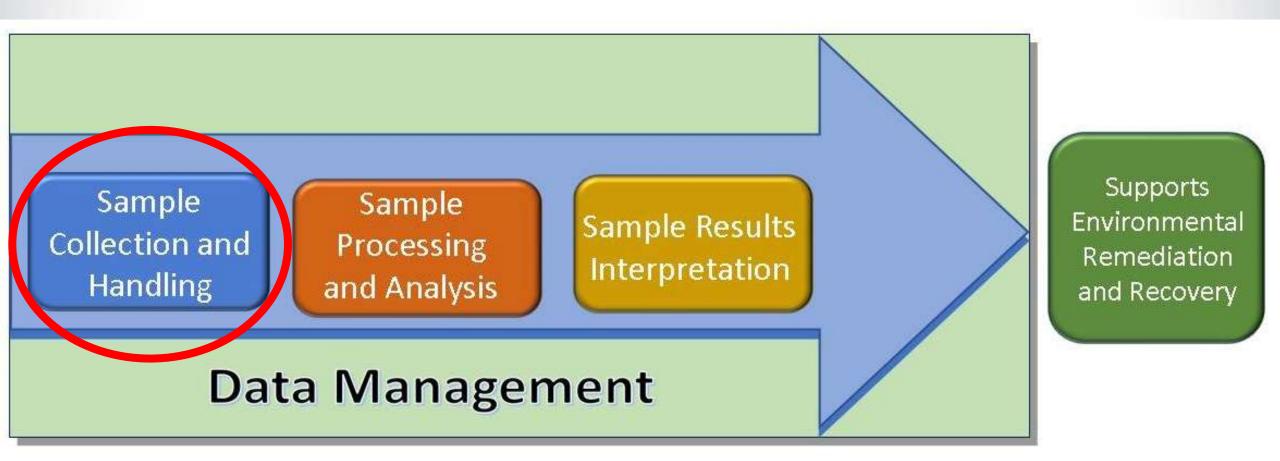
Office of Research and Development

HOMELAND SECURITY RESEARCH PROGRAM

EPA SAMPLING AND ANALYSIS SCIENCE Tools

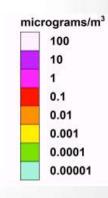

SARAH TAFT PH.D.

U.S. Environmental Protection Agency (EPA)
International Decontamination Research and
Development Conference

May 9, 2019

Environmental Sampling and Analytical Methods Program (ESAM)

https://www.epa.gov/homeland-security-research/environmental-sampling-analytical-methods-esam-program-home


The Game Changer - A Wide-Area Bio Incident

New York Subway System (MTA)

The Game Changer - A Wide-Area Bio Incident

2 mi² outdoor urban 'area of interest':

- 15 mi² indoors, 0.5 mi² underground
- 30 million samples
- \$15B
- 3.6M Person-hours
- 10 years

HSRP Innovation Sample Collection and Strategies Research for Wide-Area Incident

- Traditional Sampling Composite Sampling
 - 1-4 ft² sample size

- 2-3 personnel
- \$\$\$\$
- Challenges:
 - time consuming
 - labor intensive
 - require a large number of samples

- Whole room, floor, or building sample size
- 2 personnel
- \$

Wet vacuum.

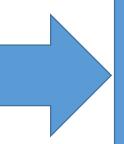
Robotic cleaner.

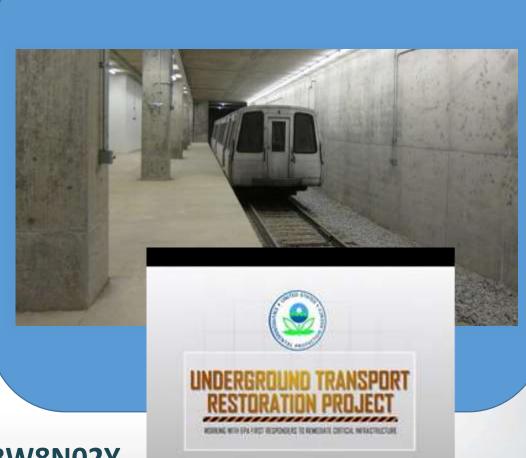
Native air filters (e.g. HVAC)

Emerging Composite Sampling Methods

presented by the

National Homeland Security
Research Center
U.S. Environmental Protection Agency




Transitioning from Laboratory Research to Operation Technology Demonstration (OTD)

Link to OTD Video: https://youtu.be/5QIZBW8N02Y

HSRP Innovation Sample Collection and Strategies Research for Wide-Area Incident

Tests confirmed the following benefits using composite sampling methods:

- large sampling area
- economic and rapid
- small number of sampling personnel per area
- reduced burden on processing labs

Comparison of surface sampling methods:

Method	Total sampled area (ft²)	Sampling duration (min)	Sampling cost per ft ² (\$)
37 mm micro- vaccum	49	970	395
Robotic Floor Cleaner	~1350	36	0.6
Wet Vaccum	421	84	1.6

Sample Collection Future Directions

New sample collection methods for bio:

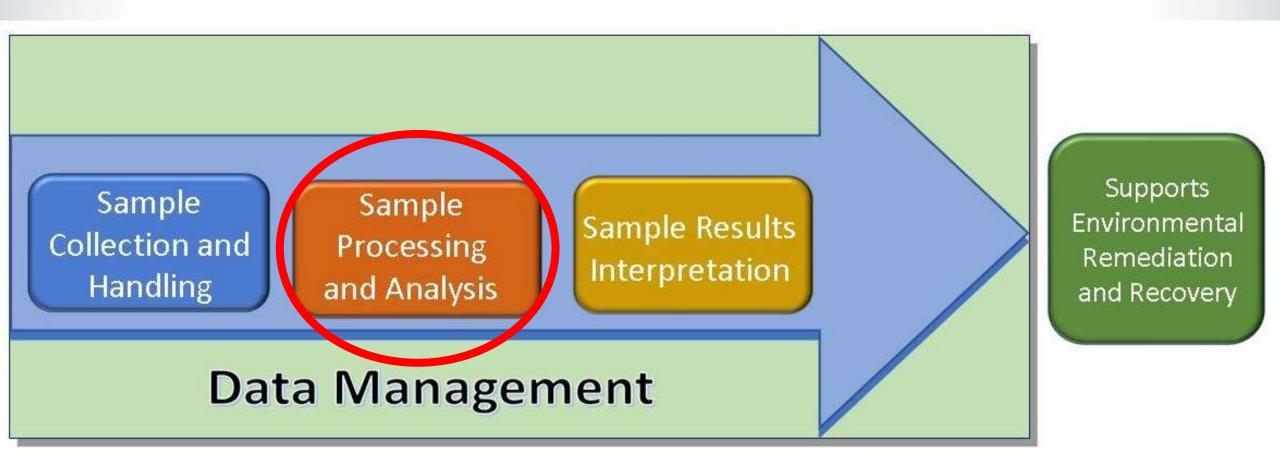
Air sampling.

Soil and vegetation sampling.

Municipal equipment.

Sampling strategies – Where, when, and how many samples?

Sample Collection Information Document (SCID)


- Developed to facilitate transfer of field samples to the analytical laboratory by indicating specific requirements for:
 - Collection volume or weight
 - Sample containers
 - Holding times
 - Preservation or preparation
 - Packaging
 - Shipping labels

Environmental Sampling and Analytical Methods Program (ESAM)

https://www.epa.gov/homeland-security-research/environmental-sampling-analytical-methods-esam-program-home

What types of contaminants and sample types?

Chemicals	Radiochemicals	Pathogens	Biotoxins
 145 analytes Chlorine Fentanyl VX 5 sample types Solids Non-drinking water Drinking water Air Wipes 	 36 analytes Cesium-137 Plutonium-238/239 Strontium-90 10 sample types Drinking water Aqueous & liquid phase Soil & sediment Surface wipes Air filters Vegetation Brick Concrete Asphalt matrices Asphalt shingles 	 Bacillus anthracis Legionella Cryptosporidium Noroviruses 5 sample types Aerosol Particulate Soil Drinking water Post decontamination waste water 	 17 analytes Ricin Microcystins Botulinum neurotoxins 5 sample types Aerosol Solid Particulate Non-drinking water Drinking water

Selected Analytical Methods (SAM)

- Identifies a single, selected method for each analyte/sample type in a specific matrix (e.g. soil, water, air)
 - Permits sharing of sample load between laboratories
 - Increases the speed of analysis
 - Improves data comparability
 - Simplifies potential outsourcing analytical support

Selected Analytical Methods (SAM) Applicability Tiers

SAM Applicability Tier I	Analyte/sample type is a target of the method.		
	Multi-laboratory evaluated will allow implementation for the analyte/sample type with no modifications. Data available for all aspects of method performance and quality control measures supporting its use.		
	Method has been used by laboratories to address the analyte/sample type, but not multi-lab validated.		
SAM Applicability Tier II	 (1) The analyte/sample type is a target of the method, but method performance/quality control measures need further evaluation (e.g., single-lab tested). (2) The analyte/sample type is not a target of the method, but limited data for method performance/ quality control may be available. 		
SAM Applicability Tier III	Analyte/sample type is not a target of the method, and/or no reliable data supporting the method's fitness for its intended use are available.		

New Processing and Analysis Methods in ESAM

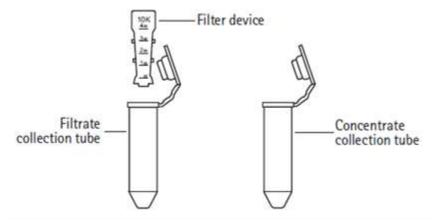
Biological and Biotoxin:

- Yersinia pestis
- Francisella tularensis
- Ricin

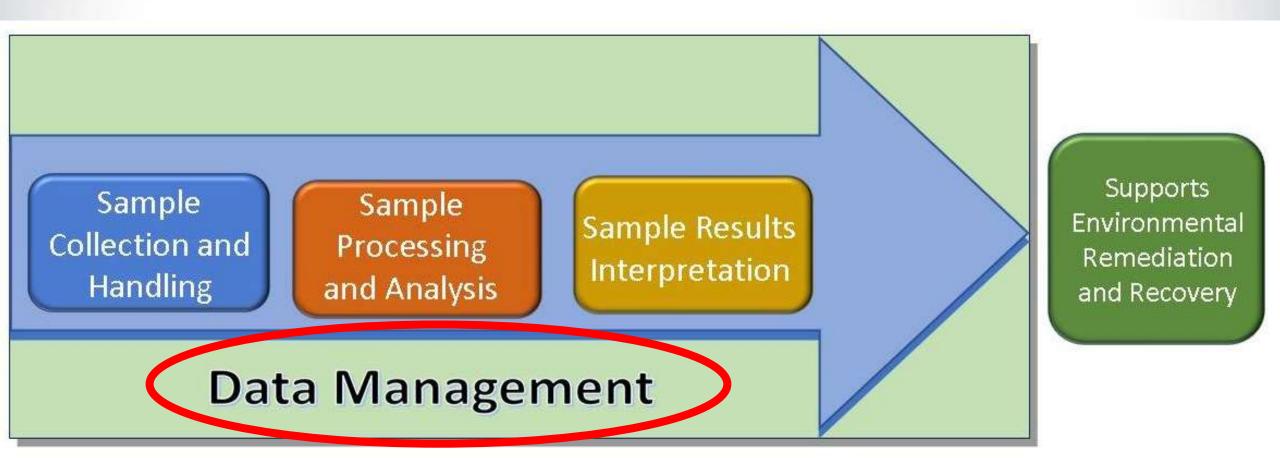
Chemical:

- VX
- EA-2192, VX Degradation Product
- Semivolatile Organic Compounds (21 sVOCs)
- Organophosphorus-based Pesticides

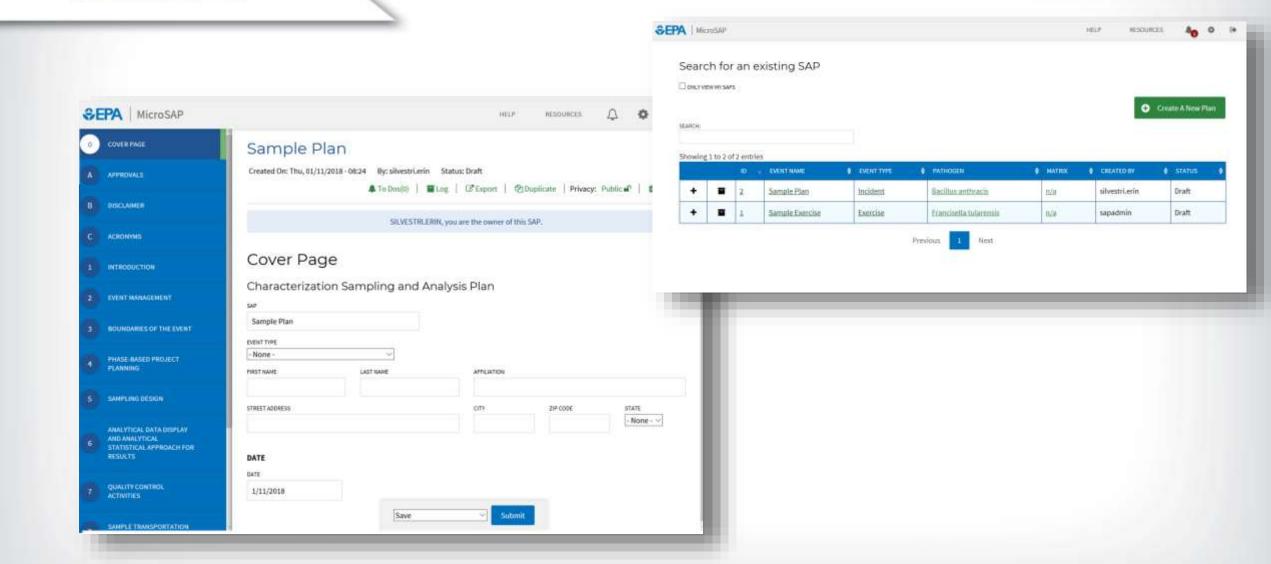
Radiochemical:


- Cf -252, Cm -244, and Sr 89
- Rapid radiochemical methods for concrete, brick, asphalt, shingles, limestone, and granite

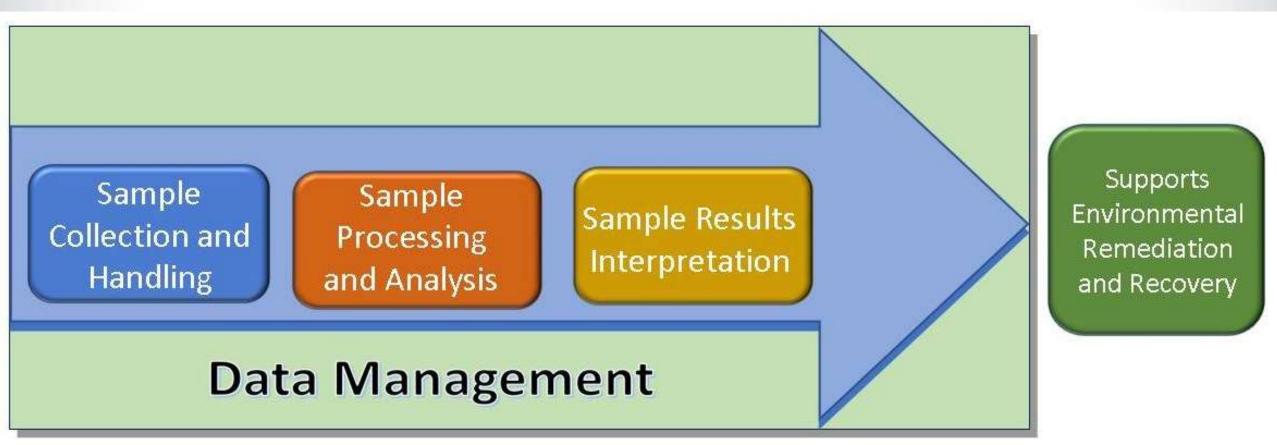
Ricin Cleanup in Boulder, CO, October 2017



Sample Processing Procedure for Post-Decontamination Ricin Samples using 0.5 mL Ultrafiltration Devices


Environmental Sampling and Analytical Methods Program (ESAM)

https://www.epa.gov/homeland-security-research/environmental-sampling-analytical-methods-esam-program-home



Sampling Design Planning - MicroSAP

DEMO of ESAM

https://www.epa.gov/homeland-security-research/environmental-sampling-analytical-methods-esam-program-home

Acknowledgements

- John Archer
- Tim Boe
- Helen Buse
- Worth Calfee
- Romy Campisano
- Sandip Chattopadhyay
- Hiba Ernst
- Vince Gallardo
- Jim Goodrich
- John Hall
- Kathy Hall
- Terra Haxton
- Robert Janke
- Sang Don Lee

- Jingrang Lu
- Matthew Magnuson
- Anne Mikelonis
- Reagan Murray
- Tonya Nichols
- Lukas Oudejans
- Emily Parry
- Sanjiv Shah
- Erin Silvestri
- Emily Snyder
- Jeff Szabo
- Stuart Willison
- Joe Wood

Thank you!

https://www.epa.gov/homeland-security-research/environmental-sampling-analytical-methods-esam-program-home

Sarah C. Taft, Ph.D.

Taft.Sarah@epa.gov 513-569-7037

Disclaimer:

This presentation has been subjected to the Agency's review and has been approved for publication. Note that approval does not signify that the contents necessarily reflect the views of the Agency. Mention of trade names, products, or services does not convey official EPA approval, endorsement, or recommendation.