Publications That Cite AVERT

Updated October 4, 2018

Publication		Date				Organization or author
type	AVERT region	published	Summary	URL	Citation	affiliation
Report	Southeast	December 2016	This publication analyzes the emission impacts of increasing electric vehicle usage in North and South Carolina. It considers the net result of avoided gasoline consumption along with added emissions from electric power generation. The authors use AVERT to simulate the added emissions from the increased load due to electric vehicle charging. They find that the reduced tailpipe emissions from the adoption of electric vehicles would offset NOx emissions from increased electricity use, but would not offset the increased emissions of SO2 and CO2 across the AVERT Southeast region.	https://www.advance denergy.org/wp- content/uploads/2016 /12/EV to Air-Quality- 003.pdf	North Carolina Department of Environmental Quality and South Carolina Energy Office. 2016. Electric vehicles and air quality.	Advanced Energy
Report	Great Lakes/Mid- Atlantic	June 2017	This report analyzes the potential impacts of the adoption of an opt-out policy for utility-scale energy efficiency programs in Ohio. Such a policy would allow large customers to choose not to participate in or help to fund energy efficiency programs. The authors use AVERT to assess the air pollution effects, estimating the increase in SO2, NOx, and CO2 emissions under scenarios in which opt-outs reduce energy efficiency savings by 20%, 35%, and 45%.	https://www.scienced irect.com/science/arti cle/pii/S10406190173 02440	Baatz, B., G. Relf, and M. Kelly. 2017. Large customer opt-out: An Ohio example.	American Council for an Energy- Efficient Economy
Report	National	February 2018	This study analyzes the health impacts of a hypothetical 15% flat reduction in electricity consumption nationwide. The authors used AVERT to estimate the emission reductions that would result from this scenario, finding annual emission reductions of 11% for PM2.5, 18% for NOx, 23% for SO2, and 14% for CO2. Next, they used COBRA to model health impacts. The publication ranks the states and cities where AVERT indicates change will have the largest positive impact on public health.	https://www.psr.org/ wp- content/uploads/2018 /04/renewables- report.compressed.pd <u>f</u>	Hayes, S., and C. Kubes. 2018. Saving energy, saving lives.	American Council for an Energy- Efficient Economy

Council for an Energy-
Council for an Energy-
onomy
Vind Energy
1
vind Energy

Publication		Date				Organization or author
type	AVERT region	published	Summary	URL	Citation	affiliation
Published paper	National	December 2017	This article analyzes the impact of increasing residential insulation on energy consumption and corresponding life-cycle emissions by estimating payback periods for CO2, NOx, and SO2 emissions, as well as emissions associated with insulation manufacturing and transportation. The study uses AVERT to estimate the emission reductions that would result from marginal changes in electricity demand and generation.	https://link.springer.c om/article/10.1007/s1 1367-017-1412-x	Levy, J.I., M.K. Woo, R.D. Tebbens, and Y. Nishioka. 2017. Emission payback periods for increased residential insulation using marginal electricity modeling: A life cycle approach. The International Journal of Life Cycle Assessment.	Boston University
Published paper	National	March 2016	This paper describes a study that used AVERT to simulate emission reduction impacts of increased residential insulation. The authors assess the SO2, NOx, and CO2 emission reductions from electric generating units (EGUs) to find that increasing insulation for all single-family homes in the United States in 2013 would have led to annual reductions of 80 million tons of CO2 from EGUs and other co- benefits, such as preventing 320 premature deaths associated with criteria pollutant emissions.	http://iopscience.iop. org/article/10.1088/1 748- 9326/11/3/034017/pd f	Levy, J.I., M.K. Woo, S.L. Penn, M. Omary, Y. Tambouret, C.S. Kim, and S. Arunachalam. 2016. Carbon reductions and health co- benefits from U.S. residential energy efficiency measures. Environmental Research Letters 11(3): 034017.	Boston University
Published paper	National	February 2016	In this paper, the authors use AVERT to estimate energy savings and emission reductions associated with increasing residential insulation for 665,000 homes built in the United States in 2013. The results show that the increased insulation would result in reductions of 180 GWh of electricity and 840 million SCF of natural gas per year, among other results, leading to annual emission reductions of 470,000 tons of CO2, 1,100,000 pounds of SO2, and 770,000 pounds of NOx.	http://www.sciencedir ect.com/science/articl e/pii/S036013231530 1712	Levy, J.I., M.K. Woo, and Y. Tambouret. 2016. Energy savings and emissions reductions associated with increased insulation for new homes in the United States. Building and Environment 9: 72-79.	Boston University

Publication		Date				Organization or author
type	AVERT region	published	Summary	URL	Citation	affiliation
Report	Great Lakes/Mid- Atlantic, Upper Midwest	May 2017	This publication is an appendix to a report by Focus on Energy that summarizes the economic development impacts of energy efficiency and renewable energy programs in Wisconsin. The authors use AVERT to calculate avoided emissions resulting from Focus on Energy programs, combining this information with the cost of carbon set by the Public Service Commission of Wisconsin to calculate monetized emission reduction benefits on the order of \$100 million per year.	https://www.focuson energy.com/sites/defa ult/files/Wisconsin%2 OFocus%20on%20Ener gy%20CY%202016%20 Appendices.pdf	Public Service Commission of Wisconsin. 2017. Focus on Energy: Calendar year 2016 evaluation report: Appendices.	Cadmus
Webpage	Great Lakes/Mid- Atlantic	No date	This publication discusses the benefits of increasing renewable energy in Maryland as part of a campaign to expand the state's RPS policy. The authors use AVERT and COBRA to assess the effects of reaching the state's renewable goal of 50% by 2030, finding that a reduction of 8.1 million tons of CO2, will lead to the prevention of 290 premature deaths and more than 3,000 asthma attacks annually.	http://chesapeakeclim ate.org/maryland/clea n-energy/	Chesapeake Climate Action Network. Forward with 50% renewable electricity.	Chesapeake Climate Action Network
Fact sheet	Northeast	September 2017	This publication from the Connecticut Green Bank explains the methods this organization uses to assess their programs' effectiveness in improving air quality, specifically reducing emissions of CO2, NOx, and SO2. The report uses AVERT to measure the emission impacts of adding 60 MW of solar PV, wind energy, and energy efficiency savings.	http://www.ctgreenba nk.com/wp- content/uploads/2017 /10/CGB-Eval-IMPACT- 091917-B.pdf	Connecticut Green Bank. 2017. Evaluation framework: Societal performance.	Connecticut Green Bank

Publication		Date				Organization or author
type	AVERT region	published	Summary	URL	Citation	affiliation
Blog post	Northeast	February	This blog post provides information about	http://courtneystrong.	Strong, C. 2017. Mid-Hudson	Courtney Strong Inc.
		2017	communities designated as Clean Energy	com/2017/02/mid-	region sweeps Clean Energy	
			Communities by the New York State Energy	hudson-region-	Communities "first" designations.	
			Research and Development Authority (NYSERDA),	sweeps-clean-energy-		
			which signifies that they are taking actions to save	communities-first-		
			energy and money while reducing greenhouse gas	designations-ulster-		
			emissions. The authors mention a NYSERDA report	county-city-kingston-		
			that uses AVERT to estimate a 254,000 metric ton	village-dobbs-ferry-		
			reduction in greenhouse gas emissions that would	town-new-castle-		
			result from retrofitting 1.4 million street lights with	recognized-		
			LEDs—one of several energy-saving measures	commitment-cut/		
			being considered.			
Report	Three regions	December	This report presents EPRI's assessment of AVERT	http://www.epri.com/	Electric Power Research Institute.	Electric Power Research Institute
		2014	and provides a detailed comparison of analytical	abstracts/Pages/Prod	2014. A comparative assessment	
			results generated by AVERT, EPRI's EE-CO2 tool,	uctAbstract.aspx?Prod	of the U.S. EPA's Avoided	
			and EPA's eGRID for several end-use EE projects	uctId=000000030020	Emissions and geneRation Tool	
			implemented in different geographic regions of the	04606	(AVERT): Estimating emissions	
			country.		and energy displacement	
					associated with end-use energy	
					efficiency.	
White paper	National	July 2017	This paper reviews and analyzes successful	http://escholarship.or	Grevatt, J., et al. 2017. Keys to	Energy Futures Group
			residential retrofit energy efficiency programs	g/uc/item/18d545f1	the house: Unlocking residential	
			nationwide to identify the models and strategies		savings with program models for	
			that made them effective. Using AVERT and other		home energy upgrades.	
			tools, the authors calculate emission reductions			
			attributable to direct install retrofits, HVAC			
			replacement and early retirement, and			
			comprehensive whole-home retrofits.			

Publication		Date				Organization or author
type	AVERT region	published	Summary	URL	Citation	affiliation
Report	Texas	July 2016	This report provides an update from Northeast Texas Air Care on their participation in EPA's Ozone Advance Program, including information about current emission levels and measures and programs that are being implemented or considered to further reduce emissions. The report uses AVERT to estimate NOx emission reductions from one municipality's energy efficiency program: the City of Tyler's ongoing Energy Management and Modernization Program. Estimates include a reduction of NOx by 0.4 tons per year.	https://www.epa.gov/ sites/production/files/ 2016- 07/documents/2016_ update.pdf	Kemball-Cook, S., and G. Yarwood. 2016. Northeast Texas Air Care Ozone Advance action plan 2016 update.	ENVIRON International Corporation
Comment letter	Great Lakes/Mid- Atlantic	June 2014	This publication from the Hoosier Environmental Council contains recommendations for energy efficiency and demand-side management in the state of Indiana. The authors use AVERT to demonstrate the SO2, NOx, and CO2 emission reductions of implementing a 1.5% annual energy savings target and a combination of four energy efficiency policy options.	http://www.in.gov/iur c/files/Hoosier Enviro nmental_Council.pdf	Kharbanda, J., and R.K. Johnson. 2014. Comments of the Hoosier Environmental Council with technical assistance from ACEEE regarding IURC energy efficiency and demand-side management recommendations.	Hoosier Environmental Council, Inc.
Published paper	National	August 2015	This article estimates the impact of mechanisms that EPA proposed to regulate carbon emissions from existing sources of noncriteria pollutants—specifically the impact of Building Block 3 of the Clean Power Plan, which sets a target for increasing renewable generation. The authors use AVERT to calculate the emission reductions potential of Building Block 3 for all U.S. states. The authors also provide a detailed description of AVERT's methodology, assumptions, limitations, and how they used AVERT to conduct their analysis.	http://www.sciencedir ect.com/science/articl e/pii/S104061901500 1608	Ohler, A.M., and C.L. Ta. 2015. Modeling impacts from EPA's Clean Power Plan and Building Block 3 for renewable energy. The Electricity Journal 28(7): 72- 82.	Illinois State University in Normal

Publication		Date				Organization or author
type	AVERT region	published	Summary	URL	Citation	affiliation
type Report	AVERT region National	published May 2016	Summary This study assessed the emissions and water use effects of the U.S. Department of Energy's SunShot Initiative to make solar electricity cost-competitive. The authors modeled solar capacity installed by the end of 2014; used AVERT to estimate emission reductions; and estimated the impact on water withdrawal and consumption based on displaced fossil generation as projected by AVERT. This study included rooftop and utility-scale PV as well as concentrated solar power, which the authors entered into AVERT based on individual plants' hourly generation profiles. The authors used EPA's COBRA tool to calculate corresponding health benefits.	http://eta- publications.lbl.gov/si tes/default/files/6562 8.pdf	Citation Wiser, R., T. Mai, D. Millstein, J. Macknick, A. Carpenter, S. Cohen, W. Cole, B. Frew, and G. Heath. 2016. On the path to SunShot: The environmental and public health benefits of achieving high penetrations of solar energy in the United States. Lawrence Berkeley National Laboratory and National Renewable Energy Laboratory.	affiliation Lawrence Berkeley National Laboratory
Report	National	January 2016	This detailed report and corresponding summary article analyze the historical impacts of aggregated state renewable portfolio standard (RPS) policies, focusing on greenhouse gas emissions, air pollution, and water pollution, with attention also to employment impacts, wholesale electricity market price suppression, and natural gas price suppression. Using AVERT, the authors concluded that new renewable sources used for RPS compliance in 2013 resulted in a 3.6% reduction in total fossil fuel-fired generation.	http://climate- xchange.org/wp- content/uploads/2015 /11/Renewable- Energy-Standards- Study.pdf; http://www.sciencedir ect.com/science/articl e/pii/S030142151630 3408	Wiser, R., G. Barbose, J. Heeter, T. Mai, L. Bird, M. Bolinger, and A. Mills. 2016. A retrospective analysis of the benefits and impacts of U.S. renewable portfolio standards.	Lawrence Berkeley National Laboratory

Publication		Date				Organization or author
type	AVERT region	published	Summary	URL	Citation	affiliation
Published	National	August 2017	This article quantifies the monetary benefits of	https://www.nature.c	Millstein, D., et al. 2017. The	Lawrence Berkeley National
paper			wind and solar energy in the United States from	om/articles/nenergy2	climate and air-quality benefits of	Laboratory
			2007 to 2015. The authors used AVERT to estimate	017134.epdf?author	wind and solar power in the	
			displaced emissions from historical solar and wind	access_token=uYr047	United States.	
			power generation, then applied a suite of	3RE7N8qJCivi6eKNRg		
			cost/benefit approaches to find that between 2007	N0jAjWel9jnR3ZoTv0		
			and 2015, wind and solar nationwide displaced	<u>O9NQQavv-</u>		
			enough emissions of CO2, NOx, SO2, and PM2.5 to	jglBpgJVQy91sl6ZpWX		
			provide billions of dollars in health- and climate-	il0zPIZ8H2tvWaSoZi9r		
			related benefits. The authors also discuss the	rMjTx9l2FLlqAykV00G		
			economic incentives for these renewable	sKxOpkwjZM1RpGmN		
			technologies and the impact of cap-and-trade	D_BuVZCRc2dDL42qJn		
			programs on emission benefits.	MAq4DGw%3D%3D		
Published	Northeast,	April 2018	This study analyzes the economic value of offshore	https://www.energy.g	Mills, A.D., D. Millstein, S. Jeong,	Lawrence Berkeley National
paper	Great		wind within electricity markets along the U.S. east	ov/sites/prod/files/20	L. Lavin, R. Wiser, and M.	Laboratory
	Lakes/Mid-		coast. The authors use AVERT to estimate	18/04/f50/offshore e	Bolinger. 2018. Estimating the	
	Atlantic,		emissions reductions associated with offshore	<u>rl lbnl format final.p</u>	value of offshore wind along the	
	Southeast		wind. They also model the reduction in natural gas	<u>df</u>	United States' eastern coast.	
			prices resulting from displaced gas-fired generation			
			suppressing natural gas demand.			
		-				
Student	Southeast	July 2016	This master's thesis analyzes the effects of adding	https://repository.lib.	Turner, J.E 2016. The effect of	North Carolina State University
master's			1,644 MW of solar PV to the electrical grid in North	ncsu.edu/bitstream/h	adding solar photovoltaic	
project			Carolina. The study concludes that adding this	andle/1840.20/33249	electricity generators to the Duke	
			much PV would lead to 2,337,400 MWh of fossil-	<pre>/etd.pdf?sequence=1</pre>	Energy service area in North	
			fueled generation being displaced, thereby	<u>&isAllowed=y</u>	Carolina on the emissions of	
			decreasing emissions for CO2, NOx, and SO2 by		fossil fueled generators.	
			3.2%, 3.5%, and 3.9%, respectively.			

Publication		Date				Organization or author
type	AVERT region	published	Summary	URL	Citation	affiliation
Published paper	National	July 2016	This article describes the Emissions Quantification Tool (EQT), a publicly accessible web calculator developed by the Pacific Northwest National Laboratory (PNNL). This screening tool estimates the emissions impacts of a variety of "smart grid" technologies and project types. The EQT uses the AVERT algorithm, and the article explains how AVERT has been integrated, details AVERT's capabilities, and explains its methodology.	https://ieeexplore.iee e.org/abstract/docum ent/7741364/	Studarus, K., T. Hardy, B. Thayer, and R. Pratt. 2016. Quantifying the emissions impacts of smart grid projects with a publically available web calculator. 2016 IEEE Power and Energy Society General Meeting (PESGM).	Pacific Northwest National Laboratory
Published paper	California, Southwest, Great Lakes/Mid- Atlantic, and Southeast	February 2018	This study used the PNNL's EQT along with prototypical distribution feeders to explore the CO2, SO2, and NOx impacts of energy storage deployed with solar PV, where the energy storage system is operated to minimize load variation assuming hourly dispatch. The authors used 2015 AVERT data for the California, Southwest, Great Lakes/Mid-Atlantic, and Southeast regions to estimate emissions implications of PV and energy storage installations at varying levels of penetration.	http://ieeexplore.ieee .org/abstract/docume nt/8274550/?reload=t rue	Barrett, E., B. Thayer, K. Studarus, and S. Pal. 2017. The varied impacts of energy storage and photovoltaics on fossil fuel emissions. 2017 IEEE Power and Energy Society General Meeting.	Pacific Northwest National Laboratory
News article	National	September 2017	This article summarizes a Sierra Club analysis that estimates the emissions benefits of replacing fossil- fired (predominantly coal) EGUs with renewable sources. The study uses AVERT to estimate the U.S. electric sector emissions reduction that would result from planned and targeted EGU retirements and a tripling of renewable energy installations; it concludes that CO2 emissions would be reduced by at least 500 million metric tons by 2025.	http://www.huffingto npost.com/entry/anal ysis-maintaining-pace- of-coal-retirements- faster us 59bc2625e 4b0390a1564dd3c	Hitt., M.A. 2017. Maintaining pace of coal retirements and faster clean energy growth will yield another half billion tons of carbon reduction.	Sierra Club

Publication		Date				Organization or author
type	AVERT region	published	Summary	URL	Citation	affiliation
White paper	National	May 2014	This report explains how increasing solar energy	https://www.energy.g	Solar Industries Association.	Solar Energy Industries
			usage will provide numerous benefits, including a	ov/eere/solar/downlo	2014. Cutting carbon emissions	Association
			decrease in carbon emissions, meeting Clean Air	ads/cutting-carbon-	under 111(d): The case for	
			Act requirements, improving grid reliability,	emissions-under-111d-	expanding solar energy in	
			reducing water consumption, balancing compliance	case-expanding-solar-	America.	
			costs, and creating local jobs. The authors use	energy-america		
			AVERT to calculate the reductions in CO2, NOx, and			
			SO2 emissions resulting from current solar energy			
			deployment levels for all 10 AVERT regions.			
Report	Northeast	April 2015	In response to the Act to Support Solar Energy	http://www.ripuc.org/	Maine Public Utilities	Sustainable Energy Advantage,
			Development in Maine, the authors of this study	eventsactions/docket/	Commission. 2015. Maine	LLC
			assess the value of distributed solar energy	4568-WED-Ex6-	distributed solar valuation study.	
			generation in Maine as well as several	MaineSolarReport(11-		
			implementation options. The authors used AVERT	<u>23-15).pdf</u>		
			to estimate the displaced SO2, NOx, and CO2			
			emissions for 2011–2013, which they used to			
			calculate a net social cost.			
				1		
Published	National	August 2016	This paper presents the results of an analysis of the	https://papers.ssrn.co	Ata, B., A.S. Duran, and O.	University of Chicago
paper			short-term effects of time-based electricity tariffs	m/sol3/papers.cfm?a	Islegen. 2016. An analysis of time-	
			on consumer and retailer costs and CO2 emissions	bstract Id=2826055	based pricing in electricity supply	
			in Ireland. The authors used the PNNL's EQT, which		chains.	
			uses the AVERT algorithm, to model the estimated			
			system load of their consumers under flat-rate and			
			experimental pricing schemes. Although AVERT is			
			designed for use in the contiguous 48 states, the			
			authors attempted to apply the same approach to			
			Ireland by using system load data from Ireland			
			along with a scaling factor.			

Publication		Date				Organization or author
type	AVERT region	published	Summary	URL	Citation	affiliation
Published	Great	May 2018	This paper assesses the optimal siting of wireless	https://www.scienced	Bi, Z., G.A. Keoleian, and T. Ersal.	University of Michigan
paper	Lakes/Mid-		charging stations for an electric bus network in	irect.com/science/arti	2018. Wireless charger	
	Atlantic		terms of life-cycle costs, greenhouse gas emissions,	cle/pii/S03062619183	deployment for an electric bus	
			and energy use. The authors used AVERT with the	<u>0789X</u>	network: A multi-objective life	
			Great Lakes/Mid-Atlantic region to quantify		cycle optimization. Applied	
			temporal differences in emissions and energy		Energy 225: 1090-1101.	
			intensities of the electric grid in order to optimize			
			charging siting to minimize emissions.			
Published	National	August 2016	This publication assesses various methods for	http://pubs.acs.org/d	Rvan N.A. I.X. Johnson and G.A.	University of Michigan
paper	i tutional	10000	quantifying emissions from electricity loads.	oi/abs/10.1021/acs.es	Keoleian, 2016, Comparative	onversity of Michigan
pape.			including AVERT. The authors describe AVERT and	t.5b05216?iournalCod	assessment of models and	
			review its functionality, tractability, and	e=esthag	methods to calculate grid	
			appropriate use. In addition, the authors present a	<u> </u>	electricity emissions.	
			case study quantifying CO2 emission factors for		Environmental Science and	
			electric vehicle charging using 10 different		Technology 50(17): 8937-8953.	
			methods, including AVERT.			
Published	Great	August 2016	This paper presents an analysis of the CO2, NOx,	http://www.sciencedir	Chiang, A.C., M.R. Moore, J.X.	University of Michigan
paper	Lakes/Mid-		and SO2, emission reductions and corresponding	ect.com/science/articl	Johnson, and G.A. Keoleian.	
	Atlantic,		monetary benefits associated with constructing a	<u>e/pii/S092180091630</u>	2016. Emissions reduction	
	Upper		300 MW offshore wind farm in Lake Michigan. The	<u>4657</u>	benefits of siting an offshore	
	Midwest		authors used AVERT to calculate emission		wind farm: A temporal and	
			reductions, then used two different approaches to		spatial analysis of Lake Michigan.	
			monetize the benefits of these reductions. They		Ecological Economics 130: 263-	
			present a benefit of \$33MWh based on marginal		276.	
			damages of pollution and a benefit of \$987/kW			
			based on market prices for pollution allowances.			
			The study compares different locations for the			
			wind farm to examine the impact of siting on			
			generation and corresponding displaced emissions.			

Publication		Date				Organization or author
type	AVERT region	published	Summary	URL	Citation	affiliation
Published paper	National	November 2017	This article presents a decision algorithm to help users determine the most appropriate method to estimate CO2 emissions from an electricity load. Among the factors considered are region size, temporal resolution, average or marginal approaches, and time scales. AVERT is one of 32 options presented.	http://onlinelibrary.wi ley.com/doi/10.1111/j iec.12708/full	Ryan, N.A., J.X. Johnson, G.A. Keoleian, and G.M. Lewis. 2017. Decision support algorithm for evaluating carbon dioxide emissions from electricity generation in the United States. Journal of Industrial Ecology.	University of Michigan
Published paper	Great Lakes/Mid- Atlantic	September 2018	This paper compares life cycle assessment models that use different levels of temporally resolved data and average and marginal electricity generation mixes. The authors used AVERT data in the models that estimate environmental impacts due to marginal emissions. They demonstrate that using dynamic grid data generates more refined estimates of a building's use-phase environmental impact.	https://pubs.acs.org/d oi/abs/10.1021/acs.es t.7b06535	Collinge, W.O., H.J. Rickenbacker, A.E. Landis, C.L. Thiel, and M.M. Bilec. 2018. Dynamic life cycle assessments of a conventional green building and a net zero energy building: Exploration of static, dynamic, attributional and consequential electricity grid models. Environmental Science and Technology, in press. DOI: 10.1021/acs.est.7b06535	University of Pittsburgh
Published paper	Northeast, Great Lakes/Mid- Atlantic, Southeast	November 2017	This paper analyzes air quality and public health impacts from PM2.5 emission reductions as a result of replacing 17% of electricity generation with solar PV across the eastern United States. The authors used AVERT to generate this result and to test emission reduction sensitivity, as they compared emission reductions from years between 2007 and 2015 as well as varying amounts of solar integration.	https://www.scienced irect.com/science/arti cle/pii/S13522310173 08105	David, A., T. Holloway, M. Harkey, A. Rrushaj, G. Brinkman, P. Duran, M. Janssen, and P. Denholm. 2017. Potential air quality benefits from increased solar photovoltaic electricity generation in the Eastern United States. Atmospheric Environment.	University of Wisconsin – Madison