

Detection of Bacillus anthracis spores from non-porous surfaces using 'bioluminescent' reporter bacteriophage

Cathy Nguyen¹, Natasha J. Sharp¹ Martin A. Page², Ian J. Molineux³ and David A. Schofield¹

¹Guild BioSciences, Charleston, South Carolina, USA

²U.S. Army Corps of Engineers, Engineer Research and Development Center, Construction Engineer Research Laboratory, Champaign, Illinois, USA ³Institute for Cellular and Molecular Biology, University of Texas at Austin, Texas, USA

Abstract

Bacillus anthracis is a pathogenic spore-former and etiological agent of anthrax. Spores are naturally found in the environment where they can persist and remain infectious for more than 200 years. A contaminated area has potential to cause extensive disruption as it is uninhabitable until successful remediation. To ensure public health and preparedness for such an event, an efficient and rapid environmental detection system for spores is essential. To address this need, we previously generated a 'light-tagged' B. anthracis-specific reporter phage (Wβ::luxAB) which can rapidly and sensitively detect pure cultures from germinating spores by conferring a bioluminescent response.

The efficacy of Wβ::luxAB to detect B. anthracis ∆Sterne spores from 3 non-porous contaminated surfaces was assessed. 2x2 inch coupons of stainless steel, glass and polycarbonate were used to represent the various surfaces. Coupons were inoculated with spores (101 to 104 CFU/coupon) suspended in 95% ethanol (EtOH), then left overnight for EtOH to evaporate, leaving 'dried' spores on the coupon surfaces. To sample, macrofoam swabs moistened with phosphate-buffered saline with 0.02% Tween 80 (PBST) were used to methodically wipe the coupon surface to 'collect' spores, which had an estimated processing time of 1 min per coupon. Extraction efficiency was assessed by plating samples and controls for CFU onto brain heart infusion (BHI) agar plates. Swabs were submerged in media containing reporter phage (10⁹ PFU/mL), vortexed vigorously for 2 min, incubated at 35°C with continuous shaking (250rpm) to allow for germination and phage infection, and then analyzed for bioluminescence after 4-8h. To emulate 'real life' environmental samples, swabs were also deliberately 'dirtied' by moistening in PBST harboring either Arizona test dust (10mg/mL), Bacillus thuringiensis spores (10⁴ CFU/mL). Staphylococcus epidermidis (104 CFU/mL) or all three contaminants combined before sampling.

Swab sampling extraction efficiency was similar from all 3 surfaces, consistently yielding 50-70% recovery of spores from coupons. B. anthracis was detectable from 'clean' coupons deliberately inoculated with spores, vielding a limit of detection of 10¹ CFU/coupon within 6 h or 8 h for polycarbonate, stainless steel and glass surfaces, respectively. WB::luxAB was able to detect 10¹ CFU within 8h from 'dirty' stainless steel, glass and polycarbonate coupons. As the methodology is simple with minimal hands-on time, the technology displays potential for rapid detection of viable spores from various non-porous surfaces under fieldable or laboratory conditions.

Contact:

David Schofield Guild BioSciences Email: dschofield@GuildBioSciences.com Phone: (843) 573-0095 Website: www.GuildBioSciences.com

Problem

tests/da

Table 1. Persistence of biowarfare bacteria مفاحه أقحماهم

B. anthracis	Soil	40 years					
	Human remains	Over 200 years	The environment				
	Pondwater	18 years	 Infections execut 				
Y. pestis	River water	>28 days	 Intectious agent 				
	Soil	24 days	Decistant to tractmente				
	Surfaces	Up to 3 days	 Resistant to treatments 				
B. mallel	Not specified	Weeks	Eacily weaponized and				
B. pseudomallel	Soil	Years	Labily weapoinzed and				
	Water	Months	disseminated				
F. tularensis	Water	>30 days	disserimitated				
		-	Stable for 200+ years				
Toble (2 Motio	nol nion	ning aconaria for across				
raule⊿	z. malic	пагогап	ninu scenano lor aeroso				

Detection System: Fig. 1. *B. anthracis* ΔSterne Wβ::/uxAB phage assay

(Adapted from the Department of Homeland Security and 2005 National Planning Scenarios)

Bacillus asthra "200µL culture Phage mixed with

LuxAB genes encoding luciferase enzymes were integrated into *B. anthracis*-specific WB reporter phage via homologous recombination. Engineered WB:: IuxAB infects the cell and uses the host's metabolic machinery to produce luciferase. The phage alone cannot express *luxAB* reporter genes. Bioluminescent signal can only be produced in the presence of viable cells, which is then detectable by a luminometer.

Fig. 2. Bioluminescent signal response of ∆Sterne spores

- Detection of 10¹ CFU/mL in 8h
- Dose-dependent signal

*significant (p<0.05) signal increase compared to phage only controls

Methods/Results:

5x 100µL drops, 95% EtOH Incubation in petri dish with lid on to dry, 16-18 h

Fig. 4. Spore extraction and detection

Table 3. Steel coupon extraction efficiency

	Control (no spores, n=5)					Test (n=5)				
Reps	1	2	3	4	5	1	2	3	4	5
Colony count (neat)	0	0	0	0	0	160	147	128	128	172
CFU/mL	0	0	0	0	0	1.60x10 ³	1.47x103	1.28x103	1.28x103	1.72x103
Total CFU (5 mL)	0	0	0	0	0	8.00x103	7.35x103	6.40x10 ³	6.40x103	8.60x103
% Recovery	0	0	0	0	0	69.6	63.9	55.7	55.7	74.8

- Nationally-validated recovery range: 10-30%¹
- Reported extraction efficiency: 50-70%
- Fairly consistent within sample set (low variation)

Fig. 5. Spore detection from 'clean' steel coupons

Dose-dependent detection:

- Detection of 1.0 x 10⁴ CFU/coupon within 4h
- Detection of 1.0 x 10³ CFU/coupon within 4h
- Detection of 1.0 x 10² CFU/coupon within 6h
- Detection of 1.0 x 10¹ CFU/coupon within 8h
- Limit of detection: 10¹ CFU/coupon

Numbers for all graphs are mean (n=3)± S.D. p<0.05 students t-test, one-way ANOVA, or two-way ANOVA

Fig. 6. Detection from 'clean' glass & plastic coupons Glass Plastic

⁻ Detection of 1.0 x 101 CFU/coupon within 8h from both glass & plastic

Fig. 7. Detection of 10¹ CFU from 'dirty' coupons

*significant (p<0.05) signal increase compared to phage only controls

Conclusions

- Established spore extraction protocol:
- Adapted protocol from a nationally-validated study¹ using sterile macrofoam swabs
- 50-70% extraction efficiency from steel
- Low variation within sample set
- Detection of spores from 'clean' coupons with minimal processina:
- Steel: 101 CFU/coupon in 8h
 - Glass: 101 CFU/coupon in 8h
 - Plastic: 10¹ CFU/coupon in 8h
- Spores detectable in presence of commensal bacteria and other contaminants (ATD, Bt spores, S. epidermidis):
- Steel: 10¹ CFU/coupon in 8h
- Glass: 10¹ CFU/coupon in 8h
- Plastic: 10¹ CFU/coupon in 8h

References

¹Hodges, L.R., Rose, L.J., O'Connell, H., Arduino, M.J. 2010 National validation study of a swab protocol for the recovery of *Bacillus anthracis* spores from surfaces. Journal of Microbiological Methods. 81, 141-146.

Research funded by US Army ERDC CERL W9132T-12-C-0017, the USDA NIFA (2009-33610-20028) Phase I/II SBIR program and NIH NIAID R01 grant #1R01AI111535.

B. anthracis ASterne spores were prepared and kindly provided by Dr. Tony Buhr (Navy Surface Warfare Centre, Dahlgren Division).