

The 30th International **Electric Vehicle Symposium & Exhibition**

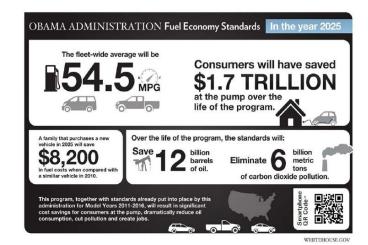
October 9-11, 2017 Messe Stuttgart, Germany

www.evs30.org

Predicting the Future Manufacturing Cost of Batteries for Plug-In Vehicles for the U.S. EPA 2017-2025 Light-Duty Greenhouse Gas Standards

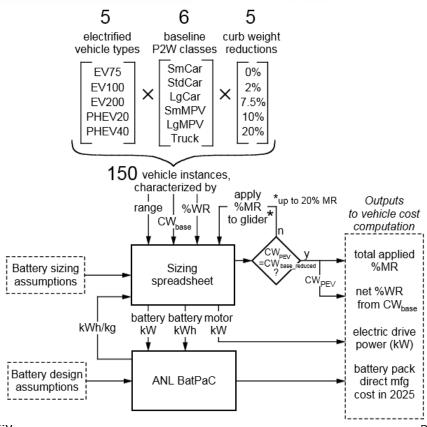
Michael J. Safoutin
U.S. Environmental Protection Agency

Agenda

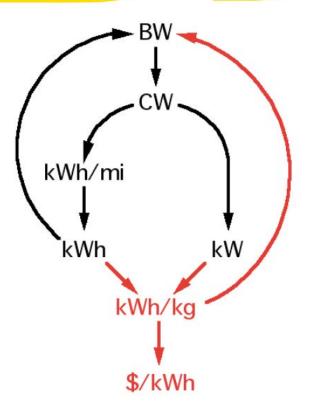


- Why EPA models battery costs for PEVs
- Outline of the sizing and costing methodology
- Major inputs, data sources, and how we chose them
- How our battery sizing compares to actual PEVs
- How our projected costs compare to other sources

Why does EPA model battery costs?


- The 2017-2025 Light-Duty GHG standards were developed between 2010-2012
- One important consideration was the cost of technologies available to comply with the standards
- Plug-in Electric Vehicles (PEVs) are one of these technologies
- EPA has assessed PEV battery costs several times:
 - When the standards were first developed in 2012
 - In July 2016 for the Draft Technical Assessment Report (TAR)
 - In November 2016 for the Proposed Determination
- The EPA Administrator has announced that he is reconsidering the Jan. 2017 Final Determination, and plans to make a new Final Determination by April 1, 2018
- Staff continues to review new data and information for all technologies, including PEV battery costs

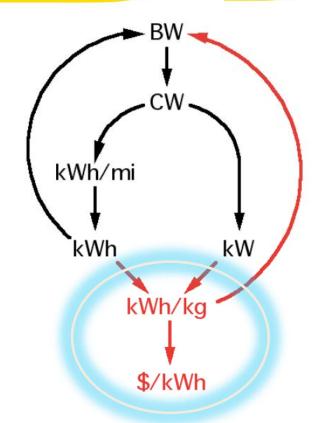
Battery cost modeling approach


- Define a broad spectrum of PEVs representing the future fleet
- Determine required battery capacity and power for each
- Use ANL BatPaC to estimate direct manufacturing cost

Specifying a battery is complex

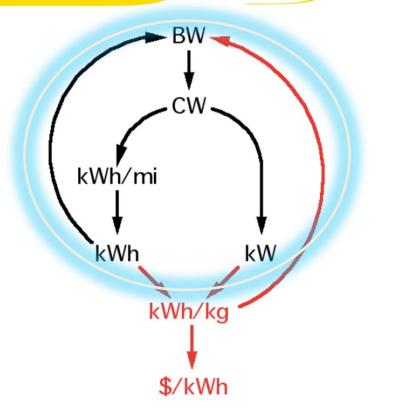
- Capacity (kWh) and power (kW) are the primary parameters
- Required kWh depends on vehicle energy consumption (kWh/mi)
- kWh/mi depends on vehicle curb weight
- Curb weight depends on battery weight
- Battery weight depends on required kWh and specific energy (kWh/kg)
- kWh/kg depends on kWh and kW
- Computational shortcuts are tempting, but they can introduce vulnerabilities

Goal: Avoid vulnerabilities, such as:

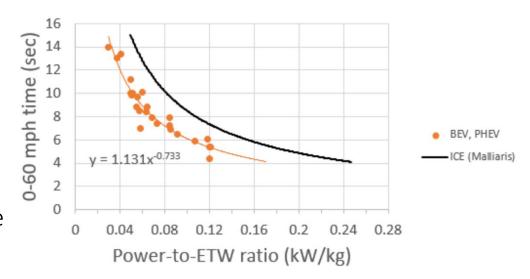


- Assuming a constant \$/kWh for all vehicles
 - Not sizing the battery specifically to the vehicle class
 - Not accounting for the efficiencies of larger batteries
 - Not accounting for the cost of power
- Assuming a fixed kWh/mile for all vehicles
 - Not accounting for the effect of vehicle weight
 - Not distinguishing between vehicle classes
- Neglecting battery design
 - Not specifying the cell and module topology
 - Not accounting for the scale of production

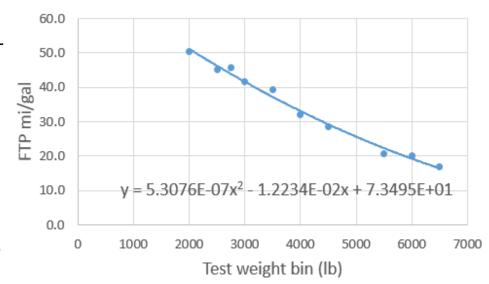
ANL BatPaC is a key component


- Peer-reviewed, bill-of-materials based model by Argonne National Lab
- Key inputs:
 - Gross capacity (kWh)
 - Peak power (kW)
 - Topology (cell and module)
 - Thermal medium
 - Production volume
- Key outputs:
 - Specific energy (kWh/kg)
 - Direct manufacturing cost (\$)
- However, it can't help with determining required kWh or kW

Battery sizing spreadsheet


- Determines kWh and kW for a given vehicle:
 - Curb weight is converted to kw by an empirical equation
 - Curb weight is converted to kWh/mi by another empirical equation
 - Estimates of kWh and kW are fed to BatPaC, which responds with an estimated kWh/kg
 - kWh/kg is used to estimate battery weight
 - The solution converges after dozens of iterations

Converting curb weight to kW


- The propulsion motor is sized using an empirical equation that relates 0-60 time to rated peak motor power
- Battery peak power (10 s) is derived from motor power:
 - 10% is added for motor losses
 - Additional 20% for power fade
- Larger batteries usually exceed the specification due to their capacity
- These batteries should therefore support moderate levels of fast charging

Converting curb weight to kWh/mi

- We begin with a polynomial regression for ICE fuel economy (1111/gai) as a runction or test weight
- ICE fuel economy is then converted to kWh/mi:
 - Assuming 33,700 kWh/gal
 - Applying factors representing relative efficiency of electric powertrain vs. ICE
 - Applying road load reduction due to reductions in aero and tire losses
- PEV kWh/mi can then be assigned as a function of test weight

Many other variables impact cost

- Driving range
- Range derating factor (for real-world range)
- Topology
 - Cell capacity
 - Cells per module
 - Parallel strings
 - Pack voltage
- Usable SOC window
- Thermal medium (liquid or air)
- Electrode dimensions (thickness, aspect ratio)

Driving range and derating factor

- BEVs were modeled with range of 75, 100, and 200 miles
- Range is an "EPA label" range computed by applying a derating factor to a combined test range (55/45 city/highway)
- For BEV75 and BEV100, derating factor is 70%
- For BEV200, derating factor is 75%
- Based on observed industry practice in certification process
 - Most manufacturers certify with default 70%
 - Longer range Tesla vehicles have used an optional procedure that equates to using 73-77%

Pack topologies are optimized

- For a given pack capacity (kWh), iterate all valid topology possibilities
 - Cells/module (20 to 40, even numbers)
 - Cells in parallel (1 to 4)
 - Modules per row (1 to 4)
 - Number of rows (1, 2, or 4)
- Each topology combination determines a cell capacity (A-hr) and pack voltage (V)
- Choose the topology that has a voltage and cell capacity nearest the target
 - Max cell capacity: BEV 90 Ah, PHEV 50 Ah
 - Pack voltage: ~ 300 V to 400 V

```
while (i < num kwh) do
 min_error := 100000;
 cells per module := 20; //was 24
 while (cells per module <= 40) do //was 36
   if ((cells_per_module/2) = (cells_per_module div 2)) then //even cells per module
     cells_in_parallel := 1;
     while (cells_in_parallel <= 4) do
       if (cells_per_module/cells_in_parallel = cells_per_module div cells_in_parallel) then
         modules_per_row := 1;
         while (modules_per_row <= 4) do
         begin
           rows := 1:
           while (rows <= 4) do
           begin
             if (rows <> 3) then
             begin
               ideal_cells := kwh[i]*1000/(cell_v*desired ah);
               cells_per_pack := cells_per_module * modules_per_row * rows;
                ocv := cells_per_pack * cell_v / cells_in_parallel;
               cell_ah := kwh[i] * 1000 / cell_v / cells_per_pack;
                if ((ocv <= 400) and (ocv >= 300)) then
                 if (cell ah <= maximum ah) then
                 begin
                   //use this to get closest to max size
                    this error := abs(maximum ah - cell ah);
                   if (this error < min error) then
                     min error := this error;
                     bestyet [i] := xSTR(kwh[i]) + ',' + xSTR(cells per module) + ',' + xSTR(cel
               end:
             end:
             inc(rows);
           inc(modules per row);
       inc(cells_in_parallel);
   inc(cells_per_module);
```

Other influential parameters

- Electrode aspect ratio 3:1
 - Automakers indicate trend toward nat, noor-mounted packs
 - Tabs on short dimension to minimize height (like Chevy Bolt)
- Electrode thickness <= 100 microns
- All packs liquid cooled
- Usable capacities

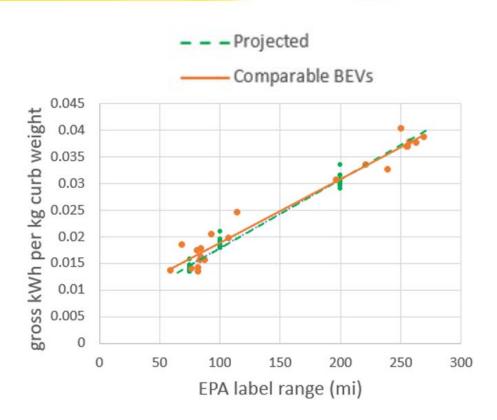
■ BEV200: 90%

■ BEV75/100: 85%

■ PHEV20/40: 65% - 67%

Trend toward flat, floor mounted packs using large, low-profile cells

Validation against specific BEVs

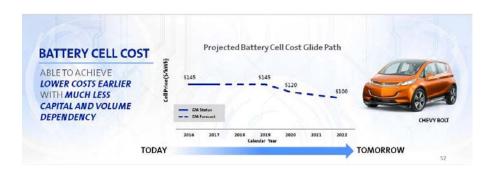


Example	Range (mi)	Curb weight (lb)	Derate factor	Gross kWh	EPA projected gross kWh	Error
Nissan Leaf	107	3340	0.70	30	30.3	1%
Chevy Bolt	238	3580	0.70	60	61.6	3%
Model S P85D	253	4963	0.738	85	88.75	4%
Model S 60	210	4323	0.796	60	57.5	-4%
Model S 85	265	4647	0.796	85	84	-1%

Validation against production BEVs

- When normalized to curb weight, the predicted battery capacities closely track comparable production BEVs
- The methodology is designed to expect slightly more improvement for shorter range BEVs
- Results are similar for PHEVs

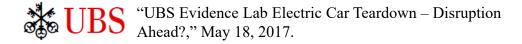
Variability in cost per kWh is captured

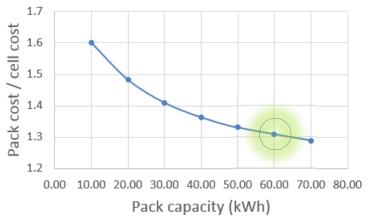


	PHEV20	PHEV40	BEV75	BEV100	BEV200
CW Class	\$371-\$388	\$250-\$258	\$205-\$223	\$173-\$185	\$145-\$151
CW Class	\$352-\$365	\$242-\$251	\$193-\$211	\$165-\$177	\$137-\$144
CW Class	\$337-\$361	\$237-\$247	\$186-\$205	\$159-\$172	\$133-\$140
CW Class	\$319-\$346	\$232-\$246	\$176-\$204	\$155-\$165	\$126-\$134
CW Class	\$277-\$309	\$227-\$241	\$160-\$189	\$146-\$155	\$115-\$124

Comparison to Chevy Bolt costs

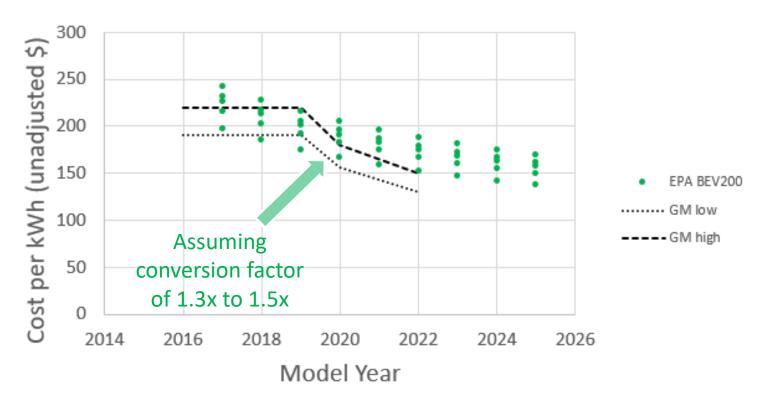
- Chevy Bolt = BEV238, 150 kW, 60 kWh, known topology
- GM publicized cell-level costs (not pack-level costs)
- If we can convert them to pack-level costs, we can make a qualified comparison to our projected BEV200 pack costs

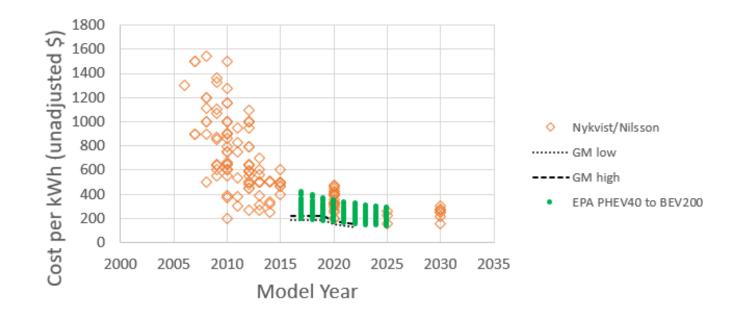

Mark Reuss, GM: "When we launch the Bolt, we will have a cost per kWh of \$145, and eventually we will get our cost down to about \$100."


- GM Global Business Conference, October 2015

Converting cell cost to pack cost

- BatPaC suggests the ratio of pack cost to cell cost for a 60 kWh pack should be about 1.3
- The 2017 teardown of the Chevy Bolt by UBS suggests a ratio of about 1.44
- We will assume a ratio of 1.3-1.5




Comparison to estimated Bolt pack cost

Comparison to Nykvist & Nilsson

Nykvist, B. and Nilsson, M.; "Rapidly Falling Costs of Battery Packs for Electric Vehicles," Nature Climate Change, March 2015.

Ongoing work

- Battery technology continues to develop rapidly
- Our 2012 estimates went from being considered optimistic to being considered conservative
- We continually monitor trends and developments in the industry
- Our most recent estimates remain close to stakeholder consensus
- We have continued to assess new data and information that has become available this year
 - Plan to model 100, 150, and 200 mile driving ranges
 - New version of BatPaC includes updated material costs
 - Batteries will be designed for specific levels of DC fast charging
 - All non-battery costs have also been updated

Thank you

- For more information on the methodology, inputs, and data sources, see Chapters 2.2.4.5 and 2.3.4.3.7 of the Technical Support Document (TSD) for the 2016 Proposed Determination, EPA 420-R-16-021, November 2016.
- For information on the Midterm Evaluation, visit: <u>https://www.epa.gov/regulations-emissions-vehicles-and-engines/midterm-evaluation-light-duty-vehicle-greenhouse-gas</u>

United States Environmental Protection Agency

Michael J. Safoutin, Ph.D. Mechanical Engineer Coordinator, Battery Studies & Assessment Subject Matter Specialist, Electrification

Office of Transportation and Air Quality Assessment & Standards Division Light Duty Vehicle & Small Engines Center 2000 Traverwood Drive Ann Arbor, MI 48105

Safoutin.Mike@epa.gov (734) 214-4348