
• Ratio of BMD/BMDL (serious) default fail: > 20 
• BMD lower than lowest dose (serious) default fail: > 10 
• BMDL lower than lowest dose (serious) default fail: > 10 

After all models of the same Option Set (i.e., same model run settings such as BMR 
Type, BMRF, etc.) have been placed into one of three different quality bins, a model is 
recommended from the ”Viable” bin based on BMDL or AIC criteria defined in the 2012 
EPA Benchmark Dose Technical Guidance (U.S. EPA, 2012). 

12.1 Changing the Decision Logic 
BMDS automatically attempts to recommend a best‐fitting BMDS model, using the 2012 
EPA guidance (U.S. EPA, 2012) and additional criteria as described in the previous 
section. These criteria can be altered in the Logic worksheet. Decision logic can be 
turned on or off, and specific criteria can be enabled or disabled for different dataset 
types. 

Based on the decision logic entered by the user, BMDS will attempt to select a model that 
will be “recommended” as a best‐fitting model. 

Any changes to the BMDS default logic should be noted in any results or reports. 

Some grayed-out cells in the Logic table are not selectable and therefore cannot be 
edited. Also, values for the columns “Bin Placement if Test is Failed” and “Notes to Show” 
cannot be edited. 

Logic settings are saved with the Settings and Results Workbooks, so loading a 
previously run analysis will restore any customized logic settings. 

                                                      
 
10 Examples given in EPA BMD guidance (U.S. EPA, 2012).suggest a criteria of p-value > 0.1 for variance 
models, but this has since been relaxed in practice. Future EPA guidance will reflect this change. 

https://hero.epa.gov/hero/index.cfm?action=search.view&reference_id=1239433
https://hero.epa.gov/hero/index.cfm?action=search.view&reference_id=1239433
https://hero.epa.gov/hero/index.cfm?action=search.view&reference_id=1239433
https://hero.epa.gov/hero/index.cfm?action=search.view&reference_id=1239433
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Enabling/Disabling Model Tests 
To turn specific model testing on or off, select the down-pointing triangle for the cell and 
select “On” or “Off.” 

Figure 68. Toggling model tests on/off in the Logic table. 

 

To Edit Test Threshold Values 
Select the cell and double-click to display the cursor. Edit the cell value as desired. 

The user could, for example, change a threshold value for a Dichotomous model analysis 
and then restore the original value for a Continuous analysis. 

Note When changing the decision logic; an experienced user or statistician should be 
consulted to ensure the criteria selections are reasonable. 
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Figure 69. Flowchart of BMDS 3 model recommendation logic using EPA default logic assumptions. 
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